WO2000054097A2 - Aktive elektrooptische filtereinrichtung und verfahren zu ihrem betrieb - Google Patents

Aktive elektrooptische filtereinrichtung und verfahren zu ihrem betrieb Download PDF

Info

Publication number
WO2000054097A2
WO2000054097A2 PCT/CH2000/000040 CH0000040W WO0054097A2 WO 2000054097 A2 WO2000054097 A2 WO 2000054097A2 CH 0000040 W CH0000040 W CH 0000040W WO 0054097 A2 WO0054097 A2 WO 0054097A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical filter
active
filter element
liquid crystal
operating
Prior art date
Application number
PCT/CH2000/000040
Other languages
English (en)
French (fr)
Other versions
WO2000054097A8 (de
WO2000054097A3 (de
Inventor
Leo Keller
Emil Ackermann
Original Assignee
Optrel Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optrel Ag filed Critical Optrel Ag
Priority to EP00901013A priority Critical patent/EP1259852A2/de
Priority to KR1020017011384A priority patent/KR20020007319A/ko
Publication of WO2000054097A2 publication Critical patent/WO2000054097A2/de
Publication of WO2000054097A3 publication Critical patent/WO2000054097A3/de
Publication of WO2000054097A8 publication Critical patent/WO2000054097A8/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/04Eye-masks ; Devices to be worn on the face, not intended for looking through; Eye-pads for sunbathing
    • A61F9/06Masks, shields or hoods for welders
    • A61F9/065Masks, shields or hoods for welders use of particular optical filters
    • A61F9/067Masks, shields or hoods for welders use of particular optical filters with variable transmission
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/04Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions
    • G09G3/16Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions by control of light from an independent source
    • G09G3/18Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/906Solar cell systems

