WO2000054756A2 - Nitrate esters and their use for introducing neuroprotection and cognition enhancement - Google Patents

Nitrate esters and their use for introducing neuroprotection and cognition enhancement Download PDF

Info

Publication number
WO2000054756A2
WO2000054756A2 PCT/CA2000/000280 CA0000280W WO0054756A2 WO 2000054756 A2 WO2000054756 A2 WO 2000054756A2 CA 0000280 W CA0000280 W CA 0000280W WO 0054756 A2 WO0054756 A2 WO 0054756A2
Authority
WO
WIPO (PCT)
Prior art keywords
nitrate
scn
amino
group
ssr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CA2000/000280
Other languages
English (en)
French (fr)
Other versions
WO2000054756A3 (en
Inventor
Gregory R. J. Thatcher
Brian M. Bennett
James N. Reynolds
Roland J. Boegman
Khem Jhamandas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Queens University at Kingston
Original Assignee
Queens University at Kingston
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Queens University at Kingston filed Critical Queens University at Kingston
Priority to AT00910456T priority Critical patent/ATE546195T1/de
Priority to AU32673/00A priority patent/AU783036B2/en
Priority to JP2000604832A priority patent/JP2002539152A/ja
Priority to MXPA01009246A priority patent/MXPA01009246A/es
Priority to CA2364493A priority patent/CA2364493C/en
Priority to EP00910456A priority patent/EP1163029B1/en
Priority to IL14536700A priority patent/IL145367A0/xx
Publication of WO2000054756A2 publication Critical patent/WO2000054756A2/en
Publication of WO2000054756A3 publication Critical patent/WO2000054756A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/255Esters, e.g. nitroglycerine, selenocyanates of sulfoxy acids or sulfur analogues thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/26Cyanate or isocyanate esters; Thiocyanate or isothiocyanate esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/275Nitriles; Isonitriles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/341Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide not condensed with another ring, e.g. ranitidine, furosemide, bufetolol, muscarine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/39Heterocyclic compounds having sulfur as a ring hetero atom having oxygen in the same ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/4261,3-Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/575Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/662Phosphorus acids or esters thereof having P—C bonds, e.g. foscarnet, trichlorfon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C203/00Esters of nitric or nitrous acid
    • C07C203/02Esters of nitric acid
    • C07C203/04Esters of nitric acid having nitrate groups bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/11Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound oxygen atoms bound to the same saturated acyclic carbon skeleton
    • C07C255/14Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound oxygen atoms bound to the same saturated acyclic carbon skeleton containing cyano groups and esterified hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/16Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C317/18Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton with sulfone or sulfoxide groups bound to acyclic carbon atoms of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/10Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C323/11Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/12Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C327/00Thiocarboxylic acids
    • C07C327/20Esters of monothiocarboxylic acids
    • C07C327/28Esters of monothiocarboxylic acids having sulfur atoms of esterified thiocarboxyl groups bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C331/00Derivatives of thiocyanic acid or of isothiocyanic acid
    • C07C331/02Thiocyanates
    • C07C331/10Thiocyanates having sulfur atoms of thiocyanate groups bound to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • C07C381/02Thiosulfates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/24Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/02Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
    • C07D327/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/46Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings substituted on the ring sulfur atom
    • C07D333/48Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings substituted on the ring sulfur atom by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D339/00Heterocyclic compounds containing rings having two sulfur atoms as the only ring hetero atoms
    • C07D339/08Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D411/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D411/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D411/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4006Esters of acyclic acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0055Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 the 17-beta position being substituted by an uninterrupted chain of at least three carbon atoms which may or may not be branched, e.g. cholane or cholestane derivatives, optionally cyclised, e.g. 17-beta-phenyl or 17-beta-furyl derivatives
    • C07J41/0061Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 the 17-beta position being substituted by an uninterrupted chain of at least three carbon atoms which may or may not be branched, e.g. cholane or cholestane derivatives, optionally cyclised, e.g. 17-beta-phenyl or 17-beta-furyl derivatives one of the carbon atoms being part of an amide group

