WO2000050340A1 - Procede de production de polysulfure par oxydation electrolytique - Google Patents

Procede de production de polysulfure par oxydation electrolytique Download PDF

Info

Publication number
WO2000050340A1
WO2000050340A1 PCT/JP2000/001147 JP0001147W WO0050340A1 WO 2000050340 A1 WO2000050340 A1 WO 2000050340A1 JP 0001147 W JP0001147 W JP 0001147W WO 0050340 A1 WO0050340 A1 WO 0050340A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
polysulfide
chamber
producing
diaphragm
Prior art date
Application number
PCT/JP2000/001147
Other languages
English (en)
French (fr)
Inventor
Tetsuji Shimohira
Tatsuya Andoh
Junji Tanaka
Keigo Watanabe
Yasunori Nanri
Original Assignee
Asahi Glass Company, Limited
Kawasaki Kasei Chemicals Ltd.
Nippon Paper Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited, Kawasaki Kasei Chemicals Ltd., Nippon Paper Industries Co., Ltd. filed Critical Asahi Glass Company, Limited
Priority to AU26949/00A priority Critical patent/AU2694900A/en
Priority to DE60036100T priority patent/DE60036100T2/de
Priority to CA002364242A priority patent/CA2364242C/en
Priority to EP00905387A priority patent/EP1178009B1/en
Priority to BRPI0008568-5A priority patent/BR0008568B1/pt
Publication of WO2000050340A1 publication Critical patent/WO2000050340A1/ja
Priority to US09/938,579 priority patent/US6517699B2/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0064Aspects concerning the production and the treatment of green and white liquors, e.g. causticizing green liquor
    • D21C11/0078Treatment of green or white liquors with other means or other compounds than gases, e.g. in order to separate solid compounds such as sodium chloride and carbonate from these liquors; Further treatment of these compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/089Alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • C25B15/025Measuring, analysing or testing during electrolytic production of electrolyte parameters
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/13Single electrolytic cells with circulation of an electrolyte
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0057Oxidation of liquors, e.g. in order to reduce the losses of sulfur compounds, followed by evaporation or combustion if the liquor in question is a black liquor