Definitions

  • the invention relates to an active electro-optical filter device and a method for its operation according to the preambles of the independent claims.
  • the filter device is particularly suitable as an anti-glare device for use in
  • Filter devices of this type are e.g. B. from the publications WO 97/15254, US 5,315,099 or EP-0 550 384 known.
  • they typically contain at least one liquid crystal cell (liquid crystal cell, LC cell), which more or less blocks the passage of light as soon as a light sensor is subjected to a light intensity that exceeds a predetermined threshold.
  • liquid crystal cell liquid crystal cell, LC cell
  • the use of such filter devices is diverse; a typical example is the use as a viewing window for welding masks, helmets and glasses.
  • the filter devices described in the cited documents consist of active filter elements, for example of nematic liquid crystal elements preferably rotating by 0-90 °, which are located between two crossed polarizers. They are operated with an operating voltage that is several times above the Freedericksz threshold.
  • the Freedericksz threshold is the control voltage of a liquid crystal cell at which a first optical activity of the cell can be observed.
  • the choice of a higher operating voltage is in the above publications with a reduction in the stray light, a reduced temperature dependence of the electro-optical effect and the generation of an optical transmission of less than 1%.
  • the control frequency of such active filter elements is between 0 and 32 Hz for reasons of low power consumption.
  • the main reason for the limited availability of electrical supply power is the operation of the filter elements with current from backup batteries and solar cells. While continuous DC voltage operation still permanently damages liquid crystal cells due to electrolysis and ion migration or severely impairs their optical performance, significant improvements have been achieved through continuous improvement of the insulating layers, through reduction of impurities and through the achievement of higher conductivity values of the liquid crystal substances used.
  • the selection of a drive frequency which is as small as possible is aimed at because the drive frequency is linearly input into the power consumption of a liquid crystal cell. However, it would be desirable to further reduce power consumption.
  • N 1 - (7/3) logT (1)
  • the optical quality is greatly impaired by stray light.
  • the scattering of light on an LC cell has various causes: among other things, particles enclosed in the LC cell, different layer thicknesses, scratches, edges and / or spacers (so-called spacers) between the glass plates enclosing the liquid crystal.
  • the object is achieved by the filter device and the method as defined in the independent patent claims.
  • the electro-optical filter device is preferably equipped with a special control circuit.
  • the drive circuit according to the invention contains a switch which short-circuits the liquid crystal cell for a certain time in each half period. Neither a continuous toggle switch nor a non-stop changing control voltage is therefore selected.
  • the control according to the invention differs from the prior art by the insertion of an active edge and a control method, which rather corresponds to a pulse width modulation instead of a continuous frequency.
  • the frame frequency of the control pulses is in the range from 0.01 to 1 Hz. The energy expenditure is halved with this method compared to the prior art, which means enormous progress.
  • the present invention uses an operating voltage that is clearly defined. On the one hand, it lies several times above the Freedericksz threshold in order to achieve the optical density prescribed in the product standard EN 169. In addition, the operating voltage is determined in such a way that it lies at the voltage at which the light scattered by the LCD display is minimal.
  • operating voltages set in this way are in the range of 10 to 50 volts.
  • the adjustment of the residual transmission can be achieved, for example, with a small offset in the polarizer orientation or with an adjustment of the polarization efficiency.
  • the influence of scattered light from the measuring device ( ⁇ 2R ) was neglected in the discussion above.
  • Show: 1 is a filter device designed as a glare protection device
  • Fig. 4 shows the reduced luminance coefficient as a function of the operating voltage.
  • FIG. 1 shows a filter device according to the invention, designed as a glare protection device. It contains at least one active optical filter element 1 with a liquid crystal.
  • the liquid crystal is designed according to one of the following technologies: TN technology, STN technology, dichroic technology, ferroelectric technology or ⁇ -mode LCD technology.
  • the filter device contains electronic means 2 for controlling the active filter element 1.
  • At least one light sensor 4 interacts with the electronic means 2.
  • the electronic means 2 are supplied, for example, with output signals from the light sensors 4 for the purpose of controlling or regulating the operating voltage of the filter element.
