WO2000044961A1 - Procede de traitement de surface - Google Patents

Procede de traitement de surface Download PDF

Info

Publication number
WO2000044961A1
WO2000044961A1 PCT/JP2000/000438 JP0000438W WO0044961A1 WO 2000044961 A1 WO2000044961 A1 WO 2000044961A1 JP 0000438 W JP0000438 W JP 0000438W WO 0044961 A1 WO0044961 A1 WO 0044961A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
surface treatment
treatment method
treated
processing
Prior art date
Application number
PCT/JP2000/000438
Other languages
English (en)
French (fr)
Inventor
Katsuhiro Takahashi
Osamu Kurashina
Shoji Tsutsui
Yoshiaki Mori
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to AU23200/00A priority Critical patent/AU2320000A/en
Publication of WO2000044961A1 publication Critical patent/WO2000044961A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/282Applying non-metallic protective coatings for inhibiting the corrosion of the circuit, e.g. for preserving the solderability

Definitions

  • the present invention relates to a surface treatment method, and more particularly, to a method for treating a surface of a material to be treated with a hydrogen halide gas or a halogen gas.
  • plasma is generated by discharging under atmospheric pressure, and this plasma is irradiated on a semiconductor substrate to improve the wettability of solder, for example, to improve the surface of the material to be processed.
  • the handling was done.
  • a treatment chamber for placing the treatment material at a location away from the discharge unit is provided.
  • Halogen gas such as a fluorine compound and a gas mixture of a halogen compound such as a fluorine compound and water vapor are discharged under atmospheric pressure to generate hydrogen halide gas such as hydrogen fluoride gas, which has a relatively long life, and this halogenation Processing gas containing hydrogen gas is transported from the discharge unit to the processing chamber and brought into contact with the workpiece, and the surface of the workpiece is treated with hydrogen halide gas.
  • the following is an example of the prior art showing a surface treatment method that improves the wettability of solder by using hydrogen fluoride gas as the hydrogen halide gas.
  • a raw material gas supply source 10 is connected to a raw material gas supply passage 30 having a flow rate regulating valve 32 between the raw material gas supply source 10 and a water tank 12.
  • the raw material gas 50 such as gas can flow into the water tank 12.
  • the water tank 12 is connected via a discharge gas supply path 34 connected to the discharge unit 16, and is provided with carbon tetrafluoride gas and water vapor generated by contact with the water 14 in the water tank 12.
  • the discharge gas 52 is made to be introduced into the discharge unit 16.
  • a discharge gas 52 flows between electrodes connected to a power supply (not shown), and a voltage of, for example, 15 kHz is applied between the electrodes as a discharge portion.
  • a voltage of, for example, 15 kHz is applied between the electrodes as a discharge portion.
  • To generate plasma through the discharge gas 52 for example, to generate hydrogen fluoride (HF) by the following reaction.
  • Hydrogen fluoride is generated by the reaction of the chemical formula 1, and the processing gas 54 containing hydrogen fluoride gas is sent to the processing gas supply path 36.
  • a processing gas heater 18 serving as a heating means is provided in the middle of the processing gas supply passage 36 so that the processing gas 54 derived from the discharge unit 16 can be heated. ing.
  • the processing gas heater 18 prevents hydrogen fluoride molecules contained in the processing gas 54 from being mutually bonded and agglomerated by hydrogen bonding, and prevents hydrogen bonding between hydrogen fluoride molecules.
  • the processing gas 54 is heated to a temperature higher than the cutting temperature (eg, 120 ° C or higher).
  • a carrier gas supply path 40 having a flow rate regulating valve 38 is connected to the processing gas supply path 36, and a carrier gas 56 serving as a dilution gas flows in from the carrier gas supply source 20. It has become. Normally, a gas that is chemically stable at room temperature is used as the carrier gas.
  • This carrier gas generally has a concentration of hydrogen fluoride molecules in the processing gas of about 7 to 800 ppm, and when the material is irradiated as it is, the surface of the processing material is etched. It is used to adjust the concentration of hydrogen fluoride gas in the processing chamber to a predetermined level by diluting the processing gas because it may cause damage. It also has the purpose of reducing the relative humidity of the processing gas to prevent water vapor agglomeration and stabilizing the surface treatment. Also, depending on the type of surface treatment, a carrier gas may not be used.
  • the carrier gas supply path 40 is agglomerated by hydrogen bonds between hydrogen fluoride molecules. In order to prevent this, it is connected to a portion near the discharge unit 16 of the processing gas supply path 36.
  • the processing gas 54 is added with the carrier gas 56 and becomes a mixed gas 58 to flow into the processing chamber 22 in which the material 70 to be processed is arranged.
  • the mixed gas 58 comes into contact with the material to be treated 70 and reacts with the hydrogen fluoride molecules and the surface of the material to be treated 70, and is then sent out as exhaust gas 60 to the exhaust gas outlet channel 42 and exhausted. It is sent to the abatement device 26 connected to the tip of the gas outflow channel 42 and is rendered harmless.
  • the concentration of the hydrogen fluoride gas in the processing chamber 22 is usually within a range where a certain degree of reaction (processing) speed can be obtained and the material to be processed is not damaged by etching or the like. As described above, it is set to 500 ppm or less.
  • the water vapor contained in the processing gas 54 and the carrier gas 56 greatly affects the finished state of the surface treatment and the processing speed. Therefore, for example, when the water vapor condenses and condenses before reaching the processing chamber 22, the amount of water vapor contained in the processing chamber 22 fluctuates, and the stability of the surface treatment is impaired. Therefore, even in the above-described example of the prior art, the carrier gas 56 is added to the processing gas 54 to reduce the relative humidity, thereby preventing the aggregation of steam and stabilizing the amount of steam. I'm sorry.
  • a treatment gas 54 is introduced into the treatment room 22, and “the fluorination treatment I is performed for 30 minutes, Processing material
  • "replacement after treatment” was performed for 10 minutes, in which the surrounding air was introduced to drive out the treatment gas in the treatment room 22.
  • Fig. 9 shows the relationship between the hydrogen fluoride concentration (HF concentration) in the treatment chamber 22 and the relative humidity in the conventional surface treatment method.
  • the solid line in FIG. 9 indicates the change in the HF concentration in the processing chamber 22, and the broken line indicates the change in the relative humidity in the processing chamber 22.
  • the relative humidity in the processing chamber 22 is 25%, which is the same as the surrounding atmosphere, because it is the remaining air until the start of the processing of the processing target material 70.
  • the mixed gas 58 of the processing gas 54 and the carrier gas 56 is introduced into the processing chamber 22 and the processing of the material to be processed 70 with hydrogen fluoride is started, for example, it is introduced into the processing chamber 22
  • the relative humidity of the mixed gas 58 is 6%
  • the relative humidity gradually decreases and changes until it reaches 6% (corresponding to the part indicated by "Purification treatment" in the graph) . Therefore, since the surrounding air remains in the initial stage of the “fluoridation treatment”, it is easily affected by the moisture contained in the atmosphere, and the relative humidity in the treatment chamber 22 is not stable for each treatment.
  • the hydrogen fluoride concentration in the processing chamber 22 is the original HF concentration of the mixed gas 54 during the irradiation of the mixed gas 58 of the processing gas 54 and the carrier gas 56, that is, during the fluorination process. Although the concentration converges to 900 ppm, the mixed gas 54 stops after the completion of the fluoridation treatment and the atmosphere is introduced. Since 4 remains until it is completely replaced with the surrounding atmosphere, the surface treatment of the material to be treated 70 with hydrogen fluoride is continued even during the replacement. Therefore, the relative humidity in the processing chamber 22 changes due to the influence of the moisture contained in the atmospheric gas introduced in the “substitution after treatment”, and as described above, the stability of the surface treatment of the material to be treated 70 is impaired. Cause.
  • the relative humidity in the processing chamber 22 during the “fluoridation treatment” in which the material to be treated 70 is subjected to the surface treatment by the irradiation of the mixed gas 58 depends on the moisture contained in the surrounding air at that time. to be influenced.
  • the The reaction by uncontrolled hydrogen fluoride proceeds due to the influence of moisture in the side atmosphere.
  • the amount of water in the surrounding atmosphere varies greatly depending on the environment at that time.
  • Another problem is that when the material to be processed 70 is a silicon substrate used for a flip chip or the like, the SiO 2 film provided as a passivation (protective film) on the surface is etched. There are problems. This is because the moisture adhering to the SiO 2 film before the surface treatment or the water vapor contained in the mixed gas 58 adheres during the surface treatment, and the fluorine ions shown in Chemical Formula 2 are generated. And
