WO2000058643A1 - Flywheel - Google Patents

Flywheel Download PDF

Info

Publication number
WO2000058643A1
WO2000058643A1 PCT/JP2000/001408 JP0001408W WO0058643A1 WO 2000058643 A1 WO2000058643 A1 WO 2000058643A1 JP 0001408 W JP0001408 W JP 0001408W WO 0058643 A1 WO0058643 A1 WO 0058643A1
Authority
WO
WIPO (PCT)
Prior art keywords
inertial body
damper
shaft
inertial
boss
Prior art date
Application number
PCT/JP2000/001408
Other languages
English (en)
French (fr)
Inventor
Daisuke Shibata
Atsushi Inoue
Original Assignee
Unisia Jecs Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corporation filed Critical Unisia Jecs Corporation
Priority to EP00907951A priority Critical patent/EP1083364A1/en
Publication of WO2000058643A1 publication Critical patent/WO2000058643A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/134Wound springs
    • F16F15/13407Radially mounted springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/12Attachments or mountings
    • F16F1/128Attachments or mountings with motion-limiting means, e.g. with a full-length guide element or ball joint connections; with protective outer cover
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/1203Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon characterised by manufacturing, e.g. assembling or testing procedures for the damper units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/12306Radially mounted springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • F16F15/315Flywheels characterised by their supporting arrangement, e.g. mountings, cages, securing inertia member to shaft