Definitions

  • the present invention relates to a method for producing a polysulfide by electrolytic oxidation, and more particularly to a method for producing a polysulfide cooking liquor by electrolytically oxidizing white liquor or green liquor in a pulp production process.
  • the cooking liquor in the polysulfide cooking process is to oxidize an aqueous solution containing sodium sulfide, a so-called white liquor, with molecular oxygen such as air in the presence of a catalyst such as activated carbon (for example, the following reaction formula 1).
  • a catalyst such as activated carbon (for example, the following reaction formula 1).
  • the side reaction (for example, the following reaction formulas 2 and 3) increases the amount of thiosulfate ions that do not contribute to the digestion at all. It was difficult to produce cooking liquor containing high selectivity.
  • N SX 2 -one atom equivalent to one atom
  • S 2 sulfide ions
  • a 2 S mode the unit liter of capacity is represented by L.
  • PCT International Publication No. WO 95/07701 describes a method for electrolytically producing a polysulfide cooking liquor. In this method, an anode is used in which a carrier is coated with an oxide of ruthenium, iridium, platinum, or palladium. Specifically, a three-dimensional mesh electrode of a carrier in which a number of expanded metals are combined is disclosed.
  • PCT International Publication No. WO97 / 412125 describes a method for electrolytic production of a polysulfide digest by the present applicants.
  • a porous anode made of at least carbon is used as the anode, and in particular, an aggregate of carbon fibers having a diameter of 1 to 300 ⁇ is used.
  • the present invention provides an electrolysis method for preparing a cooking liquor containing a high concentration of polysulfide ions from a solution containing sulfide ions, in particular, a white liquor or a green liquor in a pulp production process, by extremely reducing by-products of thiosulfate ions.
  • the purpose is to produce with high selectivity and low power.
  • Another object of the present invention is to provide a method for producing a polysulfide cooking liquor under conditions of low pressure loss and low clogging in electrolysis operation. Disclosure of the invention
  • the present invention introduces a solution containing a sulfide ion into an anode chamber of an electrolytic cell having an anode chamber in which a porous anode is provided, a cathode chamber in which a cathode is provided, and a diaphragm separating the anode chamber and a cathode chamber.
  • a method for producing polysulfide wherein polysulfide ions are obtained by electrolytic oxidation, wherein the porous anode is arranged so as to have voids in at least a part between the porous anode and the diaphragm, and Provided is a method for producing a polysulfide, wherein the apparent volume of the porous anode is 60% to 99% with respect to the volume of the anode chamber.
  • the porous anode is arranged so as to have a void at least in part between the porous anode and the diaphragm, and the apparent volume of the porous anode is relative to the volume of the anode chamber. It is configured to be 60% to 99%.
  • the volume of the anode chamber is a volume of a space defined by an effective current-carrying surface of the diaphragm and an apparent surface of a portion of the anode fluid flowing farthest from the diaphragm.
  • Shape between anode and diaphragm The formed void may be formed on the entire effective current-carrying surface of the diaphragm, or may be formed on a part thereof.
  • the gap is continuous as a flow path. If the apparent volume exceeds 99%, the pressure loss is large in the electrolysis operation, and the suspended solids are easily clogged, which is not preferable. If the apparent volume is less than 60%, the amount of anode fluid flowing in the porous anode becomes too small, and the current efficiency becomes poor. Within this range, the electrolysis operation can be performed with low pressure loss and without clogging while maintaining good current efficiency. This value is more preferably set to 70 to 99%.
  • the present inventors have found that voids on the side of the diaphragm exert a more unexpected effect.
  • the anode electrode reaction in the present invention is considered to take place on almost the entire surface of the porous anode, the portion of the anode closer to the diaphragm has a smaller electric resistance of the liquid, so that the current flows easily, and the reaction proceeds preferentially. . Therefore, at this site, the reaction becomes rate-controlled by mass transfer, and by-products such as thiosulfate / oxygen are easily formed, and anodic dissolution is easily caused.
  • porous anode used in the present invention those having various shapes and materials are used. Specifically, for example, carbon fiber, carbon felt, carbon paper, metal foam, reticulated metal, etc. Reticulated carbon. A metal electrode having a surface modified with platinum or the like can also be suitably used.
  • the electrolysis operation is preferably performed under a pressure condition in which the pressure in the anode chamber is higher than the pressure in the force source chamber. If the electrolysis operation is performed under these conditions, the diaphragm is pressed against the cathode side, and the above-mentioned gap can be easily provided between the porous anode and the diaphragm.
  • the porous anode of the present invention preferably has a physically continuous three-dimensional network structure. Good.
  • the three-dimensional network structure is preferable because the anode surface area can be increased, a desired electrolytic reaction occurs on the entire surface of the electrode, and generation of by-products can be suppressed.
  • the anode is made of a physical continuum instead of a fiber aggregate, sufficient electrical conductivity as an anode is exhibited, and the IR drop at the anode can be reduced, so that the cell voltage can be further reduced.
  • the network structure is a physically continuous structure, and may be continuously connected by welding or the like. Specifically, at least the surface of the nickel or nickel consisting of 5 0 wt 0/0 than the content nickel alloy, physically continuous three-dimensional network structure is preferably les.
  • porous nickel obtained by plating nickel on the skeleton of a foamed polymer material and then baking off the polymer material inside can be given.
  • the anode having a three-dimensional mesh structure preferably has a diameter of 0.01 to 2 mm at a portion corresponding to a yarn of a mesh constituting the mesh. If the diameter is less than 0.01 mm, manufacturing is extremely difficult, costly, and handling is not easy. When the diameter exceeds 2 mm, a large surface area of the anode cannot be obtained, the current density on the anode surface increases, and not only is it easy to generate by-products such as thiosulfate ions, but also the anode is made of metal. In this case, anodic dissolution is likely to occur, which is not preferable. It is particularly preferred if the diameter is between 0.02 and 1 mm.
  • the average pore size of the anode network is preferably 0.001 to 5 mm. If the average pore diameter of the mesh is larger than 5 mm, the anode surface area cannot be increased, the current density on the anode surface increases, and not only is it easy to generate by-products such as thiosulfate ions, but also as an anode The use of a metal is not preferred because anode dissolution is likely to occur. If the average pore size of the mesh is smaller than 0.001 mm, clogging occurs when solid components are mixed in the electrolytic cell, and problems in the electrolytic operation when the pressure loss of the solution increases become large. It is not preferable because it may occur.
  • the average pore size of the anode network is 0.2 to 2 mm.
  • at least the surface of the porous anode contains 50% by weight of nickel or nickel. It is preferable to use a nickel alloy containing at least / 0 . Since at least the surface portion of the anode is nickel, it is practically sufficient for polysulfide production. Has moderate durability. Nickel is a material suitable for the present invention because it is inexpensive and has an elution potential, including oxides thereof, higher than the formation potential of polydithiosulfate.
  • the porous anode in the present invention preferably has a surface area of 2 to 100 m 2 Zm 2 per effective conducting area of the membrane separating the anode chamber and the cathode chamber.
  • the anode surface area is smaller than 2 m 2 Zm 2, the current density on the anode surface increases, and not only is it easy to generate by-products such as thiosulfate ions, but also when the anode is a metal, it tends to dissolve the anode. Become.
  • the anode surface area is larger than 100 m 2 / m 2, the pressure loss of the porous anode itself becomes high, and it becomes difficult for the anolyte to flow inside the porous anode, so that by-products such as thiosulfate ions are generated. It will be easier.
  • the anode surface area is more preferably in the range of effective current area per 5 ⁇ 5 Om 2 / m 2 of membrane.
  • the surface area of Anodo of ⁇ Roh one de chamber per volume is preferably 500 to a 2000 Om 2 / m 3. If the anode surface area per anode chamber volume is less than 50 Om 2 / m 3, the current density on the anode surface will increase and not only will it be easier to generate by-products such as thiosulfate ions, but also if the anode is made of metal Is not preferred because anodic dissolution is likely to occur.
  • Anodo surface area of the anode chamber body per volume is more preferably in the range of 1000 ⁇ 2000 Om 2 / m 3.
  • a current density at the diaphragm of 0.5 to 20 kA / m 2. If the current density on the diaphragm surface is less than 0.5 kA / m 2 , the electrolysis equipment will be unnecessarily large, which is not preferable. If the current density at the diaphragm surface exceeds 20 k A / m 2 is Chio sulfate, not only increases sulfate, by-products such as oxygen, since if the anode is a metal which may cause anodic dissolution preferably Absent. Les, still more preferably when the current density at the diaphragm surface is 2 ⁇ 1 5 k A / m 2 .
  • the operation can be performed in a range where the current density on the anode surface is small.
  • Current density at the surface of the anode each portion is assumed to be uniform that, if the anode of the surface area was determined current density at the anode surface, the value is 5 ⁇ 3 0 0 0 A / m 2 Is preferred.
  • a more preferred range is from 10 to 150 A / m 2. If the current density on the anode surface is less than 5 A / m 2, unnecessarily large electrolytic equipment will be required, which is not desirable.
  • the porous anode is arranged so as to have a void in at least a part between the porous anode and the diaphragm, even if the superficial velocity of the anode liquid is set to be large.
  • the pressure loss of the anode can be kept small.
  • the average superficial velocity of the anolyte is too low, not only will the by-products such as thiosulfuric acid, sulfuric acid, and oxygen increase, but if the anode is a metal, the anode may be dissolved, which is not preferable.
  • the average superficial velocity of the anodic solution is preferably 1 to 30 cmZ seconds. It is more preferable that the average superficial velocity of the vanadium liquid be 1 to 15 cm / sec, particularly 2 to 10 cmZ second.
  • the flow rate of the force sword liquid is not limited, but is determined by the magnitude of the buoyancy of the generated gas.
  • the liquid to be treated In order for the electrolytic reaction to occur efficiently at the anode, the liquid to be treated needs to flow through the anode. Therefore, it is preferable that the anode itself has sufficient voids, and the porosity of the porous anode is preferably 30 to 99%. If the porosity is less than 30%, the liquid to be treated may not flow inside the anode, which is not preferable. If the porosity exceeds 99%, it is not preferable because it becomes difficult to increase the anode surface area. It is particularly preferable that the porosity is 50 to 98%.
  • a current is supplied to the anode through the anode current collector.
  • a material of the current collector a material having excellent alkali resistance is preferable. For example, nickel, titanium, carbon, gold, platinum, stainless steel, or the like can be used.
  • the current collector is attached to the back of the anode or on the periphery. If the current collector is attached to the back of the anode, the surface of the current collector is flat.
  • the electric current may be supplied simply by mechanical contact with the anode, but it is preferable to physically adhere by welding or the like.
  • an alkali-resistant material is preferable, and nickel, Nickel, nickel sulfide, steel, stainless copper, etc. can be used.
  • the force sword has a flat or mesh shape, and one or more force swords are used in a multilayer structure.
  • a three-dimensional electrode combining linear electrodes can also be used.
  • electrolyzer a two-chamber electrolyzer comprising one anode chamber and one power sword chamber is used. Electrolyzers combining three or more rooms are also used. Multiple cells can be arranged in a monopolar or bipolar configuration.
  • a cation exchange membrane as the membrane separating the anode compartment and the cathode compartment.
  • the cation exchange membrane directs cations from the anode compartment to the force sword compartment, preventing the transfer of sulfide and polysulfide ions.
  • a cation exchange membrane a polymer membrane in which a force cation exchange group such as a sulfonic acid group or a carboxylic acid group is introduced into a hydrocarbon-based or fluororesin-based polymer is preferable. If there is no problem in terms of alkali resistance or the like, a bipolar membrane or an anion exchange membrane can be used.
  • the temperature of the anode compartment is preferably between 70 and 110 ° C.
  • the temperature of the anode chamber is lower than 70 ° C, not only is the cell voltage increased, but also sulfur deposition and by-products are easily generated. If the anode is a metal, the anode may be dissolved, which is preferable. Absent.
  • the upper temperature limit is practically limited by the material of the cell or diaphragm.
  • the anode potential, S 2 2 as an oxidation product of sulfide ions -, S 3 2 ⁇ , S 4 2 -, S 5 2 - polysulfide ions such as (SX 2 -) is generated, the Chio sulfate ions It is preferable to maintain it so as not to produce by-products.
  • the operation is preferably performed so that the anode potential is in the range of 0.75 to 10.25 V. If the anode potential is lower than 0.75 V, the formation of polysulfide ions does not substantially occur, which is not preferable.
  • the anode potential is higher than +0.25 V, it is not preferable because not only by-products such as thiosulfate ions are generated but also when the anode is a metal, the anode may be dissolved.