Definitions

  • This invention relates to nitrate esters and use thereof in effecting neuroprotection, mitigating neurodegeneration and/or effecting cognition enhancement. More particularly, this invention relates to organic nitrates having therapeutic utility as neuroprotective agents and/or cognition enhancers. The invention still more particularly relates to nitrate esters bearing a sulfur or phosphorus atom ⁇ or ⁇ to a nitrate group and their congeners which have therapeutic utility as neuroprotective agents and/or cognition enhancers.
  • nitrate ester glyceryl trinitrate (GTN) or nitroglycerin, has been used as a vasodilator in the treatment of angina pectoris for over a hundred years, and the dominant contemporary belief is that GTN exerts its therapeutic effect through in vivo release of nitric oxide (NO).
  • NO nitric oxide
  • Other organic nitrates such as isosorbide dinitrate, have also been identified as effective and clinically important vasodilators.
  • NO itself has been identified as Endothelium Derived Relaxing Factor (EDRF) and several classes of compounds, for example nitrosothiols, in addition to organic nitrates, have been proposed as NO donors or NO prodrugs.
  • EDRF Endothelium Derived Relaxing Factor
  • GTN is firstly a potent vasodilator and secondly possesses potential neuroprotective properties.
  • Several attempts have been made to increase the efficacy or potency of alternative organic nitrates as vasodilators relative to GTN, for example, by incorporation of propanolamine or cysteine functionalities.
  • propanolamine or cysteine functionalities for example, by incorporation of propanolamine or cysteine functionalities.
  • no attempt has been made to separately regulate the vasodilatory and neuroprotective effects of GTN.
  • Interaction of organic nitrates with amino acid neurotransmitter receptors will provide examples of compounds with neuroprotective properties, but modulation of the ⁇ - aminobutyric acid type A (GABA A ) receptor response will provide examples of organic nitrates capable of cognition enhancement.
  • Stimulation of cerebral soluble guanylyl cyclase (GCase) by organic nitrates, in particular selectively over arterial GCase will provide examples of compounds with neuroprotective properties.
  • Organic nitrates bearing antioxidant functionalities and those capable of inhibiting apoptosis will also provide examples of compounds with neuroprotective properties. These postulates are based, in part, on bioassay data on such compounds.
  • these compounds can be used for treatment conditions including but not limited to: stroke; Parkinson's disease; Alzheimer's disease; Huntington's disease; multiple sclerosis; amylotrophic lateral sclerosis; ALDS- induced dementia; epilepsy; alcoholism; alcohol withdrawal; drug-induced seizures; viral/bacterial/fever-induced seizures; trauma to the head; hypoglycemia; hypoxia; myocardial infarction; cerebral vascular occlusion; cerebral vascular hemorrhage; hemorrhage; environmental excitotoxins of plant, animal and marine origin; dementias of all type, trauma, drug-induced brain damage, aging.
  • This invention provides novel compounds, methods and pharmaceutical compositions which are useful in the treatment of neurological disorders requiring mitigation of neurodegeneration, neuroprotection and/or cognition enhancement.
  • Methods of the invention involve administering to a subject in need thereof a therapeutic compound which provides neuroprotection or cognition enhancement. Accordingly, the compositions and methods of the invention are useful for effecting neuroprotection or cognition enhancement in disorders in which neurotoxic damage occurs.
  • the methods of the invention can be used therapeutically to treat conditions including but not limited to: stroke; Parkinson's disease; Alzheimer's disease; Huntington's disease; multiple sclerosis; amylotrophic lateral sclerosis; AIDS-induced dementia; epilepsy; alcoholism; alcohol withdrawal; drug-induced seizures; viral/bacterial/fever-induced seizures; trauma to the head; hypoglycemia; hypoxia; myocardial infarction; cerebral vascular occlusion; cerebral vascular hemorrhage; hemorrhage; environmental excitotoxins; dementias of all type, trauma, drug-induced brain damage, and aging or can be used prophylactically in a subject susceptible or predisposed to these conditions.
  • a therapeutic compound used in the method of the invention preferably can interact with GCase effecting neuroprotection and/or cognition enhancement. In other embodiments, a therapeutic compound used in the method of the invention preferably can modulate glutamate and/or non-glutamate neuroreceptor interactions effecting neuroprotection and/or cognition enhancement.
  • the invention relates to organic nitrates, i.e., nitrate esters.
  • the invention provides a method including the step of administering to a subject an effective amount of a therapeutic compound having the formula (Formula I):
  • E, F, G are organic radicals which may contain inorganic counterions, such that neurodegeneration is mitigated in the subject.
  • the invention provides a method including the step of administering to a subject an effective amount of a therapeutic compound having the
  • E, F, G are organic radicals which may contain inorganic counterions, such that cognition enhancement is effected.
  • the invention provides use of therapeutic compounds that mitigate neurodegeneration, effect neuroprotection and/or effect cognition enhancement in a subject to which the therapeutic compound is administered, the compounds having the formula (Formula II):
  • n and p are integers from 0 to 10;
  • R 3,17 are each independently hydrogen, a nitrate group, or A;
  • R 1, 4 are each independently hydrogen or A; where A is selected from: a substituted or unsubstituted aliphatic group (preferably a branched, or straight-chain aliphatic moiety having from 1 to 24 carbon atoms in the chain, which optionally contains O, S, NR 6 and unsaturations in the chain, optionally bearing from 1 to 4 hydroxy, nitrate, amino or aryl, or heterocyclic groups; an unsubstituted or substituted cyclic aliphatic moiety having from 3 to 7 carbon atoms in the aliphatic ring, which optionally contains O, S, NR 6 and unsaturations in the ring, optionally bearing from 1 to 4 hydroxy, nitrate, or amino or aryl, or heterocyclic groups; an unsubstituted or substituted aliphatic moiety constituting a linkage of from 0 to 5 carbons, between R 1 and R 3 and/or between R 17 and R 4 , which optionally contains O, S, NR 6 and
  • R 2 , R 5 , R 18 , R 19 are optionally hydrogen, A, or X-Y; where X is F, Br, Cl, N0 2 , CH 2 , CF 2 , O, NH, NMe, CN, NHOH, N 2 H 3 ,
  • Y is F, Br, Cl, CH 3 , CF 2 H, CF 3 , OH, NH 2 , NHR 6 , NR 6 R 7 , CN, NHOH, N 2 H 3>
  • R 19 is X-Y.
  • R 19 is X-Y and R 5 , R 6 , R 8 R 9 , R 10 , R 12 , R 13 , R 14 , R 15 , R 16 are the same or different alkyl groups containing 1-24 carbon atoms which may contain 1-4 ON0 2 substituents, or C- or C2 connections to R 1 - R 3 in cyclic derivatives;
  • R 1 and R 3 are the same or different and selected from H, C r C 4 ⁇ alkyl chains, which may inlude one O, linking R 1 and R 3 to form pentosyl, hexosyl, cyclopentyl, or cycohexyl rings ⁇ which rings optionally bear hydroxyl substituents;
  • R 2 and R 4 are the same or different and selected from H, a nitrate group, - alkyl optionally bearing 1-3 nitrate group, and acyl groups (-C(0)R
  • R 19 is X-Y
  • X is selected from: CH 2 , O, NH, NMe, CN, NHOH, N 2 H 3 , N 2 H 2 R 13 , N 2 HR 13 R 14 , N dilemma S, SCN, SCN 2 H 2 (R 15 ) 2 , SCN 2 H 3 (R 15 ), SC(0)N(R 15 ) 2 , SC(0)NHR 15 , S0 3 M, SH, SR 7 , S0 2 M, S(0)R 8 , S(0) 2 R 9 , S(0)OR 8 , S(0) 2 OR 9 , P0 3 HM, P0 3 M 2 , P(0)(OR 15 )(OR 16 ), P(0)(OR 16 )(OM), P(0)(R 15 )(OR”),
  • Y is selected from CN, N 2 H 2 R 13 , N 2 HR 13 R 14 , N 3 , SCN, SCN 2 H 2 (R 15 ) 2 , SC(0)N(R 15 ) 2 , SC(0)NHR 15 , S0 3 M, SR 4 , S0 2 M, P0 3 HM, P0 3 M 2 , P(0)(OR 15 )(OR 16 ), P(0)(OR 16 )(OM), P(0)(R 15 )(OR")- P(0)(OM)R 15 , C0 2 M, C0 2 H, C0 2 R u , C(0)R 12 , C(0)(SR 13 ), SR 5 , SSR 5 , or does not exist.
  • X and/or Y contain a sulfur-containing functional group.
  • a compound of the invention according to Formula II comprises a heterocyclic functionality, more preferably, a nucleoside or nucleobase.
  • a compound of the invention comprises a carbocyclic functionality, more preferably, a steroidal or carbohydrate moiety.
  • a therapeutic compound which is employed in methods of the invention is represented by the formula (Formula LU):
  • R 6 - R 16 are the same or different alkyl or acyl groups containing 1-24 carbon atoms which may contain 1-4 ON0 2 substituents, or C t - Co connections to R 1 - R 4 in cyclic derivatives.
  • the invention provides novel compounds useful for mitigating neurodegeneration, effecting neuroprotection and/or effecting cognition enhancement which are represented by the structures of Formula 3.
  • a therapeutic compound according to the invention is represented by the formula (Formula IV):
  • X is CH 2 or does not exist
  • Y is selected from: F, Br, Cl, CH 3 , CF 2 H, CF 3 , OH, NH 2 , NHR 6 , NR 6 R 7 , CN, NHOH, N 2 H 3 , N 2 H 2 R 13) N 2 HR 13 R 14 , N 3 , S, SCN, SCN 2 H 2 (R 15 ) 2 ,SCN 2 H 3 (R 15 ), SC(0)N(R 15 ) 2 , SC(0)NHR 15 , S0 3 M, SH, SR 7 , S0 2 M, S(0)R 8 , S(0) 2 R 9 , S(0)OR 8 , S ⁇ O ,, P0 2 HM, P0 3 M 2 , P(0)(OR 15 )(OR , P(0)(OR 16 )(OM), P
  • an aliphatic nitrate ester containing at least one nitrate group in which a S or P atom is situated ⁇ or ⁇ to a nitrate group, or congeners thereof, having the general formula (Formula TV*):
  • X is CH 2 , O, NH, NMe, CN, NHOH, N 2 H 3 , N 2 H 2 R 13 , N 2 HR 13 R 14 , N 3 , S, SCN, SCN 2 H 2 (R 5 ) 2 ,SCN 2 H 3 (R 5 ), SC(0)N(R 5 ) 2 , SC(0)NHR 5 , S0 3 M, SH, SR 7 , S0 2 M, S(0)R 8 , S(0) 2 R,, S(0)OR 8 , P(0)(R 5 )(OR 8 ), P(0)(OM)R 5 , C0 2 M, C0 2 H, C0 2 R n , C(0), C(0)R 12 , C(0)(OR 13 ), P0 2 M, P(0)(OR 14 ), P(0)(R 13 ), SO, S0 2 , C(0)(SR 13 ), SR 4 , or SSR 4 ;
  • Y is SCN, SCN 2 H 2 (R 5 ) 2 , SC(0)NHR 5 , SC(0)N(R 5 ) 2 , SR 4 , SR 10 , SSR 10 , S0 2 M, S0 3 M, P0 3 HM, P0 3 M 2 , CN, N 3 , N 2 H 2 R 13 , N 2 HR 13 R 14 , C0 2 M, C0 2 H, C0 2 R ⁇ , C(0)R 12 , C(0)(SR 13 ), or does not exist;
  • R 5 , R 6 , R 8 , R,, R 10 , R 12 , R 13 , R 14 , R 15 , R J6 are the same or different alk ls containing 1-12 carbon atoms which may contain 1-4 ON0 2 substituents or C, or C 2 connections to R t - R 3 in cyclic derivatives;
  • R 7 , R ⁇ are C t - C 8 , alkyl or acyl;
  • R 2 and R 4 are the same or different and selected from H, 0N0 2 , C,-C 4 alkyl optionally bearing 1-3 nitrate groups, and acyl groups (-C(O)R J0 );
  • Ri and R 3 are the same or different and selected from H, C r C 4 alkyl and chains, which may rings optionally bear hydroxyl substituents;
  • M is H, Na + , K include one O, linking R, and R 3 to form pentosyl, hexosyl, cyclopentyl or cycohexyl rings, which + , NH 4 + or N + H n R ⁇ (4 . n) where n is 0-3; with the proviso that, when X is O, Y is not COR 12 ; and with the proviso that, when R 3 is H, R 6 is not ethyl or n-butyl; and pharmaceutically acceptable salts thereof.
  • the invention further provides a pharmaceutical composition comprising an effective amount of nitrate ester of Formula IN*, in admixture with a physiologically acceptable carrier therefor.
  • the invention still further provides a method for effecting neuroprotection in a subject in need thereof comprising administering to said subject an effective amount of a nitrate ester of Formula IV*.
  • the invention provides methods for preparing organic nitrates represented by the structures of Formula V.
  • the therapeutic compounds of the invention are administered to a subject by a route which is effective for mitigating neurodegeneration, effecting neuroprotection and/or effecting cognition enhancement.
