WO2000051162A1 - Lampe a cathode creuse - Google Patents

Lampe a cathode creuse Download PDF

Info

Publication number
WO2000051162A1
WO2000051162A1 PCT/JP2000/001015 JP0001015W WO0051162A1 WO 2000051162 A1 WO2000051162 A1 WO 2000051162A1 JP 0001015 W JP0001015 W JP 0001015W WO 0051162 A1 WO0051162 A1 WO 0051162A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
lamp
hollow
hollow cathode
anode
Prior art date
Application number
PCT/JP2000/001015
Other languages
English (en)
French (fr)
Inventor
Yuji Shimazu
Toshio Ito
Jyunichi Imakama
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to AU26897/00A priority Critical patent/AU2689700A/en
Priority to EP00905277A priority patent/EP1162648A4/en
Publication of WO2000051162A1 publication Critical patent/WO2000051162A1/ja
Priority to US09/933,904 priority patent/US6548958B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/09Hollow cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/64Cathode glow lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/68Lamps in which the main discharge is between parts of a current-carrying guide, e.g. halo lamp

Definitions

  • the present invention relates to a holo-powered solid lamp used as a light source for atomic absorption analysis, atomic fluorescence analysis and the like.
  • Atomic absorption spectrometry requires the use of a light source that outputs the atomic spectrum lines of the element itself, and such a light source is known as a holo-powered sword lamp (hollow cathode lamp).
  • a holo-powered sword lamp high cathode lamp
  • analysis elements forming a hollow cathode are scattered in the discharge space in an atomic state by sputtering caused by ion bombardment, and a spectrum line is generated by transfer of electron energy. .
  • a problem that occurs when using such a hollow one-sword lamp is that a part of the spectrum wire gives energy to non-excited element atoms (unexcited element atoms) existing in the discharge space, This is known as a phenomenon called self-absorption, in which the intensity of the spectral line is reduced. If the self-absorption rate is high, the light output cannot be improved even if the current value supplied to the hollow cathode lamp is increased.
  • Techniques for solving such self-absorption problems include, for example,
  • thermoelectron source auxiliary electrode for thermoelectron emission, electron emitter
  • this thermoelectron source is connected to a cathode.
  • the undischarged atoms are brought into an excited state by the discharged discharge. In this way, the excitation of the unexcited atoms by the discharge using the thermionic electron source as the cathode can prevent absorption of the spectrum line by unexcited atoms. it can. Disclosure of the invention
  • the holo one-sided sword lamp described in Japanese Patent Publication No. 7-56781 and U.S. Pat. No. 4,885,504 had the following problems. That is, the elements of the cathode are scattered by the above-mentioned sputtering, but when the supply current to the lamp is increased to some extent, the scattered elements are scattered, and the scattered elements scatter the spectrum lines. Because they are scattered violently, the effect of exposing unexcited elements to an excited state is reduced even if discharge is performed using a thermoelectric child supply as a cathode. Therefore, there is a problem that a desired light output cannot be obtained even when the operating current of the lamp is increased.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a holo-powered sword lamp having a high light output and a hard inner surface of a bulb.
  • the present invention provides a hollow single-sword lamp including a hollow cathode and an anode facing a light emission window in a bulb having a light emission window.
  • a cylindrical hood having one end connected to the hollow cathode and the other open end facing the light emission window and having a hole formed on the peripheral surface thereof, and an electron source arranged at a position facing the hole. And discharge using thermoelectrons is performed between the electron supply source and the anode.
  • the cathode element scattered when the hollow cathode is sputtered adheres to the inner peripheral surface of the cylindrical hood, so that the inner peripheral surface of the bulb is hardly stained.
  • the cylindrical hood can prevent the scattering elements from being scattered intensely and widely. Therefore, scattering of the spectral lines output from the lamp is prevented, and the light output is improved.
  • a hole is formed on the peripheral side of the cylindrical hood. Further, an electron supply source for generating discharge using thermoelectron emission between the anode and the anode in the hollow cathode and the cylindrical hood is disposed at a position facing the hole.
  • the unexcited atoms present in the hollow cathode and the cylindrical hood can be brought into an excited state in advance by the discharge generated between the electron supply source and the anode through the holes, and the self-excited atoms by the unexcited atoms Absorption is prevented.
  • the situation in which the scattered elements are violently scattered over a wide range by the cylindrical hood is prevented, and thus the unexcited elements are efficiently brought into an excited state by the discharge.
  • a cover for covering the electron supply source and the hole is further provided.
  • a holo-powered sword lamp according to another invention of the present invention is a holo-powered sword lamp provided with a hollow cathode and an anode facing a light-emitting window in a bulb having a light-emitting window.
  • a cylindrical hood having one open end connected to the hollow cathode, the other open end facing the light emitting window, and a slit formed on the peripheral side thereof, and an electron supply arranged at a position facing the slit. And a discharge using thermoelectrons between the electron supply source and the anode.
  • the cathode element that scatters when the hollow cathode is sputtered adheres to the inner peripheral surface of the cylindrical hood, so that the inner peripheral surface of the bulb is hardly contaminated.
  • the tubular hood can prevent the scattering elements from being scattered intensely and widely, thereby preventing the spectral lines output from the lamp from being scattered and improving the light output.
  • a slit is formed on the peripheral side surface of the cylindrical hood, and an electron for generating a discharge using thermionic emission between the anode and the anode in the cylindrical hood is provided at a position facing the slit. A source is located.
  • an unexcited atom present in the hollow cathode can be brought into an excited state in advance by a discharge generated between the electron supply source and the anode through the slit, and the self-excited atom by the unexcited atom is used. Self-absorption is prevented.
  • the holo-powered sword lamp further includes a cover that covers the electron supply source and the slit.
  • a cover that covers the electron supply source and the slit.
  • the hollow cathode is a penetrating cathode whose inside penetrates, and is located between the light exit window and the anode.
  • the anode is not located in the space between the hollow cathode and the light exit window, so that when the atoms in the hollow cathode enter the ground state, the light emitted from the atoms progresses. It is not hindered by the presence of the anode.
  • FIG. 1 is a sectional view showing a first embodiment of a hollow single-sword lamp according to the present invention.
  • FIG. 2 is an enlarged view of the vicinity of the hollow cathode when the hollow single-sword lamp shown in FIG. 1 is viewed from the X direction.
  • FIG. 3 is a graph showing the relationship between the operating current and the light output of the hollow single-sided lamp of the first embodiment.
  • FIG. 4 is a graph showing the relationship between the operating current and the light output when the hollow cathode is made of selenium in the hollow monolithic lamp of the first embodiment.