Definitions

  • the present invention relates to a flywheel that is suitable for use in an internal combustion engine, and more particularly to a flywheel in which two inertial bodies are connected by a damper.
  • Flywheels used in internal combustion engines are used to smooth the rotation of a rotating shaft system with large torque fluctuations and to obtain an anti-vibration effect.
  • Japanese Patent Application Laid-Open No. 3-219146 discloses a first inertia body fixed to a drive shaft and a second inertia body rotatable relative to the first inertia body.
  • a flywheel is disclosed in which a body and a body are linked by a plurality of circumferentially arranged dampers.
  • the damper includes: a damping device that provides resistance to relative rotation between the first inertial body and the second inertial body; and a spring member that returns the first inertial body and the second inertial body from the relative rotational position to the neutral position.
  • a dashpot is used as a damping device.
  • the conventional flywheel includes a dash as an attenuation device when the first inertial body and the second inertial body relatively rotate from a neutral position of relative rotation and return from the relative rotational position to the neutral position.
  • the pot and the spring member provide resistance to the relative rotation, thereby obtaining an anti-vibration effect. That is, when the working fluid in the dashpot escapes from the orifice provided in the piston, a movement resistance is obtained by a pressure difference generated on both surfaces of the piston, and a vibration absorbing effect is obtained by a spring force of a spring member. .
  • both ends of the damper are directly connected to the first inertia body and the second inertia body, respectively. That is, the damper located radially inward The end of the damper is attached to the first inertial body by bolts, and the end of the damper located radially outward is attached to the second inertial body by bolts.
  • the present invention has been made in view of the above-described conventional situation, and has as its object to provide a flywheel capable of easily performing a dambar mounting operation.
  • the first inertial body and the second inertial body that can rotate relative to the first inertial body are connected by a plurality of dampers arranged in the circumferential direction.
  • a boss member connected to either the first inertial body or the second inertial body is mounted on one of the first inertial body and the second inertial body so as to be relatively rotatable;
  • a shaft extending substantially in the same direction in the substantially axial direction is provided for each of the first inertial body or the second inertial body and the boss member, corresponding to the damper, and each end of the damper is provided for each of the shafts.
  • the boss member is connected to one of the first inertial body and the second inertial body and the boss member.
  • the invention according to claim 2 is the configuration according to claim 1, wherein the damper includes a damping device that provides resistance to a relative rotation between the first inertial body and the second inertial body; A spring member for returning the sex body and the second inertia body from the relative rotation position to the neutral position, wherein the damping device is connected to one of the shafts, and has a one-end sealed cylinder filled with a working fluid; The other end of the cylinder is sealingly penetrated and protrudes removably, and is connected to the other shaft.
  • a piston rod is connected to the piston rod to partition the inside of the cylinder into two fluid chambers.
  • a movable piston and a damping force generating means attached to the piston, wherein the spring member is disposed in the cylinder. It is configured to be placed.
  • one of the first inertial body and the second inertial body for example, the first inertial body is connected to the input member, and the other, for example, the second inertial body is connected to the output member.
  • the torque input from the input member to the first inertial body is transmitted to the second inertial body via the damper and output to the output member.
  • the damper exhibits a vibration damping action.
  • the spring member exerts a vibration absorbing action
  • the damping device exerts a damping action, thereby absorbing and damping the vibration superimposed on the input torque.
  • the damper that connects the first inertial body and the second inertial body is attached via a shaft provided on each of the first inertial body or the second inertial body and the boss member.
  • the shaft provided on either one of the first inertial body or the second inertial body and the boss member extends substantially in the same axial direction, so that the damper can be easily shuffled from the negative direction. It is linked to a bird.
  • the damper After connecting both ends of the damper to each of the shafts and connecting the other one of the first inertial body and the second inertial body to the boss member, the damper is connected to the first inertial body and the second inertial body. Will be linked.
  • the damper is configured to provide a damping device that gives resistance to relative rotation between the first inertial body and the second inertial body, and a relative rotation between the first inertial body and the second inertial body.
  • a spring member for returning from a moving position to a neutral position wherein the damping device is connected to one of the shafts, the cylinder being one end sealed with a working fluid, and the other end side of the cylinder being sealingly penetrated. Screws that protrude so that they can be inserted and removed, and are connected to the other shaft
  • FIG. 1 is a partial plan view showing a flywheel according to an embodiment of the present invention, with a part cut away.
  • FIG. 2 is a cross-sectional view taken along the line A—O—A of FIG. 1
  • FIG. 4 is an exploded view of the flywheel shown in FIG. 2
  • FIG. 4 is a view similar to FIG. 2 showing another embodiment of the present invention
  • FIG. 5 is an exploded view of the flywheel shown in FIG. is there.
  • FIG. 1 is a partial plan view showing a cutaway part of a flywheel according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line A-A-1 of FIG. 3 is an exploded view of the flywheel shown.
  • 1 is a crankshaft of an internal combustion engine as an input member.
  • Reference numeral 2 denotes a first inertial body, and the first inertial body 2 is connected to the crankshaft 1 together with a bearing holder 3 by bolts 4.
  • Reference numeral 5 denotes a second inertial body. The second inertial body 5 is rotatably supported with respect to the first inertial body 2, and can be connected to a clutch device (not shown) as an output member.
  • Reference numeral 6 denotes a damper that connects between the first inertial body 2 and the second inertial body 5.
  • the first inertial body 2 is formed in a substantially flat plate shape, and an annular boss 7 extending in the axial direction toward the second inertial body 5 is formed on the outer peripheral side thereof.
  • the member 8 is fixed by the port 9.
  • the first inertial body 2 has an annular recess 10 formed on the side facing the second inertial body 5, and an inner periphery of the recess 10. On the edge, a plurality of notch grooves 11 opening in the depression 10 are formed at equal intervals in the circumferential direction, and in this embodiment, three notches are formed.
  • a ring gear 13 is fixed to the outer periphery of the first inertial body 2.
  • the second inertial body 5 is formed in a substantially flat plate shape, and an annular boss 15 extending in the axial direction toward the first inertial body 2 is formed on the inner peripheral side.
  • An annular boss member 17 is fixed to the boss portion 15 by a bolt 18, and the inner peripheral side of the boss member 17 is supported by a bearing 19 attached to the bearing holder 3. Thereby, the boss member 17 is rotatable with respect to the bearing holder 3.
  • the bearing holder 3 is connected to the drive shaft 1 integrally with the first inertial body 2 by the bolt 4 and the second inertial body 5 is integrated with the boss member 17.
  • the second inertial body 5 is rotatably supported with respect to the first inertial body 2.