  • the present invention has been made in order to solve the above-mentioned drawbacks of the prior art.
  • a method of performing a surface treatment of a material to be treated with a hydrogen halide gas or a halogen gas the surface treatment speed is stabilized. It is an object of the present invention to provide a surface treatment method that does not vary in the finish of the surface treatment.
  • the first object is a first gas which is chemically stable at a normal temperature or a temperature near the normal temperature and whose relative humidity is set to 0% or a humidity near the same.
  • the relative humidity of the atmosphere of the material to be treated at the start of the irradiation of the material to be treated with the second gas can be reduced to 0% or a humidity close to the relative humidity. It is possible to perform the treatment in an atmosphere of reduced moisture, and it is possible to reduce the variation in the finish of the surface treatment. In addition, at room temperature or near Since it is chemically stable, it does not adversely affect the surface treatment with the processing gas by causing a secondary chemical reaction on the surface of the material to be treated.
  • the second gas is a gas containing a hydrogen halide gas.
  • the gas containing the hydrogen halide gas is a discharge gas composed of a halogen gas and water vapor at or near atmospheric pressure, or a gas for discharge at or near atmospheric pressure. And a gas generated by introducing a discharge gas comprising a halogen compound gas and water vapor into the discharge section.
  • a processing gas containing hydrogen halide gas can be easily generated using a relatively safe gas without preparing hazardous hydrogen halide gas itself.
  • the object is, according to the invention of claim 4, characterized in that the gas is a gas containing a halogen gas.
  • the relative humidity of the atmosphere of the material to be treated at the time of starting irradiation of the material to be treated with the gas to be treated can be set to 0% or a humidity close thereto, and the stable moisture can be obtained. It is possible to perform the treatment in the same atmosphere, and the variation in the finish of the surface treatment can be reduced. In addition, because it is chemically stable at or near room temperature, it may adversely affect the surface treatment with the processing gas by causing a secondary chemical reaction on the surface of the material to be processed. There is no.
  • the processing gas is obtained by introducing a halogen compound gas at or near atmospheric pressure into the discharge unit. It is characterized by being a gas containing generated halogen.
  • a processing gas containing a hydrogen halide gas can be easily generated using a relatively safe gas without preparing a hazardous halogen gas itself.
  • the irradiation of the second gas onto the material to be processed may include the step of:
  • the method is characterized in that the atmosphere of the material to be processed is replaced with the first gas.
  • the first gas is the same as the dilution gas. It is characterized by being.
  • the dilution gas can be used as it is as the replacement gas, so the existing equipment configuration that adds the dilution gas to the treatment gas and irradiates the material to be treated Can be used as is.
  • the first gas may be an inert gas or a dehumidified gas. It is characterized by the atmosphere that was in the air.
  • the first gas has a dew point of ⁇ 20 °. It is characterized by being less than C.
  • the atmosphere is replaced with the first gas.
  • the method is characterized in that the material to be treated is sometimes heated.
  • the material adhered to the material to be treated from the atmosphere or the like is evaporated, so that the material to be treated is evaporated. Can be prevented from being etched.
  • the irradiation of the second gas to the material to be processed is performed.
  • the above-mentioned material to be treated is heated.
  • the heating temperature of the material to be processed is such that gold adhered to the material to be processed is The melting point is lower than the melting point of the metal or metal alloy.
  • the surface of the material to be processed is tin or tin-based. It is characterized by being an alloy.
  • FIG. 1 is an explanatory diagram of a surface treatment method according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a surface treatment method according to a second embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of a surface treatment method according to a third embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of a conventional surface treatment method.
  • FIG. 5 is an explanatory view (1) of an experimental apparatus for comparing an embodiment of the present invention with a conventional surface treatment method.
  • FIG. 6 is an explanatory diagram (2) of an experimental apparatus for comparing the embodiment of the present invention with a conventional surface treatment method.
  • FIG. 7 shows the concentration of hydrogen fluoride in the processing chamber in the surface treatment method according to the embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing a relationship between (HF concentration) and relative humidity.
  • FIG. 8 is a diagram illustrating the results of a comparative experiment between the embodiment of the present invention and a conventional surface treatment method. (1) is the result of an etching experiment on a SiO 2 film, and (2) is the result of non-steam treatment. This is the result of an etching experiment in mixing.
  • FIG. 9 is an explanatory diagram showing the relationship between the surface treatment in the conventional surface treatment method, the hydrogen fluoride concentration (HF concentration), and the relative humidity.
  • FIG. 1 is an explanatory diagram of a surface treatment method according to a first embodiment of the present invention.
  • a surface treatment is performed on the apparatus according to the prior art shown in FIG. 4 by adding a processing material 24 to a processing chamber 22.
  • the material-to-be-processed heater 24 heats the material-to-be-processed 70, and is originally attached to the material-to-be-processed 70, or a processing gas 54 (hereinafter, also referred to as a second gas) or a carrier. It is provided to evaporate newly attached moisture from gas 56.
  • a processing gas 54 hereinafter, also referred to as a second gas
  • the temperature at which the material to be treated 70 is heated is desirably lower than the melting point of the solder in order to prevent the solder from softening and melting when the material to be treated is heated.
  • the melting point of the solder is about 220 ° C. (when Sn is about 80% and Pb is about 20%).
  • SnZn and SnAg solders
  • What is necessary is just to make it less than the melting point of gold.
  • surface treatment can be performed for the purpose of joining solids.
  • the processing chamber may be heated by bringing a cartridge or the like into direct contact with the material to be processed. Good and good for heating in a non-contact state by far infrared rays etc. No.
  • hydrogen fluoride gas will be described as an example of the hydrogen halide gas contained in the processing gas, but the gas that realizes this surface treatment method is fluorine. It is not limited to hydrogen hydride gas, and other hydrogen halide gas may be used.
  • FIG. 7 shows the relationship between the hydrogen fluoride concentration (HF concentration) and the relative humidity in the processing chamber in the surface treatment method according to the embodiment of the present invention.
  • a carrier gas 56 is supplied from the carrier gas supply source 20 to the processing chamber 22 in a state where the material to be processed 70 is arranged in the processing chamber 22.
  • the air originally present in the processing chamber 22 is pushed out to the exhaust gas outflow path 42 by the carrier gas 56, so that the air in the processing chamber 22 is replaced with the carrier gas 56. Can be done.
  • the processing gas 54 is not supplied.
  • the change in humidity in the processing chamber 22 in this “replacement before processing” decreases from the humidity of the surrounding atmosphere to near 0% as shown by the broken line in FIG. .
  • the carrier gas is hereinafter also referred to as a first gas.
  • the carbon tetrafluoride (CF 4 ), which is the raw material gas 50, is supplied from the raw material gas source 10. Is supplied to the water tank 12, containing water vapor, and sent to the discharge unit 16 as the discharge gas 52, and the discharge unit 16 generates the processing gas 54 containing hydrogen fluoride by discharge. After being heated at 18 hours, it is sent to the processing room 22. At the same time, the carrier gas 56 from the carrier gas supply source 20 is transferred to the processing chamber 22. As a result, the processing chamber 22 is filled with a mixed gas 58 obtained by adding a carrier gas 56 to a processing gas 54.
  • CF 4 carbon tetrafluoride
  • the material to be treated 70 is surface-treated by touching the hydrogen fluoride gas contained in the mixed gas 58, and the surface treatment is continued while the hydrogen fluoride gas is present in the processing chamber 22.
  • the HF concentration in the treatment chamber 22 reaches 900 ppm, which is the original HF concentration of the mixed gas 54, and is stabilized.
  • the replacement of the processing gas 54 remaining in the processing chamber 22 is performed.
  • the replacement method is the same as the replacement performed before the surface treatment was started.
  • the relative humidity in the processing chamber 22 is reduced to near 0%, and until the hydrogen fluoride gas is removed.
  • the progress of the surface treatment of the material to be treated 70 can be reduced. After such “substitution after treatment”, the surrounding air is introduced to take out the material to be treated 70.