  • the electrode potential is Hg / 25 in a saturated KC1 solution at 25 ° C.
  • the anode is a three-dimensional electrode, it is not easy to accurately measure the anode potential. Therefore, industrially, it is preferable to control the manufacturing conditions by controlling the cell voltage and the current density on the diaphragm surface, rather than controlling the manufacturing conditions by controlling the potential.
  • constant current electrolysis is suitable for this electrolysis method, but it is also possible to change the current density. It is possible.
  • the solution containing sulfide ions supplied to the anode compartment can be at least partially circulated to the same anode compartment after being electrolytically oxidized in the anode compartment.
  • a process for supplying to the next step without performing such a circulation that is, a so-called one-pass process can also be adopted.
  • the solution containing sulfide ions is a white liquor or green liquor in the pulp manufacturing process
  • the electrolytically oxidized white liquor or green liquor flowing out of the anode compartment is recycled to the same anode compartment without circulation.
  • Alkali metal ions are preferable as the counter force thione for sulfide ions in the c anolyte that is preferably supplied to the process.
  • an alkali metal sodium or power beam is preferred.
  • the method of the present invention is particularly suitable for a method of treating a white liquor or a green liquor in a pulp production process to obtain a polysulfide cooking liquor.
  • white liquor or “green liquor” includes liquids that have been subjected to concentration, dilution, or separation of solids from the white liquor or green liquor, respectively.
  • the polysulfide production process of the present invention When incorporating the polysulfide production process of the present invention into the pulp production process, at least a part of the white liquor or green liquor is extracted, treated in the polysulfide production process of the present invention, and then supplied to the digestion process.
  • the composition of white liquor is, for example, that of white liquor used in the current kraft pulp digestion, usually contains 2 to 6 mo 1 ZL as alkali metal ions, of which 90% or more Are sodium ions and the rest are almost force ions.
  • Anions are mainly composed of hydroxide ion, sulfide ion and carbonate ion, and also include sulfate ion, thiosulfate ion, chloride ion and sulfite ion. It also contains trace components such as potassium, silicon, aluminum, phosphorus, magnesium, copper, manganese, and iron.
  • the composition of the green liquor is that sodium sulfide and sodium hydroxide are the main components of the white liquor, whereas sodium sulfide and sodium carbonate are the main components.
  • Other anions and trace components in the green liquor are the same as in the white liquor.
  • the PS—S concentration in the solution obtained by electrolysis is preferably 5 to 15 g / L. If it is less than 5 gZL, the effect of increasing the pulp yield during cooking may not be sufficiently obtained.
  • concentration of PS—S is higher than 15 g / L, the Na 2 S state is reduced, so that the pulp yield does not increase and thiosulfate ions are easily produced during electrolysis.
  • SX 2- average value of X of the existing polysulfide ions
  • the electrolysis operation so that the average value of X of the polysulfide ions in the cooking liquor is 4 or less, particularly 3.5 or less.
  • the conversion rate (reaction rate) of sulfide ions to PS—S is preferably 15% or more and 75% or less, more preferably 72% or less.
  • the reaction in the power sword chamber it is preferable to use a reaction in which hydrogen gas is generated from power water that can be selected in various ways.
  • Alkali hydroxide is generated from the resulting hydroxide ions and alkali metal ions that have migrated from the anode compartment.
  • the solution to be introduced into the cathode is preferably substantially composed of water and an alkali metal hydroxide, particularly preferably a solution composed of sodium or potassium hydroxide.
  • the concentration of the alkali metal hydroxide is not limited, but is, for example, 1 to 15 mo 1 ZL, and preferably 2 to 5 mo 1 / L.
  • a solution having an ionic strength lower than the ionic strength of the white liquor flowing through the anode chamber is used as the force sword solution, it is possible to prevent insoluble matter from being deposited on the diaphragm.
  • a two-chamber electrolytic cell was assembled as follows. Nickel foam (available from Sumitomo Electric Industries, trade name Celmet, height 10 OmmX width 21011111, thickness 41 ⁇ 11) was electro-welded to the nickel current collector plate. A fluorinated resin cation exchange membrane (Flemion, trade name, manufactured by Asahi Glass Co., Ltd.) was prepared as a force sword using mesh-shaped Raney nickel as a diaphragm. A 5 mm thick anode chamber frame was fitted to the anode, and a diaphragm, a power source, a 5 mm thick force source chamber frame, and a cathode chamber plate were stacked and pressed down and fixed.
  • Nickel foam available from Sumitomo Electric Industries, trade name Celmet, height 10 OmmX width 21011111, thickness 41 ⁇ 11
  • a fluorinated resin cation exchange membrane (Flemion, trade name, manufactured by Asahi Glass Co., Ltd.) was prepared as a
  • the shape of the anode chamber is 10 Omm high, 20 mm wide, 5 mm thick Chamber shape height 1 0 Omm, width 2 Omm, a thickness of 5 mm, the effective area of the diaphragm is 20 cm 2.
  • both the anolyte and the catholyte flow in the height direction of each chamber from the bottom to the top, so that the pressure on the anode chamber side is higher than that on the cathode chamber side, so that the diaphragm is force-sworded.
  • a 1 mm thick gap between the anode and the diaphragm To secure a 1 mm thick gap between the anode and the diaphragm.
  • Anode thickness 5 mm
  • Anode thickness 4 mm
  • Appearance volume ratio of the node to the volume of the node 80%
  • Porosity of the anode chamber 96% Average liquid superficial velocity in the anode chamber: 4 cmZ seconds Anode surface area per anode chamber volume: 5600 m 2 Zm 3
  • the average pore size of the mesh surface area to 0. 5 1 mm membrane area: 28 m 2 electrolysis temperature: current density at 85 ° C diaphragm: 6 k A / m 2
  • 1 L of a model white liquor Na 2 S: 16 g / L in terms of iodine atom, Na OH: 90 g ZL, Na 2 CO 3 : 34 g / L
  • a flow rate of 240 mLZ anode chamber / average superficial velocity: 4 cm / sec
  • Using 2 L of 3 N: NaOH aqueous solution as the catholyte circulate at a flow rate of 8 OmLZ (superficial velocity: 1.3 cm / sec) while introducing from the lower side of the power sword chamber and extracting from the upper side.
  • Heat exchangers were provided on both the anode side and the power sword side, and the anolyte and the power sword were heated and introduced into the cell.
  • Current 1 2 A was synthesized in (current density 6 k A / m 2 at the diaphragm) by performing a constant current electrolysis polysulfide distilled solution solution, samples the measured circulating liquid of the cell voltage at a given time, PS-S, sulfide ion and thiosulfate ion in the solution were analyzed and quantified. The analysis was performed based on the method described in JP-A-7-92148. The time courses of the quantitative values of the concentrations of various sulfur compounds and the measured values of the cell voltage were as follows. The composition of the polysulfide cooking liquor after 1 hour 30 minutes from the start of electrolysis, PS- S is 1 0. 0 g / L, the N a 2 S was 5.
  • the cell voltage was constant at about 1.3 V for about 1 hour from the start of electrolysis, but then increased gradually.
  • the thiosulfate ion concentration began to rise, and the voltage was 1.4 V per hour and forty minutes. After one hour, the voltage rose to about 2 V, and the nickel dissolution reaction began to progress.
  • the pressure loss at the anode was 0.12 kgf / cm 2 / m.
  • the "current efficiency” and “selectivity” are as follows when the generated PS-S concentration is A (gZL) and the generated thiosulfate ion concentration is B (g / L) in terms of y-atom. Define. Until the nickel elution reaction occurs during the electrolysis operation, only PS-S and thiosulfate ions are generated, so the definition may be as follows.
  • X Nickel eluted before the average value of X of the polysulfide ion (S x 2-) was 2, or PS-S was less than 8 g / L.
  • Nickel was eluted when the average value of X of the polysulfide ion (SX 2- ) became 3.6 or when the electrolytic reaction changed from the PS-S formation reaction to the thiosulfate formation reaction.
  • the “initial cell voltage” shown in Table 1 indicates the voltage value in a constant and stable state after the start of electrolysis. For example, in Example 1, the cell voltage was stabilized at 1.3 V until about one hour after the start of electrolysis. This voltage value is called “initial cell voltage”.
  • Example 2 to 4 Constant current electrolysis was performed in the same manner as in Example 1 under the condition that the apparent volume of the anode with respect to the volume of the anode chamber was changed by changing the thickness of the anode chamber frame.
  • Table 1 shows the physical properties and electrolysis results of the anode in each example.
  • PS—S was generated at a current efficiency of about 85% and a selectivity of about 90%, and the PS—S concentration exceeded 10 g ZL 1 hour and 30 minutes after the start of electrolysis. was obtained.
  • Example 1 Thereafter, as in Example 1, when the average value of X of the polysulfide ion (S X 2 ⁇ ) becomes about 4, the polysulfide ion starts to decrease while maintaining that value, and thiosulfate ion is generated. It has begun.
  • the initial cell voltage increased with the liquid resistance as the distance between the anode and the diaphragm increased.
  • the evaluation of Nickel elution is as shown in Table 1.
  • Constant current electrolysis was performed in the same manner as in Example 1 except that the thickness of the anode chamber frame was 4 mm, and that no gap was provided between the anode and the diaphragm.
  • Table 1 shows the physical properties of the anode and the electrolysis results. Polysulfide ion and thiosulfate ion were produced with high current efficiency as in Examples 1-4.
  • the dissolution evaluation of nickel was ⁇ , but the dissolution reaction occurred in a shorter electrolysis time than in Examples 1, 2, and 4. Further, the pressure loss was 0.28 kgf / cm 2 Zm which was larger than that of the example.
  • Constant current electrolysis was performed in the same manner as in Example 1 except that the thickness of the anode chamber frame was 7 mm, and a gap between the anode and the diaphragm was 3 mm.
  • Table 1 shows the physical properties of the anode and the electrolysis results. From the beginning of electrolysis, the current efficiency was low at 70% and the selectivity was low at 75%, and nickel was eluted before the concentration of PS ⁇ S became high. The initial cell voltage was much higher than in Examples 1-4.
  • Constant current electrolysis was performed in the same manner as in Example 1 except that the superficial velocity of the anolyte was set to 2.0 c seconds. Further, as in Examples 1 to 4, Table 2 shows the results obtained under the condition that the apparent volume of the anode to the anode chamber volume was changed by changing the thickness of the anode chamber frame. In each example, a polysulfide cooking liquor having a PS—S concentration exceeding 10 g ZL was obtained with a current efficiency of 85% or more and a selectivity of 89% or more. For Examples 5 to 7, high nickel dissolution evaluation was obtained. In Example 8 having a space width of 2 mm, nickel eluted slightly earlier.
  • Constant current electrolysis was performed in the same manner as in Examples 5 to 8, except that the thickness of the anode chamber frame was set to 4 mm, and no gap was provided between the anode and the diaphragm. Polysulfide ions and thiosulfate ions were generated with high current efficiency as in Examples 5 to 8. Although the dissolution evaluation of nickel was ⁇ , the dissolution reaction occurred in a shorter electrolysis time than in Examples 5 to 7. Further, the pressure loss was as large as 0.10 kgfZcm2Zm as compared with the example.
  • the thickness of the anode chamber frame was 7 mm, and a gap of 3 mm was provided between the anode and the diaphragm. Except for the point, constant current electrolysis was performed in the same manner as in Examples 5 to 8. From the beginning of electrolysis, the current efficiency was as low as 60% and the selectivity was as low as 64%. Nickel eluted before the PS-S concentration became high. Also, the initial cell voltage was considerably higher than in Examples 1-4.
  • Constant current electrolysis was performed under the same conditions as in Example 1 except that the current density per effective energized area of the diaphragm was set to 8 kA / m 2.
  • Table 3 shows the results. With a current efficiency of 80% and a selectivity of 84%, a polysulfide cooking liquor with a PS—S concentration exceeding 10 gZL was obtained. The nickel dissolution evaluation was ⁇ .
  • Constant current electrolysis was performed in the same manner as in Comparative Example 1, except that the current density per effective conducting area of the diaphragm was set to 8 kA / m 2.
  • Example 9 and Comparative Example 5 differ only in the apparent volume of the anode with respect to the volume of the anode chamber. Table 3 shows the results. When a PS-S solution with l O gZL concentration was produced, the current efficiency was 82% and the selectivity was 85%. The dissolution evaluation of nickel was ⁇ as in Example 9, but was eluted slightly earlier than in Example 9. Further, the pressure loss was more than twice as high as in Example 9.
  • the physical properties and electrolysis conditions of the anode are the same as those in Example 1.
  • pulp mill made white liquor The (Na 2 S Iou containing 21 g / L in terms of atom), 1 2 OmLZ min flow rate: at (anode compartment average superficial velocity 2 c mZ seconds), the anode chamber was distributed with one pass from below.
  • the cell voltage was about 1.2 V, and the pressure loss at the anode was 0.07 kgf / cm2 / m.
  • the nickel concentration in the polysulfide cooking liquor was analyzed, the nickel concentration was the same as the nickel concentration contained in the white liquor before being introduced into the electrolytic cell, and nickel was not eluted.
  • the by-product of thiosulfate ion is extremely small, it is possible to produce a cooking liquor containing a high concentration of polysulfide and having a large amount of residual Na2S while maintaining a high selectivity.
  • the pulp yield can be effectively increased.
  • pressure loss during the electrolysis operation can be reduced, and clogging of S S (suspension material) can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Paper (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