  • FIG. 5 is a view showing a characteristic portion of a second embodiment of a hollow single-purpose lamp according to the present invention.
  • FIG. 6 is a diagram showing a modified example of the hollow single-purpose lamp according to the second embodiment.
  • FIG. 7 is a view showing a characteristic portion of the third embodiment of the holo-powered sword lamp according to the present invention.
  • FIG. 8 is a cross-sectional view of the holo one-sided sword lamp shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a cross-sectional view showing the hollow single-sword lamp of the present embodiment
  • FIG. 2 is an enlarged view of the vicinity of the hollow cathode when the hollow single-sword lamp shown in FIG. 1 is viewed from the X direction.
  • the hollow sword lamp 2 has a hollow cathode 14 having a light emitting surface (light emitting window) 3 at its upper part, a hollow cathode 14 penetrating in a vertical direction in FIG. And an anode 8 disposed below 14.
  • the valve 4 is hermetically sealed, and contains neon gas inside.
  • the anode 8 is supported by a ceramic insulator tube 6 and is further electrically connected to a lead wire passing through the insulator tube 6.
  • the hollow cathode 14 is supported and fixed to the bulb 4 by an electrically insulating cathode support member 12 in which a flange portion 12 f is mounted on a substrate 10 a made of mica (mica).
  • an electrically insulating cathode support member 12 in which a flange portion 12 f is mounted on a substrate 10 a made of mica (mica).
  • two insulator tubes 16a are arranged so as to sandwich the anode 8, and further, the flange portion 12f of the cathode support member 12 and the substrate 10a
  • An insulating insulator tube 16b is provided between the upper substrate 10b and the substrate 10b.
  • the substrate 10a and the substrate 10b are formed in a ring shape, and the inner periphery of the substrate 10a and the substrate 10b are in contact with the cathode support member 12, and the outer periphery is in contact with the inner peripheral wall of the bulb 4.
  • the swing of the insulator tube 16a and the insulating insulator tube 16b is prevented.
  • the hollow cathode 14 includes a cylindrical outer tube 14a made of stainless steel and an inner tube 14b made of vanadium formed on the inner peripheral surface of the outer tube 14a.
  • the material forming the inner tube 14b of the hollow cathode 14 is not limited to vanadium but can be variously changed according to the element to be analyzed, and examples thereof include selenium and arsenic.
  • the material forming the outer tube 14a is not limited to stainless steel, and the outer tube 14a may not be provided depending on the material forming the inner tube 14b.
  • a cylindrical hood 20 which is a feature of the present embodiment is mounted on the upper portion of the hollow cathode 14 coaxially with the hollow cathode 14. More specifically, the hood 20 is mounted on the hollow cathode 14 such that the lower inner periphery of the hood 20 is fitted to the upper outer periphery of the hollow cathode 14. The lower portion of the hood 20 is fastened to the hollow cathode 14 by two metal hood fixing plates 18. In FIG. 1, only one of the two fin fixing plates 18 located on the inner side of the hollow cathode 14 in the figure is shown, but in actuality, the lower side of the hollow cathode 14 is shown in the figure.
  • a hood fixing plate 18 is arranged, and the two hood fixing plates 18 are bonded and fixed by welding. Further, the lead wire 17 is sandwiched between the two hood fixing plates 18, whereby conduction to the hollow cathode 14 is achieved.
  • the lower open end 20 a of the hood 20 is in contact with the hollow cathode 14, and the upper open end 20 b is opposed to the light emitting surface 3 of the bulb 4.
  • the hood 20 is formed of nickel having good thermal conductivity and being difficult to be sputtered.
  • the material forming the hood 20 is not limited to nickel, but may be stainless steel, aluminum, or the like.
  • thermoelectron emission cathode (electron supply source) 24 for performing discharge using thermoelectron emission between the anode 8 and the hood 20 is disposed at a position facing the hole 22. I have. That is, the hole 22 is formed to cause a discharge between the thermionic emission cathode 24 and the anode 8.
  • the thermionic emission cathode 24 is supported by a support tube 26 through which a lead wire passes.
  • the operation of the holo one-sided sword lamp 2 will be described.
  • the anode 8 and the hollow cathode 1 A voltage is applied between them to cause a discharge between them. Then, this discharge causes the neon gas atoms sealed in the bulb 4 to be ionized. The cations generated by the ionization of this gas are pulled by the electric field and collide with the inner peripheral surface of the inner cylinder 14 b of the hollow cathode 14.
  • the polar substance (vanadium) scatters in atomic form.
  • the scattered cathode element is composed of a single atom or the like in a ground state, and is thermally diffused into the internal space of the hollow cathode 14.
  • the scattering cathode element in the ground state during diffusion is excited by the discharge between the anode 8 and the hollow cathode 14, and returns to the ground state again after a short time (about 10 to 18 seconds).
  • a short time about 10 to 18 seconds.
  • monochromatic light (spectral line) unique to vanadium equal to the transition energy is emitted, and this light is output from the light exit surface 3.
  • the inner periphery of the substrate 10a and the substrate 1Ob made of the above-mentioned MyRiki are in contact with the cathode support member 12 and the outer periphery is in contact with the inner peripheral wall of the bulb 4, so that the anode 8 and the hollow cathode It is possible to prevent a situation in which the discharge path between the cathode 14 and the outside 14 is outside the hollow cathode 14.
  • the hood 20 is mounted above the hollow cathode 14, and the scattered cathode element scattered from the hollow cathode 14 adheres to the inner peripheral surface of the hood 20. It is possible to prevent a situation in which the flying cathode element adheres to the inner peripheral surface of 4 and becomes dirty. Further, the hood 20 can prevent the scattered cathode elements from being violently scattered over a wide range, thereby preventing scattering of the spectrum lines output from the light emitting surface 3 and improving the light output. Further, the density of the scattered cathode element in the hood 20 increases.
  • the hood 20 connected to the hollow cathode 14 is formed of nickel having good thermal conductivity, and also serves as a heat radiating member for the hollow cathode 14. For this reason, the rate of temperature rise of the hollow cathode 14 associated with an increase in the operating current of the lamp 2 is reduced, and the operating current of the lamp 2 can be made higher than before, so that the light output is improved. It is also possible to prevent the hollow cathode 14 from being melted by heat before being sputtered. Furthermore, since the anode 8 is not located in the space between the hollow cathode 14 and the light emitting surface 3, light is emitted from the scattered cathode element in the hollow cathode 14.
  • the spectrum line going to the launch surface 3 is not hindered by the presence of the anode 8.
  • the energy of the spectral line is absorbed by the scattered cathode element in an unexcited state (ground state), a phenomenon called so-called self-absorption.
  • self-absorption occurs, the intensity of the spectrum line is weakened, and furthermore, the outline of the spectral line is blurred, and the analytical absorption sensitivity is reduced.
  • a hole 22 is formed on the peripheral side surface of the hood 20, and a thermoelectron emission cathode 24 is disposed at a position facing the hole 22.