  • An axial end 20 of the boss member 17 extends into an annular recess 10 formed in the first inertial body 2, and a radial projection is formed on the outer peripheral side of the axial end 20.
  • a plurality 21 are formed at equal intervals in the circumferential direction so as to correspond to the notch grooves 11.
  • the protrusion 21 extends into a cutout groove 11 formed on the inner peripheral side of the depression 10 of the first inertial body 2, and is brought into contact with a side surface of the cutout groove 11 to thereby form the first inertial body.
  • the relative rotation amount between the second inertial body 5 and the second inertial body 5 is limited.
  • a damper 6 connecting the first inertial body 2 and the second inertial body 5 is disposed between the first inertial body 2 and the second inertial body 5, and a plurality of dampers 6 are arranged in the circumferential direction. Six are arranged in the form. Further, the damper 6 includes a damping device 25 that gives resistance to the relative rotation between the first inertial body 2 and the second inertial body 5, and a relative rotational position between the first inertial body 2 and the second inertial body 5. And a spring member 26 for returning to the neutral position.
  • the damping device 25 is connected to the second inertial body 5 and is sealed at one end with a working fluid. Stop cylinder 27, a piston rod 28 connected to the first inertia body 2, which protrudes through the other end of the cylinder 27 in a sealed manner, and is connected to the first inertia body 2. A piston 29 connected to the piston 28 and slidable in the cylinder 27, and damping force generating means 30 attached to the piston 29 are provided. The inside of 27 is divided into two fluid chambers 31 and 32.
  • One end side of the cylinder 27 is sealed, and the inside thereof is filled with a predetermined amount of a working fluid (to be described in detail later).
  • a mounting member 36 provided with a through hole 35 is attached to one end of the cylinder 27, and one end of the cylinder 27 is connected to the second inertial body 5 via the mounting member 36. I have.
  • the shaft 37 is straddled between the boss 15 of the second inertial body 5 and the axial end 20 of the boss 17 attached to the boss 15 according to the damper 6.
  • the shaft 37 is connected to the corresponding damper 6 by being inserted into a through hole 3 of a mounting member 36 mounted on the cylinder 27 of the damper 6.
  • the shaft 37 has one end provided substantially in the axial direction of the flywheel by being press-fitted and fixed in a mounting hole 37 a formed in the axial end portion 20 of the boss member 17. (2) Fitted in the mounting hole (37b) formed in the boss (15) of the inertial body (5).
  • a bush 38 is provided between the through-hole 35 of the mounting member 36 and the shaft 37 so that the mounting member 36 can rotate around the shaft 37.
  • the piston rod 28 sealingly penetrates a guide member 39 provided on the other end side of the cylinder 27 and protrudes removably.
  • a mounting member 42 having a through hole 41 is attached to the protruding end of the piston rod 28, and the protruding end of the piston rod 28 is attached to the first inertia body 2 via the mounting member 42. It is linked. More specifically, a shaft 43 is straddled between the boss 7 of the first inertial body 2 and the auxiliary member 8 attached to the boss 7 so as to correspond to the damper 6.
  • the damper 6 is connected by being inserted into the through hole 41 of the mounting member 42 mounted on the piston rod 28 of the damper 6.
  • One end of the shaft 43 is provided substantially in the axial direction of the flywheel by being press-fitted and fixed in a mounting hole 43 a formed in the boss portion 7 of the first inertial body 2, and the other end is provided with an auxiliary member 8. It is fitted to the mounting hole 43b formed in.
  • the shaft 43 extends in the same direction as the shaft 37 provided on the boss member 17.
  • the mounting hole 43b formed in the auxiliary member 8 penetrates in the axial direction in this embodiment, it may have a blind hole shape.
  • a bush 44 is provided between the through hole 41 of the mounting member 42 and the shaft 43, so that the mounting member 42 can rotate around the shaft 43.
  • the piston 29 is formed in a substantially disk shape and is slidably accommodated in a cylinder 27, and partitions the inside of the cylinder 27 into two fluid chambers 31 and 32 in the axial direction. Further, the piston 29 has an orifice 52 which opens to the upper and lower surfaces and communicates between the two fluid chambers 31 and 32. It is optional to attach a piston ring to the outer periphery of the piston 29.
  • the orifice 52 restricts the flow of the working fluid between the two fluid chambers 31 and 32 in a restricted manner, and the orifice 52 replaces and flows between the two fluid chambers 31 and 32.
  • Flow resistance is given to the working fluid, which constitutes the damping force generating means 30.
  • the working fluid filled in the cylinder 27 is liquid working oil, and this working fluid (working oil) is larger than the maximum volume of the two fluid chambers 31 and 32 defined by the piston 29. Only a small amount is filled.
  • the remaining volume in the cylinder 27 is filled with a pressurized gas such as air or an inert gas.
  • the spring member 26 for returning the first inertial body 2 and the second inertial body 5 from the relative rotation position to the neutral position is disposed between the piston 29 in the cylinder 27 and the guide member 39.
  • the torque from the crankshaft 1 is input to the first inertial body 2 connected to the crankshaft 1, and from the first inertial body 2 through the damper 6, And transmitted to the second inertial body 5 via the spring member 26.
  • the spring member 26 exerts a vibration absorbing action and the damping device 25 exerts a damping action, thereby absorbing and damping the vibration superimposed on the input torque.
  • the cylinder 27 is connected to the second inertia body 5 via the shaft 37, and the piston rod 28 is connected to the first inertia body 2 via the shaft 43. Therefore, torque is input to the first inertial body 2 and the first inertial body 2 and the second inertial body 5 are relatively rotated from the neutral position of relative rotation, so that the piston rod 28 is in the cylinder 27.
  • the piston rod 28 moves in the direction in which the piston rod 28 enters the cylinder 28 (compression direction) by returning from the relative rotation position to the neutral position. Become.
  • the working fluid (working oil) in the fluid chamber 31 is displaced and flows into the fluid chamber 32 via the orifice 52. Further, as the piston rod 28 moves in the compression direction, the working fluid (working oil) in the fluid chamber 32 is displaced and flows into the fluid chamber 31 via the orifice 52.
  • the volume compensation in the cylinder 27 when the piston rod 28 moves in the extending direction or in the compression direction is due to the expansion of the pressurized gas sealed in the remaining volume in the cylinder 27. Or accomplished by compression.
  • the damper 6 linking the first inertial body 2 and the second inertial body 5 has a first inertia
  • the body 2 and the boss member 17 are attached as follows via shafts 43 and 37 provided respectively.
  • one end of the shaft 37 is press-fitted and fixed in the mounting hole 37a of the boss member 17, and a bearing 19 is attached to the inner periphery of the boss member 17 in advance.
  • a bush 38 is inserted into the through hole 35 of the mounting member 36 of the damper 6, and a bush 44 is inserted into the through hole 41 of the mounting member 42.
  • one end of the shaft 43 is press-fitted and fixed to the mounting hole 43a of the first inertial body 2, and the shaft 43 is press-fitted and fixed to the first inertial body 2 together with the bearing holder 3.
  • the boss member 17 is assembled via the bearing 19.
  • the shaft 37 provided on the boss member 17 and the shaft 43 provided on the first inertial body 2 extend substantially in the same axial direction.
  • a damper 6 is attached to the shafts 37, 43. That is, the through hole 35 of the mounting member 36 is inserted through the shaft 37, and the through hole 41 of the mounting member 42 is inserted through the shaft 43. Note that the passage of the through holes 35 and 41 with respect to the shafts 37 and 43 is performed substantially simultaneously.