  • the processing gas in the processing chamber 22 When the gas in the processing chamber 22 is replaced as described above, it is possible to prevent the gas in the processing chamber 22 from coming into contact with the atmosphere while the hydrogen fluoride gas is present. . That is, the processing gas is not introduced while the moisture in the air remains before the processing of the material to be processed (“replacement before processing”), and the processing gas remains after the processing of the material to be processed remains (“ Substitution after treatment ”) No air is introduced. Therefore, the processing can be performed in a state where the influence of the moisture in the air atmosphere is reduced, and the processing can be stabilized.
  • the material to be treated 70 is heated by the material to be treated 24, so that the material to be treated is heated. It is effective to evaporate the water attached to 70.
  • the substitution and the evaporation of the moisture can be performed simultaneously by performing the heating at the time of the “pre-treatment substitution”.
  • FIG. 2 is an explanatory diagram of a surface treatment method according to a second embodiment of the present invention.
  • a carrier gas supply 44 is provided at a portion of the carrier gas supply path 40 near the processing chamber to heat the carrier gas 56. It is like that.
  • FIG. 3 is an explanatory view of a surface treatment method according to a third embodiment of the present invention.
  • a raw material gas 50 such as carbon tetrafluoride gas (CF 4 )
  • CF 4 carbon tetrafluoride gas
  • the raw material gas 50 is directly supplied to the discharge unit 16 without containing water vapor, and the raw material gas 50 is discharged.
  • Fluorine gas (F 2 ) is generated from the gas, and the gas containing this fluorine gas is used as the processing gas 54. In this case, there is no need to provide the water tank 12, and it is not necessary to control the amount of water contained in the raw material gas 50.
  • the carrier gas is used as the replacement gas, but a replacement gas supply path different from the carrier gas supply path capable of supplying the gas to the processing chamber is provided.
  • a replacement gas supply source may be provided and connected to the replacement gas supply source, and the replacement gas may be supplied using this supply path.
  • the use of dehumidified air or nitrogen gas (N 2 ) as the replacement gas is advantageous in terms of cost.
  • nitrogen gas is desirable to prevent oxidation of the material to be processed.
  • a method of generating a processing gas a method of generating plasma in a discharge unit into which a discharge gas is introduced is used.
  • another method may be used. One It may be generated by a method.
  • FIG. 5 is an explanatory diagram (1) of an experimental apparatus for comparing the embodiment of the present invention with a conventional surface treatment method.
  • carbon tetrafluoride gas CF 4
  • DRC dry tetrafluoride gas
  • the heating temperature was set so that the temperature of the carrier gas was about 120 ° C, with the aim of preventing aggregation of the hydrogen fluoride contained in the processing gas.
  • a processing gas heater 18 was attached to the discharge unit 16 mainly for preventing dew condensation in the discharge unit 16 and the processing gas supply path 36.
  • the processing room 22 in which the material 70 is to be placed was 481 dessicants overnight.
  • the conditions of the “fluoridation treatment” are as follows: by adjusting the flow rate adjustment valves 31 and 32 respectively, CF 4 (H 20 ) of 100 CCM (ml / min) and CF 4 (DRY ) was introduced into the discharge unit 16. Then, a voltage having a frequency of about 15 kHz and a voltage of about 7 kv was applied between the electrodes of the discharge unit 16 to generate a processing gas 54 containing hydrogen fluoride gas.
  • Air (DRY 1) of 300 CCM, Air (DRY 2) of 91 / min, and 11 / min A ir (H 20 ) was added to the processing gas 54, and a mixed gas 58 of the processing gas 54 and the carrier gas was introduced into the processing chamber 22.
  • the HF gas in the processing chamber 22 was set to about 750 ppm, the relative humidity was set to about 6%, and the material to be processed was processed for 30 minutes.
  • the material to be treated was a solder plating copper plate (Cu 2 Omm x 5 mm x 0.2 mm substrate, Sn80% Pb20%).
  • the evaluation method used was a meniscograph method (the material to be treated was immersed in a molten solder (Sn 63% Pb 27%) bath at 230 ° C), and the wetting force on the molten solder was evaluated.
  • the treatment was performed by the conventional methods “fluorination treatment” and “substitution after treatment” as shown in FIG.
  • substitution after treatment the surrounding atmosphere was introduced for 10 minutes.
  • the wettability of the material to be treated 70 with respect to the molten solder was not stable, and variation was observed in the range of 0.3 to 2.6 mN.
  • the conditions of the “fluoridation treatment” were the same, and the treatment was performed as “replacement before treatment”, “fluorination treatment” ⁇ “replacement after treatment” as shown in FIG.
  • the “pre-treatment replacement” and “post-treatment replacement” are performed by using the carrier gas Air (DRY2) as the replacement introduction gas, adjusting the opening of the flow control valve 38 during introduction to 301 / min, and then pressurizing the plant for 10 minutes. This was done by introducing The material to be treated and the evaluation method are the same as described above. After repeated treatment, the variation in the wetting force was reduced to 0.3 to 2.2 mN.
  • the carrier gas changed from factory compressed air to nitrogen gas under this treatment method.
  • Ai r (DRY 1), Ai r (DRY2), and Ai r (H 20 ) are converted to N 2 (DRY1), N 2 (DRY2), and N 2 (H 20 ), respectively.
  • Carrier gas N 2 (DRY 2) was used for replacement, “before treatment replacement” and “after treatment replacement”.
  • the dew point of nitrogen gas is below -50 ° C. After repeated treatment, the variation in the wetting force was within the range of 0.8 to 1.5 mN, confirming that the effect of the surface treatment was stable.
  • FIG. 6 is an explanatory view (2) of an experimental apparatus for comparing an embodiment of the present invention with a conventional surface treatment method.
  • the basic configuration is the same as in "Experiment 1". Nitrogen gas was used as the carrier gas, and N 2 (DRY 1), N 2 (DRY 2), and N 2 (H 20 ) were used as described above.
  • a component different from ⁇ Experiment 1 >> is that a processing material 22 was provided in the processing room 22.
  • a processing vessel (capacity: 180 cc) made of polytetrafluoroethylene was used as the processing chamber 22.
  • the treatment method was “pre-treatment substitution” ⁇ “fluorination treatment” ⁇ “post-treatment substitution”.
  • the conditions at the time of the "fluorination” is an example and the results of etching experiments S iO 2 film Figure 8 is an illustration of a comparative experiment result of the conventional surface treatment method (1) of the present invention Show.
  • the processing gas generation conditions and the carrier gas conditions were the same for each level, and the temperature of the material 70 was changed by changing the heating temperature of the material 24. Evaluation method, was measured before and after processing the film thickness of the S i 0 2 film S i substrate surface was treated material 70 (film thickness 60 00-7000 ⁇ ), and the difference between the etching thickness.
  • the wafer was processed by the conventional method shown in “Conventional conditions” in Fig. 8 (1) (the temperature of the material to be processed 70 was kept at room temperature). As a result, the etched film thickness was 515 angstroms. The pH of the solderfish was 3. On the other hand, in the method shown in the embodiment, “condition 1” (set the temperature of the material (The temperature of 0 ° was set to 80 ° C), the etching film thickness was 45 ⁇ (the pH of the soldering powder was not overnight). Further, in “condition 2” (the temperature of the material to be treated 70 was set to 90 ° C. while the temperature of the material to be treated 24 was set to 1750 ° C.), the etching film thickness was set to 29 ° C. The pH of Angstrom and Handetsume was 1.5. Therefore, it was confirmed that the amount of etching of the SiO 2 film can be considerably reduced by heating the material to be processed, and the improvement of the processing effect also in the surface treatment of the solder paste.
  • the treatment method was “substitution before treatment” ⁇ “fluorination treatment” ⁇ “substitution after treatment”.
  • the conditions for the fluoridation treatment j are shown in the etching experiment in the non-water vapor mixture of Fig. 8 (2).
  • the processing gas generation conditions and the carrier gas conditions were the same for each level, and The temperature was changed by changing the heating temperature of the material to be treated.
  • the etching film thickness was 10 angstroms.
  • the pH of the solderfish was 2.5. Therefore, It was confirmed that the etching amount of the SiO 2 film could be reduced when water vapor was not mixed with the raw material gas, and that the surface treatment of the solder paste was improved by heating the material to be processed.
  • the present invention uses a carrier gas having a low H 2 ⁇ concentration as a replacement gas for replacing a gas in a processing chamber, thereby making no significant modification to an existing surface treatment apparatus. It is possible to stabilize the speed of the surface treatment of the material to be treated. Furthermore, heating the material to be treated such as by the processed material arsenide Isseki, or by the raw material gas to a very low H 2 0 concentration, prevent the workpiece is Etsu quenching during surface treatment it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