明細書
電解酸化を用いた多硫化物の製造方法 技術分野
本発明は、 電解酸化による多硫化物の製造方法に関し、 特にパルプ製造工程に おける白液または緑液を電解酸化して多硫化物蒸解液を製造する方法に関する。. 背景技術
木材資源の有効利用として、 化学パルプの高収率化は重要な課題である。 この 化学パルプの主流をなすクラフトパルプの高収率化技術の一つとして多硫化物蒸 角早プロセスがある。
多硫化物蒸解プロセスにおける蒸解薬液は、 硫化ナトリゥムを含むアル力リ性 水溶液、 いわゆる白液を、 活性炭等の触媒の存在下に空気等の分子状酸素により 酸化する (例えば下記反応式 1 ) ことにより製造される (特開昭 6 1— 2597 54号公報、特開昭 53 - 9298 1号公報)。 この方法により硫化物イオンべ一 スで転化率 60%、 選択率 60%程度で多硫化ィォゥ濃度が 5 g/L程度の多硫 化物蒸解液を得ることができる。 し力 し、 この方法では転化率を上げた場合に副 反応 (例えば下記反応式 2、 3) により蒸解には全く寄与しないチォ硫酸イオン の副生が多くなるため、 高濃度の多硫化ィォゥを含む蒸解液を高選択率で製造す ることは困難であった。
4 N a 2 S +02+ 2 H20 → 2Na 2S2+4Na OH (1) 2Na 2S + 202 + H 0 → 2 N a 2 S 203+ 2 N a OH (2) 2Na 2S2+4Na OH → 2 N a 2 S 203 (3) ここで多硫化ィォゥとは、 ポリサルファイ ドサルファ (P S— S) とも称し、 たとえば多硫化ナトリゥム Na 2 S Xにおける価数 0のィォゥ、すなわち原子(X - 1) 個分のィォゥをいう。 また、 多硫化物イオン中の酸化数一 2のィォゥに相 当するィォゥ(S X2-にっき 1原子分のィォゥ) および硫化物イオン (S 2·) を 総称したものを本明細書中では N a 2 S態ィォゥと表すことにする。 なお、 本明 細書では容量の単位リットルを Lで表す。 一方、 P C T国際公開 W〇 9 5 / 0 0 7 0 1号には多硫化物蒸解液の電解製造 方法について記載されている。 この方法では、 アノードとして、 担体上にルテニ ゥム、 イリジウム、 白金、 パラジウムの酸化物を被覆したものを使用している。 具体的には、 多数のエキスパンドメタルを組み合わせた担体の 3次元メッシュ電 極が開示されている。 また、 P C T国際公開 W0 9 7 / 4 1 2 9 5号には本出願 人らによる多硫化物蒸解液の電解製造方法について記载されている。 この方法で は、 アノードとして少なくとも炭素からなる多孔性のアノードが用いられ、 特に 直径 1〜3 0 0 μ πιの炭素繊維の集積体が用いられている。
本発明は、 硫化物イオンを含む溶液、 特にパルプ製造工程の白液または緑液か ら電解法により高濃度の多硫化イオンを含む蒸解液を、 チォ硫酸イオンの副生を 極めて少なく して、 高選択率でかつ低電力で製造することを目的とする。 また本 発明は、 電解操作上、 圧力損失が小さく、 目詰まりの少ない条件で多硫化物蒸解 液を製造できる方法を提供することを目的とする。 発明の開示
本発明は、多孔性アノードを配するアノード室、カソードを配するカソード室、 アノード室とカソ一ド室を区画する隔膜を有する電解槽のアノード室に硫化物ィ オンを含有する溶液を導入し、 電解酸化により多硫化物イオンを得る多硫化物の 製造方法であって、 多孔性アノードが該多孔性アノードと隔膜との間の少なくと も一部に空隙を有するように配され、 かつ、 多孔性アノードの見掛け体積がァノ ード室の体積に対して 6 0 %〜9 9 %であることを特徴とする多硫化物の製造方 法を提供する。 発明を実施するための最良の形態
本発明においては、 多孔性アノードが該多孔性アノードと隔膜との間の少なく とも一部に空隙を有するように配され、 この多孔性アノードの見掛け体積がァノ 一ド室の体積に対して 6 0 %〜9 9 %になるよう構成される。 ここでアノード室 の体積とは、 隔膜の有効通電面とアノード液の流れの隔膜から最も距離のある部 分の見掛け上の面とで区画された空間の体積である。 アノードと隔膜との間に形 成される空隙は隔膜の有効通電面全体に形成されてもよく、 その一部に形成され ていてもよい。 粒径の大きな固形成分が電解槽内に混入した際に目詰まりを起す おそれがある場合、 この空隙は流路として連続であることが好ましい。 この見掛 け体積が 9 9 %を超えると、 電解操作上圧力損失が大きく、 また懸濁物質が詰ま りやすくなり好ましくない。 見掛け体積が 6 0 %を下回ると、 多孔性アノード内 を流れるァノード液量が少なくなりすぎ、電流効率が悪くなるので好ましくなレ、。 この範囲ならば、 電解操作を、 良好な電流効率を保ちつつ、 小さい圧力損失で、 しかも目詰まりの心配なく行うことができる。 この値は 7 0〜9 9 %に設定する のがさらに好ましい。
また、 本発明者らは、 隔膜側の空隙がさらに意外な効果を発揮させることを見 い出した。 本発明におけるアノード電極反応は多孔性アノードのほぼ全面で起る と考えられるが、 アノードの隔膜に近い部分の方が液の電気抵抗が小さいため電 流が流れやすく、 優先的に反応が進行する。 したがって、 この部位では反応が物 質移動律速になり、チォ硫酸ィォンゃ酸素などの副生成物ができやすくなつたり、 アノード溶解が起きやすくなつたりする。 しカゝし、 多孔性アノードと隔膜との間 に空隙を設けると、 この空隙のアノード液の線速度が大きくなり、 この流れに引 きずられてアノードの隔膜側部位の液流速が大きくなるため、 アノードの隔膜に 近い部分での物質拡散が有利となり副反応を効果的に抑制することができる。 また、 この空隙によりアノード液の流れがスムーズになり、 隔膜のアノード側 表面に沈着物をたまりにくくすることができるという利点がある。
本発明に用レ、られる多孔性ァノードとしては様々な形状や材質のものが用いら れるが、 具体的には、 例えば炭素繊維、 カーボンフェルト、 カーボン紙、 金属発 泡体、 網目状金属等、 網目状カーボンがあげられる。 表面に白金等の修飾を施し た金属電極も好適に使用できる。
本発明では、 前記電解操作において、 アノード室内の圧力が力ソード室内の圧 力よりも大きい圧力条件で行われることが好ましい。 この条件で電解操作を行え ば、 隔膜が陰極側に押し付けられることになり、 多孔性アノードと隔膜との間に 容易に前記の空隙を設けることができる。
本発明の多孔性ァノ一ドは物理的に連続な 3次元の網目構造を有することが好 ましい。 3次元の網目構造にすることにより、 アノード表面積を大きくでき、 電 極表面の全面で目的とする電解反応が起り、 副生物の生成を抑制することができ るので好ましい。 また、 ァノードを繊 ¾進の集合体ではなく物理的な連続体にすれ ば、 アノードとして十分な電気伝導性を示し、 ァノードにおける I Rドロップを 小さくできるので、 セル電圧をより低くすることができる。
網目構造は物理的に連続的な構造であり、 溶接等で連続的に結合していても良 い。 具体的には、 少なくともその表面がニッケルまたはニッケルを 5 0重量0 /0以 上含有するニッケル合金からなる、 物理的に連続な 3次元の網目構造体が好まし レ、。 例えば発泡高分子材料の骨格にニッケルをメツキした後、 内部の高分子材料 を焼成除去して得られる多孔性ニッケルをあげることができる。
3次元網目構造のアノードは、 その網目を構成する網の糸に相当する部分の直 径が 0 . 0 1〜2 mmであることが好ましい。 直径が 0 . 0 1 mmに満たない場 合は、 製造が極めてむずかしく、 コストがかかるうえ、 取扱いも容易でないので 好ましくない。 直径が 2 mmを超える場合は、 アノードの表面積が大きいものが 得られず、 アノード表面における電流密度が大きくなり、 チォ硫酸イオンのよう な副生物が生成しやすくなるだけでなく、 アノードが金属の場合にはアノード溶 解を起しやすくなるので好ましくない。 その直径が 0 . 0 2〜l mmである場合 は特に好ましい。