  • a mounting hole 43 b formed in the auxiliary member 8 is fitted to the other end of the shaft 43 provided in the first inertial body 2, and the auxiliary member 8 is connected to the first inertial body by a port 9. Attach to boss 7 of 2. As a result, the shaft 43 is supported at both ends thereof, and the strength can be improved.
  • a mounting hole 37 b formed in the second inertial body 5 is fitted to the other end of the shaft 37 provided on the boss member 17, and the second inertial body 5 is Attach to boss member 17 with.
  • the shaft 37 is supported at both ends thereof, and the strength can be improved.
  • the damper 6 connects the first inertial body 2 and the second inertial body 5, and the flywheel is assembled.
  • the shaft provided on each of the first inertial body 2 and the boss member 17 The dampers 6 are easily connected to the shafts 43 and 37 from one direction because the rods 43 and 37 extend in the substantially same axial direction. For this reason, the damper 6 can be easily attached to the first inertial body 2 and the second inertial body 5.
  • the damper 6 relatively rotates the damping device 25 that gives resistance to the relative rotation between the first inertial body 1 and the second inertial body 5 and the first inertial body 1 and the second inertial body 5.
  • a spring member 26 for returning from the position to the neutral position, the damping device 25 is formed by a so-called fluid damper, and the spring member 26 is disposed in the cylinder 2-7. And the configuration becomes simple.
  • FIGS. 4 and 5 show another embodiment of the present invention.
  • This embodiment differs from the above embodiment in that one end of the cylinder 27 is provided with a boss member 17 and a shaft 37. The point is that the protruding end of the piston 28 is connected to the second inertia body 5 via the shaft 43. Another point is that the bearing holder 3 has been eliminated.
  • the first inertial body 2 is independently connected to the crankshaft 1 by the bolt 4.
  • the first inertial body 2 is formed in a substantially flat plate shape, and a boss 15 protruding toward the second inertial body 5 is formed on the inner peripheral side. Further, a ring gear 13 is fixed to the outer periphery of the first inertial body 2.
  • the second inertia body 5 is formed in a substantially flat plate shape, and a boss 7 extending in the axial direction toward the first inertia body 2 is formed in an annular shape on an outer peripheral side thereof.
  • the member 8 is fixed by the port 9.
  • the second inertial body 5 has an annular recess 10 formed on the side facing the first inertial body 2, and an inner periphery of the recess 10 has an opening in the recess 10.
  • a plurality of notched grooves 11 are formed at regular intervals in the circumferential direction.
  • An annular boss member 17 is attached to the boss 15 of the first inertial body 2 by a port 18.
  • the inner peripheral side of the boss member 17 is supported by a bearing 19 attached to the inner periphery of the depression 10 formed in the second inertial body 5.
  • the boss member 17 is rotatable with respect to the second inertial body 5.
  • An axial end 20 of the boss member 17 extends into an annular recess 10 formed in the second inertial body 5, and a radial projection 2 is formed on the outer peripheral side of the axial end 20.
  • a plurality of reference numerals 1 are formed at equal intervals in the circumferential direction, corresponding to the notch grooves 11.
  • the protrusion 21 extends into a cutout groove 11 formed on the inner peripheral side of the depression 10 of the first inertial body 2, and is brought into contact with a side surface of the cutout groove 11 to thereby form the first inertial body.
  • the relative rotation amount between the second inertial body 5 and the second inertial body 5 is limited.
  • the cylinder 27 of the damper 6 is connected to the first inertial body 2 via a mounting member 36. That is, between the boss 15 of the first inertial body 2 and the axial end 20 of the boss member 17 attached to the boss 15, the shaft 37 is laid according to the damper, The shaft 37 is connected by being inserted into a through hole 35 of a mounting member 36 mounted on the cylinder 27 of the corresponding damper 6.
  • the shaft 37 has one end provided substantially in the axial direction of the flywheel by being press-fitted and fixed in a mounting hole 37 a formed in the axial end portion 20 of the boss member 17. It is fitted into the mounting hole 37b formed in the boss 15 of the inertial body 2.
  • the projecting end of the biston rod 28 is connected to the second inertial body 5 via the mounting member 42. That is, a shaft 43 is laid across the boss portion 7 of the second inertial body 5 and the auxiliary member 8 attached to the boss portion 7 in accordance with the damper 6, and the shaft 43 is connected to the corresponding damper. They are connected by being inserted through the through hole 41 of the attachment member 42 attached to the piston rod 28 of FIG.
  • the shaft 43 has a mounting hole 43 formed at one end in the boss 7 of the second inertial body 5. It is provided in a substantially axial direction of the flywheel by being press-fitted and fixed to a, and the other end is fitted into a mounting hole 43 b formed in the auxiliary member 8.
  • the shaft 43 extends in the same direction as the shaft 37 provided on the boss member 17.
  • the mounting hole 43b formed in the auxiliary member 8 penetrates in the axial direction in this embodiment, it may have a blind hole shape.
  • the damper 6 connecting the first inertial body 2 and the second inertial body 5 is connected to the second inertial body 5 and the boss member 17 via shafts 43 and 37 provided respectively. And installed as follows.
  • one end of the shaft 37 is press-fitted and fixed in the mounting hole 37a of the boss member 17 in advance, and the bearing 19 is assembled on the inner periphery of the boss member 1 #.
  • a bush 38 is inserted into the through hole 35 of the mounting member 36 of the damper 6, and a bush 44 is inserted into the through hole 41 of the mounting member 42.
  • one end of the shaft 43 is press-fitted and fixed to the mounting hole 43a of the second inertial body 5, and the shaft 43 is press-fitted and fixed to the second inertial body 5 via a bearing 19.
  • the shaft 37 provided on the boss member 17 and the shaft 43 provided on the second inertial body 5 extend substantially in the same axial direction.
  • a damper 6 is attached to the shafts 37, 43. That is, the through hole 35 of the mounting member 36 is inserted through the shaft 37, and the through hole 41 of the mounting member 42 is inserted through the shaft 43. The insertion of the through holes 35, 41 into the shafts 37, 43 is performed substantially simultaneously.
  • a mounting hole 43 b formed in the auxiliary member 8 is fitted to the other end side of the shaft 43 provided in the second inertial body 5, and the auxiliary member 8 is bolted to the second inertial body 15 Attach to the boss 7 of 5. As a result, the shaft 43 is supported at both ends. This will improve the strength.
  • a mounting hole 37 b formed in the first inertial body 2 is fitted to the other end side of the shaft 37 provided on the boss member 17, and the first inertial body 2 is Attach to boss member 17 with.
  • the shaft 37 is supported at both ends, and the strength is improved.
  • the damper 6 connects the first inertial body 2 and the second inertial body 5, and the flywheel is assembled.
  • the shafts 43, 37 provided on the first inertial body 2 and the boss member 17, respectively, extend in substantially the same direction in the axial direction, so that the damper 6 can easily rotate the shaft 43 from one direction. , 3 7 Therefore, the damper 6 can be easily attached to the first inertial body 2 and the second inertial body 5.
  • the present invention is not limited to the configuration of this embodiment, and can be modified without departing from the spirit of the invention.
  • the attachment of the shafts 43, 37 to either the first inertia body 2 or the second inertia body 5 and the boss member 17 is not limited to press-fitting, but may be a screw-in connection. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Description