明 細 表面処理方法 技術分野
本発明は、 表面処理方法に係り、 ハロゲン化水素ガスまたはハロゲンガスによ り被処理材の表面を処理する方法に関する。 背景技術
従来より、 半導体デバイスの製造分野などにおいて、 大気圧下で放電させてプ ラズマを発生させ、 このプラズマを半導体基板などに照射して、 例えばハンダの 濡れ性を改善するなど、 被処理材の表面を処理することが行われていた。
また、 最近では、 プラズマに被処理材が直接さらされることにより、 物理的性 質の破壊が生じたり、 被処理材が金属などの場合、 突起した部分に強いプラズマ が生成され、 均一な処理をすることができないことに対処するために、 第 4図 ( 従来の表面処理方法の説明図) に示すように、 放電ユニットから離れた所に被処 理材を配置する処理室を設け、 フッ素ガスなどのハロゲンガスゃフッ素化合物な どのハロゲン化合物のガスと水蒸気との混合ガスを大気圧下において放電させ、 比較的寿命の長いフッ化水素ガス等のハロゲン化水素ガスを生成し、 このハロゲ ン化水素ガスを含む処理用ガスを放電ュニットから処理室に輸送して被処理材に 接触させ、 ハロゲン化水素ガスによつて被処理材の表面を処理することが行われ ている。
以下に、 従来技術の事例としてハロゲン化水素ガスとしてフッ化水素ガスを用 いることによりハンダの濡れ性を改善する表面処理方法を示す。
第 4図に示すように、 原料用ガス供給源 1 0には、 水槽 1 2との間に流量調整 弁 3 2を有する原料用ガス供給路 3 0が接続してあって、 四フッ化炭素ガス等の 原料用ガス 5 0を水槽 1 2に流入させることができるようにしてある。 そして、 水槽 1 2は、 放電ュニット 1 6に接続した放電用ガス供給路 3 4を介して接続さ れており、 水槽 1 2内の水 1 4と接触して生じた四フッ化炭素ガスと水蒸気とか らなる放電用ガス 5 2を放電ュニヅ ト 1 6に導入できるようにしてある。
放電ユニッ ト 1 6は、 図示しない電源に接続した電極間を放電用ガス 5 2が通 流するようになっていて、 この電極間を放電部として、 例えば 1 5 k H zの電圧 を電極間に印加することにより、 放電用ガス 5 2を介してプラズマを発生させ、 例えば、 次のような反応によりフッ化水素 (H F ) を生成する。
C F 4+ 2 H 2 0→4 H F + C 0 2
化学式 1の反応によりにフッ化水素を生成し、 フッ化水素ガスを含んだ処理用 ガス 5 4を処理用ガス供給路 3 6に送り出す。
処理用ガス供給路 3 6の途中には、 加熱手段である処理用ガスヒ一夕 1 8が設 けてあって、 放電ュニッ ト 1 6から導出された処理用ガス 5 4を加熱できるよう になっている。 処理用ガスヒー夕 1 8は、 処理用ガス 5 4中に含まれるフヅ化水 素分子が水素結合によって相互に結合して凝集するのを防止するもので、 フッ化 水素分子同士の水素結合を切断できる温度以上 (例えば 1 2 0 °C以上) に処理用 ガス 5 4を加熱する。
また、 処理用ガス供給路 3 6に、 流量調整弁 3 8を有するキャリアガス供給路 4 0の先端を接続し、 キヤリアガス供給源 2 0から希釈用ガスの役割をなすキヤ リアガス 5 6が流入するようになっている。 キャリアガスには、 通常、 常温で化 学的に安定しているガスが利用されている。
このキヤリアガスは、 処理用ガス中に含まれるフッ化水素分子の濃度が一般的 に 7〜8 0 0 0 p p m程度もあり、 これをそのまま被処理材に照射すると、 被処 理材の表面がエッチングされるなど損傷を与える可能性があるので、 処理用ガス を希釈して処理室中のフッ化水素ガスの濃度を所定のものに調節するために利用 されるものである。 さらに、 処理用ガスの相対湿度を低下させて水蒸気の凝集を 防止し、 表面処理の安定化をはかる目的も持っている。 また、 表面処理の種類に よっては、 キャリア用ガスを用いない場合もある。
また、 キャリアガス供給路 4 0は、 フッ化水素分子同士の水素結合による凝集 を防止するため、 処理用ガス供給路 3 6の放電ュニット 1 6に近い部分に接続さ れている。 なお、 処理用ガス 5 4はキャリアガス 5 6を添加され、 混合ガス 5 8 となって被処理材 7 0を配置した処理室 2 2に流入する。 混合ガス 5 8は被処理 材 7 0と接触して、 フッ化水素分子と被処理材 7 0の表面とが反応したのち、 排 気ガス 6 0として排気ガス流出路 4 2に送出されて排気ガス流出路 4 2の先端に 接続された除害装置 2 6に送られ、 無害化される。 なお、 処理室 2 2におけるフ ッ化水素ガスの濃度は、 通常、 一定程度の反応 (処理) 速度が得られ、 かつ被処 理材にエッチングなどの損傷を与えない範囲である 1 0 0 p p m以上、 5 0 0 0 p p m以下とされる。
ところで、 上記の放電ュニット 1 6において生成したフヅ化水素ガスを半田と 接触させて半田の濡れ性を改善する場合、 半田が空気に触れて生じた酸化錫 (S n 0 ) の酸素が次の反応によってフッ素と置換されることによる。
H F + H 2 0→F— + H 3 0+ このような反応で生成されたフッ素イオン ( F ") が半田表面において、
S n O + H 2 0→S n 2++ 2 O H"
2 F " + 2 H 3 0 + + S n 2++ 2 O H"→S n F 2+ 4 H 2 0のように酸化錫と 反応して酸素と置換されるものと考えられる。
したがって、 処理用ガス 5 4およびキヤリアガス 5 6中に含まれる水蒸気は、 表面処理の仕上り状態や処理速度に大きな影響を与える。 よって、 例えば、 この 水蒸気が処理室 2 2に至るまでに凝集して結露するような場合、 処理室 2 2中に 含まれる水蒸気の量が変動することになり、 表面処理の安定性を損なう原因とな そこで、 上述の従来技術の例においても、 キャリアガス 5 6を処理用ガス 5 4 に添加してその相対湿度を低下させることにより水蒸気の凝集を防止し、 水蒸気 の量の安定化をはかっている。
ところが、 前述の従来技術においては、 以下のような問題が発生した。
従来の表面処理方法では、 被処理材 7 0を処理室 2 2に設置した後、 例えば処 理室 2 2に処理用ガス 5 4を導入して 「フッ化処理 I を 3 0分間行い、 被処理材 7 0を取り出す時の安全確保を主目的として処理室 2 2内の処理ガスを追い出す ために周辺大気を導入する 「処理後置換」 を 1 0分間行っていた。 従来の表面処 理方法における処理室 2 2内のフッ化水素濃度 (H F濃度) と相対湿度の関係を 第 9図に示す。 ここで第 9図中の実線で示したものは処理室 2 2内の H F濃度の 変化を示し、 破線で示したものは処理室 2 2内の相対湿度の変化を示している。 このグラフにおいて示したように、 処理室 2 2中の相対湿度は、 被処理材 7 0の 処理の開始までは残存する大気であるので周辺雰囲気と等しい 2 5 %である。 処理用ガス 5 4とキャリアガス 5 6の混合ガス 5 8が処理室 2 2に導入され、 被処理材 7 0のフッ化水素による処理が開始された以降においては、 例えば処理 室 2 2に導入された混合ガス 5 8の相対湿度が 6 %であれば、 徐々に相対湿度が 低下して 6 %になるまで変化して行く (グラフ中の 「フヅ化処理」 で示した部分 に相当)。 従って、 「フッ化処理」 初期には周辺大気が残存しているので雰囲気に 含まれる水分の影響を受けやすく、 処理室 2 2内の相対湿度も処理毎に安定しな い。
また、 被処理材 7 0に混合ガス 5 8を照射するのを完了した後に、 再び処理室 2 2に大気を導入すれば相対湿度は 2 5 %に戻る (グラフ中の 「処理後置換」 で 示した部分に相当)。 また、処理室 2 2中のフッ化水素濃度は、処理用ガス 5 4と キャリアガス 5 6の混合ガス 5 8の照射中即ち 「フッ化処理」 時混合ガス 5 4の 元々の H F濃度である 9 0 0 p p mに収束するが、 「フッ化処理」終了後、混合ガ ス 5 4がとまり大気が導入される 「処理後置換」 に移行しても、 処理室 2 2内に は混合ガス 5 4が完全に周辺大気に置換されるまで残存しているので、 被処理材 7 0のフッ化水素による表面処理は、 その置換が行われている間も継続している ことになる。 よって、「処理後置換」で導入される大気ガスに含まれる水分の影響 で処理室 2 2内の相対湿度が変化し、 前述のように、 被処理材 7 0の表面処理の 安定性を損なう原因となる。
以上のように、 被処理材 7 0が混合ガス 5 8の照射によって表面処理されてい る 「フッ化処理」 間において、 処理室 2 2中の相対湿度は、 その時の周辺大気に 含まれる水分の影響を受ける。 さらに、 その照射後 「処理後置換」 においても周 辺大気の水分の影響により制御されないフッ化水素による反応が進行してしまう 。 周辺大気の水分量はその時の環境により大きく変動する。 これらの変動要因で 表面処理の速度の安定性を損なうこととなり、 表面処理の仕上がりにバラヅキを 生じさせる原因となる。