  • Power supply means 5 are provided for the electronic means 2, the optical filter element 1 and possibly the light sensors 4. These can, for example, be designed as solar cells.
  • the liquid crystal is represented on the equivalent circuit diagram of FIG. 2 by a resistor R L C and a capacitance CLC. Other resistors in the circuit are in resistors Rsi and Rs2 summarized.
  • An AC voltage source 21 supplies an AC voltage U 1 with a frame frequency f of typically 0.01 to 1 Hz.
  • the control circuit according to the invention includes a switch S 1, which short-circuits the liquid crystal cell for a specific time t s . This results in the complete discharge of the capacitor CLC. The energy expenditure for the counter-polar charge of the capacitor C L C is thus halved with this control circuit compared to the prior art.
  • FIG. 3 shows the operating voltage U (t) supplied by the control circuit according to the invention as a function of time t.
  • . Is first generated during a first time interval t + applied to the liquid crystal cell 1.
  • the liquid crystal cell 1 short-circuited during a second time interval tsi.
  • active edges 31, 32 are inserted into the course of the operating voltage U (t).
  • This control method according to the invention most closely corresponds to pulse width modulation.
  • the time intervals in FIG. 3 are not drawn to scale for reasons of clarity: during the first time interval t + and the third time interval L have typical lengths of 0.5 to 50 s, typical lengths of the second time interval tsi and the fourth time interval ts 2 are in the range from microseconds to milliseconds.
  • the short-circuit times tsi, ts 2 are therefore shorter than the activation times t +, t by factors in the order of 10 3 to 10 7 .
  • FIG. 4 shows a typical dependency of the reduced luminance coefficient / * (U) (cf. equation (2)) as a function of the operating voltage U.
  • the analysis of the Scattering phenomena on a liquid crystal cell 1 is important for understanding the invention.
  • the causes of light scattering are, for example, particles enclosed in the liquid crystal cell 1, different layer thicknesses, scratches, edges and / or spacers between two glass plates enclosing the liquid crystal.
  • a static part / * s and a dynamic part l * _ can be distinguished.
  • the static stray light fraction / * s can be reduced with suitable technical measures to such an extent that the user of an active anti-glare filter does not have to accept any loss in image quality (stray light class 1, in accordance with European standard EN 379).
  • the situation is very different for the dynamic, voltage-dependent scattered light component l * d .
  • a local orientation disturbance forms around the above-mentioned scattered light centers when an operating voltage U is applied.
  • the foreign body causing the scattered light center - or the edge - disturbs the homogeneous, chiral orientation of the liquid crystal molecules.
  • These local orientation disorders are largely responsible for the voltage-dependent scattered light component l * _. With a higher operating voltage U, the liquid crystal molecules are aligned more and more parallel to the field strength vector and the local orientation disorder is thus eliminated.
  • the reduced luminance coefficient / * shown in FIG. 4 is essentially the ratio of the scattered light flux ⁇ i R and the unscattered light flux ( ⁇ .
  • the curve / * (U) distinguishes three areas.
  • the operating voltage U U LC SO is selected so that the following conditions are met:
  • the operating voltage ULC is determined from this as follows.
  • Condition a) defines a band on the U axis in which the operating voltage U LC must be in order to achieve the required transmission.
  • the operating voltage U L C is then clearly determined in this band according to condition b), so that / * becomes minimal.
  • the working point U LC is in the third area III of the curve / * (U).
  • the transmission can be adjusted by slightly rotating the polarizers or by adjusting the polarizer efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Die aktive optische Filtereinrichtung, die sich insbesondere als Blendschutzvorrichtung zum Einsatz in Schweissschutzmasken, -helmen oder -brillen eignet, ist in an sich bekannter Weise mit einem Lichtschutzfilter mit mindestens einem aktiven optischen Filterelement und mit einer Elektronik zur Steuerung des aktiven Filterelements sowie mit einem mit der Elektronik zusammenwirkenden Lichtsensor und einer Stromversorgung, insbesondere einer Solarzelle, für die Elektronik und das aktive Filterelement ausgestattet. Die Ansteuerschaltung für das aktive Filterelement ist derart ausgebildet, dass im Bereich Der Rahmenfrequenz (1/T) von 0.01 bis 1 Hz der Lastkondensator kurzzeitig vollständig entladen wird, wodurch die Leistungsaufnahme im Vergleich mit bekannten Schaltungen halbiert wird. Gleichzeitig wird die Betriebsspannung (U) in einen Bereich gelegt, der quantitativ festgelegt ist und in welchem der Streulichtanteil der verwendeten Flüssigkristallanzeige durch diese Festlegung minimal ist.