明細書 フライホイール 技術分野
本発明は、 内燃機関に施用して良好なフライホイールに関し、 とりわけ、 2つ の慣性体がダンバによって連繫されてなるフライホイールに関する。 背景技術
内燃機関に使用されるフライホイールは、 トルク変動の大きな回転軸系の回転 を平滑化し、 防振効果を得るために用いられる。 この種のフライホイールとして、 例えば特開平 3— 2 1 9 1 4 6号公報には、 駆動軸に固定される第 1慣性体とこ の第 1慣性体に対して相対回動可能な第 2慣性体との間が、 円周方向に複数個配 置されたダンバによって連繋されてなるフライホイールが開示されている。
前記ダンパは、 第 1慣性体と第 2慣性体との相対回動に抵抗を与える減衰装置 と、 第 1慣性体と第 2慣性体とを相対回動位置から中立位置に戻すばね部材とを 備え、 減衰装置としてはダッシュポッ 卜が用いられている。
前記従来のフライホイールは、 第 1慣性体と第 2慣性体とが相対回動の中立位 置から相対回動するとき及びその相対回動位置から中立位置に戻るとき、 減衰装 置としてのダッシュポット及びばね部材によって相対回動に抵抗を与え、 防振効 果を得るようになつている。 即ち、 前記ダッシュポット内の作動流体がピストン に設けたオリフィスから逃げるとき、 ピストンの両面に生じる圧力差によって運 動抵抗を得ると共に、 ばね部材のばね力によって、 吸振効果を得るようになって いる。
ところで、 前記従来のフライホイールは、 ダンバの両端が第 1慣性体と第 2慣 性体とにそれぞれ直接連繋されている。 即ち、 半径方向内方側に位置するダンバ の端部が第 1慣性体にボルトによって取付けられ、 半径方向外方側に位置するダ ンパの端部が第 2慣性体にボルトによって取付けられている。
このため、 前記ダンバの端部を第 1慣性体に取付けるボルトと、 第 2慣性体に 取付けるボルトとが互いに逆方向を向くことになり、 ダンバの取付け作業が困難 となる虞がある。 発明の開示
本発明は前記従来の実状に鑑みて案出されたもので、 ダンバの取付け作業を容 易に行うことが可能なフライホイールを提供することを目的とする。
そこで、 請求項 1記載の発明は、 第 1慣性体とこの第 1慣性体に対して相対回 動可能な第 2慣性体との間が、 円周方向に複数個配置されたダンバによって連繋 されてなるフライホイールにおいて、 記第 1慣性体または第 2慣性体の何れか一 方に、 第 1慣性体または第 2慣性体の何れか他方に連結されるボス部材を相対回 動可能に取付け、 前記第 1慣性体または第 2慣性体の何れか一方及びボス部材の それぞれに、 ダンバに対応して、 略軸方向で同一方向に延びるシャフトを設け、 前記シャフトのそれぞれに、 ダンバの両端をそれぞれ連繋すると共に、 前記第 1 慣性体または第 2慣性体の何れか他方とボス部材とを連結してなる構成にしてあ る。
また、 請求項 2記載の発明は、 請求項 1記載の発明の構成において、 前記ダン パが、 第 1慣性体と第 2慣性体との相対回動に抵抗を与える減衰装置と、 第 1慣 性体と第 2慣性体とを相対回動位置から中立位置に戻すばね部材とを備え、 前記 減衰装置が、 一方のシャフトに連繋され、 作動流体が充填された一端封止のシリ ンダと、 このシリンダの他端側を封止的に貫通して抜き差し可能に突出し、 他方 のシャフトに連繋されるビストンロッドと、 このピストンロッドに連繋されてシ リンダ内を 2つの流体室に区画して摺動自在なビストンと、 このピストンに付属 して設けられた減衰力発生手段とを備えてなり、 前記ばね部材がシリンダ内に配 置されてなる構成にしてある。
斯かる構成において、 前記第 1慣性体と第 2慣性体の何れか一方、 例えば第 1 慣性体が入力部材に連繋され、 何れか他方、 例えば第 2慣性体が出力部材に連繋 される。 前記入力部材から第 1慣性体に入力されるトルクは、 ダンバを介して第 2慣性体に伝達され、 出力部材に出力される。 このとき、 前記ダンバが防振作用 を発揮する。
詳しくは、 請求項 2記載の発明によれば、 ばね部材が吸振作用を発揮すると共 に減衰装置が減衰作用を発揮し、入力トルクに重畳する振動を吸振及び減衰する。 ここで、 前記第 1慣性体と第 2慣性体とを連繋するダンバは、 第 1慣性体また は第 2慣性体の何れか一方及びボス部材のそれぞれに設けられたシャフトを介し て取付けられる。
ここに、 前記第 1慣性体または第 2慣性体の何れか一方及びボス部材のそれぞ れに設けられるシャフトは、 略軸方向で同一方向に延びているから、 ダンパはー 方向から容易にシャフ卜に連繋される。
前記シャフ卜のそれぞれにダンバの両端をそれぞれ連繋した後、 第 1慣性体と 第 2慣性体の何れか他方とボス部材とを連結することによって、 ダンバは第 1慣 性体と第 2慣性体とを連繋することになる。
これによつて、 前記ダンパは第 1慣性体及び第 2慣性体に対して、 容易に取付 けられる。
したがって、 ダンバの取付け作業を容易に行うことが可能なフライホイールが 得られる。
また、 請求項 2記載の発明においては、 前記ダンバが、 第 1慣性体と第 2慣性 体との相対回動に抵抗を与える減衰装置と、 第 1慣性体と第 2慣性体とを相対回 動位置から中立位置に戻すばね部材とを備え、 前記減衰装置が、 一方のシャフト に連繋され、 作動流体が充填された一端封止のシリンダと、 このシリンダの他端 側を封止的に貫通して抜き差し可能に突出し、 他方のシャフ卜に連繋されるビス トンロッドと、 このピストンロッドに連繋されてシリンダ内を 2つの流体室に区 画して摺動自在なピストンと、 このビストンに付属して設けられた減衰力発生手 段とを備えてなり、 前記ばね部材がシリンダ内に配置されてなる構成にしてある から、 減衰力の調節が容易で、 構成が簡単となる。 図面の簡単な説明
図 1は、 本発明の実施の形態を示すフライホイールの一部を切除して示す部分的 な平面図で、 図 2は、 図 1の A— O— A線断面図、 図 3は、 図 2に示すフライホ ィールを分解して示す図面、 図 4は、 本発明の別の実施の形態を示す図 2と同様 な図面、 図 5は、 図 4に示すフライホイールを分解して示す図面である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を、 図面に基づいて詳述する。 すなわち、 図 1は本 発明の実施の形態を示すフライホイールの一部を切除して示す部分的な平面図、 図 2は図 1の A—〇一 A線断面図、 図 3は図 2に示すフライホイールを分解して 示す図面である。
図において、 1は入力部材としての内燃機関のクランクシャフトである。 2は 第 1慣性体で、 この第 1慣性体 2は軸受けホルダ 3と共にボルト 4によってクラ ンクシャフト 1に連結されている。 5は第 2慣性体で、 この第 2慣性体 5は第 1 慣性体 2に対して回動可能に支持されており、 また、 出力部材としての図外のク ラッチ装置に連結可能である。 6は前記第 1慣性体 2と第 2慣性体 5との間を導 繋するダンパである。
前記第 1慣性体 2は, 略平板状に形成され、 その外周側に、 第 2慣性体 5側に 向かって軸方向に延びる環状のボス部 7が形成されており、 このボス部 7に補助 部材 8がポルト 9によって固定されている。 また、 前記第 1慣性体 2には、 第 2 慣性体 5に面する側に、 環状の窪み 1 0が形成されており、 この窪み 1 0の内周 縁には、 この窪み 1 0に開口する切欠き溝 1 1が円周方向等間隔に複数個、 この 実施の形態では 3個形成してある。 また、 前記第 1慣性体 2の外周にはリングギ ャ 1 3が固定してある。
前記第 2慣性体 5は、 略平板状に形成され、 その内周側に、 第 1慣性体 2側に 向かって軸方向に延びる環状のボス部 1 5が形成されている。 前記ボス部 1 5に は環状のボス部材 1 7がボルト 1 8によって固定されており、 このボス部材 1 7 の内周側が軸受けホルダ 3に取付けられた軸受け 1 9によって支持されている。 これによつて、 前記ボス部材 1 7は、 軸受けホルダ 3に対して回動可能である。 ここに、 前記軸受けホルダ 3はボルト 4によって第 1慣性体 2と一体になつて駆 動軸 1に連結されると共に、 第 2慣性体 5はボス部材 1 7と一体になつているか ら、 結局、 第 2慣性体 5は第 1慣性体 2に対して回動可能に支持されていること になる。
前記ボス部材 1 7の軸方向端部 2 0は、 第 1慣性体 2に形成した環状の窪み 1 0内に延びており、 この軸方向端部 2 0の外周側には、 放射方向の突起 2 1が切 欠き溝 1 1に対応して円周方向等間隔に複数個形成してある。 前記突起 2 1は第 1慣性体 2の窪み 1 0の内周側に形成した切欠き溝 1 1内に延びており、 この切 欠き溝 1 1の側面に当接することによって、 第 1慣性体 2と第 2慣性体 5との相 対回動量を制限するようになっている。