また、 他の問題点として、 被処理材 7 0がフリップチップ等に利用されるシリ コン基板である場合、 その表面にパッシベ一シヨン (保護膜) として設けられて いる S i 02膜がエッチングされる問題がある。 これは、 S i 02膜に表面処理前か ら付着している水分、 または混合ガス 5 8中に含まれる水蒸気が表面処理中に付 着することにより、 化学式 2に示したフッ素イオンが生成され、
S i 02+ 4 H 3 0 + + 4 F "→S i F 4+ 6 H 2 0のように四フッ化シリコン が生成されてエッチングされるものと考えられる。
そこで、 本発明は、 前述の従来技術の欠点を解消するためになされたもので、 ハロゲン化水素ガスまたはハロゲンガスにより被処理材の表面処理を行う方法に おいて、 表面処理の速度が安定し、 表面処理の仕上がりにバラツキのない表面処 理方法を提供することを目的としている。
さらに、 被処理材の表面がェツチングされることを低減可能とする表面処理方 法を提供することを第 2の目的としている。 発明の開示
前記目的は、 請求の範囲第 1項の発明によれば、 常温またはその近傍の温度下で 化学的に安定し、 且つ相対湿度が 0 %またはその近傍の湿度に設定されてなる第 1 のガスを導入し、 前記第 1のガスからなる雰囲気を形成する工程と、
ハ口ゲン化水素ガスを含む第 2のガスを導入し、 被処理材の表面を処理するェ 程と、 を少なくとも有することを特徴とする表面処理方法である。
このような表面処理方法にすることで、 第 2のガスの被処理材への照射閧始時 点における被処理材の雰囲気の相対湿度を 0 %またはその近傍の湿度とすること ができ、 安定した水分の雰囲気で処理が可能となり、 その表面処理の仕上がりの バラツキを小さくすることができる。 くわえて、 常温またはその近傍の温度下で 化学的に安定しているので、 被処理材の表面で副次的な化学反応を起こすなどし て処理用ガスによる表面処理に悪影響を与えるようなことがない。
また、 請求の範囲第 2項の発明によれば、 請求の範囲第 1項の構成において、 前 記第 2のガスは、 ハロゲン化水素ガスを含むガスであることを特徴とする。 特に、 請求の範囲第 3項によれば、 前記ハロゲン化水素ガスを含むガスは、 大 気圧またはその近傍下にあるハロゲンガスと水蒸気とからなる放電用ガス、 もし くは大気圧またはその近傍下にあるハロゲン化合物のガスと水蒸気とからなる放 電用ガスを放電部に導入して生成されたガスであることを特徴とする。
このような表面処理方法にすることで、 危険有害なハロゲン化水素ガス自体を 用意することなく比較的安全なガスを用いて容易にハロゲン化水素ガスを含む処 理用ガスを生成することができる。
前記目的は、 請求範囲第 4項の発明によれば、 ハロゲンガスを含むガスであるこ とを特徴とする。
このような表面処理方法にすることで、 処理用ガスの被処理材への照射開始時 点における被処理材の雰囲気の相対湿度を 0 %またはその近傍の湿度とすること ができ、 安定した水分の雰囲気で処理が可能となり、 その表面処理の仕上がりの バラヅキを小さくすることができる。 くわえて、 常温またはその近傍の温度下で 化学的に安定しているので、 被処理材の表面で副次的な化学反応を起こすなどし て処理用ガスによる表面処理に悪影響を与えるようなことがない。
また、 請求の範囲第 5項の発明によれば、 請求の範囲第 4項の構成において、 前 記処理用ガスは、 大気圧またはその近傍下にあるハロゲン化合物のガスを放電部 に導入して生成されたハロゲンを含むガスであることを特徴とするものである。 このような表面処理方法にすることで、 危険有害なハロゲンガス自体を用意す ることなく比較的安全なガスを用いて容易にハロゲン化水素ガスを含む処理用ガ スを生成することができる。
また、 請求の範囲第 6項の発明によれば、 請求の範囲第 1項乃至請求の範囲第 5 項のいずれかの構成において、前記第 2のガスの前記被処理材への照射後に、前記 被処理材の雰囲気を前記第 1のガスに置換することを特徴とするものである。 このような表面処理方法にすることで、 第 2のガスの被処理材への照射後にお いて、 処理用ガスの排除中に被処理材周辺雰囲気の相対湿度を 0 %またはその近 傍に低減させることができる。 よって、 第 2のガスが完全に排除されるまでの間 、 被処理材の表面処理の速度の安定化をはかることができ、 ひいてはその表面処 理の仕上がりのバラツキを小さくすることができる。 くわえて、 常温またはその 近傍の温度下で化学的に安定しているので、 被処理材の表面で予期しない化学反 応を起こすなどして処理用ガスによる表面処理に影響を与えるようなことがない o
また、 好ましくは請求の範囲第 7項の発明によれば、 請求の範囲第 1項乃至請求 の範囲第 6項のいずれかの構成において、 前記第 1のガスは、 前記希釈用ガスと同 一であることを特徴とするものである。
このような表面処理方法にすることで、 希釈用ガスをそのまま置換用ガスとし て使用することができるので、 処理用ガス中に希釈用ガスを添加し、 被処理材に 照射する既存の装置構成をそのまま利用できる。
また、 請求の範囲第 8項に記載の発明によれば、 請求の範囲第 1項乃至請求の範 囲第 7項のいずれかの構成において、前記第 1のガスは、 不活性ガスまたは除湿し た大気であることを特徴とするものである。
このような表面処理方法にすることで、 大気や窒素ガスなどの入手の容易なガ スを第 1のガスとして利用することができる。
また、 請求の範囲第 9項に記載の発明によれば、 請求の範囲第 1項乃至請求の範 囲第 8項のいずれかの構成において、前記第 1のガスは、露点が— 2 0 °C以下であ ることを特徴とするものである。
また、 請求の範囲第 1 0項に記載の発明によれば、 請求の範囲第 1項乃至請求の 範囲第 9項のいずれかの構成において、前記雰囲気を前記第 1のガスに置換してい る時に前記被処理材を加熱することを特徴とするものである。
このような表面処理方法にすることで、 被処理材へ第 2のガスを照射する前の 置換時の加熱においては、 被処理材に大気等から付着した水分を蒸発させること により、 被処理材の表面がエッチングされることを防止することが可能となる。 また、 請求の範囲第 1 1項の発明によれば、 請求の範囲第 1項乃至請求の範囲第 1 0項のいずれかの構成において、前記第 2のガスの前記被処理材への照射中に前 記被処理材を加熱することを特徴とするものである。
このような表面処理方法にすることで、 第 2のガスに含まれる水蒸気が被処理 材に付着しても、 即座に蒸発させることができ、 被処理材の表面がエッチングさ れることを防止することが可能となる。
また、 請求の範囲第 1 2項の発明によれば、 請求の範囲第 1項乃至請求の範囲第 1 1項の構成において、 前記被処理材の加熱温度は、 前記被処理材に付着した金 属または金属合金の融点未満であることを特徴とするものである。
このような表面処理方法にすることで、 被処理材に付着した金属または金属合 金が軟化、 溶融することを防止できる。
また、 請求の範囲第 1 3項の発明によれば、 請求の範囲第 1項乃至請求の範囲第 1 2項のいずれかの構成において、前記被処理材の被処理表面は、 スズまたはスズ 系合金であることを特徴とするものである。
このような表面処理方法にすることで、 ハロゲン化水素を含むガスまたはハロ ゲンを含むガスにより表面処理を行うのに好適な被処理材の被処理表面とするこ とができる。 図面の簡単な説明
第 1図は、 本発明の第 1の実施の形態に係る表面処理方法の説明図である。 第 2図は、 本発明の第 2の実施の形態に係る表面処理方法の説明図である。 第 3図は、 本発明の第 3の実施の形態に係る表面処理方法の説明図である。 第 4図は、 従来の表面処理方法の説明図である。
第 5図は、 本発明の実施例と従来の表面処理方法との比較実験装置の説明図 ( 1 ) である。
第 6図は、 本発明の実施例と従来の表面処理方法との比較実験装置の説明図 ( 2 ) である。
第 7図は、 本発明の実施例の表面処理方法における処理室内のフッ化水素濃度 ( H F濃度) と相対湿度の関係を示す説明図である。
第 8図は、 本発明の実施例と従来の表面処理方法との比較実験結果の説明図で あり、 ( 1 ) は S i O 2膜のエッチング実験の結果であり、 (2 ) は水蒸気非混合 におけるエツチング実験の結果である。
第 9図は、 従来の表面処理方法における表面処理とフッ化水素濃度 (H F濃度 ) と相対湿度との関係を示す説明図である。 発明を実施するための最良の形態
以下に本発明の好適な具体的実施の形態について図面を参照して詳細に説明す る。 なお、 前述の従来技術と同一構成となる部分については、 その説明を簡略化 する。
まず、 第 1の実施の形態について説明する。 第 1図は、 本発明の第 1の実施の 形態に係る表面処理方法の説明図である。 この第 1図に示したように、 第 4図に 示した従来技術に係る装置に対して、 処理室 2 2に被処理材ヒ一夕 2 4を付加し たものにより表面処理を行う。 この被処理材ヒータ 2 4は、 被処理材 7 0を加熱 することにより、 被処理材 7 0に元々付着していた、 あるいは処理用ガス 5 4 ( 以下、 第 2のガスとも言う) あるいはキャリアガス 5 6から新たに付着した水分 を蒸発させるために設けられている。