Description

AKTIVE ELEKTROOPTISCHE FILTEREINRICHTUNG UND VERFAHREN ZU IHREM BETRIEB
Die Erfindung betrifft eine aktive elektrooptische Filtereinrichtung und ein Verfahren zu ihrem Betrieb gemass den Oberbegriffen der unabhängigen Patentansprüche. Die Filtereinrichtung eignet sich insbesond _ ere als Blendschutzvorrichtung zum Einsatz in
Schweissschutzmasken, -helmen oder -brillen.
Filtereinrichtungen dieser Art sind z. B. aus den Druckschriften WO 97/15254, US- 5,315,099 oder EP-0 550 384 bekannt. Sie enthalten als aktives Filterelement typischerweise mindestens eine Flüssigkristallzelle (Liquid-crystal-Zelle, LC-Zelle), welche den Lichtdurchgang mehr oder weniger sperrt, sobald ein Lichtsensor mit einer eine vorgegebene Schwelle übersteigenden Lichtintensität beaufschlagt wird. Der Einsatz solcher Filtereinrichtungen ist vielfältig; ein typisches Beispiel ist die Verwendung als Sichtfenster für Schweissschutzmasken, -helme und -brillen.
Die in den genannten Druckschriften beschriebenen Filtereinrichtungen bestehen aus aktiven Filterelementen, beispielsweise aus vorzugsweise um 0-90° drehenden ne- matischen Flüssigkristallelementen, welche zwischen zwei gekreuzten Polarisatoren liegen. Sie werden mit einer um ein Mehrfaches über der Freedericksz-Schwelle liegenden Betriebsspannung betrieben. Als Freedericksz-Schwelle bezeichnet man die Ansteuerspannung einer Flüssigkristallzelle, bei welcher eine erste optische Aktivität der Zelle beobachtet werden kann. Die Wahl einer höheren Betriebsspannung wird in den obigen Druckschriften mit einer Verringerung des entstehenden Streulichtes, einer reduzierten Temperaturabhängigkeit des elektrooptischen Effektes und der Erzeugung einer optischen Transmission von weniger als 1 % begründet.
Die Ansteuerfrequenz solcher aktiver Filterelemente liegt aus Gründen einer niedri- gen Leistungsaufnahme zwischen 0 und 32 Hz. Als Hauptgrund für die beschränkte Verfügbarkeit von elektrischer Versorgungsleistung wird der Betrieb der Filterelemente mit Strom aus Stützbatterien und Solarzellen genannt. Während dauernder Gleichspannungsbetrieb Flüssigkristallzellen durch Elektrolyse und Ionenmigration heute noch dauerhaft schädigt oder deren optische Leistungsfähigkeit stark beein- trächtigt, sind durch kontinuierliche Verbesserung der isolierenden Schichten, durch Verringerung von Verunreinigungen und durch Erzielung höherer Leitwerte der verwendeten Flüssigkristallsubstanzen wesentliche Fortschritte erzielt worden. Die Wahl einer möglichst kleinen Ansteuerfrequenz wird angestrebt, weil die Ansteuerfrequenz linear in die Leistungsaufnahme einer Flüssigkristallzelle eingeht. Es wäre aber wünschenswert, die Leistungsaufnahme weiter zu verringern.
Zwei für derartige elektrooptische Filtereinrichtungen charakteristische Grossen sind in diesem Zusammenhang von besonderer Bedeutung: die Transmission und die Streuung. Anforderungen an diese Grossen sind in verschiedenen Produktenormen, z. B. EN 166, EN 167, EN 169 oder EN 379, festgelegt. Die europäische Norm EN 169 schreibt vor, in welchem Bereich die Transmission T bei verschiedenen Schweissvorgängen liegen darf. Dabei wird eine Schutzstufennummer
N = 1 - (7/3)logT (1)
eingeführt. Zulässige Streulichtwerte für aktive Filterelemente sind in der europäischen Norm EN 379 definiert. Dabei wird der reduzierte Streulichtkoeffizient wie folgt festgelegt: I* = (Uω)(φ1R -φ2R)/φlL , (2)
wobei ω der Raumwinkel,
(φiR - Φ2R) der Streulichtfluss der Messprobe im definierten Raumwinkel (abzüg- lieh des Streulichtanteils des Messaufbaus) und φ der ungestreute Lichtfluss der Messprobe (nullte Beugungsordnung) ist.
Bei bekannten elektrooptischen Filtereinrichtungen wird die optische Qualität durch Streulicht stark beeinträchtigt. Die Liςhtstreuung an einer LC-Zelle hat verschiedene Ursachen: unter anderem in der LC-Zelle eingeschlossene Partikel, unterschiedliche Schichtdicken, Kratzer, Kanten und/oder Abstandshalter (sog. Spacer) zwischen den den Flüssigkristall einschliessenden Glasplatten.
Es ist Aufgabe der Erfindung, eine aktive elektrooptische Filtereinrichtung zu schaffen und ein Verfahren für deren Betrieb anzugeben, bei welchen eine möglichst ge- ringe Betriebsspannung benötigt und trotzdem eine gute optische Qualität, insbesondere deren geringe Beeinträchtigung durch Lichtstreuung, erreicht wird. Die Aufgabe wird gelöst durch die Filtereinrichtung und das Verfahren, wie sie in den unabhängigen Patentansprüchen definiert sind.