アノードの網目の平均孔径は 0 . 0 0 1〜5 mmであることが好ましい。 網目 の平均孔径が 5 mmよりも大きいと、アノード表面積を大きくすることができず、 アノード表面における電流密度が大きくなり、 チォ硫酸イオンのような副生物が 生成しやすくなるだけでなく、 アノードとして金属を用いた場合にはアノード溶 解を起しやすくなるので好ましくない。 網目の平均孔径が 0 . 0 0 l mmより小 さいものは、 電解槽内に固形成分が混入した場合に目詰まりを起し、 液の圧力損 失が大きくなるといつた電解操作上の問題が生じるおそれがあるので好ましくな レ、。 アノードの網目の平均孔径が 0 . 2〜 2 mmである場合はさらに好ましい。 本発明においては、 多孔性アノードの少なくとも表面がニッケルまたはニッケ ルを 5 0重量。 /0以上含有するニッケル合金からなることが好ましい。 アノードの 少なくとも表面部分がニッケルであるので、 多硫化物の製造において実用的に十 分な耐久性を有する。 ニッケルは安価であり、 かつその酸化物を含めた溶出電位 が多硫化ィォゥゃチォ硫酸ィオンの生成電位より高いので、 本発明には適した材 料である。
また、 本発明における多孔性アノードは、 その表面積が、 アノード室とカソー ド室を隔てる隔膜の有効通電面積当り 2〜1 00m 2Zm2であるのが好ましい。 アノード表面積が 2m 2Zm 2 よりも小さいとアノード表面における電流密度が 大きくなり、 チォ硫酸イオンのような副生物が生成しやすくなるだけでなく、 ァ ノードが金属の場合はアノード溶解を起しやすくなる。 アノード表面積が 1 00 m 2 /m 2 よりも大きいと多孔性アノード自体の圧損が高くなり、 多孔性ァノー ド内部にアノード液が流れにくくなるため、 チォ硫酸イオンのような副生物が生 成しやすくなる。 アノード表面積は隔膜の有効通電面積当り 5〜5 Om 2/m 2 であるのがさらに好ましい。
ァノ一ド室体積当りのァノードの表面積は、 500〜 2000 Om 2/m 3で あるのが好ましい。 アノード室体積当りのアノード表面積が 50 Om 2/m 3 よ り小さいと、 アノード表面における電流密度が大きくなり、 チォ硫酸イオンのよ うな副生物が生成しやすくなるだけでなく、 アノードが金属の場合はアノード溶 解を起しやすくなるので好ましくない。 アノード室体積当りのアノード表面積を
2000 Om 2/m 3 より大きく しょうとすると、 液の圧力損失が大きくなると いった電解操作上の問題が生じるおそれがあるので好ましくない。 アノード室体 積当りのァノード表面積は、 1000〜 2000 Om 2/m 3の範囲であるのが さらに好ましい。
隔膜面での電流密度は 0. 5〜 20 k A/m 2で運転するのが好ましい。 隔膜面 での電流密度が 0. 5 k A/m2に満たない場合は必要以上に大きな電解設備にな るので好ましくない。 隔膜面での電流密度が 20 k A/m2を超える場合は、 チォ 硫酸、 硫酸、 酸素などの副生物を増加させるだけでなく、 アノードが金属の場合 はアノード溶解を起すおそれがあるので好ましくない。 隔膜面での電流密度が 2 〜1 5 k A/m2である場合はさらに好ましレ、。 本発明では、 隔膜の面積に対して、 表面積の大きなアノードを用いているためァノード表面での電流密度が小さレヽ範 囲で運転することができる。 アノード各部分の表面での電流密度が均一であると仮定して、 アノードの表面 積からアノード表面での電流密度を求めた場合、その値は 5〜 3 0 0 0 A/m 2で あることが好ましい。 より好ましい範囲は 1 0〜1 5 0 0 A/m 2である。 ァノ一 ド表面での電流密度が 5 A/m 2 に満たない場合は不必要に大きな電解設備が必 要となるので好ましくなレ、。アノード表面での電流密度が 3 0 0 0 A/m 2を超え る場合は、 チォ硫酸、 硫酸、 酸素などの副生物を增加させるだけでなく、 ァノー ドが金属の場合はアノード溶解を起すおそれがあるので好ましくない。
本発明においては、 多孔性ァノ一ドが該多孔性ァノードと隔膜との間の少なく とも一部に空隙を有するように配されるので、 ァノード液の空塔速度を大きく設 定してもアノードの圧力損失を小さく維持することができる。 また、 アノード液 の平均空塔速度が小さすぎると、 チォ硫酸、 硫酸、 酸素などの副生物を増加させ るだけでなく、 アノードが金属の場合はアノード溶解を起すおそれがあるので好 ましくない。 ァノ一ド液の平均空塔速度としては、 1〜 3 0 c mZ秒が好適であ る。 ァノード液の平均空塔速度が 1〜 1 5 c m/秒、 特には 2〜 1 0 c mZ秒の 場合はさらに好ましい。 力ソード液の流速は限定されないが、 発生ガスの浮上力 の大きさにより決められる。
アノードで電解反応が効率よく起るためにはアノード內を被処理液体が流通す る必要がある。 このためアノード自体が十分な空隙を有することが好ましく、 多 孔性ァノ一ドの空隙率は 3 0〜 9 9 %が好ましい。 空隙率が 3 0 %に満たない場 合は、 アノード内部に被処理液体が流通しないおそれがあるので好ましくない。 空隙率が 9 9 %を超える場合は、 アノード表面積を大きくすることが困難になる ので好ましくない。 空隙率が 5 0〜9 8 %である場合は特に好ましい。
アノードにはアノード集電体を通じて電流を供給する。 集電体の材質としては 耐アルカリ性に優れた材質が好ましく、 例えばニッケル、 チタン、 炭素、 金、 白 金、 ステンレス鋼などを用いることができる。 集電体はアノードの背面や周辺等 に取り付けられる。 集電体がアノードの背面に取り付けられる場合、 集電体の表 面は平面状でよレ、。 単にアノードとの機械的な接触により電流を供給するもので もよいが、 溶接等により物理的に接着させるのが好ましい。
カソード材料としては、 耐ァルカリ性の材料が好ましく、 ニッケル、 ラネ一二 ッケル、 硫化ニッケル、 鋼、 ステンレス銅などを用いることができる。 力ソード は、 平板またはメッシュ状の形状のものを、 一つまたは複数を多層構成にして用 いる。 線状の電極を複合した 3次元電極を用いることもできる。
電解槽としては、 1つのアノード室と 1つの力ソード室とからなる 2室型の電 解槽が用いられる。 3つまたはそれ以上の部屋を組み合わせた電解槽も用いられ る。 多数の電解槽は単極構造または複極構造に配置することができる。
アノード室とカソ一ド室とを隔てる膜としては、 カチオン交換膜を用いるのが 好ましい。 カチオン交換膜は、 アノード室から力ソード室へはカチオンを導き、 硫化物イオンおよび多硫化物イオンの移動を妨げる。 カチオン交換膜としては、 炭化水素系またはフッ素樹脂系の高分子にスルホン酸基、 カルボン酸基などの力 チオン交換基が導入された高分子膜が好ましい。 また、 耐アルカリ性などの面で 問題がなければ、 バイポーラ膜、 ァニオン交換膜などを使用することもできる。 アノード室の温度は 7 0〜 1 1 0 °Cであるのが好ましい。 アノード室の温度が 7 0 °Cより低い場合は、 セル電圧が高くなるだけでなく、 硫黄の析出や副生物が 生成しやすく、 アノードが金属の場合はアノード溶解のおそれがあるので好まし くない。 温度の上限は、 実際上、 電解槽または隔膜の材質で制限される。
アノード電位は、 硫化物イオンの酸化生成物として S 2 2 -、 S 3 2 ·、 S 4 2 -、 S 5 2 -などの多硫化物イオン(S X 2 - ) が生成し、 チォ硫酸イオンが副生しないよ うに維持されることが好ましい。 アノード電位は、 一 0 . 7 5〜十 0 . 2 5 Vの 範囲になるよう運転するのが好ましい。 アノード電位が一 0 . 7 5 Vより低い場 合は、 多硫化物イオンの生成が実質的に起らないので好ましくない。 アノード電 位が + 0 . 2 5 Vより高い場合は、 チォ硫酸イオンなどの副生物が生成するだけ でなく、 アノードが金属の場合はアノード溶解を起すおそれがあるので好ましく ない。 なお、 本明細書において、 電極電位は 2 5 °C飽和 K C 1溶液における H g /
H g 2 C 1 2の参照電極に対して測定された電位を表す。
ァノ一ドが 3次元電極である場合には、 ァノード電位を正確に測定することは 容易でない。 したがって、工業的には電位を規制して製造条件を制御するよりは、 セル電圧や隔膜面における電流密度を規制して製造条件を制御するのが好ましい。 なお、 この電解方法は定電流電解が好適であるが、 電流密度を変化させることも 可能である。
アノード室に供給される硫化物イオンを含有する溶液は、 アノード室で電解酸 化された後、 少なくとも一部を同じアノード室に循環することができる。 また、 そのような循環を行わずに次工程へ供給する処理、 いわゆるワンパス処理を採用 することもできる。 硫化物イオンを含有する溶液が、 パルプ製造工程における白 液または緑液である場合には、 アノード室から流出する電解酸化された白液また は緑液を、 同じァノード室に循環することなく次工程へ供給するのが好ましい c アノード液における、 硫化物イオンのカウンタ一力チオンとしてはアルカリ金 属イオンが好ましい。 アルカリ金属としてはナトリゥムまたは力リゥムが好まし レ、。