  • a discharge utilizing thermionic emission is performed between the thermionic emission cathode 24 and the anode 8. Then, by this discharge, the unexcited atoms can be brought into an excited state in advance before colliding with the spectral line, and self absorption by the unexcited atoms can be prevented.
  • the hood 20 prevents the scattered cathode elements from being violently scattered over a wide range, so that the unexcited elements can be efficiently brought into an excited state by discharge using thermionic emission. Can be.
  • FIG. 3 is a graph showing the relationship between the operating current and the light output of the holo-powered sword lamp 2 of the present embodiment.
  • the horizontal axis represents the operating current, and the vertical axis represents the relative output.
  • the graph also shows a plot of a conventional holo-powered sword lamp having a thermionic emission cathode but no hood 20.
  • the data of the sword lamp 2 is shown by connecting solid black circles, triangles, and square plots with solid lines.
  • Triangle and square plots are connected by broken lines.
  • the circles, triangles, and squares indicate the current values flowing through the thermionic emission cathode 24 at 5 mA, 15 mA, and 25 mA, respectively.
  • FIG. 4 is a graph showing data in the case where selenium, which is more easily sputtered than vanadium, is used instead of vanadium as the material of the hollow cathode in the hollow single-sword lamp 2 of the present embodiment. Similarly to FIG.
  • the data of the holo-sword lamp 2 of the present embodiment are shown by connecting the plots with solid lines, and the data of the conventional holo-sword lamp are shown by connecting the plots with broken lines.
  • the current value flowing through the thermionic emission cathode 24 of the present embodiment is 30 mA, 60 mA, 80 mA, 90 mA, 110 mA, and the conventional type of thermionic emission cathode 24
  • the values of the currents passed through were 20 mA, 30 mA, 40 mA, 50 mA, and 80 mA.
  • the lamp of the present embodiment it was possible to obtain a high output that could not be obtained by increasing the operating current in the conventional lamp, and as a result, it was possible to obtain a light output in a wide range.
  • the lamp of the present embodiment even when the operating current was increased to 80 mA, the inner peripheral surface of the bulb was hardly stained.
  • FIG. 5 is a diagram showing a characteristic portion of the holo-powered sword lamp of the present embodiment.
  • the hollow sword lamp of the present embodiment is different from the lamp 2 of the first embodiment in the configuration of the hood 20.
  • the hood 20 of the present embodiment has a circular hole 2 as in the first embodiment in order to generate a discharge between the thermionic emission cathode 24 and the anode 8.
  • slits 3 4 ing.
  • the slit 34 extends from the upper open end 20b of the hood 20 to the lower open end 20a.
  • a thermoelectron emission cathode 24 is disposed at a position facing the slit 34 so as to be orthogonal to the slit 34.
  • the scattered cathode element scattered from the hollow cathode 14 adheres to the inner peripheral surface of the hood 20 as in the first embodiment. It is possible to prevent a situation in which elements are attached and become dirty.
  • the hood 20 can prevent the scattered cathode elements from being violently scattered over a wide range, thereby preventing the spectral lines output from the light emitting surface 3 from being scattered and improving the light output.
  • the hood 20 also functions as a heat dissipating member for the hollow cathode 14, and the rate of temperature rise of the hollow cathode 14 with the increase in the operating current of the lamp 2 is reduced, so that the operating current of the lamp 2 is lower than in the past. And light output can be improved. Further, it is possible to prevent the hollow cathode 14 from being melted by heat before being sputtered.
  • the discharge using thermionic emission generated between the thermionic emission cathode 24 and the anode 8 through the slit 34 causes the unexcited atoms present in the hollow cathode 14 to be converted into the spectrum line. Can be brought into an excited state before collision, and self-absorption by the unexcited atoms can be prevented.
  • the unexcited element can be efficiently brought into an excited state by discharge using thermionic emission. .
  • FIG. 6 is a diagram showing a modification of the second embodiment.
  • thermionic emission cathodes 24 are not orthogonal to the slits 34 but arranged in parallel with the slits 34. When such a configuration is employed, discharge using thermoelectrons from the thermoelectron emission cathode 24 can be efficiently generated.
  • FIG. 7 is a diagram showing a characteristic portion of the holo-powered sword lamp of the present embodiment
  • FIG. FIG. 8 is a cross-sectional view of the lamp shown in FIG. 7 in the VII I-VIII direction.
  • the difference between the hollow cathode lamp of the present embodiment and the lamp 2 of the first embodiment lies in the configuration of the hood 20.
  • the hood 20 is provided with a cover 40 that covers the hole 22 formed in the hood 20 and the thermoelectron radiating cathode 24.
  • the hollow single-sword lamp of the present embodiment adopting such a configuration, the above-mentioned scattered cathode element scattered from the hollow cathode 14 jumps out of the hole 22 for supplying electrons to the outside, and It is possible to prevent the lamp from sticking to the inner peripheral surface, and the life of the lamp is prolonged.
  • the holo-powered sword lamp of the present embodiment has the cover 40 attached to the lamp of the first embodiment.
  • the cover 40 is attached to the holo-powered sword lamp of the second embodiment. You can also. That is, it is also preferable to cover the thermionic emission cathode 24 and the slit 34 with the cover 40.
  • the hood is not limited to a cylinder having a circular cross section, and may be a square tube or the like according to the shape of the hollow cathode.
  • the hole formed in the hood is not limited to a circular shape, but can be appropriately changed to a square, an oval, or the like.
  • the hollow cathode is formed of an inner tube and an outer tube, the outer tube is extended in the direction of the light emitting surface without providing a separate hood, and the extended portion of the outer tube is regarded as a hood.
  • a hole for causing a discharge between the electron supply source and the anode may be formed in the extending portion.
  • the cathode element scattered when the hollow cathode is sputtered adheres to the inner peripheral surface of the cylindrical hood, so that the inner periphery of the bulb is The surface is hardly dirty. Further, the cylindrical hood can prevent a situation in which flying elements are scattered intensely and widely. Because of this, run It is possible to prevent scattering of the spectral line output from the lamp, and to improve the light output of the lamp.
  • a hole or a slit is formed on the peripheral side surface of the cylindrical hood, and a discharge utilizing thermionic emission between the anode and the anode is formed in the hollow cathode and the cylindrical hood at a position facing the hole or the slit.
  • electron source for producing the inner is located (and non-existing in the depending on discharge between the electron source and the anode through the holes or slits, the hollow cathode and cylindrical hood.
  • the excited atoms can be brought into an excited state in advance, and self-absorption by the unexcited atoms can be prevented, and at this time, the scattered elements are prevented from being scattered over a wide range by the cylindrical hood as described above. Therefore, it becomes possible to efficiently put the unexcited element into the excited state by the discharge using the electron supply source as the cathode, and the light output is further improved.