  • Suitable routes of administration include sublingual, oral, buccal, transdermal, nasal, subcutaneous, intravenous, intramuscular and intraperitoneal injection.
  • Preferred routes of administration are intravenous, subcutaneous and transdermal administration, particularly for effecting neuroprotection.
  • oral administration may be preferred.
  • the therapeutic compounds can be administered with a pharmaceutically acceptable vehicle.
  • the invention also provides methods for treating a disease state associated with neurodegeneration by administering to a subject an effective amount of a therapeutic compound having a formula as set forth above, such that a disease state associated with neurodegeneration is treated.
  • the invention provides methods for effecting neuroprotection and/or cognition enhancement by administering to a subject an effective amount of a therapeutic compound having a formula described above, such that neuroprotection and/or cognition enhancement is effected.
  • the invention further provides pharmaceutical compositions for treating neurodegeneration.
  • the pharmaceutical compositions include a therapeutic compound of the invention in an amount effective to mitigate neurodegeneration in admixture with a pharmaceutically acceptable carrier therefor.
  • the invention also provides packaged pharmaceutical compositions for treating neurodegeneration.
  • the packaged pharmaceutical compositions include a therapeutic compound of the invention and instructions for using the pharmaceutical composition for treatment of neurodegeneration.
  • Figure 1 is a graph showing the effect of GTN with added L-cysteine (2mM) on soluble guanylyl cyclase (GCase) activity in rat aorta homogenate. Bars represent the mean ⁇ standard errors calculated separately for each point.
  • Figure 2 is a graph showing the effect of INd neat (diamonds); with added L- cysteine (2mM, triangles); with added dithiothreitol (2mM, DTT, squares); on soluble GCase activity in rat aorta homogenate normalized to the maximal GT ⁇ response. Bars represent the mean ⁇ standard errors calculated separately for each point.
  • Figure 3 is a graph showing the effect of IVg neat (diamonds); with added L-cysteine
  • FIG. 4 is a graph showing the effect of IVb neat (diamonds); with added L- cysteine (2mM, triangles); with added dithiothreitol (2mM, DTT, squares); on soluble GCase activity in rat aorta homogenate, normalized to the maximal GT ⁇ response. Bars represent the mean ⁇ standard errors calculated separately for each point.
  • Figure 4 is a graph showing the effect of IVb neat (diamonds); with added L- cysteine (2mM, triangles); with added dithiothreitol (2mM, DTT, squares); on soluble GCase activity in rat aorta homogenate, normalized to maximal GTN response. Bars represent the mean ⁇ standard errors calculated separately for each point.
  • Figure 5 is a graph showing the effect of IVf neat (diamonds); with added L-cysteine (2mM, triangles; 5mM circles); with added dithiothreitol (2mM, DTT, squares); on soluble GCase activity in rat aorta homogenate, normalized to maximal GTN response. Bars represent the mean ⁇ standard errors calculated separately for each point.
  • Figure 6 is a graph showing the effect of INe neat (diamonds); with added L-cysteine (2mM, triangles); with added dithiothreitol (2mM, DTT, squares); on soluble GCase activity in rat aorta homogenate, normalized to maximal GT ⁇ response. Bars represent the mean ⁇ standard errors calculated separately for each point.
  • Figure 7 is a graph showing the effect of IVj neat (diamonds); with added L-cysteine (2mM, triangles); with added dithiothreitol (2mM, DTT, squares); on soluble GCase activity in rat aorta homogenate, normalized to maximal GT ⁇ response. Bars represent the mean ⁇ standard errors calculated separately for each point.
  • Figure 8 is a graph showing the effect of lNa neat (diamonds); with added L-cysteine (2mM, triangles); with added dithiothreitol (2mM, DTT, squares); on soluble GCase activity in rat aorta homogenate, normalized to maximal GT ⁇ response. Bars represent the mean ⁇ standard errors calculated separately for each point.
  • Figure 9 is a graph showing a comparison of GT ⁇ (squares), IHm (circles) and IVh (triangles) with added L-cysteine (1 mM) on soluble GCase activity in rat aorta homogenate (a), and rat hippocampus homogenate (b). Data points represent the mean of duplicate determinations carried out in identical GCase preparations.
  • Figure 18 is a graph showing a comparison of the percent change in mean arterial pressure in conscious unrestrained rats after subcutaneous administration of 400 ⁇ mol/kg GTN (squares) or Va (open circles). Data points represent the mean ⁇ standard errors (n-6).
  • Figure 20 is a graph showing plasma levels ( ⁇ M) of Vb (circles) and its mononitrate metabolite Vc (open squares) after subcutaneous administration of 200 ⁇ mol/kg Vb in conscious unrestrained rats. Data points represent the mean of two experiments.
  • Figure 24 is a graph showing viable neurons in the CA1 region of the gerbil hippocampus after global cerebral ischemia. Data are the mean ⁇ standard error for the number of animals in parentheses. *, P ⁇ 0.05 compared to vehicle control.
  • Figure 26 is a graph showing the effect of GTN (0.2. or 0.4 mg/hr by subcutaneous patch) on NMD A-induced loss of striatal tyrosine hydroxylase (TH) activity in the rat.
  • Figure 27 is a graph showing the effect of GTN (0.4 mg/hr by subcutaneous patch) implanted one hour after an infusion of NMD A into the substantia nigra on striatal TH activity. ** P ⁇ 0.05 compared to animals receiving NMDA alone.
  • Figure 28 is a graph showing the percent decrease in striatal TH activity in rats pretreated with GTN compared to Losartan, a drug that decreases systemic blood pressure through a mechanism different from that of GTN. Animals pretreated with GTN showed significant amounts of neuroprotection; whereas, animals pretreated with Losartan did not show any evidence of neuroprotection.
  • Figure 29 is a graph showing the blood pressure profiles of animals administered (a) GTN (0.4 mg/hr by subcutaneous patch), or (b) losartan (30 mg/kg by intraperitoneal injection).
  • Figure 30 is a graph showing the effect of compound IVd (Bunte salt, 10-100 ⁇ M) on GAB A receptor-activated membrane current recorded in an oocyte expressing the ⁇ l ⁇ 2 ⁇ 2L isoform of the GABA A receptor.
  • Figure 31 is a graph showing that nitric oxide donors have no effect on GABA A receptors expressed in Xenopus oocytes.
  • Figure 32 is a graph showing that the concentration-response relationship for activation of the GABA A receptor is altered in a non-competitive manner by compound IVd (Bunte salt).
  • This invention pertains to methods and compositions useful for treating neurodegeneration.
  • the methods of the invention involve administering to a subject a therapeutic compound which effects neuroprotection and/or cognition enhancement.
  • Neuroprotection and/or cognition enhancement can be effected, for example, by modulating an interaction with guanylyl cyclase (GCase), a glutamate or non-glutamate neuroreceptor or attenuating free radical damage.
  • GCase guanylyl cyclase
  • glutamate or non-glutamate neuroreceptor or attenuating free radical damage.
  • neurodegeneration is mitigated by stimulating cerebral GCase.
  • One of the major targets for organic nitrates is GCase activation, resulting in the production of cGMP.
  • Experimental evidence obtained in a number of in vitro model systems supports the notion that elevated levels of cGMP help to prevent apoptotic (programmed) cell death.
  • a cGMP-dependent mechanism significantly increases the survival of trophic factor-deprived PC 12 cells and rat sympathetic neurons (Farinelli et al.,
  • the mechanism of action for organic nitrates in preventing apoptotic cell death may be inhibition of caspase-3 activation indirectly through elevations in cGMP levels or directly via protein S-nitrosylation of the enzyme by an NO-intermediate (Kim et al., 1997).
  • Caspase-3 is a member of the cysteine protease family of enzymes that are essential for the execution step in apoptosis (Cohen, 1997; Nicholson and Thornberry, 1997). Activation of caspase-3 is required for apoptotic cell death in trophic factor-deprived PC 12 cells (Haviv et al., 1997) and in glutamate-mediated apoptotic cell death of cultured cerebellar granule neurons (Du et al., 1997).
  • caspase-3 activity is induced and may be responsible for the apoptotic component of delayed neuronal cell death (Chen et al., 1998; Namura et al., 1998; Ni et al., 1998).
  • Inhibitors of caspase-3 significantly decrease the apoptotic component of delayed neuronal cell death in response to ischemic injury both in vitro (Gottron et al., 1997) and in vivo (Endres et al., 1998).
  • a secreted region of the Alzheimer's disease ⁇ -amyloid precursor protein lowers intracellular calcium levels and provides neuroprotective effects on target cells through increases in cGMP levels and activation of protein kinase G (Barger et al., 1995; Furukawa et al., 1996).
  • nitrated molecules that have the capacity to activate GCase directly or via release of an NO-containing intermediate are used to modulate GCase activity.
  • cognition enhancement is achieved by stimulating cerebral GCase.
  • GCase and cGMP are involved in the formation and retention of new information.
  • cGMP has been directly implicated in both long-term potentiation (LTP) and long-term depression (LTD), which are proposed cellular models for learning and memory (Arancio et al., 1995; Wu et al., 1998).
  • LTP long-term potentiation
  • LTD long-term depression
  • elevation of hippocampal cGMP levels leading to increased protein kinase G activity has been shown to be important for retention and consolidation of new learning (Bernabeu et al., 1996, 1997).
  • stimulation of cerebral GCase activity is expected to improve learning and memory performance in individuals in whom cognitive abilities are impaired by injury, disease, or aging.
  • Cerebral ischemia results in marked increases in the release of the excitatory amino acid glutamate in the affected brain region (Bullock et al., 1998; Huang et al., 1998; Yang et al., 1998).
  • the amount of glutamate released during ischemia is positively correlated with the extent of brain injury.
  • these organic nitrates can be used for treatment of conditions including but not limited to: stroke; Parkinson's disease; Alzheimer's disease; Huntington's disease; multiple sclerosis; amylotrophic lateral sclerosis; AIDS-induced dementia; epilepsy; alcoholism; alcohol withdrawal; drug-induced seizures; viral/bacterial/fever-induced seizures; trauma to the head; hypoglycemia; hypoxia; myocardial infarction; cerebral vascular occlusion; cerebral vascular hemorrhage; hemorrhage; environmental excitotoxins of plant, animal and marine origin; and the like.
  • organic nitrates developed to act as modulators of GABA A receptor function, will be to improve memory performance and cognition in patient populations. It will be appreciated, therefore, that these organic nitrates can be used for treatment of conditions including but not limited to: stroke; dementias of all type; trauma; drug-induced brain damage; and aging.
  • neurodegeneration is mitigated by inhibition of free radical damage.
  • Reoxygenation and reperfusion after a period of ischemia contributes significantly to the development of brain injury.
  • Oxygen radicals, especially superoxide and peroxynitrite, formed in the period after an ischemic event may initiate processes such as breakdown of membrane lipids (lipid peroxidation), leading to loss of cell membrane integrity and inhibition of mitochondrial function (Macdonald and Stoodley, 1998; Gaetani et al, 1998).
  • Oxidative stress is also believed to be one factor involved in initiation of apoptotic neuronal cell death (Tagami et al., 1998).