本発明の方法は、 パルプ製造工程における白液または緑液を処理して多硫化物 蒸解液を得る方法に特に適している。 本明細書で、 白液または緑液というとき、 それぞれ白液または緑液について、 濃縮、 希釈または固形分の分離処理などをほ どこした液体も含むものとする。 パルプ製造工程中に、 本発明による多硫化物製 造工程を組み入れる場合、 白液または緑液の少なくとも一部を抜き出して本発明 の多硫化物製造工程で処理したうえで蒸解工程に供給する。
白液の組成は、 例えば、 現在行われているクラフトパルプ蒸解に用いられてい る白液の場合、 通常、 アルカリ金属イオンとして 2〜6 m o 1 Z Lを含有し、 そ のうちの 9 0 %以上はナトリゥムイオンであり、 残りはほぼ力リゥムイオンであ る。 またァニオンは、 水酸化物イオン、 硫化物イオン、 炭酸イオンを主成分とし、 他に硫酸イオン、 チォ硫酸イオン、 塩素イオン、 亜硫酸イオンを含む。 さらに力 ルシゥム、 ケィ素、 アルミニウム、 リン、 マグネシウム、 銅、 マンガン、 鉄のよ うな微量成分を含む。 一方、 緑液の組成は、 白液の主成分が硫化ナトリウムと水 酸化ナトリゥムであるのに対して、 硫化ナトリゥムと炭酸ナトリゥムが主成分で ある。 緑液中のその他のァニオンや微量成分については白液と同様である。 この ような白液または緑液を本発明によるアノード室に供給して電解酸化を行った場 合、 硫化物イオンが酸化されて多硫化物イオンが生成する。 それに伴いアルカリ 金属ィオンが隔膜を通してカソード室に移動する。
パルプ蒸解工程で用いる場合、 白液または緑液中の硫化物ィォン濃度にもよる 力 電解して得られる溶液 (多硫化物蒸解液) 中の P S— S濃度は、 5〜1 5 g /Lであるのが好ましい。 5 gZLより少ない場合は、 蒸解時のパルプ収率増加 の効果が十分得られないおそれがある。 P S— Sの濃度が 1 5 g/Lより大きレヽ 場合は、 N a 2 S態ィォゥが少なくなるので、 パルプ収率が増加しないうえ、 電 解時にチォ硫酸イオンが副生しやすくなる。 また、 存在する多硫化物イオン (S X2-)の Xの平均値が 4を超えるようになると、 同様に電解時にチォ硫酸イオンが 副生するようになり、 ァノードが金属の場合はァノ一ド溶解も起りやすくなるの で、 蒸解液中の多硫化物イオンの Xの平均値は 4以下、 特に 3. 5以下になるよ うに電解操作を行うことが好ましい。 硫化物イオンの P S— Sへの転化率 (反応 率) は、 1 5%以上 75%以下が好ましく、 72%以下がより好ましレ、。
力ソード室の反応は、 種々選択することができる力 水から水素ガスが生成す る反応を利用するのが好適である。 その結果生成する水酸化物イオンとアノード 室から移動してきたアルカリ金属イオンから、 水酸化アルカリが生成する。 カソ -ドに導入される溶液は、 実質的に水とアル力リ金属水酸化物とからなるものが 好ましく、 特にナトリゥムまたはカリゥムの水酸化物からなる溶液が好ましい。 アルカリ金属水酸化物の濃度は限定されないが、 例えば 1〜1 5 mo 1 ZL、 好 ましくは 2〜5mo 1 /Lである。 場合にもよる力 アノード室を流通する白液 のイオン強度よりも低いイオン強度の溶液を力ソード液として用いれば、 隔膜に 不溶分が沈着することを防ぐことができる。
以下、 実施例に基づき本発明をさらに詳しく説明するが、 本発明がこれらの実 施例に限定されないことはもちろんである。
〈実施例 1〉
以下のように 2室型の電解槽を組み立てた。 ニッケルの集電板に、 アノードで あるニッケル発泡体 (住友電工社製、 商品名セルメット、 高さ 10 OmmX幅 2 0111111ズ厚み41^11) を電気溶接した。 力ソードとしてメッシュ状ラネ一ニッケ ルを隔膜としてフッ素樹脂系カチオン交換膜 (旭硝子社製、 商品名フレミオン) を用意した。 アノードに 5 mm厚のアノード室枠をはめ、 隔膜、 力ソード、 5 m m厚の力ソ一ド室枠、 そしてカソード室板の順に重ねて押さえつけて固定した。 アノード室の形状は高さ 10 Omm、 幅 20mm、 厚さ 5 mmであり、 力ソード 室の形状は高さ 1 0 Omm、 幅 2 Omm, 厚さ 5 mmで、 隔膜の有効面積は 20 cm2である。電解操作中は、アノード液とカソ一ド液をともに各室の高さ方向に 下から上に向かって流し、 カソード室側よりもアノード室側の圧力を高くするこ とにより、 隔膜を力ソードに押しつけ、 アノードと隔膜の間に厚さ 1 mmの空隙 を確保した。
このときのァノードの物性および電解条件等は次のとおりである。
ァノード室厚み: 5 mm ァノード厚み: 4 mm
ァノード室体積に対するァノード見掛け体積率: 80 %
ァノード室の空隙率: 96% ァノード室内の液平均空塔速度: 4 c mZ秒 ァノード室体積当りのァノ一ド表面積: 5600 m 2 Zm 3
網目の平均孔径: 0. 5 1 mm 隔膜面積に対する表面積: 28 m 2 電解温度: 85°C 隔膜での電流密度: 6 k A/m 2
アノード液として、 モデル白液 (N a 2 S :ィォゥ原子換算で 1 6 g/L、 N a OH : 90 gZL、 N a 2 CO 3 : 34 g/L) を 1 L調製し、 アノード室の 下側から導入して上側から抜き出しながら、 240mLZ分の流速 (アノード室 內平均空塔速度: 4 c m/秒) で循環させた。 カソード液としては 3 N : N a O H水溶液 2 Lを用い、 力ソード室の下側から導入して上側から抜き出しながら 8 OmLZ分の流速 (空塔速度: 1. 3 cm/秒) で循環させた。 アノード側およ び力ソード側ともに熱交換器を設け、 アノード液および力ソード液を昇温してセ ルに導入するようにした。
電流 1 2 A (隔膜での電流密度 6 k A/m2) で定電流電解を行って多硫化物蒸 解液を合成し、 所定の時間にセル電圧の測定と循環液のサンプリングを行い、 そ の溶液中の P S— S、 硫化物イオン、 チォ硫酸イオンについて分析定量した。 な お、 分析は特開平 7— 92148号公報に記載された方法に基づいて行った。 各種硫黄化合物の濃度の定量値およびセル電圧の測定値の経時的経過について は以下のとおりであった。 電解開始から 1時間 30分後の多硫化物蒸解液の組成 は、 P S— Sが 1 0. 0 g/L、 N a 2 Sがィォゥ原子換算で 5. 4 g/L、 増 加したチォ硫酸イオンがィォゥ原子換算で 0. 64 g/Lであり、 多硫化物ィォ ン(S χ2·)の Xの平均値は 2. 9であった。この間の P S— Sの電流効率は 89%、 選択率は 94%を維持していた。
電解開始から 1時間 30分を過ぎると徐々に副反応が進行するようになり、 多 硫化物イオン(S x2-) は Xの平均値が 4程度を維持しながら減少し、 チォ硫酸ィ オンの生成反応が進行した。 その後 2時間 30分近くになるとセル電圧が急激に 上昇し、 ニッケルが溶出した。
電解開始から 1時間程度までのセル電圧は約 1. 3 Vで一定であつたが、 その 後徐々に上昇した。 チォ硫酸イオン濃度が上昇し始める 1時間 40分あたりでは 1. 4Vであり、 さらに 1時間経つと電圧は 2 V程度まで上昇し、 ニッケルの溶 出反応が進行するようになった。 電解操作中、 アノードの圧力損失は 0. 1 2 k g f / cm2/mであった。
「電流効率」 および 「選択率」 は、 生成した PS— S濃度が A (gZL)、 生成 したチォ硫酸イオン濃度がィォゥ原子に換算して B (g/L) であるとき、 次の ように定義する。 電解操作中、 ニッケル溶出反応が起るまでは、 PS— Sとチォ 硫酸イオンのみが生成するので、 下記のように定義して差し支えない。
電流効率二 (AZ (A+ 2 B)) X I 00%
選択率 = (A/ (A+B)) X I 00%
各実施例についてニッケル発泡体の溶出反応が見られるものがあった。 そこで 二ッケル溶出の評価を以下に示す指標で表すことにした。
X :多硫化物イオン(S x2- ) の Xの平均値が 2、 または P S— Sが 8 g/L以 前にニッケルが溶出した。
〇:多硫化物イオン(S X2-) の Xの平均値が 3. 6になるころ、 または電解反 応が P S— S生成反応からチォ硫酸ィオン生成反応に移り変わるあたりでニッケ ルが溶出した。