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Discharge Lamp (AREA)

Description

明糸田 ホロ一カソードランプ
技術分野
本発明は、 原子吸光分析、 原子蛍光分析などの光源として使用されるホロ一力 ソ一ドランプに関するものである。 背景技術
原子吸光分析には、 分析元素そのものの原子スペクトル線を出力する光源を用 いる必要があり、 このような光源として、 ホロ一力ソードランプ (中空陰極ラン プ) が知られている。 このホロ一力ソードランプは、 中空陰極を形成する分析元 素を、イオン衝撃に伴うスパッ夕リングによって放電空間に原子状態で飛散させ、 電子エネルギの授受によってスぺクトル線を発生させるものである。
ところで、 従来から、 このようなホロ一力ソードランプの使用時に生じる問題 として、スぺクトル線の一部が放電空間に存在する励起されていない元素原子(未 励起元素原子) にエネルギを与え、 これによりスペクトル線の強度が減少してし まう自己吸収という現象が知られている。 この自己吸収率が高いと、 ホロ一カソ 一ドランプへ供給する電流値を上げても光出力の向上が図れない。
かかる自己吸収による問題を解決するための技術として、 例えば特公平 7— 5
6 7 8 1号公報や U S P 4, 8 8 5, 5 0 4号公報に掲載されたホロ一力ソード ランプがある。 これらの各公報に掲載されたホロ一力ソードランプは、 ともに熱 電子を放出する熱電子供給源 (熱電子放射用の補助電極, electron emitter) を 備えており、 この熱電子供給源を陰極とした放電により、 未励起原子を励起状態 にするものである。 このように、 熱電子供給源を陰極とした放電により未励起原 子を励起させることで、 未励起原子によるスぺクトル線の吸収を防止することが できる。 発明の開示
しかし、 上記特公平 7— 5 6 7 8 1号公報および U S P 4, 8 8 5, 5 0 4号 公報に掲載されたホロ一力ソードランプには、 次のような問題があった。 すなわ ち、 上述のスパッタリングにより陰極の元素は飛散するが、 ランプへの供給電流 をある程度高くすると、 この飛散元素が飛び散ってしまい飛散元素によりスぺク トル線が散乱したり、 また、 元素が激しく飛び散ってしまっているので熱電子供 給源を陰極とした放電を行っても未励起元素を励起状態にする効果が低下してし まう。 そのため、 ランプの動作電流を上げても所望の光出力が得られないという 問題があった。 また、 飛散元素が激しく飛び散ってランプのバルブ内周面に付着 しバルブの汚染原因となり、 以後好適な使用が困難となるだけでなくランプの寿 命が著しく短くなるという問題もあった。
本発明は、 かかる事情に鑑みてなされたものであり、 光出力が高く、 バルブの 内面が汚れにくいホロ一力ソードランプを提供することを目的とする。
上記目的を達成するために、 本発明は、 光出射窓を有するバルブ内に、 当該光 出射窓と対向する中空陰極および陽極を備えるホロ一力ソードランプにおいて、 筒状形状をなし、 一の開放端が中空陰極に接続され、 他の開放端が光出射窓と対 向すると共にその周側面に穴が形成された筒状フードと、 穴に臨む位置に配置さ れた電子供給源と、 を備え、 電子供給源と陽極との間で熱電子を利用した放電が 行われることを特徴とする。
本発明に係るホロ一力ソードランプによれば、 中空陰極がスパッタリングされ る際に飛散する陰極元素は、 筒状フードの内周面に付着するため、 バルブの内周 面は殆ど汚れない。 また、 筒状フードによって、 飛散元素が激しく広範囲に飛び 散るという事態を防止できる。 このため、 ランプから出力されるスペクトル線の 散乱が防止され、 光出力が向上する。 また、 筒状フードの周側面には穴が形成さ れており、 さらに、 当該穴に臨む位置に、 陽極との間で熱電子放出を利用した放 電を中空陰極内および筒状フード内で生じさせるための電子供給源が配置されて いる。 そして、 この穴を介して電子供給源と陽極との間で生じる放電によって、 中空陰極内および筒状フード内に存在する未励起原子を予め励起状態にすること ができ、 当該未励起原子による自己吸収が防止される。 このとき、上述のように、 筒状フードによって飛散元素が激しく広範囲に飛び散るという事態が防止されて いるため、 当該放電により未励起元素が効率良く励起状態にされる。
また、 本発明に係るホロ一力ソードランプにおいて、 電子供給源および穴を覆 うカバーを更に備えることも望ましい。 このような構成を採用した場合、 中空陰 極がスパッ夕リングされる際に飛散する上記陰極元素が、 電子供給用の穴から飛 び出してバルブの内周面に付着するという事態が防止される。
本発明の他の発明に係るホロ一力ソードランプは、 光出射窓を有するバルブ内 に、 光出射窓と対向する中空陰極および陽極を備えるホロ一力ソードランプにお いて、 筒状形状をなし、 一の開放端が中空陰極に接続され、 他の開放端が光出射 窓と対向すると共に、 その周側面にスリットが形成された筒状フードと、 スリッ トに臨む位置に配置された電子供給源と、 を備え、 電子供給源と陽極との間で熱 電子を利用した放電が行われることを特徴とする。
このホロ一カソ一ドランプによれば、 中空陰極がスパッタリングされる際に飛 散する陰極元素は、 筒状フードの内周面に付着するため、 バルブの内周面は殆ど 汚れない。 また、 筒状フードによって、 飛散元素が激しく広範囲に飛び散るとい う事態を防止でき、 これにより、 ランプから出力されるスペクトル線の散乱が防 止され、 光出力が向上する。 また、 筒状フードの周側面にはスリットが形成され ており、 さらに、 当該スリットに臨む位置に、 陽極との間で熱電子放出を利用し た放電を筒状フード内で生じさせるための電子供給源が配置されている。そして、 スリットを介して電子供給源と陽極との間で生じる放電によって、 中空陰極内に 存在する未励起原子を予め励起状態にすることができ、 当該未励起原子による自 己吸収が防止される。