Zur Verringerung der Leistungsaufnahme der Flüssigkristallzelle ist die erfindungs- gemässe elektrooptische Filtereinrichtung vorzugsweise mit einer besonderen Ansteuerschaltung ausgerüstet. Die erflndungsgemässe Ansteuerschaltung enthält einen Schalter, der die Flüssigkristallzelle in jeder Halbperiode für eine bestimmte Zeit kurzschliesst. Es wird also weder eine kontinuierliche Kippschaltung noch eine pausenlos wechselnde Ansteuerspannung gewählt. Die erflndungsgemässe Ansteuerung unterscheidet sich vom Stand der Technik durch das Einf gen einer aktiven Flanke und einem Ansteuerverfahren, welches anstelle einer kontinuierlichen Frequenz eher einer Pulsbreitenmodulation entspricht. Die Rahmenfrequenz der Ansteuerpulse liegt im Bereich von 0.01 bis 1 Hz. Der Energieaufwand wird mit diesem Verfahren ge- genüber dem Stand der Technik halbiert, was einen enormen Fortschritt bedeutet.
Die vorliegende Erfindung verwendet eine Betriebsspannung, die eindeutig festgelegt ist. Einerseits liegt sie mehrfach über der Freedericksz-Schwelle, um die in der Produktenorm EN 169 vorgeschriebene optische Dichte zu erreichen. Zusätzlich wird die Betriebsspannung derart festgelegt, dass sie bei der Spannung liegt, bei wel- eher das durch die LCD-Anzeige gestreute Licht minimal ist.
Die erfindungsgemässe Festlegung der Betriebsspannung besteht in der Erkenntnis, dass ein Streulichtminimum erreicht ist, wenn in der Streulichtgleichung (2) der Zähler (im wesentlichen c m) kleiner als oder gleich gross wie der Nenner (φu.) ist. Das heisst mit andern Worten: Wenn der Streulichtanteil ψiR im Arbeitspunkt der Flüssigkristallanzeige kleiner oder gleich der Resttransmission T = l0(37 ι ~ N) eingestellt wird, so ist die Betriebsspannung streulichtoptimiert gewählt. Derart festgelegte Betriebsspannungen liegen erfahrungsgemäss im Bereich von 10 bis 50 Volt. Die Abstimmung der Resttransmission kann zum Beispiel mit einem kleinen Offset der Polarisatororientierung oder mit einer Anpassung der PolarisationsefFizienz gelöst werden. Der Streulichteinfluss der Messeinrichtung (Φ2R) wurde in obiger Diskussion vernachlässigt.
Im folgenden wird die Erfindung anhand von Figuren detailliert beschrieben. Dabei zeigen: Fig. 1 eine als Blendschutzvorrichtung ausgebildete erfmdungsgemässe Filtereinrichtung,
Fig. 2 ein Ersatzschaltbild einer erfindungsgemässen Steuerschaltung,
Fig. 3 die Betriebsspannung als Funktion der Zeit für eine bevorzugte Variante des erfindungsgemässen Betriebsverfahrens und
Fig. 4 den reduzierten Leuchtdichtekoeffizienten als Funktion der Betriebsspannung.
In Figur 1 ist eine als Blendschutzvdrrichtung ausgebildete erfmdungsgemässe Filtereinrichtung abgebildet. Sie enthält mindestens ein aktives optisches Filterelement 1 mit einem Flüssigkristall. Der Flüssigkristall ist gemass einer der folgenden Technologien ausgeführt: TN-Technologie, STN-Technologie, dichroische Technologie, ferroelektrische Technologie oder π-Mode-LCD-Technologie. Ausserdem enthält die Filtereinrichtung elektronische Mittel 2 zur Ansteuerung des aktiven Filterelementes 1. Mindestens ein Lichtsensor 4 wirkt mit den elektronischen Mitteln 2 zusammen. Den elektronischen Mitteln 2 werden bspw. Ausgangssignale der Lichtsensoren 4 zwecks Steuerung bzw. Regelung der Betriebsspannung des Filterelementes zugeführt. Für die elektronischen Mittel 2, das optische Filterelement 1 und eventuell die Lichtsensoren 4 sind Stromversorgungsmittel 5 vorgesehen. Diese können bspw. als Solarzellen ausgeführt sein.
Es ist vorteilhaft, die elektronischen Mittel 2 mit einer Ansteuerschaltung, wie sie in Figur 2 schematisch dargestellt ist, auszustatten. Damit kann die Leistungsaufnahme der Flüssigkristallzelle 1 wesentlich verringert werden. Der Flüssigkristall wird auf dem Ersatzschaltbild von Fig. 2 durch einen Widerstand RLC und eine Kapazität CLC dargestellt. Andere Widerstände in der Schaltung sind in den Widerständen Rsi und Rs2 zusammengefasst. Eine Wechselspannungsquelle 21 liefert eine Wechselspannung U« mit einer Rahmenfrequenz f von typischerweise 0.01 bis 1 Hz. Die erfmdungsgemässe Ansteuerschaltung beinhaltet einen Schalter Sι,der die Flüssigkristallzelle für eine bestimmte Zeit ts kurzschliesst. Dies bewirkt die vollständige Entladung des Kondensators CLC- Der Energieaufwand für die gegenpolige Ladung des Kondensators CLC wird also mit dieser Ansteuerschaltung gegenüber dem Stand der Technik halbiert.