また、 前記第 2慣性体 5には、 図外のクラッチ装置のクラッチディスクが接す るクラッチ摺動面 2 2が形成してある。
前記第 1慣性体 2と第 2慣性体 5との間を連繋するダンバ 6は、 第 1慣性体 2 と第 2慣性体 5との間に配置され、 円周方向に複数個、 この実施の形態において 6個配置されている。 また、 前記ダンバ 6は、 第 1慣性体 2と第 2慣性体 5との 相対回動に抵抗を与える減衰装置 2 5と、 第 1慣性体 2と第 2慣性体 5とを相対 回動位置から中立位置に戻すばね部材 2 6とを備えている。
前記減衰装置 2 5は、 第 2慣性体 5に連繋され、 作動流体が充填された一端封 止のシリンダ 2 7と、 このシリンダ 2 7の他端側を封止的に貫通して抜き差し可 能に突出し、 第 1慣性体 2に連繫されるピストンロッド 2 8と、 このピストン口 ッド 2 8に連繫されてシリンダ 2 7内を摺動自在なピストン 2 9と、 このピスト ン 2 9に付属して設けられた減衰力発生手段 3 0とを備えており、 ピストン 2 9 によってシリンダ 2 7内が 2つの流体室 3 1, 3 2に区画されている。
前記シリンダ 2 7は、 一端側が封止され、 その内部に所定量の作動流体 (後に 詳述する) が充填されている。 前記シリンダ 2 7の一端側には、 貫通孔 3 5を備 えた取付け部材 3 6が取付けられており、 この取付け部材 3 6を介して、 シリン ダ 2 7の一端側が第 2慣性体 5に連繋してある。
詳しくは、 前記第 2慣性体 5のボス部 1 5とこのボス部 1 5に取付けたボス部 材 1 7の軸方向端部 2 0との間に、 ダンパ 6に応じてシャフト 3 7を跨設し、 こ のシャフト 3 7を、 対応するダンパ 6のシリンダ 2 7に取付けた取付け部材 3 6 の貫通孔 3に挿通させることによって連結してある。
前記シャフト 3 7は、 一端がボス部材 1 7の軸方向端部 2 0に形成した取付け 穴 3 7 aに圧入固定されることによってフライホイールの略軸方向に設けられて おり、 他端が第 2慣性体 5のボス部 1 5に形成した取付け穴 3 7 bに対して嵌合 されている。
また、 前記取付け部材 3 6の貫通孔 3 5とシャフト 3 7との間にはブッシュ 3 8が設けられており、 取付け部材 3 6のシャフト 3 7周りの回動が可能となって いる。
前記ピストンロッド 2 8は、 シリンダ 2 7の他端側に設けたガイ ド部材 3 9を 封止的に貫通して抜き差し可能に突出している。 前記ピストンロッド 2 8の突出 端には貫通孔 4 1を備えた取付け部材 4 2が取付けられており、 この取付け部材 4 2を介して、 ピストンロッド 2 8の突出端が第 1慣性体 2に連繋してある。 詳しくは、 前記第 1慣性体 2のボス部 7とこのボス部 7に取付けた補助部材 8 との間に、 ダンバ 6に対応してシャフト 4 3を跨設し、 このシャフト 4 3を、 対 応ずるダンバ 6のピストンロッド 2 8に取付けた取付け部材 4 2の貫通孔 4 1に 挿通させることによって連結してある。
前記シャフト 4 3は、 一端が第 1慣性体 2のボス部 7に形成した取付け穴 4 3 aに圧入固定されることによってフライホイールの略軸方向に設けられており、 他端が補助部材 8に形成した取付け孔 4 3 bに対して嵌合されている。 また、 前 記シャフト 4 3は、 ボス部材 1 7に設けられたシャフト 3 7と互いに同一方向に 延びている。 なお、 前記補助部材 8に形成した取付け孔 4 3 bは、 この実施の形 態において軸方向に貫通しているけれども、 盲穴状でもよいものである。
また、 前記取付け部材 4 2の貫通孔 4 1とシャフト 4 3との間には、 ブッシュ 4 4が設けられており、 取付け部材 4 2のシャフト 4 3回りの回動が可能となつ ている。
前記ピストン 2 9は、 略円盤状に形成されてシリンダ 2 7内に摺動自在に収容 され、 このシリンダ 2 7内を軸方向に 2つの流体室 3 1 , 3 2に区画している。 また、 前記ピストン 2 9には、 上下面に開口して、 2つの流体室 3 1, 3 2間を 連通するオリフィス 5 2が形成してある。 なお、 前記ピストン 2 9の外周にピス トンリングを付属させることは任意である。
前記オリフィス 5 2は、 2つの流体室 3 1, 3 2間の作動流体の流通を制限的 に許容しており、 このオリフィス 5 2が 2つの流体室 3 1, 3 2間を置換流動す る作動流体に流通抵抗を与えることになり、減衰力発生手段 3 0を構成している。 前記シリンダ 2 7内に充填される作動流体は、 液状の作動油であり、 この作動 流体 (作動油) はピストン 2 9によって区画された 2つの流体室 3 1 , 3 2の最 大容積よりも少ない量だけ充填されている。 なお、 前記シリンダ 2 7内の残余の 容積には、 空気または不活性ガス等の加圧気体が封入されている。
また、 前記第 1慣性体 2と第 2慣性体 5とを相対回動位置から中立位置に戻す ばね部材 2 6は、 シリンダ 2 7内のピストン 2 9とガイ ド部材 3 9との間に配置 されている。 斯かる構成において、 前記クランクシャフト 1からのトルクは、 このクランク シャフト 1に連結された第 1慣性体 2に入力され、 この第 1慣性体 2からダンバ 6を介して、 即ち滅蓑装置 2 5及びばね部材 2 6を介して第 2慣性体 5に伝達さ れる。 このとき、 前記ばね部材 2 6が吸振作用を発揮すると共に減衰装置 2 5が 減衰作用を発揮し、 入力トルクに重畳する振動を吸振及び減衰する。
詳しくは、 前記ダンパ 6は、 シリンダ 2 7がシャフト 3 7を介して第 2慣性体 5に連結さ一れ、 ピストンロッド 2 8がシャフト 4 3を介して第 1慣性体 2に連 結されているから、 第 1慣性体 2にトルクが入力され、 第 1慣性体 2と第 2慣性 体 5とが相対回動の中立位置から相対回動することによって、 ビストンロッド 2 8はシリンダ 2 7内から抜け出す方向 (延び方向) に移動することになり、 逆に 相対回動位置から中立位置に戻ることによって、 ピストンロッ ド 2 8はシリンダ 2 8内に侵入する方向 (圧縮方向) に移動することになる。
前記ビストンロッド 2 8が延び方向に移動することによって、 流体室 3 1内の 作動流体 (作動油) はオリフィス 5 2を介して流体室 3 2内に置換流動する。 ま た、 前記ピストンロッド 2 8が圧縮方向に移動することによって、 流体室 3 2内 の作動流体 (作動油) はオリフィス 5 2を介して流体室 3 1内に置換流動するこ とになる。
前記ォリフィス 5 2を介して作動流体 (作動油) が 2つの流体室 3 1, 3 2間 を置換流動するとき、 作動流体 (作動油) はこのオリフィス 5 2による流通抵抗 を受けることになる。 このため、 前記ピストン 2 9の両面側に圧力差を生じるこ とになり、 この圧力差がピストンロッ ド 2 8の運動への抵抗力となって所定の大 きさの減衰力が得られることになる。
なお、 前記ピストンロッド 2 8が延び方向に移動したとき、 または圧縮方向に 移動したときのシリンダ 2 7内の体積補償は、 シリンダ 2 7内の残余の容積に封 入された加圧気体の膨張または圧縮によって成就される。
ここで、 前記第 1慣性体 2と第 2慣性体 5とを連繋するダンバ 6は、 第 1慣性 体 2及びボス部材 1 7のそれぞれに設けられたシャフト 4 3 , 3 7を介して、 次 のように取付けられる。
すなわち、 図 3に示すように、 予め、 前記ボス部材 1 7の取付け穴 3 7 aにシ ャフト 3 7の一端を圧入固定すると共に、 ボス部材 1 7の内周に軸受け 1 9を組 付ける。 また、 前記ダンパ 6の取付け部材 3 6の貫通孔 3 5内にはブッシュ 3 8 を挿入し、 取付け部材 4 2の貫通孔 4 1内にはブッシュ 4 4を挿入する。
次に、前記第 1慣性体 2の取付け穴 4 3 aにシャフト 4 3の一端を圧入固定し、 このシャフト 4 3が圧入固定された第 1慣性体 2に対して、 軸受けホルダ 3と共 に軸受け 1 9を介してボス部材 1 7を組み付ける。 これによつて、 前記ボス部材 1 7に設けられたシャフト 3 7及び第 1慣性体 2に設けられたシャフト 4 3は、 それぞれ略軸方向で同一方向に延びていることになる。
次に、 前記シャフト 3 7 , 4 3にダンバ 6を取付ける。 すなわち、 前記シャフ ト 3 7に、 取付け部材 3 6の貫通孔 3 5を挿通し、 シャフト 4 3に取付け部材 4 2の貫通孔 4 1を挿通する。 なお、 前記シャフ卜 3 7, 4 3に対する貫通孔 3 5 , 4 1の揷通は、 略同時に行われる。
次に、 前記第 1慣性体 2に設けたシャフト 4 3の他端側に、 補助部材 8に形成 した取付け孔 4 3 bを嵌合すると共に、 この補助部材 8をポルト 9によって第 1 慣性体 2のボス部 7に取付ける。 これによつて、 前記シャフト 4 3は、 その両端 で支持されることになり、 強度向上が図れることになる。