  • nitrated molecules which have the capacity to inhibit production of free radicals and/or which act as free radical scavengers are used to attenuate the brain injury that occurs after a period of cerebral ischemia.
  • any organic nitrate in which vasodilatory potency is reduced and neuroprotective potency increased represents a new and useful therapeutic agent for use in neuroprotection, particularly in treatment of conditions including but not limited to: stroke; Parkinson's disease; Alzheimer's disease; Huntington's disease; multiple sclerosis; amylotrophic lateral sclerosis; AIDS-induced dementia; epilepsy; alcoholism; alcohol withdrawal; drug-induced seizures; viral/bacterial/fever-induced seizures; trauma to the head; hypoglycemia; hypoxia; myocardial infarction; cerebral vascular occlusion; cerebral vascular hemorrhage; hemorrhage; environmental excitotoxins of plant, animal and marine origin.
  • GTN itself, proposed as a neuroprotective agent, has no clinical utility as a neuroprotective agent in therapy owing to its extraordinarily high vasodilatory potency.
  • GTN 1,2,3-trinitratopropane
  • cognition enhancement represents a new and useful treatment for cognition enhancement, particularly in treatment of conditions including but not limited to: stroke; dementias of all type, trauma, drug-induced brain damage, and aging.
  • “Mitigating neurodegeneration” as use herein involves effecting neuroprotection, inhibiting or preventing neurodegeneration, and/or ameliorating the manifestations or impact of neurodegeneration. Such amelioration includes effecting cognition enhancement, as is quantified by tests known in the art (e.g., Venault et al., 1992, incorporated herein by reference).
  • “Modulating” a biological process as used herein encompasses both increasing (positively moduclating) and decreasing (negatively modulating) such activity, and thus inhibition, potentiation, agonism, and antagonism of the biological process.
  • the therapeutic compounds of the invention comprise at least one nitrate group.
  • the nitrate groups(s) can optionally be covalently bound to a carrier moiety or molecule (e.g., an aromatic group, an aliphatic group, peptide, steroid, nucleoside, peptidomimetic, steroidomimetic, or nucleoside analogue, or the like).
  • a carrier moiety or molecule e.g., an aromatic group, an aliphatic group, peptide, steroid, nucleoside, peptidomimetic, steroidomimetic, or nucleoside analogue, or the like.
  • the carrier moiety or molecule can enable the compound to traverse biological membranes and to be biodistributed preferentially, without excessive or premature metabolism.
  • the carrier moiety or molecule can enable the compound to exert amplified neuroprotective effects and/or cognition enhancement through synergism with the nitrate functionality.
  • the invention provides a method of treating a neurological condition and/or preventing an undesirable mental condition (e.g., memory loss) including the step of administering to a subject an effective amount of a therapeutic compound capable of mitigating neurodegeneration which has at least one nitrate group.
  • a therapeutic compound capable of mitigating neurodegeneration which has at least one nitrate group.
  • the therapeutic compound is capable of effecting neuroprotection.
  • the therapeutic compound is capable of effecting cognition enhancement.
  • the therapeutic compound has the formula (Formula I):
  • E, F, G are organic radicals which may contain inorganic counterions; so that a neurological condition is treated.
  • the invention provides a pharmaceutical composition including a physiologically acceptable carrier and a compound having the formula (Formula I): wherein: E, F, G are organic radicals which may contain inorganic counterions; such that neurodegeration is mitigated.
  • the composition is employed for mitigating neurodegeneration, effecting neuroprotection and /or effecting cognition enhancement.
  • therapeutic compounds of the invention that effect neuroprotection and/or effect cognition enhancement in a subject to which the therapeutic compound is administered have the formula (Formula H):
  • Y is F, Br, Cl, CH 3 , CF 2 H, CF 3 , OH, NH 2 , NHR 6 , NR 6 R 7 , CN, NHOH, N 2 H 3 , N 2 H 2 R 13 , N 2 HR 13 R 14 , N 3 , S, SCN, SCN 2 H 2 (R 15 ) 2 ,SCN 2 H 3 (R 15 ), SC(0)N(R 15 ) 2 , SC(0)NHR 15 , S0 3 M, SH, SR 7 , S0 2 M, S(0)R 8 , S(0) 2 R 9 , S(0)OR 8 , S(0) 2 OR 9 , P0 2 HM, P0 3 M 2 , P(0)(OR 15 )(OR 16 ), P(0)(OR 16 )(OM), P
  • R 6 , R 7 , R 8 , R 9 , R 10 , R", R 12 , R 13 , R 14 , R 15 , R 16 are the same or different alkyl or acyl groups containing 1-24 carbon atoms which may contain 1-4 ON0 2 substituents; or C, - C 6 connections to R 1 - R 4 in cyclic derivatives; or are each independently hydrogen, a nitrate group, or A; M is H, Na + , K + , NH 4 + , N ⁇ k R n (4 . k) where k is 0-3, or other pharmaceutically acceptable counterion.
  • compositions comprising a compound of Formula II in admixture with a pharmaceutically acceptable carrier therefor are provided by the invention.
  • the invention further provides methods of mitigating neurodegeneration, effecting europrotection and/or effecting cognition enhancement in a subject comprising the step of administering a compound of Formula II to a subject such that said mitigation and /or said neuroprotection an/or cognition enhancement occurs.
  • preferred therapeutic compounds for effecting neuroprotection and/or cognition enhancement in a subject to which the compound is administered include compounds in which R 19 is X-Y.
  • R 19 is X-Y and R 5 , R 6 , R 8 R 9 , R 10 , R 12 , R 13 , R 14 , R 15 , R 16 are the same or different alkyl groups containing 1-24 carbon atoms which may contain 1-4 ON0 2 substituents, or C- or C2 connections to R 1 - R 3 in cyclic derivatives;
  • R 1 and R 3 are the same or different and selected from H, C.-C 4 ⁇ alkyl chains, which may inlude one O, linking R 1 and R 3 to form pentosyl, hexosyl, cyclopentyl, or cycohexyl rings, which rings optionally bear hydroxyl substituents;
  • R 2 and R 4 are the same or different and selected from H, a nitrate group
  • R 19 is X-Y
  • X is selected from: CH 2 , O, NH, NMe, CN, NHOH, N 2 H 3 , N 2 H 2 R 13 , N 2 HR 13 R 14 , N 3 , S, SCN, SCN 2 H 2 (R 15 ) 2 ,SCN 2 H 3 (R 15 ), SC(0)N(R 15 ) 2 , SC(0)NHR 15 , S0 3 M, SH, SR 7 , S0 2 M, S(0)R 8 , S(0) 2 R 9 , S(0)OR 8 , S(0) 2 OR 9 , P0 3 HM, P0 3 M 2 , P(0)(0R 15 )(0R 16 ), P(0)(OR 16 )(OM), V(0)(R 15 )(O P(0)(OM)R 15 , C0 2 M, C0 2 H, C0 2 R u , C
  • R 19 is X-Y
  • Y is selected from CN, N 2 H 2 R 13 , N 2 HR 13 R 14 , N 3 , SCN, SCN 2 H 2 (R 15 ) 2 , SC(0)N(R 15 ) 2 , SC(0)NHR 15 , S0 3 M, SR 4 , S0 2 M, P0 3 HM, P0 3 M 2 , P(0)(OR 15 )(OR 16 ), P(0)(OR 16 )(OM), P O ⁇ XOR 8 ), P(0)(OM)R 15 , C0 2 M, C0 2 H, C0 2 R ⁇ , C(0)R 12 , C(0)(SR 13 ), SR 5 , SSR 5 , or does not exist.
  • X and/or Y contains a sulfur-containing functional group.
  • the compound of the invention comprises a heterocyclic functionality, more preferably, a nucleoside or nucleobase.
  • the compound of the invention comprises a carbocyclic functionality, more preferably, a steroidal or carbohydrate moiety.
  • a therapeutic compound of the invention is represented by the formula (Formula IH):
  • R 6 - R 16 are the same or different alkyl or acyl groups containing 1-24 carbon atoms which may contain 1-4 ON0 2 substituents, or C, - C connections to R 1 - R 4 in cyclic derivatives.
  • compositions comprising a compound of Formula HI in admixture with a pharmaceutically acceptable carrier therefor are provided by the invention.
  • the invention further provides methods of mitigating neurodegeneration, effecting neuroprotection and/or effecting cognition enhancement in a subject comprising the step of administering a compound of Formula HI to a subject such that said mitigation and /or said neuroprotection and/or cognition enhancement occurs.
  • a therapeutic compound of the invention can be represented by the formula (Formula IV):
  • X is CH 2 or does not exist, and Y is selected from F, Br, Cl, CH 3 , CF 2 H, CF 3 , OH, NH 2 , NHR 6 , NR 6 R 7 , CN, NHOH, N 2 H 3 , N 2 H 2 R 13 , N 2 HR 13 R 14 , N 3 , S, SCN, SCN 2 H 2 (R 15 ) 2 ,SCN 2 H 3 (R 15 ), SC(0)N(R 15 ) 2 , SC(0)NHR 15 , S0 3 M, SH, SR 7 , S0 2 M, S(0)R 8 , S ) ⁇ , S(0)OR 8 , S ⁇ OR,, P0 2 HM, P0 3 M 2 , P(0)(OR 15 )(OR , P(0)(0R (0M), P(0)(R 15 )(OR 8 ), P(0)(OM)R 15 , C0 2 M, C0 2 H, C0 2 R u , C(0)R
  • R 2 and R 4 are optionally H, a nitrate group or a connection to R 5 -R 16 in cyclic derivatives.
  • compositions comprising a compound of Formula TV in admixture with a pharmaceutically acceptable carrier therefor are provided by the invention.
  • the invention further provides methods of mitigating neurodegeneration, effecting neuroprotection and/or effecting cognition enhancement in a subject comprising the step of administering a compound of Formula IV to a subject such that said mitigation and /or said neuroprotection and/or cognition enhancement occurs.
  • a compound of the invention can be represented by the formula (Formula V):
  • R 2 is optionally H or a connection to R 5 in cyclic derivatives
  • R 4 is H or a nitrate group
  • R 5 is as described above.
  • compositions comprising a compound of Formula V in admixture with a pharmaceutically acceptable carrier therefor are provided by the invention.
  • the invention further provides methods of mitigating neurodegeneration, effecting neuroprotection and/or effecting cognition enhancement in a subject comprising the step of administering a compound of Formula V to a subject such that said mitigation and /or said neuroprotection and/or cognition enhancement occurs.
  • Table 1 lists data determined for compounds of the invention per art-recognized characterization techniques.
  • the structure of some of the compounds of this invention includes asymmetric carbon atoms. It is to be understood accordingly that the isomers (e.g., enantiomers, diastereomers) arising from such asymmetry are included within the scope of this invention. Such isomers can be obtained in substantially pure form by classical separation techniques and by asymmetric synthesis. For the purposes of this application, unless expressly noted to the contrary, a compound shall be construed to include both the R and S stereoisomers at each stereogenic center.
  • a therapeutic compound of the invention comprises a cation (i.e., in certain embodiments, one of X or Y includes a cation, e.g., in the compound of formula IVd). If the cationic group is a proton, then the compound is considered an acid. If the proton is replaced by a metal ion or its equivalent, the compound is a salt. Pharmaceutically acceptable salts of the therapeutic compound are within the scope of the invention.
  • M can be a pharmaceutically acceptable alkali metal (e.g. Li, Na, K), ammonium, alkaline earth metal (e.g.
  • stoichiometry of an anionic portion of the compound to a salt- forming cation will vary depending on the charge of the anionic portion of the compound and the charge of the counterion.
  • Preferred pharmaceutically acceptable salts include a sodium, potassium, or calcium salt, but other salts are also contemplated within their pharmaceutically acceptable range.
  • the therapeutic compound of the invention can be administered in a pharmaceutically acceptable vehicle.
  • pharmaceutically acceptable vehicle includes any and all solvents, excipients, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like which are compatible with the activity of the compound and are physiologically acceptable to the subject.
  • An example of the pharmaceutically acceptible vehicle is buffered normal saline (0.15 M NaCl).
  • the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the therapeutic compound, use thereof in the compositions suitable for pharmaceutical administration is contemplated. Supplementary active compounds can also be incorporated into the compositions.