Figur 3 zeigt die von der erfindungsgemässen Ansteuerschaltung nach Fig. 2 gelieferte Betriebsspannung U(t) als Funktion der Zeit t. In einer Periode T mit einer typi- sehen Dauer von 1 bis 100 s wird zunächst während eines ersten Zeitintervalls t+ eine bspw. positive Spannung +|ULC| an der Flüssigkristallzelle 1 angelegt. Danach wird, z. B. durch Schliessen des Schalters Si (siehe Fig. 2), während eines zweiten Zeitintervalls tsi die Flüssigkristallzelle 1 kurzgeschlossen. Während eines dritten Zeitintervalls t wird dann eine bspw. negative Spannung -|U C| an der Flüssigkristallzelle 1 angelegt, worauf während eines vierten Zeitintervalls ts2 wieder ein Kurzschluss erfolgt. Auf diese Weise werden also aktive Flanken 31, 32 in den Verlauf der Betriebsspannung U(t) eingefügt. Dieses erfmdungsgemässe Ansteuerverfahren, entspricht am ehesten einer Pulsbreitenmodulation. Die Rahmenfrequenz f = 1/T der Ansteuerpulse liegt im Bereich von 0.01 bis 1 Hz. Es ist zu beachten, dass die Zei- tintervalle in Fig. 3 aus Gründen der Übersichtlichkeit nicht massstabsgetreu dargestellt sind: Während das erste Zeitintervall t+ und das dritte Zeitintervall L typische Längen von 0.5 bis 50 s aufweisen, liegen typische Längen des zweiten Zeitintervalls tsi und des vierten Zeitintervalls ts2 im Bereich von Mikrosekunden bis Millisekunden. Die Kurzschlusszeiten tsi, ts2 sind also um Faktoren in der Grössenordnung von 103 bis 107 kürzer als die Ansteuerzeiten t+, t.
Figur 4 zeigt eine typische Abhängigkeit des reduzierten Leuchtdichtekoeffizienten /*(U) (vgl. Gleichung (2)) in Funktion der Betriebsspannung U. Die Analyse der Streuphänomene an einer Flüssigkristallzelle 1 ist wichtig für das Verständnis der Erfindung. Ursachen der Lichtstreuung sind bspw. in der Flüssigkristallzelle 1 eingeschlossene Partikel, unterschiedliche Schichtdicken, Kratzer, Kanten und/oder Abstandshalter (sog. Spacer) zwischen zwei den Flüssigkristall einschliessenden Glasplatten. Beim Streulicht lassen sich ein statischer Anteil /*s und ein dynamischer Anteil l*_ unterscheiden. Der statische Streulichtanteil /*s lässt sich mit geeigneten technischen Massnahmen soweit reduzieren, dass der Benutzer eines aktiven Blend- schutzfilters keine Einbusse der Abbildungsqualität hinnehmen muss (Streulichtklasse 1, gemass europäischer Norm EN 379). Ganz anders sieht die Situation beim dy- namischen, spannungsabhängigen Streulichtanteil l*d aus. Um die obenerwähnten Streulichtzentren herum bildet sich beim Anlegen einer Betriebsspannung U eine lokale Orientierungsstörung. Der das. Streulichtzentrum verursachende Fremdkörper - oder die Kante - stört die homogene, chirale Orientierung der Flüssigkristallmoleküle. Diese lokalen Orientierungsstörungen sind weitgehend für den spannungsab- hängigen Streulichtanteil l*_ verantwortlich. Mit höherer Betriebsspannung U werden die Flüssigkristallmoleküle immer paralleler zum Feldstärkenvektor ausgerichtet und damit die lokale Orientierungsstörung zum Verschwinden gebracht.
Der in Fig. 4 dargestellte reduzierte Leuchtdichtekoeffizient /* ist gemass Gleichung (2) im wesentlichen das Verhältnis von Streulichtfluss φiR und ungestreutem Licht- fluss ( α. Bei der Kurve /*(U) lassen sich drei Bereiche unterscheiden.
I. Für kleine Betriebsspannungen U ist φiR < φu., also /* < 1. In diesem ersten
Bereich I nimmt φα mit steigendem U stärker ab als φiR, weshalb /*(U) monoton steigt.
Et. Für mittlere Betriebsspannungen U ist φi « c u., also /* « 1. In diesem zweiten Bereich II ist /*(U) ungefähr konstant. III. Für grosse Betriebsspannungen U gilt wieder φtR < φ1L, also /* < 1. In diesem dritten Bereich III nimmt φ mit steigendem U nur noch wenig ab oder ist annähernd konstant, wogegen φiR aus den obenerwähnten Gründen immer noch abnimmt, weshalb l* ö) monoton abnimmt.
Gemass der Erfindung wird die Betriebsspannung U = ULC SO gewählt, dass folgende Bedingungen erfüllt sind:
a) Es wird die geforderte Transmission erreicht;
b) Der reduzierte Leuchtdichtekoeffiz »ient /* ist minimal.
Die Betriebsspannung ULC wird daraus wie folgt ermittelt. Die Bedingung a) defi- niert ein Band auf der U-Achse, in welchem sich die Betriebsspannung ULC befinden muss, um die geforderte Transmission zu erreichen. In diesem Band wird dann gemass Bedingung b) die Betriebsspannung ULC eindeutig bestimmt, so dass /* minimal wird. Normalerweise befindet sich der Arbeitspunkt ULC im dritten Bereich III der Kurve /*(U).
Bei Bedarf kann die Transmission durch eine leichte gegenseitige Verdrehung der Polarisatoren oder durch eine Anpassung der Polarisatoreffizienz abgestimmt werden.