◎:電解反応がチォ硫酸イオン生成反応に移り変わった以降にニッケルが溶出、 またはニッケルは溶出しなかった。
表 1に示す 「初期セル電圧」 とは、 電解開始後からの一定で安定した状態での 電圧値を示す。 例えば、 実施例 1では、 電解開始から 1時間程度まではセル電圧 は 1. 3 Vに安定している。 この電圧値を 「初期セル電圧」 という。
〈実施例 2〜 4〉 ァノ一ド室枠の厚みを変えることによって、 ァノード室体積に対するァノード の見掛け体積を変えた条件で実施例 1と同様に定電流電解を行った。 各実施例の ァノードの物性および電解結果を表 1に示す。 実施例 1と同様に、 8 5 %程度の 電流効率、 9 0 %程度の選択率で P S— Sが生成し、 電解開始から 1時間 3 0分 後には 1 0 g Z Lを超える P S— S濃度の多硫化物蒸解液を得ることができた。 その後も実施例 1と同様、 多硫化物イオン(S X 2 - ) の Xの平均値が 4程度になる と、 その値を維持しながら多硫化物イオンが減少しはじめ、 チォ硫酸イオンが生 成しはじめた。 初期セル電圧はァノードと隔膜との間の距離が大きくなるほど液 抵抗によつて増大した。 二ッケル溶出の評価は表 1に示したとおりである。
〈比較例 1〉
アノード室枠の厚さを 4 mmとし、 アノードと隔膜の間の空隙を設けなかった 点以外は、 実施例 1と同様に定電流電解を行った。 このときのァノ一ドの物性お よび電解結果を表 1に示す。 多硫化物ィオンおよびチォ硫酸ィオンは実施例 1〜 4と同様に高い電流効率で生成した。 ニッケルの溶出評価は◎であるが、 実施例 1、 2、 4よりも早い電解時間で溶出反応が起った。 また、 圧力損失も実施例に 比べて 0 . 2 8 k g f ノ c m 2 Z mと大きかった。
〈比較例 2 }
アノード室枠の厚さを 7 mmとし、 アノードと隔膜の間の空隙を 3 m m設けた 点以外は実施例 1と同様に定電流電解を行った。 このときのァノードの物性およ び電解結果を表 1に示す。 電解初期から電流効率が 7 0 %、 選択率が 7 5 %と低 く、 P S ^ Sが高濃度になる前にニッケルが溶出した。 また、 初期セル電圧は実 施例 1〜 4に比べてかなり高かつた。
1 ]
Figure imgf000015_0001
〈実施例 5〜 8〉
アノード液の空塔速度を 2 . 0 c 秒に設定した点以外は、 実施例 1と同様 に定電流電解を行った。 さらに実施例 1〜4と同様、 アノード室枠の厚みを変え ることによってァノード室体積に対するァノードの見掛け体積を変えた条件で得 られた結果を表 2に示す。 各実施例とも電流効率 8 5 %以上、 選択率 8 9 %以上 で、 P S— S濃度が 1 0 g Z Lを超える多硫化物蒸解液が得られた。 実施例 5〜 7に関しては高い二ッケル溶出評価が得られた。 空間幅 2 mmをもつ実施例 8は やや早めにニッケルが溶出した。
〈比較例 3〉
アノード室枠の厚さを 4 mmとし、 アノードと隔膜の間の空隙を設けなかった 点以外は、 実施例 5〜8と同様に定電流電解を行った。 多硫化物イオンおよびチ ォ硫酸イオンは実施例 5〜 8と同様に高い電流効率で生成した。 ニッケルの溶出 評価は◎であるが、実施例 5〜 7よりも早い電解時間で溶出反応が起った。また、 圧力損失も実施例に比べて 0 . 1 0 k g f Z c m 2 Zmと大きかった。
〈比較例 4〉
アノード室枠の厚さを 7 m mとし、 アノードと隔膜の間の空隙を 3 mm設けた 点以外は、 実施例 5〜 8と同様に定電流電解を行った。 電解初期から電流効率が 60%、 選択率が 64%と低く、 P S— Sが高濃度になる前にニッケルが溶出し た。 また、 初期セル電圧は実施例 1〜4に比べてかなり高かった。
2]
Figure imgf000016_0001
〈実施例 9〉
隔膜の有効通電面積当りの電流密度を 8 k A/m 2に設定した点以外は、実施例 1と同じ条件で定電流電解を行った。 結果を表 3に示す。 電流効率 80%、 選択 率 84%で、 P S— S濃度が 1 0 gZLを超える多硫化物蒸解液が得られた。 二 ッケルの溶出評価は〇であった。
〈比較例 5〉
隔膜の有効通電面積当りの電流密度を 8 k A/m 2に設定した点以外は、比較例 1と同様に定電流電解を行つた。 実施例 9と比較例 5では、 ァノ一ド室体積に対 するアノードの見掛け体積のみが異なっている。 結果を表 3に示す。 l O gZL 濃度の P S— S液を製造したときに、 電流効率は 82%、 選択率は 85%であつ た。 ニッケルの溶出評価は実施例 9と同じく〇であったが、 実施例 9よりもやや 早い時間で溶出した。 また、 実施例 9よりも圧損が倍以上高かった。
[表 3] 例番号 アノード アノード ァノ ー ァノー 二 ッ アノード室 初期 室体積に 室体積当 ド室の ド空塔 ケノレ 内の圧力損 セノレ 対するァ りのァノ 空隙率 速度 溶出 失 ¾ϋ ノード室 一ド表面 評価
の見掛け
体積
(%) (mVm3) (%) (cm/s) (kgfん m2/m) (V) 実施例 9 80 5600 96.0 4. 0 〇 0. 12 1.55 比較例 5 1 00 7000 95.0 4. 0 〇 0. 28 1.35
〈実施例 10〉
ワンパス処理で高 P S— S濃度の蒸解液を得る目的で、 実施例 1で用いた電解 槽と同様で高さの異なる構造をもつ、 高さ 1 mX幅 20 mm X厚み 5 mmの 2室 型の電解槽を組み立てた。 隔膜の有効面積は 200 cm2であり、 ァノード室内 のアノードと隔膜間に幅 1 mmの空隙を設けた。 この空隙を維持するために陽極 側が加圧になるようにした。 ァノードの物性およぴ電解条件等は実施例 1と同じ である。
アノード液として、 パルプ工場製白液 (Na 2 S :ィォゥ原子換算で 21 g/ Lを含む) を、 1 2 OmLZ分の流速 (アノード室内平均空塔速度: 2 c mZ秒) で、 アノード室の下側からワンパスで流通させた。 力ソード液としては 3N : N a OH水溶液を用い、 カソード室の下側から導入して上側から抜き出しながら 8 OmLZ分の流速 (空塔速度: 1. 3 c mZ秒) で循環させた。 力ソード液タン クには定量的に水を加えて力ソ一ド液をオーバーフローさせ、 力ソード液の N a OH濃度が一定になるようにした。 ァノード側および力ソード側ともに熱交換器 を設け、 アノード液およびカソード液を昇温してセルに導入するようにした。 電解槽から抜き出した多硫化物蒸解液の組成について調べたところ、 P S— S が 9. 3 gZL、 Na 2 Sがィォゥ原子換算で 10. 9 g /L、 増加したチォ硫酸 イオンがィォゥ原子換算で 1. 1 5 gZLであり、 多硫化物イオン(S χ2·) の X の平均値は 1. 9であった。 この間の P S— Sの電流効率は 93%、 選択率は 9 7%であった。 パルプ製造工程での白液には亜硫酸イオンが含まれており、 亜硫 酸イオンは下記式 4のように多硫化物イオンと反応してチォ硫酸イオンを生成す る。
N a 2 S x+ (x + 1 ) N a 2 S 03→N a 2 S + (x - 1 ) N a 2 S 2 O 3 (4) 白液中の亜硫酸イオン濃度はィォゥ原子換算で 0. 4 g/Lであったので、 亜 硫酸イオンによって減少した P S— S濃度は 0. 4 g/Lであり、 亜硫酸イオン と P S— Sとの反応により生成したィォゥ原子換算のチォ硫酸イオン濃度は 0. 8 gZLとなる。 したがって、 上記の電流効率および選択率の計算式において、 P S— S濃度 (A) を (9. 3 + 0. 4) g/L、 チォ硫酸イオン濃度 (B) を (1. 1 5 - 0. 8) gZLとして計算した。
セル電圧は 1. 2 V程度で、 ァノードの圧力損失は 0.0 7 k g f /cm2 /m であった。 また、 多硫化物蒸解液中のニッケル濃度を分析したところ、 電解セル に導入する前の白液に含まれる二ッケル濃度と同じで、 ニッケルの溶出は起つて いな力 つた。 産業上の利用可能性
本発明によれば、 チォ硫酸イオンの副生が極めて少なく、 高濃度の多硫化ィォ ゥを含み、残存 N a 2 S態ィォゥの多い蒸解液を高い選択率を維持しながら製造 することができ、 こうして得られた多硫化物蒸解液を蒸解に用いることにより、 パルプ収率を効果的に増加させることができる。 また、 電解操作時の圧力損失を 小さくでき、 S S (懸濁物質) の詰まりを抑制することができる。