次に、 前記ボス部材 1 7に設けたシャフト 3 7の他端側に、 第 2慣性体 5に形 成した取付け穴 3 7 bを嵌合すると共に、 この第 2慣性体 5をボルト 1 8によつ てボス部材 1 7に取付ける。 これによつて、 前記シャフト 3 7は、 その両端で支 持されることになり、 強度向上が図れることになる。
これによつて、 前記ダンバ 6は第 1慣性体 2と第 2慣性体 5とを連繋し、 フラ ィホイールが組立てられることになる。
ここに、 前記第 1慣性体 2及びボス部材 1 7のそれぞれに設けられるシャフト 4 3, 3 7は、 略軸方向で同一方向に延びているから、 ダンバ 6は一方向から容 易にシャフト 4 3 , 3 7に連繋される。 このため、 前記ダンバ 6は、 第 1慣性体 2及び第 2慣性体 5に対して、 容易に取付けられることになる。
したがって、 前記ダンパ 6の取付け作業を容易に行うことが可能なフライホイ —ルが得られる。
また、 前記ダンバ 6が、 第 1慣性体 1 と第 2慣性体 5との相対回動に抵抗を与 える減衰装置 2 5と、 第 1慣性体 1と第 2慣性体 5とを相対回動位置から中立位 置に戻すばね部材 2 6とを備え、 減衰装置 2 5が所謂流体緩衝器によって形成さ れ、 ばね部材 2 6がシリンダ 2— 7内に配置してあるから、 減衰力の調節が容易 で構成が簡単となる。
図 4及び図 5は本発明の別の実施の形態を示す図面で、 この実施の形態が前記 実施の形態と変わるところは、 前記シリンダ 2 7の一端側がボス部材 1 7及びシ ャフト 3 7を介して第 1慣性体 2に連繋され、 ピストン 2 8の突出端がシャフト 4 3を介して第 2慣性体 5に連繋されている点である。 また、 前記軸受けホルダ 3が廃止されている点である。
すなわち、 前記第 1慣性体 2は、 単独でボルト 4によってクランクシャフト 1 に連結されている。 前記第 1慣性体 2は、 略平板状に形成され、 その内周側に、 第 2慣性体 5側に向かって突出するボス部 1 5が形成されている。 また、 前記第 1慣性体 2の外周にはリングギヤ 1 3が固定してある。
前記第 2慣性体 5は、 略平板状に形成され、 その外周側に、 第 1慣性体 2側に 向かって軸方向に延びるボス部 7が環状に形成されており、 このボス部 7に補助 部材 8がポルト 9によって固定されている。 また、 前記第 2慣性体 5には、 第 1 慣性体 2に面する側に、 環状の窪み 1 0が形成されており、 この窪み 1 0の内周 縁には、 この窪み 1 0に開口する切欠き溝 1 1が円周方向等間隔に複数個形成し てある。
前記第 1慣性体 2のボス部 1 5には、 環状のボス部材 1 7がポルト 1 8によつ て固定されており、 このボス部材 1 7の内周側が、 第 2慣性体 5に形成した窪み 1 0の内周に取付けられた軸受け 1 9によって支持されている。 これによつて、 前記ボス部材 1 7は第 2慣性体 5に対して回動可能である。 ここに、 前記第 1慣 性体 2は、 ボス部材 1 7と一体になつて駆動軸 1に連結されているから、 結局、 第 2慣性体 5は第 1慣性体 2に対して回動可能に支持されていることになる。 前記ボス部材 1 7の軸方向端部 2 0は、 第 2慣性体 5に形成した環状の窪み 1 0内に延びており、 この軸方向端部 2 0の外周側には放射方向の突起 2 1が円周 方向等間隔に複数個、 切欠き溝 1 1に対応して形成してある。 前記突起 2 1は第 1慣性体 2の窪み 1 0の内周側に形成した切欠き溝 1 1内に延びており、 この切 欠き溝 1 1の側面に当接することによって、 第 1慣性体 2と第 2慣性体 5との相 対回動量を制限するようになっている。
前記ダンバ 6のシリンダ 2 7は取付け部材 3 6を介して第 1慣性体 2に連繋し てある。 すなわち、 前記第 1慣性体 2のボス部 1 5とこのボス部 1 5に取付けた ボス部材 1 7の軸方向端部 2 0との間に、ダンバに応じてシャフト 3 7を跨設し、 このシャフト 3 7を、 対応するダンバ 6のシリンダ 2 7に取付けた取付け部材 3 6の貫通孔 3 5に挿通させることによって連結してある。
前記シャフト 3 7は、 一端がボス部材 1 7の軸方向端部 2 0に形成した取付け 穴 3 7 aに圧入固定されることによってフライホイールの略軸方向に設けられて おり、 他端が第 1慣性体 2のボス部 1 5に形成した取付け穴 3 7 bに対して嵌合 されている。
前記ビストンロッド 2 8の突出端は、 取付け部材 4 2を介して第 2慣性体 5に 連繫してある。 すなわち、 前記第 2慣性体 5のボス部 7とこのボス部 7に取付け た補助部材 8との間に、 ダンバ 6に応じてシャフト 4 3を跨設し、 このシャフト 4 3を、 対応するダンパ 6のピストンロッド 2 8に取付けた取付け部材 4 2の貫 通孔 4 1に挿通させることによって連結してある。
前記シャフ卜 4 3は、 一端が第 2慣性体 5のボス部 7に形成した取付け穴 4 3 aに圧入固定されることによってフライホイールの略軸方向に設けられており、 他端が補助部材 8に形成した取付け孔 4 3 bに対して嵌合されている。 また、 前 記シャフト 4 3は、 ボス部材 1 7に設けられたシャフト 3 7と互いに同一方向に 延びている。 なお、 前記補助部材 8に形成した取付け孔 4 3 bは、 この実施の形 態において軸方向に貫通しているけれども、 盲穴状でもよいものである。
なお、 その他の構成は前記実施の形態と略同一であるから、 対応する構成部分 には同一符号を付し、 その重複する説明を省略する。
斯かる構成においては、 前記第 1慣性体 2と第 2慣性体 5とを連繋するダンバ 6は、 第 2慣性体 5及びボス部材 1 7のそれぞれに設けられたシャフト 4 3, 3 7を介して、 次のように取付けられる。
すなわち、 図 5に示すように、 予め、 前記ボス部材 1 7の取付け穴 3 7 aにシ ャフト 3 7の一端を圧入固定すると共に、 ボス部材 1 Ίの内周に軸受け 1 9を組 付ける。 また、 前記ダンバ 6の取付け部材 3 6の貫通孔 3 5内には、 ブッシュ 3 8を挿入し、 取付け部材 4 2の貫通孔 4 1内には、 ブッシュ 4 4を挿入する。 次に、前記第 2慣性体 5の取付け穴 4 3 aにシャフト 4 3の一端を圧入固定し、 このシャフ卜 4 3が圧入固定された第 2慣性体 5に対して、 軸受け 1 9を介して ボス部材 1 7を組み付ける。 これによつて、 前記ボス部材 1 7に設けられたシャ フト 3 7双び第 2慣性体 5に設けられたシャフト 4 3は、 それぞれ略軸方向で同 一方向に延びていることになる。
次に、 前記シャフト 3 7 , 4 3にダンバ 6を取付ける。 すなわち、 前記シャフ ト 3 7に取付け部材 3 6の貫通孔 3 5を挿通し、 シャフト 4 3に取付け部材 4 2 の貫通孔 4 1を挿通する。 なお、 前記シャフト 3 7, 4 3に対する貫通孔 3 5, 4 1の挿通は、 略同時に行われる。
次に、 前記第 2慣性体 5に設けたシャフト 4 3の他端側に、 補助部材 8に形成 した取付け孔 4 3 bを嵌合すると共に、 この補助部材 8をボルト 9によって第 2 慣性体 1 5のボス部 7に取付ける。 これによつて前記シャフト 4 3は、 両端で支 持されることになり、 強度向上が図られることになる。
次に、 前記ボス部材 1 7に設けたシャフト 3 7の他端側に、 第 1慣性体 2に形 成した取付け穴 3 7 bを嵌合すると共に、 この第 1慣性体 2をボルト 1 8によつ てボス部材 1 7に取付ける。 これによつて、 前記シャフト 3 7は両端で支持され ることになり、 強度向上が図られることになる。
これによつて、 前記ダンバ 6は、 第 1慣性体 2と第 2慣性体 5とを連繋し、 フ ライホイールが組立てられることになる。
ここに、 前記第 1慣性体 2及びボス部材 1 7のそれぞれに設けられるシャフト 4 3 , 3 7は、 略軸方向で同一方向に延びるているから、 ダンバ 6は一方向から 容易にシャフト 4 3, 3 7に連繋される。 このため、 前記ダンバ 6は、 第 1慣性 体 2及び第 2慣性体 5に対して、 容易に取付けられることになる。
したがって、 この実施の形態においても、 前記ダンパ 6の取付け作業を容易に 行うことが可能なフライホイールが得られる。 産業上の利用可能性
本発明は、 この実施の形態の構成に限られるものではなく、 発明の要旨を逸脱 しない範囲で変更可能である。 例えば、 前記第 1慣性体 2または第 2慣性体 5の 何れか一方及びボス部材 1 7へのシャフト 4 3 , 3 7の取り付けは、 圧入に限ら ず、 ねじによる結合ゃキ一結合とすることが可能である。