  • Carrier or substituent moieties useful in the present invention may also include moieties which allow the therapeutic compound to be selectively delivered to a target organ.
  • delivery of the therapeutic compound to the brain may be enhanced by a carrier moiety using either active or passive transport (a "targeting moiety").
  • the carrier molecule may be a redox moiety, as described in, for example, U.S. Patents 4,540,654 and 5,389,623, both to Bodor. These patents disclose drugs linked to dihydropyridine moieties which can enter the brain, where they are oxidized to a charged pyridinium species which is trapped in the brain. Thus drugs accumulate in the brain.
  • carrier moieties include compounds, such as amino acids or thyroxine, which can be passively or actively transported in vivo. Such a carrier moiety can be metabolically removed in vivo, or can remain intact as part of an active compound. Structural mimics of amino acids (and other actively transported moieties) including peptidomimetics, are also useful in the invention.
  • peptidomimetic is intended to include peptide analogues which serve as appropriate substitutes for peptides in interactions with, for example, receptors and enzymes. The peptodomimetic must possess not only affinity, but also efficacy and substrate function.
  • a peptidomimetic exhibits functions of a peptide, without restriction of structure to amino acid constituents.
  • Peptidomimetics, methods for their preparation and use are described in Morgan et al. (1989), the contents of which are incorporated herein by reference.
  • Many targeting moieties are known, and include, for example, asialoglycoproteins (see e.g., Wu, U.S. Patent 5,166,320) and other ligands which are transported into cells via receptor-mediated endocytosis (see below for further examples of targeting moieties which may be covalently or non-covalently bound to a target molecule).
  • neurodegeneration in a subject is mitigated, and/or neuroprotection and/or cognition enhancement is effected, by administering a therapeutic compound of the invention to the subject.
  • subject is intended to include living organisms in which the particular neurological condition to be treated can occur. Examples of subjects include humans, apes, monkeys, cows, sheep, goats, dogs, cats, mice, rats, and transgenic species thereof.
  • animal subjects employed in the working examples set forth below are reasonable models for human subjects with respect to the tissues and biochemical pathways in question, and consequently the methods, therapeutic compounds and pharmaceutical compositions directed to same.
  • dosage forms for animals such as, for example, rats can be and are widely used directly to establish dosage levels in therapeutic applications in higher mammals, including humans.
  • biochemical cascade initiated by cerebral ischemia is generally accepted to be identical in mammalian species (Mattson and Scheff, 1994; Higashi et al., 1995).
  • pharmacological agents that are neuroprotective in animal models such as those described herein are believed to be predictive of clinical efficacy in humans, after appropriate adjustment of dosage.
  • memory-deficit patterns between brain-damaged rats and humans, which indicates that the rat can serve as an excellent animal model to evaluate the efficacy of pharmacological treatments or brain damage upon memory (Kesner, 1990).
  • tissue plasminogen activator which is administered at a dose of 0.9 mg/kg by intravenous injection (Wittkowsky, 1998).
  • This drug is also effective in protecting the rat brain subjected to cerebral ischemia by occlusion of the middle cerebral artery, when administered at a dose of 10 mg/kg intravenously (Jiang et al., 1998).
  • the rat model of focal cerebral ischemia used in the development of the novel organic nitrate esters described herein has been shown to be shown to be predictive of clinical efficacy with at least one other class of pharmacological agents.
  • the invention further encompasses methods of the invention employed ex vivo or in vitro.
  • the Working Examples describe studies utilizing tissue homogenates according to the invention.
  • diagnostic tests or studies of efficacy of selected compounds may conveniently be performed ex vivo or in vitro, including in animal models. Such tests, studies and assays are within the scope of the invention.
  • Administration of the compositions of the present invention to a subject to be treated can be carried out using known procedures, at dosages and for periods of time effective to mitigate neurodegeneration, and/or to effect neuroprotection and./or cognition enhancement in the subject.
  • an effective amount of the therapeutic compound necessary to achieve a therapeutic effect may vary according to factors such as the amount of neurodegeneration that has already occurred at the clinical site in the subject, the age, sex, and weight of the subject, and the ability of the therapeutic compound to mitigate neurodegeneration and/or to effect neuroprotection and/or cognition enhancement in the subject. Dosage regimens can be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation.
  • a non- limiting example of an effective dose range for a therapeutic compound of the invention e.g., Va
  • an effective dose range for a therapeutic compound of the invention is between 0.5 and 500 mg/kg of body weight per day.
  • preferred concentrations for the active compound are between 5 and 500 mM, more preferably between 10 and 100 mM, and still more preferably between 20 and 50 mM.
  • the therapeutic compounds of the invention can be effective when administered orally. Accordingly, a preferred route of administration is oral administration.
  • the active compound may be administered by other suitable routes such as transdermal, subcutaneous, intraocular, intravenous, intramuscular or intraperitoneal administration, and the like (e.g., by injection).
  • the active compound may be coated in a material to protect the compound from the action of acids, enzymes and other natural conditions which may inactivate the compound.
  • the compounds of the invention can be formulated to ensure proper distribution in vivo.
  • the blood-brain barrier excludes many highly hydrophilic compounds.
  • the therapeutic compounds of the invention cross the BBB, they can be formulated, for example, in liposomes.
  • liposomes For methods of manufacturing liposomes, see, e.g., U.S. Patents 4,522.811; 5,374,548; and 5,399,331.
  • the liposomes may comprise one or more moieties which are selectively transported into specific cells or organs ("targeting moieties"), thus providing targeted drug delivery (see, e.g., Ranade et al., 1989).
  • targeting moieties include folate and biotin (see, e.g., U.S.
  • the therapeutic compounds of the invention are formulated in liposomes; in a more preferred embodiment, the liposomes include a targeting moiety.
  • anionic groups such as phosphonate or carboxylate can be esterified to provide compounds with desirable pharmocokinetic, pharmacodynamic, biodistributive, or other properties.
  • anionic groups such as phosphonate or carboxylate can be esterified to provide compounds with desirable pharmocokinetic, pharmacodynamic, biodistributive, or other properties.
  • Exemplary compounds include IVl and pharmaceutically acceptable salts or esters thereof.
  • the therapeutic compound may be administered to a subject in an appropriate carrier, for example, liposomes, or a diluent.
  • suitable diluents include saline and aqueous buffer solutions.
  • Liposomes include water-in-oil-in-water CGF emulsions as well as conventional liposomes (Strejan et al., 1984).
  • the therapeutic compound may also be administered parenterally (e.g., intramuscularly, intravenously, intraperitoneally, intraspinally, or intracerebrally).
  • Dispersions can be prepared in glycerol, liquid polyethylene gl cols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations may contain a preservative to prevent the growth of microorganisms.
  • Pharmaceutical compositions suitable for inje ctable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the composition must be sterile and must be fluid to the extent that easy syringability exists.
  • the vehicle can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils.
  • the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion, and by the use of surfactants.
  • Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
  • isotonic agents for example, sugars, sodium chloride, or polyalcohols such as mannitol and sorbitol, in the composition.
  • Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate or gelatin.
  • Sterile injectable solutions can be prepared by incorporating the therapeutic compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filter sterilization.
  • dispersions are prepared by incorporating the therapeutic compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above.
  • the preferred methods of preparation are vacuum drying and freeze-drying which yield a powder of the active ingredient (i.e., the therapeutic compound) optionally plus any additional desired ingredient from a previously sterile-filtered solution thereof.
  • the therapeutic compound can be orally administered, for example, with an inert diluent or an assimilable edible carrier.
  • the therapeutic compound and other ingredients may also be enclosed in a hard or soft shell gelatin capsule, compressed into tablets, or incorporated directly into the subject's diet.
  • the therapeutic compound may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
  • the percentage of the therapeutic compound in the compositions and preparations may, of course, be varied. The amount of the therapeutic compound in such therapeutically useful compositions is such that a suitable dosage will be obtained.
  • Dosage unit form refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit containing a predetermined quantity of therapeutic compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical vehicle.
  • the specification for the dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the therapeutic compound and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such a therapeutic compound for the treatment of neurological conditions in subjects.
  • compositions can be administered in time-release or depot form, to obtain sustained release of the therapeutic compounds over time.
  • the therapeutic compounds of the invention can also be administered transdermally (e.g., by providing the therapeutic compound, with a suitable carrier, in patch form).
  • Active compounds are administered at a therapeutically effective dosage sufficient to mitigate neurodegeneration and/or to effect neuroprotection and/or cognition enhancement in a subject.
  • a "therapeutically effective dosage” preferably mitigates neurodegeneration by about 20%, more preferably by about 40%, even more preferably by about 60%, and still more preferably by about 80% relative to untreated subjects.
  • the ability of a compound to mitigate neurodegeneration can be evaluated in model systems that may be predictive of efficacy in mitigating neurodegeneration in human diseases, such as animal model systems known in the art (including, e.g., the method of transient middle cerebral artery occlusion in the rat) or by in vitro methods, (including, e.g., the assays described herein).
  • the ability of a compound of the invention to mitigate neurodegeneration will, in certain embodiments, be evaluated by observation of one or more symptoms or signs associated with neurodegeneration in vivo.
  • the ability of a compound to mitigate neurodegeneration may be associated with an observable improvement in a clinical manifestation of the underlying neurodegeneration-related disease state or condition, or a slowing or delay in progression of symptoms of the condition.
  • monitoring of clinical manifestations of disease can be useful in evaluating the neurodegeneration-mitigating efficacy of a compound of the invention.