Claims

請求の範囲
1 . 多孔性アノードを配するアノード室、 力ソードを配する力ソード室、 ァ ノード室とカソ一ド室を区画する隔膜を有する電解槽のアノード室に硫化物ィォ ンを含有する溶液を導入し、 電解酸化により多硫化物イオンを得る多硫化物の製 造方法であって、 多孔性ァノ一ドが該多孔性ァノードと隔膜との間の少なくとも —部に空隙を有するように配され、 かつ、 多孔性アノードの見掛け体積がァノー ド室の体積に対して 6 0 %〜9 9 %であることを特徴とする多硫化物の製造方法。
2 . 上記多孔性アノードが物理的に連続な 3次元の網目構造を有している請 求項 1に記載の多硫化物の製造方法。
3 . 上記多孔性アノードが、 少なくとも表面がニッケルまたはニッケルを 5 0重量%以上含有する二ッケル合金からなる請求項 2に記載の多硫化物の製造方 法。
4 . 上記多孔性ァノ一ドの表面積が隔膜の有効通電面積当り 2〜 1 0 0 m 2 /m 2である請求項 1〜 3の何れか 1項に記載の多硫化物の製造方法。
5 . 上記電解酸化は、 アノード室内の圧力が力ソード室内の圧力よりも大き い条件下で行われる請求項 1〜 4の何れか 1項に記載の多硫化物の製造方法。
6 . 上記電解酸化における電流密度が隔膜の有効通電面積当り 0 . 5〜 2 0 k A/m 2である請求項 1〜 5の何れか 1項に記載の多硫化物の製造方法。
7 . 上記硫化物ィオンを含有する溶液を平均空塔速度 1〜 3 0 c mZ秒でァ ノ一ド室に流通させる請求項 1〜 6の何れか 1項に記載の多硫化物の製造方法。
8 . 上記硫化物イオンを含有する溶液がパルプ製造工程における白液または 緑液である請求項 1〜 7の何れか 1項に記載の多硫化物の製造方法。
9 . アノード室から流出する電解酸化された白液または緑液を該アノード室 に循環することなく次工程へ供給する請求項 8に記載の多硫化物の製造方法。
PCT/JP2000/001147 1999-02-26 2000-02-28 Procede de production de polysulfure par oxydation electrolytique WO2000050340A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU26949/00A AU2694900A (en) 1999-02-26 2000-02-28 Method for producing polysulfide by use of electrolytic oxidation
DE60036100T DE60036100T2 (de) 1999-02-26 2000-02-28 Verfahren zur herstellung von polysulfiden durch anwendung elektrolytischer oxidation
CA002364242A CA2364242C (en) 1999-02-26 2000-02-28 Method for producing polysulfides by means of electrolytic oxidation
EP00905387A EP1178009B1 (en) 1999-02-26 2000-02-28 Method for producing polysulfide by use of electrolytic oxidation
BRPI0008568-5A BR0008568B1 (pt) 1999-02-26 2000-02-28 método para produção de polissulfetos por meio de oxidação eletrolìtica.
US09/938,579 US6517699B2 (en) 1999-02-26 2001-08-27 Method for producing polysulfides by means of electrolytic oxidation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/51033 1999-02-26
JP05103399A JP4312869B2 (ja) 1999-02-26 1999-02-26 電解酸化を用いた多硫化物の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/938,579 Continuation US6517699B2 (en) 1999-02-26 2001-08-27 Method for producing polysulfides by means of electrolytic oxidation

Publications (1)

Publication Number Publication Date
WO2000050340A1 true WO2000050340A1 (fr) 2000-08-31

Family

ID=12875506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001147 WO2000050340A1 (fr) 1999-02-26 2000-02-28 Procede de production de polysulfure par oxydation electrolytique

Country Status (13)

Country Link
US (1) US6517699B2 (ja)
EP (1) EP1178009B1 (ja)
JP (1) JP4312869B2 (ja)
CN (1) CN1163407C (ja)
AT (1) ATE370915T1 (ja)
AU (1) AU2694900A (ja)
BR (1) BR0008568B1 (ja)
CA (1) CA2364242C (ja)
DE (1) DE60036100T2 (ja)
ES (1) ES2292429T3 (ja)
PT (1) PT1178009E (ja)
RU (1) RU2227816C2 (ja)
WO (1) WO2000050340A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073180A (ja) * 1999-09-06 2001-03-21 Kawasaki Kasei Chem Ltd 多硫化物の製造方法
US7378068B2 (en) * 2005-06-01 2008-05-27 Conocophillips Company Electrochemical process for decomposition of hydrogen sulfide and production of sulfur
JP4761143B2 (ja) * 2006-03-31 2011-08-31 独立行政法人産業技術総合研究所 銅の析出回収方法及びその装置
US20090242422A1 (en) * 2008-03-31 2009-10-01 Kazuhiro Kurosu Method for recovering performance of electrolyzer for use in production of polysulfide and method for stopping holding electrolyzer
EP2350351B1 (en) * 2008-10-09 2018-05-16 Field Upgrading Limited Apparatus and method for reducing an alkali metal electrochemically at a temperature below the metal's melting temperature
US9475998B2 (en) 2008-10-09 2016-10-25 Ceramatec, Inc. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides
US8116429B2 (en) * 2009-01-29 2012-02-14 The Invention Science Fund I, Llc Diagnostic delivery service
KR101352887B1 (ko) * 2011-06-16 2014-01-23 문상봉 수전해 이온수 발생장치
KR101466883B1 (ko) * 2011-06-29 2014-12-10 조영일 알카리수를 이용한 세차장치 및 이를 구비한 세차장용 수처리 시스템
CA2886711C (en) 2012-10-01 2020-12-08 Nippon Paper Industries Co., Ltd Continuous electrolysis method by means of electrolytic bath for polysulfide manufacturing, and electrolysis device for implementing same
SE538784C2 (sv) * 2015-04-09 2016-11-22 Valmet Oy Method for polysulfide production in a kraft pulp mill
US20220396483A1 (en) * 2019-06-24 2022-12-15 Tessenderlo Kerley, Inc. Polysulfide Compositions and Processes for Making Same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624545A (en) * 1993-06-28 1997-04-29 Eka Nobel Inc. Production of polysulphide by electrolysis of white liquor containing sulphide
US5653861A (en) * 1995-04-06 1997-08-05 Eka Nobel Ab Electrochemical process
WO1997041295A1 (en) * 1996-04-26 1997-11-06 Asahi Glass Company Ltd. Method for producing polysulfides by electrolytic oxidation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580124A (en) 1995-06-26 1996-12-03 Dellanno; Ronald P. Apparatus for preventing whiplash
JP4187826B2 (ja) * 1998-05-29 2008-11-26 川崎化成工業株式会社 電解酸化による多硫化物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624545A (en) * 1993-06-28 1997-04-29 Eka Nobel Inc. Production of polysulphide by electrolysis of white liquor containing sulphide
US5653861A (en) * 1995-04-06 1997-08-05 Eka Nobel Ab Electrochemical process
WO1997041295A1 (en) * 1996-04-26 1997-11-06 Asahi Glass Company Ltd. Method for producing polysulfides by electrolytic oxidation

Also Published As

Publication number Publication date
EP1178009A4 (en) 2004-10-06
PT1178009E (pt) 2007-09-10
US20020053520A1 (en) 2002-05-09
CN1341077A (zh) 2002-03-20
EP1178009B1 (en) 2007-08-22
DE60036100T2 (de) 2008-05-15
ES2292429T3 (es) 2008-03-16
BR0008568A (pt) 2002-02-19
ATE370915T1 (de) 2007-09-15
JP4312869B2 (ja) 2009-08-12
CA2364242C (en) 2009-06-09
US6517699B2 (en) 2003-02-11
DE60036100D1 (de) 2007-10-04
JP2000247612A (ja) 2000-09-12
EP1178009A1 (en) 2002-02-06
AU2694900A (en) 2000-09-14
CN1163407C (zh) 2004-08-25
RU2227816C2 (ru) 2004-04-27
CA2364242A1 (en) 2000-08-31
BR0008568B1 (pt) 2009-08-11

Similar Documents

Publication Publication Date Title
JPH05504170A (ja) 塩素酸・アルカリ金属塩素酸塩混合物の電気化学的製造方法
JP4629164B2 (ja) リグノセルロース材料の蒸解法
WO2000050340A1 (fr) Procede de production de polysulfure par oxydation electrolytique
JPH05214572A (ja) 硫酸と水酸化ナトリウムを製造するための電気化学的方法及び電気化学的反応槽
JP4187826B2 (ja) 電解酸化による多硫化物の製造方法
US5972197A (en) Method for producing polysulfides by electrolytic oxidation
EP1245723B1 (en) Method for recovering chemicals in a process of producing pulp by kraft process
JP4298059B2 (ja) リグノセルロース材料の蒸解法
KR100313259B1 (ko) 염수의전기분해법
WO2000050339A1 (fr) Procede de production de polysulfure par oxydation electrolytique
JP4447081B2 (ja) 多硫化物の製造方法
JP4298058B2 (ja) リグノセルロース材料の蒸解法
WO2001018278A1 (fr) Procede de production de polysulfure
JPH10121281A (ja) アルカリ性過酸化水素水溶液の濃度調節方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00804180.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000905387

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2364242

Country of ref document: CA

Ref document number: 2364242

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09938579

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2000905387

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000905387

Country of ref document: EP