Claims

PATENTANSPRUCHE
1. Verfahren zum Betreiben einer aktiven elektrooptischen Filtereinrichtung mit einem aktiven optischen Filterelement (1), dadurch gekennzeichnet, dass das optische Filterelement (1) mit gegenpoligen Ansteuerpulsen angesteuert wird, wobei das optische Filterelement (1) zwischen zwei aufeinanderfolgenden Ansteuerpulsen kurzgeschlossen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Kurzschlusszeiten (tsi, ts2) kürzer, vorzugsweise um Faktoren in der Grössenordnung von 103 bis 107 kürzer, sind als die Dauern (t+, t.) der Ansteuerpulse.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Rahmenfrequenz (f) der Ansteuerpulse zwischen 0.01 und 1 Hz beträgt.
4. Verfahren zum Betreiben einer aktiven elektrooptischen Filtereinrichtung mit einem aktiven optischen Filterelement (1), vorzugsweise nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass am optischen Filterelement eine Be- triebsspannung (ULC) angelegt wird, bei welcher der Streulichtterm (ΦI ) des optischen Filterelementes (1) kleiner oder gleich dem Transmissionsterm des optischen Filterelementes (1) ist.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Betriebsspannung (ULC) um ein Mehrfaches über der Freedericksz-Schwelle des optischen Filterelementes (1) liegt.
. Aktive elektrooptische Filtereinrichtung, betreibbar mit dem Verfahren nach einem der Ansprüche 1-5, enthaltend mindestens ein aktives optisches Filterelement (1) mit einem Flüssigkristall, elektronische Mittel (2) zur Ansteuerung des mindestens einen aktiven Filterelementes (1), einen mit den elektronischen Mit- teln (2) zusammenwirkenden Lichtsensor (4) und Stromversorgungsmitteln (5), insbesondere eine Solarzelle, für die elektronischen Mittel (2) und das mindestens eine optische Filterelement (1), dadurch gekennzeichnet, dass der Flüssigkristall gemass einer der folgenden Technologien ausgeführt ist: TN- Technologie, STN-Technologie, dichroische Technologie, ferroelektrische Tech- nologie oder π-Mode-LCD-Technologie.
7. Ansteuerschaltung (2) für eine aktive elektrooptische Filtereinrichtung nach Anspruch 6, gekennzeichnet durch einen Schalter (S , mit dem das aktive optische Filterelement (1) kurzschliessbar ist.
PCT/CH2000/000040 1999-03-11 2000-01-28 Aktive elektrooptische filtereinrichtung und verfahren zu ihrem betrieb WO2000054097A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00901013A EP1259852A2 (de) 1999-03-11 2000-01-28 Aktive elektrooptische filtereinrichtung und verfahren zu ihrem betrieb
KR1020017011384A KR20020007319A (ko) 1999-03-11 2000-01-28 능동 전기 광학 필터링 장치 및 이것을 동작시키는 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH458/99 1999-03-11
CH00458/99A CH694384A5 (de) 1999-03-11 1999-03-11 Aktive elektrooptische Filtereinrichtung und Verfahren zu ihrem Betrieb.

Publications (3)

Publication Number Publication Date
WO2000054097A2 true WO2000054097A2 (de) 2000-09-14
WO2000054097A3 WO2000054097A3 (de) 2002-09-26
WO2000054097A8 WO2000054097A8 (de) 2003-01-03

Family

ID=4187481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2000/000040 WO2000054097A2 (de) 1999-03-11 2000-01-28 Aktive elektrooptische filtereinrichtung und verfahren zu ihrem betrieb

Country Status (6)

Country Link
EP (1) EP1259852A2 (de)
KR (1) KR20020007319A (de)
CN (1) CN1559021A (de)
CH (1) CH694384A5 (de)
TW (1) TW527499B (de)
WO (1) WO2000054097A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042405A1 (en) * 2010-09-30 2012-04-05 Kimberly-Clark Worldwide, Inc. Automatic darkening filter (adf) eye protection device with improved drive circuitry

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100617036B1 (ko) * 2003-12-27 2006-08-30 엘지.필립스 엘시디 주식회사 액정표시장치의 제조방법
EP2799046A1 (de) 2013-04-30 2014-11-05 Optrel Ag Vorrichtung und Verfahren zum Blendschutz

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961840A (en) * 1973-05-15 1976-06-08 Citizen Watch Co., Ltd. Driving circuit for liquid-crystal display
US4279474A (en) * 1980-03-25 1981-07-21 Belgorod Barry M Spectacle lens having continuously variable controlled density and fast response time
EP0550384A1 (de) * 1991-12-31 1993-07-07 Xelux Holding Ag Blendschutzvorrichtung
WO1997015254A1 (en) * 1995-10-26 1997-05-01 Hörnell International AB Liquid crystal shutter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961840A (en) * 1973-05-15 1976-06-08 Citizen Watch Co., Ltd. Driving circuit for liquid-crystal display
US4279474A (en) * 1980-03-25 1981-07-21 Belgorod Barry M Spectacle lens having continuously variable controlled density and fast response time
EP0550384A1 (de) * 1991-12-31 1993-07-07 Xelux Holding Ag Blendschutzvorrichtung
WO1997015254A1 (en) * 1995-10-26 1997-05-01 Hörnell International AB Liquid crystal shutter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042405A1 (en) * 2010-09-30 2012-04-05 Kimberly-Clark Worldwide, Inc. Automatic darkening filter (adf) eye protection device with improved drive circuitry
US8264265B2 (en) 2010-09-30 2012-09-11 Kimberly-Clark Worldwide, Inc. Automatic darkening filter (ADF) eye protection device with improved drive circuitry
CN103140194A (zh) * 2010-09-30 2013-06-05 金伯利-克拉克环球有限公司 具有改进的驱动电路的自动变光滤光器(adf)眼睛保护装置
AU2011309796B2 (en) * 2010-09-30 2014-12-18 Kimberly-Clark Worldwide, Inc. Automatic darkening filter (ADF) eye protection device with improved drive circuitry

Also Published As

Publication number Publication date
CN1559021A (zh) 2004-12-29
WO2000054097A8 (de) 2003-01-03
WO2000054097A3 (de) 2002-09-26
KR20020007319A (ko) 2002-01-26
TW527499B (en) 2003-04-11
EP1259852A2 (de) 2002-11-27
CH694384A5 (de) 2004-12-15

Similar Documents

Publication Publication Date Title
DE69628544T2 (de) Flüssigkristall-lichtverschluss
EP0509025B1 (de) Elektrooptisches flüssigkristallschaltelement
DE3448116C2 (de)
DE3434594C2 (de)
EP0550384B2 (de) Blendschutzvorrichtung
DE4000451A1 (de) Elektrooptisches fluessigkristallschaltelement
DE69634767T2 (de) Flüssigkristallvorrichtung und ihre Herstellungsverfahren
DE60035075T2 (de) Lichtmodulationsvorrichtung, Bildaufnahmevorrichtung und Verfahren zu deren Belichtungszeitsteuerung
DE3142909A1 (de) Kontinuierliche ladungssteuerung fuer elektrochrome schichten
EP0020918A1 (de) Reflektor für verschiedene Ausleuchtwinkel
DE3921837A1 (de) Elektrooptische vorrichtung
DE2258976A1 (de) Ferroelektrisches optisches filter
WO2008092839A1 (de) Phasenmodulierender lichtmodulator und verfahren zur gewährleistung einer minimalen amplitudenmodulation in phasenmodulierenden lichtmodulatoren
DE68921310T2 (de) Anzeigegerät.
DE69630431T2 (de) Bistabile nematische Flüssigkristallanzeige mit Graustufenfähigkeit
DE69217070T2 (de) Vorrichtung und verfahren zum prüfen einer aktiven pixelmatrix-anzeigevorrichtung
EP1259852A2 (de) Aktive elektrooptische filtereinrichtung und verfahren zu ihrem betrieb
DE2326566B2 (de) Flüssigkristall-Anzeigevorrichtung
DE3824588C2 (de)
EP3329887B1 (de) Optischer blendschutzfilter
DE60202391T2 (de) Halteanzeigeeinheit zur Darstellung eines bewegten Bildes
CH673159A5 (de)
DE102017213296B3 (de) Verfahren zum Steuern eines Ensembles mit mehreren schaltbaren elektrochromen Einzelscheiben sowie Steuervorrichtung und Kraftfahrzeug
DE3321032A1 (de) Verfahren zur beheizung eines elektrooptischen und/oder elektrochemischen elementes
DE3600837C2 (de)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00807460.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP KR SI US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000901013

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017011384

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09936277

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000901013

Country of ref document: EP

WR Later publication of a revised version of an international search report
WWW Wipo information: withdrawn in national office

Ref document number: 2000901013

Country of ref document: EP