  • neurodegeneration can be associated with conditions including but not limited to: stroke; Parkinson's disease; Alzheimer's disease; Huntington's disease; multiple sclerosis; amylotrophic lateral sclerosis; AIDS-induced dementia; epilepsy; alcoholism; alcohol withdrawal; drug-induced seizures; viral/bacterial/fever-induced seizures; trauma to the head; hypoglycemia; hypoxia; myocardial infarction; cerebral vascular occlusion; cerebral vascular hemorrhage; hemorrhage; environmental excitotoxins of plant; animal and marine origin; dementias of all type; trauma; drug-induced brain damage; and aging; or result from surgical procedures such as cardiac bypass.
  • Novel compounds according to the invention can be synthesized by methods set forth herein (see, e.g., Working Examples) or in our patents U.S. No. 5,807,847 and U.S. No. 5,883,122.
  • Various compounds for use in the methods of the invention are commercially available and/or can be synthesized by standard techniques.
  • nitrate esters can be prepared from the corresponding alcohol, oxirane or alkene by standard methods, that include: nitration of alcohols and oxiranes, mixed aqueous/organic solvents using mixtures of nitric and sulfuric acid and/or their salts, with temperature control (see Yang et al., 1996); nitration of alcohols and oxiranes in acetic anhydride using nitric acid or its salts with or without added acid catalyst, with temperature control (see, e.g., Louw et al., 1976); nitration of an alcohol with a nitronium salt, e.g. a tetrafluoroborate; nitration of an alkene with thallium nitrate in an appropriate solvent (see Ouellette et al., 1976).
  • Activation of GCase by compound IVe was very low under all conditions tested (Fig. 6). Activation of GCase by compounds IVj and IVa was cysteine-dependent and approximately equivalent to GTN (Figs. 7,8). Relative to GTN itself, a wide range of potencies was observed for the nitrate esters of the invention. No activation of GCase by glycerol mononitrates was observed in this assay at the concentrations of nitrate employed.
  • Va was found to have greater efficacy, but equal potency, to GTN in rat aorta (Fig. 10a). In contrast, Va had greater efficacy and greater potency to stimulate GCase in rat hippocampus (Fig. 10b).
  • Sections of rat hippocampus (400 ⁇ m) were prepared and incubated in oxygenated
  • the EC 50 values for relaxation were 0.61 nM, 3.19 nM, 8.40 nM, 0.153 ⁇ M, 0.437 ⁇ M and 6.89 ⁇ M for GTN, IVk, Vb, mm, Vc, and IVh, respectively (Fig. 15).
  • the EC 50 value for a nitrosothiol (tert-butyl nitrosothiol, Fig.16) was 11.2 ⁇ M.
  • Compounds IVd and IVc were tested for their ability to cause vascular relaxation in tissues that had been made tolerant to the relaxant effect of GTN. GTN tolerance was induced by incubating tissues with high concentrations of GTN (0.5mM GTN for 30 min). Under these conditions, the maximal relaxant effects of IVd (Fig.17a) and IVc (Fig.17b) were not significantly different from their effects for untreated tissue.
  • the EC 50 for relaxation was increased approximately threefold, but the difference was not statistically significant.
  • Va and GTN were injected into rats in which the abdominal aorta was cannulated for blood pressure recording.
  • Va and GTN were injected subcutaneously at a dose of 400 ⁇ mol/kg body weight into conscious, freely moving animals. GTN caused a small and transient decrease in blood pressure in these animals, whereas Va had no discernable effect on arterial blood pressure (Fig. 18).
  • Va and GTN were subsequently tested in anesthetized rats in which the abdominal vena cava was also cannulated to allow for bolus intravenous injection of drugs. In this preparation, GTN caused a substantial and dose-dependent decrease in arterial blood pressure.
  • Va at equal doses had very modest effects on blood pressure at doses lower than 2 ⁇ mol/kg body weight (Fig. 19).
  • Vb and Vc the denitrated metabolite of Vb
  • Cannulas were placed in the abdominal aorta for blood sampling. After a two-day recovery period, a single subcutaneous dose of Vb (200 ⁇ mol/kg) was administered and blood samples collected over a period of six hours. Samples were centrifuged, the plasma collected, and the concentrations of Vb and Vc determined by gas-liquid chromatography by the method of McDonald and Bennett (1990). The data obtained for Vb and Vc indicate that nitrates achieve maximal plasma levels within 30 minutes after subcutaneous injection, and therafter decline at a steady rate (Fig. 20). These data suggest that nitrates have excellent bioavailability after subcutaneous injection.
  • Rat hippocampal slices were subjected to 30 minutes of ischemia by incubation in a buffered salt solution lacking glucose and oxygen.
  • Sections of rat hippocampus 400 ⁇ m were prepared and incubated in oxygenated Krebs solution at 37°C. Slices were then either untreated or subjected to a 30-minute period of ischemia by incubation in Krebs solution lacking oxygen and glucose. Slices were then incubated for a further 4 hours in oxygenated Krebs solution in the presence of drug vehicle or 200 ⁇ M Va.
  • LDH lactate dehydrogenase
  • rat hippocampal brain slices made ischemic for 30 minutes in vitro were exposed to the guanylyl cyclase inhibitor ODQ 5-min prior to administration of 200 ⁇ M Va.
  • the concentration of ODQ used was known to completely block the production of cGMP induced by Va. Blockade of guanylyl cyclase by ODQ completely eliminated the neuroprotective effect of Va in ischemic rat hippocampal slices, showing that elevations in cGMP levels are directly related to the neuroprotective properties of Va in vitro (Fig. 23).
  • the second animal model tested was transient focal cerebral ischemia in the rat induced by occlusion of the middle cerebral artery. Under halothane anesthesia, a filament was advanced into the right internal carotid artery until the origin of the right middle cerebral artery was occluded. The filament was secured, the animal allowed to regain consciousness, and two hours later the filament was removed under halothane anesthesia. Animals were given five subcutaneous doses of drug vehicle or 200 ⁇ mol/kg Va at 2, 3, 4, 6, and 8 hr post-occlusion. At 24 hr post-occlusion the animals were sacrificed, the brain removed, cut into 2-mm coronal sections and stained for viable tissue with 2,3,5- triphenyltetrazolium.
  • Infarct volume of whole brain and cerebral cortex was quantitated by computer-assisted image analysis.
  • a 2-hour episode of cerebral ischemia followed by recirculation produces a large infarct in the cerebral cortex and subcortical structures on the affected side.
  • the volumes of the total and cerebral cortical infarct in the rat brain were very similar to those reported by other groups using the same procedure (e.g., Sydserff et al., 1995; Morikawa et al., 1998).
  • Figure 25 shows the results obtained with nitrate Va in this model.
  • Losartan a drug that decreases systemic blood pressure through a mechanism different from that of GTN, had no neuroprotective effects (Fig. 28). This shows that any vasorelaxation caused by GTN is not the mechanism of the neuroprotection against excitotoxic cell death induced by NMDA.
  • Figure 29 shows that the doses of losartan and GTN used in these studies caused an equivalent decrease in systemic blood pressure.
  • Male Sprague-Dawley rats with aortic catheters were connected to pressure transducers which recorded blood pressure for 4 to 8 hours.
  • IVd (Bunte salt) was pre-applied for 30 seconds prior to exposure of the oocyte to GABA. At 100 ⁇ M, IVd produced a 55% inhibition of the response to 10 ⁇ M GABA (Fig. 30). This effect appears to be unrelated to the production or release of nitric oxide, as diethylamine nonoate salt (DEA) and t- butylnitrosothiol (t-BuSNO) which both spontaneously release nitric oxide in aqueous solution, had no effect on GABA receptor-activated membrane current in an oocyte expressing the ⁇ l ⁇ 2 ⁇ 2L isoform of the GABA A receptor.
  • DEA diethylamine nonoate salt
  • t-BuSNO t-butylnitrosothiol
  • nitroglycerin produced a reversible inhibition of the GABA response (Fig. 31).
  • Organic nitrates such as GTN and IVd do not compete with GABA for binding to the GABA A receptor. Rather, they are believed to produce an allosteric modulation of the receptor that decreases the maximal current without changing the apparent affinity of the receptor for GABA.
  • compound IVd (Bunte salt, pre-applied for 30 seconds) decreased the peak current amplitude in an oocyte from 302 nA to 150 nA.
  • the EC 50 concentration GABA concentration producing 50% of the maximal response
  • was not changed Fig. 32.
  • Other organic nitrates described herein have been found to have similar inhibitory effects on GABA A receptor-activated membrane current.
  • Nitrate mi was obtained by two routes.
  • Route I proceeded from the elimination reaction of m in basic solution.
  • Route II proceeded from nitration of tra ns-3-bromo-4- hydroxytetrahydrothiophene-l,l-dioxide, yielding nitrate IHn, followed by reaction with a weak base, e.g., sodium thiocyanate in 2-butanone.
  • a weak base e.g., sodium thiocyanate in 2-butanone.
  • Purification is achieved with silica flash column chromatography using 1:1 hexane:ethyl acetate as eluant.
  • Example 11 Synthesis of nitrate IIIj l,4-Dibromo-2,3-butanediol is nitrated: (a) using a nitration mixture prepared from HN0 3 and H 2 S0 4 over 2 days; or (b) using acetyl nitrate reacting for 2 hours. Work-up requires quenching of the reaction mixture in ice-water for an hour, extraction, drying, and evaporation. Successful purification of the title compound by silica gel column chromatography is achieved on a 25 g scale using a mixture of 70% hexane and 30% CH 2 C1 2 as eluent.
  • 3,4-Epoxytetrahydrothiophene-l,l-dioxide (250 mg,1.9 mmol) was refluxed for 24 hrs in 10 mL of water and 25mg of toluenesulfonic acid. After the first 6 hrs, another 25 mg of the acid was added. The reaction was monitored by thin layer chromatography (5% MeOH in dichloromethane). Purification was by silica flash column chromatography using 5% MeOH/CH 2 Cl 2 as eluent to afford 200 mg of diol. The diol was nitrated in a cooled solution of cone, sulfuric acid (2 mol eq.), nitric acid (70%, 2 mol eq.) in an ice bath.
  • Gaetani P., A. Pasqualin, R. Rodriguez y Baena, E. Borasio, F. Marzatico, "Oxidative stress in the human brain after subarachnoid hemorrhage", J. Neurosurg. 89 (1998) 748-754.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Toxicology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Furan Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Steroid Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
PCT/CA2000/000280 1999-03-15 2000-03-15 Nitrate esters and their use for introducing neuroprotection and cognition enhancement Ceased WO2000054756A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT00910456T ATE546195T1 (de) 1999-03-15 2000-03-15 Nitraten ester und deren verwendung zur neuroprotektion und wahrnehmungssteigerung
AU32673/00A AU783036B2 (en) 1999-03-15 2000-03-15 Nitrate esters and their use for neurological conditions
JP2000604832A JP2002539152A (ja) 1999-03-15 2000-03-15 神経学的状態のための硝酸エステルおよびそれらの使用
MXPA01009246A MXPA01009246A (es) 1999-03-15 2000-03-15 Esteres de nitrato y su uso para condiciones neurologicas.
CA2364493A CA2364493C (en) 1999-03-15 2000-03-15 Nitrate esters and their use for neurological conditions
EP00910456A EP1163029B1 (en) 1999-03-15 2000-03-15 Nitrate esters and their use for inducing neuroprotection and cognition enhancement
IL14536700A IL145367A0 (en) 1999-03-15 2000-03-15 Nitrate esters and their use for neurological conditions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/267,379 US6310052B1 (en) 1996-06-04 1999-03-15 Nitrate esters and their use for neurological conditions
US09/267,379 1999-03-15

Publications (2)

Publication Number Publication Date
WO2000054756A2 true WO2000054756A2 (en) 2000-09-21
WO2000054756A3 WO2000054756A3 (en) 2001-01-25

Family

ID=23018534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2000/000280 Ceased WO2000054756A2 (en) 1999-03-15 2000-03-15 Nitrate esters and their use for introducing neuroprotection and cognition enhancement

Country Status (9)

Country Link
US (4) US6310052B1 (enExample)
EP (1) EP1163029B1 (enExample)
JP (1) JP2002539152A (enExample)
AT (1) ATE546195T1 (enExample)
AU (1) AU783036B2 (enExample)
CA (1) CA2364493C (enExample)
IL (1) IL145367A0 (enExample)
MX (1) MXPA01009246A (enExample)
WO (1) WO2000054756A2 (enExample)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049275A3 (en) * 1999-12-29 2001-12-13 Univ Kingston Methods and compositions for mitigating pain using nitrate esters
WO2002087508A2 (en) 2001-05-02 2002-11-07 Nitromed, Inc. Nitrosated and nitrosylated nebivolol and its metabolites, compositions and methods of use
WO2003000643A1 (en) * 2001-06-21 2003-01-03 Nicox S.A. Nitrate ester derivatives useful for preparing drugs for epilepsy
WO2003101456A1 (de) * 2002-06-03 2003-12-11 Bayer Healthcare Ag Verwendung von cgmp stimulierenden verbindungen
WO2007016677A2 (en) 2005-08-02 2007-02-08 Nitromed, Inc. Nitric oxide enhancing antimicrobial compounds, compositions and methods of use
EP1797100A4 (en) * 2004-09-17 2009-05-13 Univ Kingston NITRATESTER AND ITS USE FOR THE TREATMENT OF CELLULAR DAMAGE
EP2075011A2 (en) 2004-08-26 2009-07-01 Piramal Life Sciences Limited Prodrugs Containing Bio-Cleavable Linkers
WO2010144629A1 (en) 2009-06-09 2010-12-16 Prolong Pharmaceuticals, LLC Hemoglobin compositions
EP2266623A2 (en) 2004-08-26 2010-12-29 Piramal Life Sciences Limited Prodrugs containing novel bio-cleavable linkers
US8067414B2 (en) 2006-03-29 2011-11-29 Nicox S.A. Nitric oxide enhancing prostaglandin compounds, compositions and methods of use
WO2014013338A3 (en) * 2012-07-16 2014-04-03 Sgc Pharma, Inc. Compounds for the treatment of alzheimer's disease

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310052B1 (en) * 1996-06-04 2001-10-30 Queen's University At Kingston Nitrate esters and their use for neurological conditions
US20050137191A1 (en) * 1996-06-04 2005-06-23 Thatcher Gregory R. Nitrate esters and their use for mitigating cellular damage
US6491039B1 (en) 1998-01-23 2002-12-10 Innercool Therapies, Inc. Medical procedure
US7371254B2 (en) 1998-01-23 2008-05-13 Innercool Therapies, Inc. Medical procedure
US7202279B1 (en) 1998-02-11 2007-04-10 Georgetown University Cyclic dipeptides and azetidinone compounds and their use in treating CNS injury and neurodegenerative disorders
EP1539729A4 (en) * 2002-07-03 2008-02-20 Nitromed Inc NITROSED NON-TESTED OXIDE COMPOUNDS, COMPOSITIONS, AND APPLICATION METHODS
US8134010B2 (en) * 2004-05-05 2012-03-13 Renopharm Ltd. Thiazole-based nitric oxide donors having aryl substituent(s) and uses thereof
US7968575B2 (en) * 2004-05-05 2011-06-28 Renopharm Ltd. Nitric oxide donors and uses thereof
US7498445B2 (en) * 2004-05-05 2009-03-03 Renopharm Ltd. Thiazole-based nitric oxide donors capable of releasing two or more nitric oxide molecules and uses thereof
WO2005105765A1 (en) * 2004-05-05 2005-11-10 Renopharm Ltd. Nitric oxide donors and uses thereof
US20060293384A1 (en) * 2004-10-16 2006-12-28 Whewell Christopher J Isethionyl nitrates and compounds thereof
CA2649740A1 (en) * 2008-01-14 2009-07-14 Queen's University At Kingston Therapies for cognition and learning enhancement
US7807716B2 (en) * 2008-09-24 2010-10-05 Oral Delivery Technology Ltd. Nitric oxide amino acid ester compound, compositions for increasing nitric oxide levels and method of use
US9023890B2 (en) * 2009-12-02 2015-05-05 The Charlotte-Mecklenburg Hospital Authority Nitrate esters and their use for the treatment of muscle and muscle related diseases
CA2798272C (en) * 2010-05-05 2019-03-26 The Board Of Trustees Of The University Of Illinois Compounds and methods of treating brain disorders
WO2012027471A1 (en) 2010-08-24 2012-03-01 Sgc Pharma, Inc. Salt compound
US9452117B2 (en) 2011-06-01 2016-09-27 The Charlotte-Mecklenburg Hospital Authority Nitrate esters and their use for the treatment of muscle and muscle related diseases
WO2018002673A1 (en) 2016-07-01 2018-01-04 N4 Pharma Uk Limited Novel formulations of angiotensin ii receptor antagonists
CN108239040B (zh) * 2016-12-26 2021-12-07 中国医学科学院药物研究所 硝酸2-(4-甲基噻唑-5-基)乙酯盐酸盐的制备方法
CN108721239B (zh) * 2017-04-24 2021-01-12 中国医学科学院药物研究所 一种治疗阿尔茨海默病的缓释制剂及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
US4540654A (en) 1983-03-18 1985-09-10 Fuji Photo Film Co., Ltd. Method of forming color image comprising heterocyclic magenta dye-forming coupler
US5166320A (en) 1987-04-22 1992-11-24 University Of Connecticut Carrier system and method for the introduction of genes into mammalian cells
US5374548A (en) 1986-05-02 1994-12-20 Genentech, Inc. Methods and compositions for the attachment of proteins to liposomes using a glycophospholipid anchor
US5389623A (en) 1982-05-18 1995-02-14 University Of Florida Redox carriers for brain-specific drug delivery
US5399331A (en) 1985-06-26 1995-03-21 The Liposome Company, Inc. Method for protein-liposome coupling
US5416016A (en) 1989-04-03 1995-05-16 Purdue Research Foundation Method for enhancing transmembrane transport of exogenous molecules
US5807847A (en) 1996-06-04 1998-09-15 Queen's University At Kingston Nitrate esters