ところで、 被処理材 7 0を加熱する温度は、 被処理材の加熱時にハンダが軟化、 溶融することを防止するために、 ハンダの融点未満とすることが望ましい。 なお 、 ハンダの融点は約 2 2 0 °C ( S n約 8 0 %、 P b約 2 0 %の場合) である。 例 えば、 鉛フリーハンダである S n Z n、 S n A gなどに対して表面処理を行うこ とも可能であるが、 このような場合の加熱温度は、 S n Z nなどのそれぞれの合 金の融点未満になるようにすれば良い。 また、 固体同士の接合を目的として表面 処理を行うことも可能である。
また、 処理室ヒ一夕は、 被処理材をハンダ等の融点付近まで加熱することが可 能であれば、 例えばカートリッジヒ一夕などを被処理材に直接接触させて加熱す るものとしても良いし、 遠赤外線等により非接触状態で加熱するものとしても良 い。
また、 以下の実施の形態の説明においては、 処理用ガス中に含有されるハロゲ ン化水素ガスの事例としてフッ化水素ガスを取り上げて説明するが、 この表面処 理方法を実現するガスはフッ化水素ガスに限られるものではなく、 他のハロゲン 化水素ガスを用いても良い。
このように構成した装置を利用した表面処理方法は、 具体的には以下のような 手順によって実現される。 第 7図に、 本発明の実施例の表面処理方法における処 理室内のフッ化水素濃度 (H F濃度) と相対湿度の関係を示す。 処理室 2 2に被 処理材 7 0を配置後、 まず、 被処理材 7 0の表面処理 「フッ化処理」 を行う前に 、 処理室 2 2に残存している周辺大気の置換 「処理前置換」 を行う。 この置換は 、 被処理材 7 0の表面処理開始前に、 被処理材 7 0の雰囲気の相対湿度を 0 %ま たは近傍まで低下させておくことにより、 表面処理開始後に処理室 2 2内に残存 する周辺大気中の水分がフッ化水素と被処理材 7 0との反応に影響を与えること を防止し、 表面処理の安定化をはかるために行うものである。 具体的には、 処理 室 2 2中に被処理材 7 0が配置されている状態において、 キャリアガス供給源 2 0から処理室 2 2にキャリアガス 5 6を供給する。 これにより、 処理室 2 2中に 当初から存在していた大気は、 キヤリアガス 5 6により排気ガス流出路 4 2に押 し出されるので、 処理室 2 2中の大気をキヤリアガス 5 6に置換することができ る。 なお、 この時には処理用ガス 5 4は供給しない。 この 「処理前置換」 におけ る処理室 2 2内の湿度の変化は、 キャリアガスに乾燥ガスを用いた場合、 第 7図 の破線で示すように周辺大気の湿度から 0 %近傍まで低下する。 なお、 キャリア ガスを以下第 1のガスともいう。
このようにして置換が完了したら、 前述した従来技術の場合と同様に、 第 1図 に示したように、 原料ガス供給源 1 0から原料用ガス 5 0である四フッ化炭素 ( C F 4) を水槽 1 2に供給し、 水蒸気を含有させて放電用ガス 5 2として放電用 ユニット 1 6に送り込み、 放電ュニット 1 6で放電によりフヅ化水素を含む処理 用ガス 5 4を生成して処理用ガスヒ一夕 1 8で加熱した上で処理室 2 2に送り込 む。 同時に、 キャリアガス供給源 2 0からもキャリア用ガス 5 6を処理室 2 2に 送り込むので、 処理室 2 2には処理用ガス 5 4にキャリアガス 5 6を添加した混 合ガス 5 8が充満することになる。 被処理材 7 0は、 混合ガス 5 8に含有される フッ化水素ガスに触れることにより表面処理され、 処理室 2 2中にフッ化水素ガ スが存在する間、 表面処理が継続する。 この 「フッ化処理」 時において、 第 7図 に示すように処理室 2 2内の H F濃度は混合ガス 5 4の元々の H F濃度である 9 0 0 p p mに達し、 安定する。
所定の時間が経過し、 被処理材 7 0の表面処理が完了したら、 処理室 2 2内に 残存する処理用ガス 5 4の置換 「処理後置換」 を行う。 なお、 置換の方法は、 表 面処理の開始前に行った置換と同じである。 このような置換を行うことにより、 第 7図のグラフの破線に示すように、 処理室 2 2内の相対湿度を 0 %近傍まで低 下させて、 フッ化水素ガスが除去されるまでの間、 被処理材 7 0の表面処理の進 行を低減することができる。 このような 「処理後置換」 の後、 周辺大気を導入し て被処理材 7 0を取り出す。
以上のように処理室 2 2中のガスの置換を行うと、 処理室 2 2中のガスにフッ 化水素ガスが存在している間に、 大気雰囲気と接触しないようにすることが可能 である。すなわち、被処理材の処理開始前の大気中の水分が残留する間(「処理前 置換」)処理用ガスは導入されず、被処理材の処理終了後の処理用ガスが残留する 間 (「処理後置換」) 大気は導入されない。 したがって、 大気雰囲気の水分の影響 を低減した状態で処理が可能となり、 処理の安定化をはかることが可能となる。 また、 前述のように、 表面処理の開始前から被処理材 7 0の表面に付着してい る水分や、 表面処理中に混合ガス 5 8に含まれる水蒸気が被処理材 7 0の表面に 付着することにより、 四フヅ化シリコンが生成されてその表面がェツチングされ ることを防止するために、 被処理材ヒ一夕 2 4で被処理材 7 0を加熱することに より、 被処理材 7 0に付着した水分を蒸発させることが有効である。 処理開始前 から元々被処理材 7 0に吸着していた水分に対しては、「処理前置換」時の加熱を 行えば 置換と水分の蒸発を同時に行うことができる。また、混合ガス 5 4に含ま れる水分に対しては、 「処理前置換」時の加熱を引き続き行い「フッ化処理」時の 加熱としその付着を防止することができる。 次に、 第 2の実施の形態について説明する。 第 2図は、 本発明の第 2の実施の 形態に係る表面処理方法の説明図である。 この第 2の実施の形態においては、 処 理用ガス 5 4が処理用ガスヒー夕 1 8により加熱されても、 キヤリアガス 5 6の 温度が処理用ガス 5 4よりも低い場合、 処理用ガスヒ一夕 1 8による加熱の効果 を減殺するので、 第 2図に示すように、 キャリアガス供給路 4 0の処理室寄りの 部位にキャリアガスヒ一夕 4 4を設けて、 キャリアガス 5 6を加熱するようにし たものである。
さらに、 第 3図は、 本発明の第 3の実施の形態に係る表面処理方法の説明図で ある。 第 1の実施の形態および第 2の実施の形態においては、 四フッ化炭素ガス ( C F 4) 等の原料用ガス 5 0に水蒸気を混合し放電用ガス 5 2として放電ュニ ット 1 6においてフッ化水素ガスを生成していたが、 この第 3の実施の形態にお いては、 原料用ガス 5 0に水蒸気を含有させずにそのまま放電ュニット 1 6に送 り込み、 放電により原料用ガスからフッ素ガス (F 2) を生成して、 このフッ素 ガスを含むガスを処理用ガス 5 4としたものである。 この場合、 水槽 1 2を設け る必要がなく、 原料用ガス 5 0に含まれる水分量を制御する必要がない。 処理用 ガス 5 4に含まれる水分量も極めて微量なものとなるので、 処理用ガスヒー夕 1 8も設ける必要がないため、 表面処理装置の構成を簡略なものにできる。 また、 フッ素ガスと水分が反応してできるフッ化水素が微量なため化学式 5のエツチン グ反応も防止することができる。
また、 以上の 3つの実施の形態において、 キャリアガスを置換用ガスとして用 いたが、 処理室にガスを供給することが可能な、 キャリアガス供給路とは別の置 換用ガス供給路を設け、 さらに新たに置換用ガス供給源を設けて置換用ガス供給 源に接続し、 この供給路を用いて置換用ガスを供給するものとしても良い。 いず れも置換用ガスとしては、 除湿した大気または窒素ガス (N 2) を用いるとコス ト的に有利である。 なお、 前述のように被処理材を加熱する場合は、 被処理材の 酸化を防止するために窒素ガスが望ましい。 また、 処理用ガスの生成方法として 、 放電用ガスを導入した放電ュニッ卜においてプラズマを発生させる方法を用い ているが、 被処理材の処理用ガスとして適するガスを得られるのならば、 他の方 法により生成しても良い。
【実施例】
なお、 以上の実施の形態においては、 従来技術に基づく表面処理方法との比較 を目的とした 3種類の実験を行うことにより、 その効果を確認するデ一夕を得て いるので、 以下にそれらの実験装置の構成および実験条件ならびに実験結果につ いて説明する。
《実験 1》
被処理材の雰囲気を置換することによる被処理材のフッ化処理 (ハンダの濡れ 性) の変化について実験を行った。
第 5図は、 本発明の実施例と従来の表面処理方法との比較実験装置の説明図 ( 1) である。 この第 5図に示すように、 実験装置の構成については、 原料用ガス として四フヅ化炭素ガス (CF 4) を用いており、 原料用ガス供給源 10からこ の四フヅ化炭素ガスをそのままの (乾燥) 状態 (以下 CF 4 (DRY) とする) で放電ュニット 16に導入する CF 4 (DRY) 供給路 90と、 途中で水槽 12 を経由して水蒸気を混合した状態 (以下 CF 4 (H20) とする) で放電ユニット 16に導入する CF 4 (H20) 供給路 92と、 を設けたものとした。