また、 当該ホロ一力ソードランプにおいて、 電子供給源およびスリットを覆う カバーを更に備えることも望ましい。 このような構成を採用した場合、 中空陰極 がスパッタリングされる際に飛散する上記陰極元素が、 電子供給用のスリットか ら飛び出してバルブの内周面に付着するという事態が防止される。
さらに、 本発明に係るホロ一力ソードランプにおいて、 中空陰極は、 内部が貫 通した貫通陰極であると共に、光出射窓と陽極との間に位置することが望ましい。 このような構成を採用した場合、 陽極は中空陰極と光出射窓との間の空間に位置 しないため、 中空陰極内の原子が基底状態になる際に当該原子から放出される光 の進行が、 陽極の存在によって妨げられることはない。 図面の簡単な説明
図 1は、 本発明に係るホロ一力ソードランプの第 1実施形態を示す断面図であ る o
図 2は、 図 1に示すホロ一力ソードランプを X方向から見た中空陰極近傍の拡 大図である。
図 3は、 第 1実施形態のホロ一力ソ一ドランプの動作電流と光出力の関係を示 すグラフである。
図 4は、 第 1実施形態のホロ一力ソ一ドランプにおいて中空陰極をセレンで形 成した場合の動作電流と光出力の関係を示すグラフである。
図 5は、 本発明に係るホロ一力ソ一ドランプの第 2実施形態の特徴部分を示す 図である。
図 6は、 第 2実施形態のホロ一力ソ一ドランプの変形例を示す図である。
図 7は、 本発明に係るホロ一力ソードランプの第 3実施形態の特徴部分を示す 図である。
図 8は、図 7に示すホロ一力ソードランプの VI I I— VI I I方向の断面図である。 発明を実施するための最良の形態
以下、 添付図面を参照して、 本発明に係るホロ一力ソードランプの好適な実施 形態について詳細に説明する。 尚、 同一要素には同一符号を用いるものとし、 重 複する記載は省略する。
[第 1実施形態]
まず、 図 1および図 2を用いて、 本実施形態のホロ一力ソードランプ 2の構成 を説明する。 図 1は、 本実施形態のホロ一力ソードランプを示す断面図であり、 図 2は、 図 1に示すホロ一力ソードランプを X方向から見た中空陰極近傍の拡大 図である。 ホロ一力ソードランプ 2は、 光出射面 (光出射窓) 3を上部に有する 石英ガラス製のバルブ 4内に、 その内部が図 1における上下方向に貫通した中空 陰極 1 4と、 この中空陰極 1 4の下方に配置された陽極 8と、 を備えている。 な お、 バルブ 4は気密にされており、 その内部にはネオンガスが封入されている。 陽極 8は、 セラミックス製の絶縁碍子管 6によって支持され、 さらに絶縁碍子 管 6内を貫通するリード線と電気的に接続されている。 一方、 中空陰極 1 4は、 マイ力 (雲母) 製の基板 1 0 aにそのフランジ部 1 2 fが載置された電気絶縁性 の陰極支持部材 1 2によって、 バルブ 4に対して支持固定されている。 また、 基 板 1 0 aの下方には、 二本の絶縁碍子管 1 6 aが陽極 8を挟むように配置され、 さらに、 陰極支持部材 1 2のフランジ部 1 2 f と基板 1 0 aの上方に配置された 基板 1 0 bとの間には、 絶縁性碍子管 1 6 bが設けられている。 そして、 絶縁碍. 子管 1 6 aおよび絶縁性碍子管 1 6 b内を貫通するリード線 1 7が基板 1 O b上 に突出している。 なお、 基板 1 0 aおよび基板 1 0 bは、 リング形状をなしてお り、 その内周部は陰極支持部材 1 2と接触し、 外周部はバルブ 4の内周壁に接触 しており、 絶縁碍子管 1 6 aおよび絶縁性碍子管 1 6 bの揺動を防止している。 中空陰極 1 4は、 ステンレス製の円筒状の外部筒 1 4 aと当該外部筒 1 4 aの 内周面に形成されたバナジウム製の内部筒 1 4 bとから構成されている。 なお、 中空陰極 1 4の内部筒 1 4 bを形成する材料は、 バナジウムに限られず分析元素 に応じて種々変更することができ、 たとえばセレン、 ヒ素などがある。 また、 外 部筒 1 4 aを形成する材料もステンレスに限られず、 さらに、 内部筒 1 4 bを形 成する材料によっては外部筒 1 4 aを設けなくてもよい。
また、 中空陰極 1 4の上部には、 当該中空陰極 1 4と同軸に本実施形態の特徴 である筒状のフード 2 0が装着されている。 詳しくは、 中空陰極 1 4の上部外周 に対してフード 2 0の下部内周が嵌合するようにフード 2 0は中空陰極 1 4に装 着されている。 また、 フード 2 0の下部は、 二枚の金属製のフード固定板 1 8に よって中空陰極 1 4に締め付けられている。 なお、 図 1においては、 二枚のフ一 ド固定板 1 8のうち中空陰極 1 4の図中奥側に位置する一方のみが図示されてい るが、 実際は中空陰極 1 4の図中手前側にもフード固定板 1 8は配置され、 二つ のフード固定板 1 8は溶接によって接着固定されている。 また、 二つのフード固 定板 1 8によって上記リード線 1 7が挟み込まれ、 これにより中空陰極 1 4への 導通が図られている。 なお、 このフード 2 0の下方の開放端 2 0 aは中空陰極 1 4と接触し、上方の開放端 2 0 bはバルブ 4の光出射面 3と対向している。また、 フード 2 0は、 熱伝導性が良くスパッタリングされにくいニッケルによって形成 されている。 なお、 フード 2 0を構成する材料はニッケルに限られず、 ステンレ ス、 アルミニウム等でもよい。
さらに、 フード 2 0の周側面には、 円形の穴 2 2が形成されている。 そして、 この穴 2 2に臨む位置には、 フード 2 0内で陽極 8との間で熱電子放出を利用し た放電を行うための熱電子放出陰極 (電子供給源) 2 4が配置されている。 すな わち、 穴 2 2は、 熱電子放出陰極 2 4と陽極 8との間で放電を生じさせるために 形成されている。 なお、 熱電子放出陰極 2 4は、 内部にリード線が通っている支 持管 2 6によって支持されている。 以上が、 ホロ一力ソードランプ 2の構成であ る。