Claims

請求の範囲
1 . 第 1慣性体とこの第 1慣性体に対して相対回動可能な第 2慣性体との間が、 円周方向に複数個配置されたダンバによって連繋されてなるフライホイールにお いて、
前記第 1慣性体または第 2慣性体の何れか一方に、 第 1慣性体または第 2慣性 体の何れか他方に連結されるボス部材を相対回動可能に取付け、
前記第 1慣性体または第 2慣性体の何れか一方及びボス部材のそれぞれに、 ダ ンパに対応して、 略軸方向で同一方向に延びるシャフトを設け、
前記シャフトのそれぞれにダンバの両端をそれぞれ連繋すると共に、 前記第 1慣性体または第 2慣性体の何れか他方とボス部材とを連結してなるこ とを特徴とする、 フライホイール。
2 . 前記ダンバが、 第 1慣性体と第 2慣性体との相対回動に抵抗を与える減衰装 置と、 第 1慣性体と第 2慣性体とを相対回動位置から中立位置に戻すばね部材と を備え、
前記減衰装置が、 一方のシャフトに連繋され、 作動流体が充填された一端封止 のシリンダと、このシリンダの他端側を封止的に貫通して抜き差し可能に突出し、 他方のシャフ卜に連繋されるピストンロッドと、 このピストンロッドに連繋され てシリンダ内を 2つの流体室に区画して摺動自在なピストンと、 このピストンに 付属して設けられた減衰力発生手段とを備えてなり、
前記ばね部材がシリンダ内に配置されてなることを特徴とする、 請求項 1記載 のフライホイール。
PCT/JP2000/001408 1999-03-29 2000-03-09 Flywheel WO2000058643A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00907951A EP1083364A1 (en) 1999-03-29 2000-03-09 Flywheel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/87236 1999-03-29
JP11087236A JP2000283236A (ja) 1999-03-29 1999-03-29 フライホイール

Publications (1)

Publication Number Publication Date
WO2000058643A1 true WO2000058643A1 (en) 2000-10-05

Family

ID=13909207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001408 WO2000058643A1 (en) 1999-03-29 2000-03-09 Flywheel

Country Status (3)

Country Link
EP (1) EP1083364A1 (ja)
JP (1) JP2000283236A (ja)
WO (1) WO2000058643A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368324A (zh) * 2012-04-03 2013-10-23 波音公司 用于飞轮能量存储的轻质量复合材料的安全容纳装置
US20190128370A1 (en) * 2017-10-27 2019-05-02 Optimized Solutions, LLC Torsional vibration damper with discretized hub

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005038292A1 (ja) * 2003-10-20 2007-01-11 パスカルエンジニアリング株式会社 回転軸用バランサ機構
DE202008007303U1 (de) * 2008-05-30 2009-10-08 Asturia Automotive Systems Ag Torsionsschwingungsdämpfer
DE102009036905A1 (de) * 2009-08-14 2011-02-17 Rager, Alexander L. Zentrifugalbremse mit Drehmomentspeicherung
JP2011122634A (ja) * 2009-12-09 2011-06-23 Toyota Motor Corp トーショナルダンパ
DE102012214360A1 (de) * 2012-08-13 2014-02-13 Zf Friedrichshafen Ag Drehzahladaptive Torsionsschwingungsdämpferanordnung
JP6615051B2 (ja) * 2016-06-13 2019-12-04 本田技研工業株式会社 内燃機関
DE102017106569B4 (de) * 2017-03-28 2019-01-24 Starrag Gmbh Werkzeugmaschine mit einer Schwenkbrücke

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2264974A1 (de) * 1972-03-24 1975-10-09 Krupp Gmbh Hydraulische vorrichtung zum daempfen von gegenlaeufigen drehbewegungen zweier seilrollen o.dgl.
JPS55166926U (ja) * 1979-05-19 1980-12-01
JPS59110455U (ja) * 1983-01-18 1984-07-25 トヨタ自動車株式会社 トルク変動吸収フライホイ−ル
JPS6367462A (ja) * 1986-09-10 1988-03-26 Fuji Heavy Ind Ltd 自動変速機用ロツクアツプクラツチ
JPS63167144A (ja) * 1986-12-29 1988-07-11 Ishikawajima Harima Heavy Ind Co Ltd 撓軸継手
JPH03219146A (ja) 1990-01-24 1991-09-26 Atsugi Unisia Corp フライホイール
JPH0617880A (ja) * 1992-07-06 1994-01-25 Unisia Jecs Corp フライホィール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2264974A1 (de) * 1972-03-24 1975-10-09 Krupp Gmbh Hydraulische vorrichtung zum daempfen von gegenlaeufigen drehbewegungen zweier seilrollen o.dgl.
JPS55166926U (ja) * 1979-05-19 1980-12-01
JPS59110455U (ja) * 1983-01-18 1984-07-25 トヨタ自動車株式会社 トルク変動吸収フライホイ−ル
JPS6367462A (ja) * 1986-09-10 1988-03-26 Fuji Heavy Ind Ltd 自動変速機用ロツクアツプクラツチ
JPS63167144A (ja) * 1986-12-29 1988-07-11 Ishikawajima Harima Heavy Ind Co Ltd 撓軸継手
JPH03219146A (ja) 1990-01-24 1991-09-26 Atsugi Unisia Corp フライホイール
JPH0617880A (ja) * 1992-07-06 1994-01-25 Unisia Jecs Corp フライホィール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368324A (zh) * 2012-04-03 2013-10-23 波音公司 用于飞轮能量存储的轻质量复合材料的安全容纳装置
US20190128370A1 (en) * 2017-10-27 2019-05-02 Optimized Solutions, LLC Torsional vibration damper with discretized hub
US10883563B2 (en) * 2017-10-27 2021-01-05 Optimized Solutions, LLC Torsional vibration damper with discretized hub

Also Published As

Publication number Publication date
JP2000283236A (ja) 2000-10-13
EP1083364A1 (en) 2001-03-14

Similar Documents

Publication Publication Date Title
EP1378683B1 (en) Flywheel device for prime mover
US6280330B1 (en) Two-mass flywheel with a speed-adaptive absorber
JP5832570B2 (ja) トルクコンバータ
JP6269244B2 (ja) ダンパ装置
WO2013161493A1 (ja) 発進装置
US5415061A (en) Flywheel for power transmission system having equiangularly spaced dashpots
US5979390A (en) Assembly for transmitting rotational movements and for damping torsional vibrations
KR20010107762A (ko) 잠금장치를 갖는 토크 컨버터
WO2000058643A1 (en) Flywheel
JP4073666B2 (ja) ロックアップ装置付き流体式トルク伝達装置
JPH01220747A (ja) 車両用ねじり減衰装置
JP3977000B2 (ja) トルクコンバータのロックアップ装置
WO2016125382A1 (ja) 自動車用の動吸振装置
KR0140056B1 (ko) 진동 감쇠장치를 구비한 플라이 휘일 어셈블리
JP2000283237A (ja) フライホイール
JP7215983B2 (ja) 動力伝達装置
EP1489336A2 (en) Method of using compression springs to create a desired torsional load
CN220101786U (zh) 减振器、曲轴及发动机
JP2000304099A (ja) フライホイール
JP3474624B2 (ja) ダンパー装置
JP7411432B2 (ja) トーショナルダンパー
JPH0240341Y2 (ja)
JP2004003678A (ja) 動力伝達装置
JPH0617880A (ja) フライホィール
JP2002081522A (ja) トルクコンバータのロックアップ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09673102

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000907951

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000907951

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000907951

Country of ref document: EP