さらに、 キャリアガスとして工場内空気を乾燥圧縮したもの (露点約一 20 °C ) を用いており、 キャリアガス供給源 20から放電ユニット 16の近傍でこの空 気をそのままの (乾燥) 状態 (以下 A i r (DRY 1 ) とする) で処理用ガス 5 4に添加する Ai r (DR Y 1 ) 供給路 94と、 キャリアガスヒ一夕 44で加熱 した状態 (以下 Ai r (DRY2) とする) で処理用ガス 54に添加する A i r (DRY2) 供給路 96と、 途中で水槽 10を経由して水蒸気を混合した後に、 さらにキャリアガスヒー夕 44で加熱した状態 (以下 A i r (H 20) とする) で処理用ガス 54に添加する A i r (H 20) 供給路 98と、 を設けた。 キヤリ ァガスヒー夕 44は、 処理用ガスに含まれるフッ化水素同士の凝集を防止する目 的で、 キャリアガスの温度が約 120°Cになるように加熱温度を設定した。 また 、 放電ュニット 16内および処理用ガス供給路 36内の結露を防止することを主 目的として処理用ガスヒー夕 18を放電ユニット 1 6に取り付けた。 また、 被処 理材 70を配置する処理室 22として 481デシケ一夕を用いた。
「フッ化処理」 の条件は、 流量調整弁 31、 32の閧度をそれぞれ調整するこ とにより、 100CCM (ml/mi n) の CF4 (H 20) および 50 C CMの CF 4 (DRY) を放電ュニット 16に導入した。 そして、 放電ュニット 16の 電極間に周波数が約 15 kH z、 約 7kvの電圧を印加してフッ化水素ガスを含 む処理用ガス 54を生成した。 これに対して、 流量調整弁 37、 38、 39の開 度をそれぞれ調整することにより、 300 CCMの Ai r (DRY 1 ) および 9 1/mi nの A i r (DRY 2) ならびに 11/mi nの A i r (H 20) を処 理用ガス 54に添加し、 処理用ガス 54とキヤリァガスの混合ガス 58を処理室 22に導入した。 これらのガスにより処理室 22中の HFガスを約 750 ppm 、 相対湿度を約 6%とし、 30分間被処理材の処理を行った。 被処理材はハンダ メツキ銅板 (Cu 2 Ommx 5mmx 0. 2 mm基板、 Sn80%Pb20%) を施したものを用いた。 評価方法は、 メニスコグラフ法 (被処理材を 230°Cの 溶融ハンダ (Sn 63%Pb 27%)槽に浸せき) を採用し、 溶融ハンダに対す るぬれ力を評価した。
この 「フッ化処理」 条件を用い、 第 9図に示すような従来の方法 「フッ化処理 」 「処理後置換」で処理を行った。「処理後置換」 は、 周辺大気を 10分間導入 した。 このような処理を繰り返し行ったところ、 被処理材 70の溶融ハンダに対 する濡れ力は安定せず、 0. 3~2. 6 mNの範囲でバラツキがでた。
これに対して、 「フッ化処理」条件は同じとし、 第 7図に示すような「処理前置 換」 「フッ化処理」→「処理後置換」 で処理を行った。「処理前置換」および「 処理後置換」 は、 置換用導入ガスとしてキャリアガス Ai r (DRY2) を用い 、 導入時流量調整弁 38の開度を 301/mi nに調整し、 10分間工場圧空を 導入することにより行った。 被処理材、 評価方法は前述と同じである。 繰り返し 処理を行ったところ、 濡れ力のバラツキは、 0. 3〜2. 2 mNに減少した。 さらに、 この処理方法のもとでキャリアガスを工場圧空から窒素ガスに変更し て、 同様の実験を行った。 すなわち、 Ai r (DRY 1)、 Ai r (DRY2)、 Ai r (H 20) をそれぞれ N 2 (DRY1)、 N2 (DRY2)、 N 2 (H20) に 置き換え、 「処理前置換」 および「処理後置換」 は、 置換用導入ガスとしてキヤリ ァガス N 2 (DRY 2) を用いた。 窒素ガスの露点は— 50°C以下である。 繰り 返し処理を行ったところ濡れ力のバラヅキは、 0. 8〜1. 5 mNの範囲内に収 まり、 表面処理の効果が安定することが確認できた。
《実験 2》
被処理材を加熱することによる被処理材表面の S i 0 2膜のエッチング状態の 変化について実験を行った。
第 6図は、 本発明の実施例と従来の表面処理方法との比較実験装置の説明図 ( 2) である。 この第 6図に示すように、 基本構成は《実験 1》 と同様である。 キ ャリアガスには窒素ガスを用い、 前述と同様に、 N 2 (DRY 1)、 N 2 (DRY 2)、 N2 (H 20) とした。《実験 1》 と異なる構成要素は、 処理室 22に被処 理材ヒ一夕 24を設けたことである。 また、 処理室 22としてポリテトラフルォ 口エチレン製の処理容器 (容量 180 c c) を用いた。
処理方法は、 前述の 「処理前置換」 → 「フッ化処理」 → 「処理後置換」 で行つ た。「フッ化処理」時の条件については、 本発明の実施例と従来の表面処理方法と の比較実験結果の説明図である第 8図 (1) の S iO 2膜のエッチング実験の結 果を示す。 各水準とも処理用ガス生成条件およびキヤリアガスの条件は同じとし 、 被処理材 70の温度を被処理材ヒ一夕 24の加熱温度を変えることにより変化 させた。 評価方法は、 被処理材 70とした S i基板表面の S i 0 2膜 (膜厚 60 00〜7000オングストローム) の膜厚を処理前後において測定し、 その差を エッチング膜厚とした。 また、 処理の効果をみるためにハンダメツキ (Cu20 mmx 5mmx 0. 2 mm基板、 Sn80%Pb20%) に対して pH試験 (p H試験紙を水に濡らし、 処理後のハンダメツキに押しつけ、 試験紙の色の変化に より pHを測定する) を行った。
このような条件下で、 第 8図 (1) の 「従来条件」 で示した従来の方法 (被処 理材 70の温度は室温のまま) で処理したところ、 エッチング膜厚は 515オン グストローム、 ハンダメヅキの pHは 3であった。 一方、 実施の形態で示した方 法である「条件 1」(被処理材ヒ一夕 24の設定温度を 135°Cとして被処理材 7 0の温度を 8 0 °Cとした) においては、 ェヅチング膜厚は 4 5オングスト口一ム となった (ハンダメツキの p Hはデ一夕なし)。 また、 「条件 2」 (被処理材ヒ一 夕 2 4の設定温度を 1 7 5 °Cとして被処理材 7 0の温度を 9 0 °Cとした) におい ては、 エッチング膜厚は 2 9オングストローム、 ハンダメツキの p Hは 1 . 5で あった。 よって、 被処理材を加熱することにより、 S i 0 2膜のエッチング量を 相当に低減できること、 また、 ハンダメツキの表面処理においても処理効果の向 上が確認できた。
《実験 3》
原料用ガスに水蒸気を混合しない場合における被処理材表面の S i 0 2膜のェ ヅチング状態の変化について実験を行った。
実験装置の構成、 被処理材、 評価方法については、 実験 2と同じとした。
処理方法は、 前述の 「処理前置換」 → 「フッ化処理」 → 「処理後置換」 で処理 を行った。
「フッ化処理 j 時の条件は、 第 8図 (2 ) の水蒸気非混合におけるエッチング 実験に示す。 各水準とも処理用ガス生成条件およびキャリアガスの条件は同じと し、 被処理材 7 0の温度を被処理材ヒ一夕 2 の加熱温度を変えることにより変 化させた。
実験 2における処理条件との大きな違いは、 C F 4 ( H 2 0 ) および N 2 ( H 2 0 ) を 0とすることにより、 処理用ガスを F 2とし、 キャリアガス中の H 2 0濃度 を極めて低くして、 ドライ雰囲気での処理としたことである。
このような条件下で、 第 8図 (2 ) の 「条件 1」 (被処理材 7 0の温度は室温の まま) で処理したところ、 エッチング膜厚は 1 4オングストローム、 ハンダメッ キの p Hは 3 . 7 5であった。 一方、 実施の形態で示した方法である 「条件 2」 (被処理材ヒ一夕 2 4の設定温度を 1 3 5 °Cとして被処理材 7 0の温度を 8 0 °C とした) においては、 エッチング膜厚は 1 0オングストロームとなった (ハンダ メツキの p Hはデ一夕なし)。 また、 「条件 3」 (被処理材ヒ一夕 2 4の設定温度 を 1 7 5 °Cとして被処理材 7 0の温度を 9 0 °Cとした) においては、 エッチング 膜厚は 1 0オングストローム、 ハンダメツキの p Hは 2 . 5であった。 よって、 原料用ガスに水蒸気を混合しない場合において、 S i O 2膜のエッチング量を低 減できること、 また、 被処理材を加熱することによりハンダメツキの表面処理に おいて処理効果の向上が確認できた。 産業上の利用可能性
以上のように、 本発明は、 H 2◦濃度の低いキャリアガスを処理室中のガスを 置換するための置換用ガスとして用いることにより、 既存の表面処理装置に大き な改変を加えることなく、 被処理材の表面処理の速度等を安定化させることがで きる。 さらに、 被処理材ヒ一夕などにより被処理材を加熱すること、 あるいは原 料用ガスを極めて低 H 2 0濃度にすることにより、 被処理材が表面処理中にエツ チングされることを防止できる。