次に、 ホロ一力ソードランプ 2の作用を説明する。 まず、 陽極 8と中空陰極 1 4との間に電圧をかけて、 この両者の間で放電を生じさせる。 すると、 この放電 により、 バルブ 4に封入されたネオンガス原子が電離する。 このガスの電離作用 によって生じた陽イオンは電界に引っ張られて中空陰極 1 4の内部筒 1 4 bの内 周面に衝突し、 このときの運動エネルギによって中空陰極 1 4の内周表面から陰 極物質 (バナジウム) が原子状に飛散する。 この飛散陰極元素は、 基底状態にあ る単原子等からなり、 中空陰極 1 4の内部空間に熱拡散される。 そして、 拡散中 の基底状態の飛散陰極元素は、 陽極 8と中空陰極 1 4との間の放電により励起さ れ、 短時間 (約 1 0一8秒程度) 後に再び基底状態に遷移する。 この際、 その遷 移エネルギに等しいバナジウム固有の単色光 (スペクトル線) が発せられ、 この 光が光出射面 3より出力される。 なお、 上記マイ力製の基板 1 0 aおよび基板 1 O bの内周部が陰極支持部材 1 2と接触し、 外周部がバルブ 4の内周壁に接触し ているため、 陽極 8と中空陰極 1 4との間の放電経路が中空陰極 1 4の外側にな る事態を防止することができる。
ここで、 本実施形態では、 中空陰極 1 4の上方に上記フード 2 0が装着されて おり、 中空陰極 1 4から飛散する飛散陰極元素は当該フード 2 0の内周面に付着 するため、 バルブ 4の内周面に飛散陰極元素が付着して汚れるという事態を防止 することができる。 また、 フード 2 0によって、 飛散陰極元素が激しく広範囲に 飛び散るという事態を防止でき、 これにより、 光出射面 3から出力されるスぺク トル線の散乱を防止でき、 光出力が向上する。 また、 フード 2 0内において飛散 陰極元素の密度が高くなる。 さらに、 中空陰極 1 4に接続されたフード 2 0は、 熱伝導性の良いニッケルから形成されており、 中空陰極 1 4の放熱部材としての 役割も果たしている。 このため、 ランプ 2の動作電流の増加に伴う中空陰極 1 4 の温度上昇率は低くなり、ランプ 2の動作電流を従来よりも高くすることができ、 光出力が向上する。 また、 中空陰極 1 4がスパッタリングされる前に熱で溶ける という事態を防止することもできる。 またさらに、 陽極 8は中空陰極 1 4と光出 射面 3との間の空間に位置しないため、 中空陰極 1 4内の飛散陰極元素から光出 射面 3に向かうスぺクトル線が陽極 8の存在によって妨げられることはない。 なお、 一般的に、 光 (スペクトル線) 出力過程において、 当該スペクトル線の エネルギが、 未励起状態 (基底状態) にある飛散陰極元素によって吸収される、 いわゆる自己吸収という現象が生じる可能性がある。 自己吸収が生じると、 スぺ クトル線の強度が弱まり、 さらに、 スペクトル線の輪郭がぼやけて分析吸収感度 が低下することになる。 しかし、 本実施形態では、 フード 2 0の周側面に穴 2 2 が形成されており、 さらに、 この穴 2 2に臨む位置に熱電子放出陰極 2 4が配置 されている。 熱電子放出陰極 2 4に支持管 2 6内の導線を介して電圧を印加する と、 当該熱電子放出陰極 2 4と陽極 8との間で、 熱電子放出を利用した放電が行 われる。 そして、 この放電によって、 未励起原子をスペクトル線との衝突前に予 め励起状態にすることができ、 当該未励起原子による自己吸収を防止できる。 こ のとき、 上述のように、 フード 2 0によって飛散陰極元素が激しく広範囲に飛び 散るという事態が防止されているため、 熱電子放出を利用した放電により未励起 元素を効率良く励起状態にすることができる。
図 3は、 本実施形態のホロ一力ソードランプ 2の動作電流と光出力の関係を示 すグラフであり、 横軸は動作電流を示し、 縦軸は相対出力を示している。 また、 このグラフ上には、 熱電子放出陰極は有するがフード 2 0を装備しない従来タイ プのホロ一力ソードランプに関するデ一夕もプロヅトしてある。 本実施形態のホ 口一力ソードランプ 2のデ一夕は、 黒く塗りつぶした丸印、 三角印、 四角印のプ ロットを実線で繋いで示し、 従来タイプのデータは、 白抜きの丸印、 三角印、 四 角印のプロットを破線で繋いで示した。 なお、 丸印、 三角印、 四角印は、 それそ れ熱電子放出陰極 2 4に流す電流値を 5 mA , 1 5 mA , 2 5 mAとしたもので ある。 このグラフより、 熱電子放出陰極 2 4に流す電流値をどの値にしても、 従 来タイプのランプよりも本実施形態のランプ 2の方が、 光出力が遙かに高いこと がわかる。 特に、 ランプの動作電流を約 7 0 mA程度まで上げた場合は、 本実施 形態のランプ 2の出力は、 従来タイプのランプの出力の 1 . 5倍以上になる。 図 4は、 本実施形態のホロ一力ソードランプ 2において、 中空陰極の材料とし てバナジウムの代わりにバナジウムよりもスパッタリングされ易いセレンを用い た場合のデータを示すグラフである。 図 3と同様に、 本実施形態のホロ一カソー ドランプ 2のデ一夕は、 各プロットを実線で繋いで示し、 従来タイプのホロ一力 ソードランプのデータは、 各プロットを破線で繋いで示した。 また、 本実施形態 の熱電子放出陰極 2 4に流す電流値は、 3 0 mA, 6 0 mA , 8 0 mA , 9 0 m A , 1 1 0 mAとし、 従来タイプの熱電子放出陰極 2 4に流す電流値は、 2 0 m A , 3 0 mA , 4 0 mA , 5 0 mA , 8 0 mAとした。
図 4に示すように、従来夕ィプのランプの動作電流を約 4 0 m Aまで上げると、 光出力が著しく低下した。 これは、 動作電流が大きくなるとスパッタリングされ る陰極元素の量が多くなり、 飛散陰極元素が中空陰極から飛び出し広範囲に飛び 散ってしまうことに起因している。さらに、 この状態でランプを動作し続けると、 飛散陰極元素がバルブに付着しバルブの内周面を汚してしまい、 以後好適な使用 が困難となるだけでなくランプの寿命が著しく短くなつてしまう。 一方、 本実施 形態のランプでは、 動作電流を約 8 0 mAまで上げても光出力は低下せずに高出 力が得られた。 すなわち、 本実施形態のランプによれば、 従来のランプでは動作 電流を上げても得られなかった高出力を得ることができ、 その結果広い範囲での 光出力を得ることが可能となった。 なお、 本実施形態のランプでは、 動作電流を 8 0 m Aまで上げてもバルブの内周面は殆ど汚れなかった。
[第 2実施形態]
次に、 本発明に係るホロ一カソードランプの第 2実施形態について説明する。 図 5は、 本実施形態のホロ一力ソードランプの特徴部分を示す図である。 本実施 形態のホロー力ソードランプが第 1実施形態のランプ 2と異なるのは、 フード 2 0の構成にある。 図 5に示されているように、 本実施形態のフード 2 0には、 熱 電子放出陰極 2 4と陽極 8との間で放電を生じさせるため、 第 1実施形態のよう な円形の穴 2 2 (図 2参照) の代わりに、 その周側面にスリット 3 4が形成され ている。 スリット 3 4は、 フード 2 0の上方の開放端 2 0 bから下方の開放端 2 0 aまで延びている。 なお、 このスリット 3 4に臨む位置には、 スリット 3 4と 直交するように、 熱電子放出陰極 2 4が配置されている。
このような構成を採用した場合も、 第 1実施形態と同様に、 中空陰極 1 4から 飛散する飛散陰極元素はフード 2 0の内周面に付着するため、 バルブ 4の内周面 に飛散陰極元素が付着して汚れるという事態を防止することができる。 また、 フ ード 2 0によって、 飛散陰極元素が激しく広範囲に飛び散るという事態を防止で き、 これにより、 光出射面 3から出力されるスペクトル線の散乱を防止でき、 光 出力が向上する。 さらに、 フード 2 0は、 中空陰極 1 4の放熱部材としての役割 も果たし、 ランプ 2の動作電流の増加に伴う中空陰極 1 4の温度上昇率は低くな り、 ランプ 2の動作電流を従来よりも高くすることができ、 光出力が向上する。 また、 中空陰極 1 4がスパッ夕リングされる前に熱で溶けるという事態を防止す ることもできる。
またさらに、 スリット 3 4を介して熱電子放出陰極 2 4と陽極 8との間で生じ る熱電子放出を利用した放電によって、 中空陰極 1 4内に存在する未励起原子を スぺクトル線との衝突前に予め励起状態にすることができ、 当該未励起原子によ る自己吸収を防止できる。 このとき、 上述のように、 フード 2 0によって飛散陰 極元素が広範囲に飛び散るという事態が防止されているため、 熱電子放出を利用 した放電により未励起元素を効率良く励起状態にすることができる。
図 6は、 第 2実施形態の変形例を示す図である。 この変形例では、 熱電子放出 陰極 2 4は、 スリット 3 4と直交せず、 スリット 3 4と平行に配置されている。 このような構成を採用した場合、 熱電子放出陰極 2 4からの熱電子を利用する放 電を、 効率よく発生させることができる。
[第 3実施形態]
図 7および図 8を用いて、 第 3実施形態のホロ一力ソードランプを説明する。 図 7は、本実施形態のホロ一力ソードランプの特徴部分を示す図であり、図 8は、 図 7に示すランプの VII I— VIII 方向の断面図である。 本実施形態のホロ一カソ ―ドランプが第 1実施形態のランプ 2と異なるのは、 フード 2 0の構成にある。 図 7および図 8に示されているように、 フード 2 0には、 フード 2 0に形成され た穴 2 2と熱電子放熱陰極 2 4とを覆うカバー 4 0が備えられている。
このような構成を採用した本実施形態のホロ一力ソードランプによれば、 中空 陰極 1 4から飛散する上述の飛散陰極元素が、 電子供給用の穴 2 2から外部に飛 び出してバルブの内周面に付着するという事態を防止することができ、 ランプの 寿命が長くなることになる。
なお、 本実施形態のホロ一力ソードランプは、 第 1実施形態のランプにカバー 4 0を装着したものであるが、 このほか第 2実施形態のホロ一力ソードランプに カバー 4 0を装着することもできる。 すなわち、 熱電子放出陰極 2 4とスリット 3 4をカバー 4 0によって覆うことも好ましい。
以上、本発明者によってなされた発明を実施形態に基づき具体的に説明したが、 本発明は上記各実施形態に限定されるものではない。 例えば、 フードは、 断面円 形の筒に限られず、 中空陰極の形状に合わせて、 角筒等にしてもよい。 また、 フ ードに形成する穴は円形に限られず、 方形、 楕円形などに適宜変更することがで きる。 さらに、 中空陰極が内部筒と外部筒とから形成されている場合に、 別途フ 一ドを設けずに外部筒を光出射面方向に延ばし、 この外部筒の延在部分をフード とみなして当該延在部分に電子供給源と陽極との間で放電を起こさせるための穴 を形成してもよい。 産業上の利用可能性
以上説明したように、 本発明に係るホロ一力ソードランプによれば、 中空陰極 がスパッタリングされる際に飛散する陰極元素は、 筒状フードの内周面に付着す るため、 バルブの内周面は殆ど汚れない。 また、 筒状フードによって、 飛散元素 が激しく広範囲に飛び散るという事態を防止することができる。 このため、 ラン プから出力されるスぺクトル線の散乱を防止でき、 ランプの光出力を向上するこ とができる。
また、 筒状フードの周側面には穴またはスリットが形成されており、 さらに、 当該穴またはスリットに臨む位置に、 陽極との間で熱電子放出を利用した放電を 中空陰極内および筒状フード内で生じさせるための電子供給源が配置されている ( そして、 当該穴またはスリットを介して電子供給源と陽極との間で生じる放電に よって、 中空陰極内および筒状フード内に存在する未励起原子を予め励起状態に することができ、 当該未励起原子による自己吸収を防止することができる。 この とき、 上述のように、 筒状フードによって飛散元素の広範囲への飛び散りが防止 されているため、 電子供給源を陰極とした放電により効率良く未励起元素を励起 状態にすることが可能となり、 光出力が一層向上する。

Claims

言青求の範囲
1 . 光出射窓を有するバルブ内に、 当該光出射窓と対向する中空陰極 および陽極を備えるホロ一力ソードランプにおいて、
筒状形状をなし、 一の開放端が前記中空陰極に接続され、 他の開放端が前記光 出射窓と対向すると共に、 その周側面に穴が形成された筒状フードと、
前記穴に臨む位置に配置された電子供給源と、 を備え、
前記電子供給源と前記陽極との間で熱電子を利用した放電が行われることを特 徴とするホロ一力ソードランプ。
2 . 前記電子供給源および前記穴を覆うカバーを更に備えることを特 徴とする請求項 1記載のホロ一力ソードランプ。
3 . 光出射窓を有するバルブ内に、 当該光出射窓と対向する中空陰極 および陽極を備えるホロ一力ソードランプにおいて、
筒状形状をなし、 一の開放端が前記中空陰極に接続され、 他の開放端が前記光 出射窓と対向すると共に、 その周側面にスリットが形成された筒状フードと、 前記スリッ卜に臨む位置に配置された電子供給源と、 を備え、
前記電子供給源と前記陽極との間で熱電子を利用した放電が行われることを特 徴とするホロ一力ソードランプ。
4 . 前記電子供給源および前記スリットを覆うカバ一を更に備えるこ とを特徴とする請求項 3記載のホロ一力ソードランプ。
5 . 前記中空陰極は、 内部が貫通した貫通陰極であると共に、 前記光 出射窓と前記陽極との間に位置することを特徴とする請求項 1〜請求項 4のうち 何れか一項記載のホロ一力ソードランプ。
PCT/JP2000/001015 1999-02-23 2000-02-23 Lampe a cathode creuse WO2000051162A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU26897/00A AU2689700A (en) 1999-02-23 2000-02-23 Hollow-cathode lamp
EP00905277A EP1162648A4 (en) 1999-02-23 2000-02-23 HOLLOW CATHODE LAMP
US09/933,904 US6548958B2 (en) 1999-02-23 2001-08-22 Hollow cathode lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/44583 1999-02-23
JP11044583A JP2000243356A (ja) 1999-02-23 1999-02-23 ホローカソードランプ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/933,904 Continuation-In-Part US6548958B2 (en) 1999-02-23 2001-08-22 Hollow cathode lamp

Publications (1)

Publication Number Publication Date
WO2000051162A1 true WO2000051162A1 (fr) 2000-08-31

Family

ID=12695520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001015 WO2000051162A1 (fr) 1999-02-23 2000-02-23 Lampe a cathode creuse

Country Status (5)

Country Link
US (1) US6548958B2 (ja)
EP (1) EP1162648A4 (ja)
JP (1) JP2000243356A (ja)
AU (1) AU2689700A (ja)
WO (1) WO2000051162A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019385A1 (fr) * 2000-09-01 2002-03-07 Hamamatsu Photonics K.K. Lampe a cathode creuse, analyseur par absorption atomique et analyseur par fluorescence atomique
WO2002019384A1 (fr) * 2000-09-01 2002-03-07 Hamamatsu Photonics K.K. Lampe a cathode creuse, analyseur d'absorption atomique et analyseur de fluorescence atomique
WO2002021570A1 (fr) * 2000-09-01 2002-03-14 Hamamatsu Photonics K.K. Lampe a cathode creuse, analyseur a absorption atomique et analyseur a fluorescence atomique

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7522878B2 (en) * 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
US6861630B2 (en) * 2003-03-07 2005-03-01 Kabushiki Kaisha Toshiba Heating device and fixing device
US8896060B2 (en) 2012-06-01 2014-11-25 Taiwan Semiconductor Manufacturing Company, Ltd. Trench power MOSFET
CN106373840B (zh) * 2016-08-31 2018-05-08 兰州空间技术物理研究所 一种用于空心阴极的石墨触持极
GB2573570A (en) * 2018-05-11 2019-11-13 Univ Southampton Hollow cathode apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079660A (ja) * 1983-10-07 1985-05-07 Hamamatsu Photonics Kk ホロ−カソ−ドランプ
US5483121A (en) * 1992-04-24 1996-01-09 Koto Electric Co., Ltd. Hollow cathode discharge tube

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320321A (en) * 1980-03-25 1982-03-16 Alexandrov Vitaly V Hollow-cathode gas-discharge tube
SU854192A1 (ru) * 1980-03-26 1983-11-23 Рубежанский филиал Ворошиловградского машиностроительного института Источник ионов
JPS5719941A (en) * 1980-07-11 1982-02-02 Toshiba Corp Negative ion source
JPS57107540A (en) * 1980-12-25 1982-07-05 Toshiba Corp Hollow-cathode discharge device
WO1987003422A1 (en) * 1985-11-28 1987-06-04 Photron Pty. Ltd. Hollow cathode assembly and lamp
SU1769630A2 (ru) * 1989-02-13 1996-02-27 Рубежанский филиал Днепропетровского химико-технологического института им.Ф.Э.Дзержинского Источник ионов

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079660A (ja) * 1983-10-07 1985-05-07 Hamamatsu Photonics Kk ホロ−カソ−ドランプ
US5483121A (en) * 1992-04-24 1996-01-09 Koto Electric Co., Ltd. Hollow cathode discharge tube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1162648A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019385A1 (fr) * 2000-09-01 2002-03-07 Hamamatsu Photonics K.K. Lampe a cathode creuse, analyseur par absorption atomique et analyseur par fluorescence atomique
WO2002019384A1 (fr) * 2000-09-01 2002-03-07 Hamamatsu Photonics K.K. Lampe a cathode creuse, analyseur d'absorption atomique et analyseur de fluorescence atomique
WO2002021570A1 (fr) * 2000-09-01 2002-03-14 Hamamatsu Photonics K.K. Lampe a cathode creuse, analyseur a absorption atomique et analyseur a fluorescence atomique

Also Published As

Publication number Publication date
US20020000775A1 (en) 2002-01-03
EP1162648A1 (en) 2001-12-12
AU2689700A (en) 2000-09-14
US6548958B2 (en) 2003-04-15
JP2000243356A (ja) 2000-09-08
EP1162648A4 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
US7526068B2 (en) X-ray source for materials analysis systems
JPH07326324A (ja) ガス放電管
US5619101A (en) Gas discharge tube
WO2000051162A1 (fr) Lampe a cathode creuse
US3406308A (en) Electron discharge device for generation of spectral radiation having an auxiliary discharge of low current
JPH0756781B2 (ja) 中空陰極放電管
US7764018B2 (en) Gas discharge tube
US4833366A (en) High performance hollow cathode lamp
WO2000051163A1 (en) Hollow-cathode lamp
US6850008B2 (en) Gas-filled arc discharge lamp and a method of making thereof
WO2006022144A1 (ja) ガス放電管
WO2000051164A1 (fr) Lampe a cathode creuse
JPH07288106A (ja) 重水素放電管
US3476970A (en) Hollow cathode electron discharge device for generating spectral radiation
JP4974135B2 (ja) マルチマイクロホローカソード光源及び多元素同時吸光分析装置
JP4237400B2 (ja) ガス放電管
WO2002021570A1 (fr) Lampe a cathode creuse, analyseur a absorption atomique et analyseur a fluorescence atomique
WO2002019385A1 (fr) Lampe a cathode creuse, analyseur par absorption atomique et analyseur par fluorescence atomique
JP2004265631A (ja) ガス放電管
JP2002075283A (ja) ホロカソードランプ、原子吸光分析装置及び原子蛍光分析装置
JPH1186778A (ja) イオン化装置
JPS58127150A (ja) グロ−放電装置
JPH076737A (ja) 重水素放電管

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09933904

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000905277

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000905277

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000905277

Country of ref document: EP