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA792246A (en) 1968-08-13 Muhlbauer Ernst Process for the preparation of substituted 1,3-oxathiol-2-ones
CA764461A (en) 1967-08-01 Fink Walter Metallorganic halonitrates
US3962226A (en) 1972-06-30 1976-06-08 Eli Lilly And Company 3-nitrooxycepham compounds and process for preparing desacetoxycephalosporins therefrom
JPS51125750A (en) 1974-09-17 1976-11-02 Rikagaku Kenkyusho Agermicide for agricuture and gardening
JPS56113748A (en) 1980-02-13 1981-09-07 Kowa Co Aminoethanol derivative and its preparation
JPS5942390A (ja) 1982-09-02 1984-03-08 Otsuka Chem Co Ltd セフアロスポリン化合物の製造法
JPS5946292A (ja) 1982-09-09 1984-03-15 Otsuka Chem Co Ltd 2−置換セフエム誘導体の製造法
DE3443998A1 (de) 1984-12-01 1986-06-05 Boehringer Mannheim Gmbh, 6800 Mannheim Amino-propanol-derivate, verfahren zu ihrer herstellung und diese verbindungen enthaltende arzneimittel sowie zwischenprodukte
DE3512627A1 (de) 1985-04-06 1986-10-09 Boehringer Mannheim Gmbh, 6800 Mannheim Amino-propanol-derivate, verfahren zu deren herstellung, verwendung derselben und diese enthaltende arzneimittel
JPS62205052A (ja) 1986-03-05 1987-09-09 Terumo Corp 硝酸エステル誘導体およびこれを含有する血管拡張剤
JPH0726949B2 (ja) 1988-06-01 1995-03-29 住友化学工業株式会社 抽出溶媒の劣化度測定方法
US5428061A (en) 1988-09-15 1995-06-27 Schwarz Pharma Ag Organic nitrates and method for their preparation
NL8802276A (nl) 1988-09-15 1990-04-02 Cedona Pharm Bv Geneesmiddel met relaxerende werking, dat als aktieve stof een nitraatester bevat.
US5284872A (en) 1989-09-12 1994-02-08 Schwarz Pharma Ag Nitrato alkanoic acid derivatives, methods for their production, pharmaceutical compositions containing the derivatives and medicinal uses thereof
DE4004841A1 (de) 1990-02-16 1991-08-22 Boehringer Mannheim Gmbh Salpetersaeureester von cyclohexanol-derivaten
US5455279A (en) 1991-04-19 1995-10-03 The Children's Medical Center Corporation Regimen method of mediating neuronal damage using nitroglycerine
EP0581856B1 (en) 1991-04-19 1999-07-14 The Children's Medical Center Corporation Method of preventing nmda receptor complex-mediated neuronal damage
IT1256450B (it) 1992-11-26 1995-12-05 Soldato Piero Del Esteri nitrici con attivita' farmacologica e procedimento per la loro preparazione
HUT72416A (en) 1993-03-15 1996-04-29 Byk Nederland Bv Substituted alkyl-nitrates and their use to prepare pharmaceuticals for the treatment of pathologically increased intraocular pressure
DE4321306A1 (de) 1993-06-26 1995-01-05 Sanol Arznei Schwarz Gmbh Disulfide
JPH0726949A (ja) 1993-07-07 1995-01-27 Nissan Motor Co Ltd 内燃機関の排気2次空気導入装置
US5700947A (en) 1993-10-06 1997-12-23 Nicox S.A. Nitric esters having anti-inflammatory and/or analgesic activity and process for their preparation
WO1995030641A1 (en) 1994-05-10 1995-11-16 Nicox S.A. Nitro compounds and their compositions having anti-inflammatory, analgesic and anti-thrombotic acitivities
JPH09202764A (ja) 1996-01-24 1997-08-05 Chugai Pharmaceut Co Ltd ニトロ化合物
US6140309A (en) 1996-03-12 2000-10-31 University Of South Florida Vasoactive effects and free radical generation by β-amyloid peptides
US6310052B1 (en) * 1996-06-04 2001-10-30 Queen's University At Kingston Nitrate esters and their use for neurological conditions
JPH1036337A (ja) 1996-07-19 1998-02-10 Sumitomo Chem Co Ltd アリールビニルスルホンの製造方法およびその中間体
US6008221A (en) 1996-11-06 1999-12-28 Bristol-Myers Squibb Company Method for treating Alzheimer's disease with folic acid
US5972943A (en) 1996-11-19 1999-10-26 Nisshin Flour Milling Co., Ltd. Pyridinecarboxamide derivatives
IL120531A (en) 1997-03-26 2006-12-31 Yissum Res Dev Co Nitric oxide donors and pharmaceutical compositions containing them
WO1998043621A1 (en) 1997-03-31 1998-10-08 The Children's Medical Center Corporation Nitrosylation to inactivate apoptotic enzymes
US6436996B1 (en) 1997-09-30 2002-08-20 Duke University Modulation of nitric oxide production
GB9726989D0 (en) 1997-12-22 1998-02-18 Ciba Geigy Ag Organic compounds
GB9801398D0 (en) 1998-01-22 1998-03-18 Anggard Erik E Chemical compounds
JPH11217330A (ja) 1998-01-30 1999-08-10 Sumitomo Pharmaceut Co Ltd 神経栄養因子分泌促進剤
WO2000001688A1 (en) 1998-07-02 2000-01-13 Sankyo Company, Limited Five-membered heteroaryl compounds
AU775388B2 (en) 1998-11-25 2004-07-29 Yissum Research Development Company Of The Hebrew University Of Jerusalem Scavenger compounds
WO2000054773A1 (en) 1999-03-12 2000-09-21 Nitromed, Inc. Dopamine agonists in combination with nitric oxide donors, compositions and methods of use
CN1370044A (zh) 1999-06-14 2002-09-18 亨利福特保健系统公司 用于诱导神经发生的氧化氮供体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389623A (en) 1982-05-18 1995-02-14 University Of Florida Redox carriers for brain-specific drug delivery
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
US4540654A (en) 1983-03-18 1985-09-10 Fuji Photo Film Co., Ltd. Method of forming color image comprising heterocyclic magenta dye-forming coupler
US5399331A (en) 1985-06-26 1995-03-21 The Liposome Company, Inc. Method for protein-liposome coupling
US5374548A (en) 1986-05-02 1994-12-20 Genentech, Inc. Methods and compositions for the attachment of proteins to liposomes using a glycophospholipid anchor
US5166320A (en) 1987-04-22 1992-11-24 University Of Connecticut Carrier system and method for the introduction of genes into mammalian cells
US5416016A (en) 1989-04-03 1995-05-16 Purdue Research Foundation Method for enhancing transmembrane transport of exogenous molecules
US5807847A (en) 1996-06-04 1998-09-15 Queen's University At Kingston Nitrate esters
US5883122A (en) 1996-06-04 1999-03-16 Queen's University At Kingston Nitrate esters and their use for neurological conditions

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049275A3 (en) * 1999-12-29 2001-12-13 Univ Kingston Methods and compositions for mitigating pain using nitrate esters
US7115661B1 (en) 1999-12-29 2006-10-03 Queen's University At Kingston Methods and compositions for mitigating pain
WO2002087508A2 (en) 2001-05-02 2002-11-07 Nitromed, Inc. Nitrosated and nitrosylated nebivolol and its metabolites, compositions and methods of use
WO2003000643A1 (en) * 2001-06-21 2003-01-03 Nicox S.A. Nitrate ester derivatives useful for preparing drugs for epilepsy
WO2003101456A1 (de) * 2002-06-03 2003-12-11 Bayer Healthcare Ag Verwendung von cgmp stimulierenden verbindungen
US8349901B2 (en) 2004-08-26 2013-01-08 Piramal Enterprises Limited and Apparao Satyam Prodrugs containing novel bio-cleavable linkers
EP2269657A2 (en) 2004-08-26 2011-01-05 Piramal Life Sciences Limited Prodrugs containing novel bio-cleavable linkers
EP2075011A2 (en) 2004-08-26 2009-07-01 Piramal Life Sciences Limited Prodrugs Containing Bio-Cleavable Linkers
US8357723B2 (en) 2004-08-26 2013-01-22 Piramal Enterprises Limited and Apparao Satyam Prodrugs containing novel bio-cleavable linkers
EP2266623A2 (en) 2004-08-26 2010-12-29 Piramal Life Sciences Limited Prodrugs containing novel bio-cleavable linkers
EP2266622A2 (en) 2004-08-26 2010-12-29 Piramal Life Sciences Limited Prodrugs containing novel bio-cleavable linkers
EP2266625A2 (en) 2004-08-26 2010-12-29 Piramal Life Sciences Limited Prodrugs Containing Novel Bio-Cleavable Linkers
US8354455B2 (en) 2004-08-26 2013-01-15 Piramal Enterprises Limited and Apparao Satyam Prodrugs containing novel bio-cleavable linkers
US7932294B2 (en) 2004-08-26 2011-04-26 Apparao Satyam Prodrugs containing novel bio-cleavable linkers
EP1797100A4 (en) * 2004-09-17 2009-05-13 Univ Kingston NITRATESTER AND ITS USE FOR THE TREATMENT OF CELLULAR DAMAGE
WO2007016677A2 (en) 2005-08-02 2007-02-08 Nitromed, Inc. Nitric oxide enhancing antimicrobial compounds, compositions and methods of use
US8067414B2 (en) 2006-03-29 2011-11-29 Nicox S.A. Nitric oxide enhancing prostaglandin compounds, compositions and methods of use
US8846674B2 (en) 2006-03-29 2014-09-30 Nicox, S.A. Nitric oxide enhancing prostaglandin compounds, compositions and methods of use
WO2010144629A1 (en) 2009-06-09 2010-12-16 Prolong Pharmaceuticals, LLC Hemoglobin compositions
EP3266463A1 (en) 2009-06-09 2018-01-10 Prolong Pharmaceuticals, LLC Hemoglobin compositions
WO2014013338A3 (en) * 2012-07-16 2014-04-03 Sgc Pharma, Inc. Compounds for the treatment of alzheimer's disease

Also Published As

Publication number Publication date
US6677374B2 (en) 2004-01-13
CA2364493A1 (en) 2000-09-21
US20020147234A1 (en) 2002-10-10
EP1163029A2 (en) 2001-12-19
US6310052B1 (en) 2001-10-30
US6365579B2 (en) 2002-04-02
WO2000054756A3 (en) 2001-01-25
EP1163029B1 (en) 2012-02-22
JP2002539152A (ja) 2002-11-19
US6916835B2 (en) 2005-07-12
ATE546195T1 (de) 2012-03-15
CA2364493C (en) 2010-08-31
AU3267300A (en) 2000-10-04
MXPA01009246A (es) 2004-03-26
IL145367A0 (en) 2002-06-30
US20020016311A1 (en) 2002-02-07
AU783036B2 (en) 2005-09-15
US20020177622A1 (en) 2002-11-28

Similar Documents

Publication Publication Date Title
US6365579B2 (en) Nitrate esters and their use for neurological conditions
AU782489C (en) Methods and compositions for mitigating pain using nitrate esters
EP0915842B1 (en) Nitrate esters and their use for neurological conditions
US20050137191A1 (en) Nitrate esters and their use for mitigating cellular damage
EP2609093B1 (en) Salt compound
JPH11500133A (ja) ベンゾピラン含有化合物およびその使用方法
EP3237431A1 (en) Prodrugs of 17.beta.-hsd1 -inhibitors
EP1797100A1 (en) Nitrate esters and their use for mitigating cellular damage
US5869526A (en) δ-(S-methylisothioureido)-L-norvaline therapeutic for cerebrovascular diseases having nitric oxide synthase inhibiting factor
HK1076730A (en) Use of nitrate ester compounds for treating pain or providing analgesia
HK1050144B (en) Uses and compositions of nitrate esters for providing sedation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 2364493

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/009246

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2000 604832

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 32673/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2000910456

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000910456

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 32673/00

Country of ref document: AU