Claims

請 求 の 範 囲
1 . 常温またはその近傍の温度下で化学的に安定し、 且つ相対湿度が 0 %またはそ の近傍の湿度に設定されてなる第 1のガスを導入し、 前記第 1のガスからなる雰囲 気を形成する工程と、
ハロゲン化水素ガスを含む第 2のガスを導入し、 被処理材の表面を処理するェ 程と、
を少なくとも有することを特徴とする表面処理方法。
2 . 前記第 2のガスは、 ハロゲン化水素ガスを含むガスであることを特徴とする 請求の範囲第 1項記載の表面処理方法。
3 . 前記ハロゲン化水素ガスを含むガスは、 大気圧またはその近傍下にあるハロ ゲンガスと水蒸気とからなる放電用ガス、 もしくは大気圧またはその近傍下にあ るハロゲン化合物のガスと水蒸気とからなる放電用ガスを放電部に導入して生成 されたガスであることを特徴とする請求の範囲第 2項に記載の表面処理方法。
4 . 前記第 2のガスは、 ハロゲンガスを含むガスであることを特徴とする請求の 範囲第 1項記載の表面処理方法
5 . 前記第 2のガスは、 大気圧またはその近傍下にあるハロゲン化合物のガスを 放電部に導入して生成されたハロゲンを含むガスであることを特徴とする請求の 範囲第 4項のいずれかに記載の表面処理方法。
6 . 前記第 2のガスの前記被処理材へ照射した後、 前記被処理材の雰囲気を前記 第 1のガスに置換することを特徴とする請求の範囲第 1項乃至請求の範囲第 5項 のいずれかに記載の表面処理方法。
7 . 前記第 1ガスは、 前記導出された前記処理用ガスに添加する希釈用ガスと同 一であることを特徴とする請求の範囲第 1項乃至請求の範囲第 6項のいずれかに 記載の表面処理方法。
8 . 前記第 1のガスは、 不活性ガスまたは除湿した大気であることを特徴とする 請求の範囲第 1項乃至請求の範囲第 7項のいずれかに記載の表面処理方法。
9 . 前記第 1のガスは、 露点が一 2 0 °C以下であることを特徴とする請求の範囲 第 1項乃至請求の範囲第 8項のいずれかに記載の表面処理方法。
1 0 . 前記雰囲気を前記第 1のガスに置換するとともに、 前記被処理材を加熱す ることを特徴とする請求の範囲第 1項乃至請求の範囲第 9項のいずれかに記載の 表面処理方法。
1 1 . 前記第 2のガスを前記被処理材へ照射中に、 前記被処理材を加熱すること を特徴とする請求の範囲第 1項乃至請求の範囲第 1 0項のいずれかに記載の表面 処理方法。
1 2 . 前記被処理材の加熱温度は、 前記被処理材に付着した金属または金属合金 の融点未満であることを特徴とする請求の範囲第 1項乃至請求の範囲第 1 1項の いずれかに記載の表面処理方法。
1 3 . 前記被処理材の被処理表面は、 スズまたはスズ系合金であることを特徴と する請求の範囲第 1項乃至請求の範囲第 1 2項のいずれかに記載の表面処理方法。
PCT/JP2000/000438 1999-01-29 2000-01-27 Procede de traitement de surface WO2000044961A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU23200/00A AU2320000A (en) 1999-01-29 2000-01-27 Surface treating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2161499 1999-01-29
JP11/21614 1999-01-29

Publications (1)

Publication Number Publication Date
WO2000044961A1 true WO2000044961A1 (fr) 2000-08-03

Family

ID=12059932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000438 WO2000044961A1 (fr) 1999-01-29 2000-01-27 Procede de traitement de surface

Country Status (2)

Country Link
AU (1) AU2320000A (ja)
WO (1) WO2000044961A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028326A (ja) * 2006-07-25 2008-02-07 Tokyo Electron Ltd ガス供給装置、ガス供給方法、薄膜形成装置の洗浄方法、薄膜形成方法及び薄膜形成装置
WO2022219977A1 (ja) * 2021-04-14 2022-10-20 東京エレクトロン株式会社 基板処理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192589A (ja) * 1986-02-18 1987-08-24 Asahi Chem Ind Co Ltd ドライ・エツチング方法
JPH03140471A (ja) * 1989-10-25 1991-06-14 Fujitsu Ltd 半導体装置の製造装置
JPH10314934A (ja) * 1997-05-20 1998-12-02 Seiko Epson Corp 表面処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192589A (ja) * 1986-02-18 1987-08-24 Asahi Chem Ind Co Ltd ドライ・エツチング方法
JPH03140471A (ja) * 1989-10-25 1991-06-14 Fujitsu Ltd 半導体装置の製造装置
JPH10314934A (ja) * 1997-05-20 1998-12-02 Seiko Epson Corp 表面処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028326A (ja) * 2006-07-25 2008-02-07 Tokyo Electron Ltd ガス供給装置、ガス供給方法、薄膜形成装置の洗浄方法、薄膜形成方法及び薄膜形成装置
WO2022219977A1 (ja) * 2021-04-14 2022-10-20 東京エレクトロン株式会社 基板処理方法

Also Published As

Publication number Publication date
AU2320000A (en) 2000-08-18

Similar Documents

Publication Publication Date Title
JP4029473B2 (ja) 固体接合方法およびその装置、導体接合方法、パッケージ方法
US5940728A (en) Process for manufacturing electronic circuits
TW201718161A (zh) 焊接製品的製造方法
JPH1032193A (ja) 基材表面からの炭素の除去
US20100139708A1 (en) Method of removing resist and apparatus therefor
JP2006231134A (ja) 有機材料膜の形成方法
JPH11163036A (ja) バンプ形成方法、はんだ接合用前処理方法、はんだ接合方法、バンプ形成装置、はんだ接合用前処理装置およびはんだ接合装置
WO2000044961A1 (fr) Procede de traitement de surface
US20110014785A1 (en) Method for manufacturing semiconductor device, and semiconductor manufacturing apparatus used in said method
JPH10189494A (ja) 半導体ウェーハを処理するための方法及び装置
KR20170103656A (ko) 금속 오염 방지 방법 및 금속 오염 방지 장치, 및 이들을 사용한 기판 처리 방법 및 기판 처리 장치
KR20210110579A (ko) 루테늄의 선택적 제거를 위한 광 보조 화학 기상 에칭
JP4458835B2 (ja) 半田バンプの形成方法及びその装置
JP2006310482A (ja) アルミニウム表面腐食防止方法
JPH10223623A (ja) ウェット酸化装置およびウェット酸化方法
JPH065505A (ja) フォトレジスト塗布前処理装置
JP2632293B2 (ja) シリコン自然酸化膜の選択的除去方法
JP3511876B2 (ja) 表面処理方法および装置
JP3506016B2 (ja) 金属の酸化方法
WO2015064166A1 (ja) 分解機構を備える半田付け装置および分解方法
JP6752249B2 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
CN112981360A (zh) 一种微波退火装置和微波退火方法
JPH11209866A (ja) フッ化水素ガスによる表面処理方法および表面処理装置
JP4497154B2 (ja) 固体接合方法
US20030015220A1 (en) Gas dilution method and apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09647667

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase