WO2000039513A1 - Liquid helium recondensation device and transfer line used therefor - Google Patents

Liquid helium recondensation device and transfer line used therefor Download PDF

Info

Publication number
WO2000039513A1
WO2000039513A1 PCT/JP1999/006683 JP9906683W WO0039513A1 WO 2000039513 A1 WO2000039513 A1 WO 2000039513A1 JP 9906683 W JP9906683 W JP 9906683W WO 0039513 A1 WO0039513 A1 WO 0039513A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
helium
storage tank
refrigerator
line
Prior art date
Application number
PCT/JP1999/006683
Other languages
English (en)
French (fr)
Inventor
Tsunehiro Takeda
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Priority to CA002355821A priority Critical patent/CA2355821C/en
Priority to DE69926087T priority patent/DE69926087T2/de
Priority to US09/868,574 priority patent/US6442948B1/en
Priority to EP99973547A priority patent/EP1197716B1/en
Publication of WO2000039513A1 publication Critical patent/WO2000039513A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • F17C3/085Cryostats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/082Pipe-line systems for liquids or viscous products for cold fluids, e.g. liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0408Level of content in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0408Level of content in the vessel
    • F17C2250/0413Level of content in the vessel with floats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/17Re-condensers

Definitions

  • the present invention relates to a liquid helium recondensing apparatus and a transfer line used for the apparatus, and more specifically, to a liquid helium for keeping a magnetoencephalograph used in a magnetoencephalography system at a very low temperature.
  • the present invention relates to a liquid-helium recondenser and a transfer line in which a helium gas vaporized from the storage tank can be circulated and reused in the liquid-helium storage tank.
  • the liquid helium recondensing device and the transfer line may be used in addition to the magnetoencephalography measurement system.
  • This system uses a SQUID (Superconducting Quantum Interference Device) that can measure brain activity non-invasively with high spatiotemporal resolution.
  • SQUID Superconducting Quantum Interference Device
  • This SQUID invades the liquid hemisphere stored in an insulated tank. Used in a crushed and cooled state.
  • reference numeral 101 denotes a liquid storage tank containing a magnetoencephalograph
  • 102 denotes a storage tank.
  • a dry pump that recovers helium gas vaporized in 101, 103 is a dryer that removes water mixed in helium gas, 104 is a flow control valve, 105 is a purifier, 106 is the auxiliary chiller, 107 is the first heat exchanger of the auxiliary chiller 106, 108 is the re-condensing refrigerator, and 109 is the re-condensing refrigerator 108
  • a helium gas of about 300 ° K, which is a heat exchanger and is vaporized and heated in the liquid helium storage tank 101, is sucked by the dry pump 102, and is dried by the dryer 103 and the purifier 105. After passing through the auxiliary chiller 106, it was cooled to about 40 ° K cryogenic helium gas. It is liquefied into liquid helium of K, and is supplied from here to a liquid-helium storage tank via a transfer line 110.
  • This liquid helm recirculation system basically collects and recycles all of the helm gas evaporated in the liquid helm storage tank, so that it is released to the atmosphere as in the past, or is collected in a gas bag or the like and recycled.
  • the amount of helium used is extremely small, it is extremely economical and efficient, and its use has been actively promoted recently.
  • handling is easy in terms of equipment maintenance.
  • liquid helium is indispensable for cooling SQUID, etc., but converting helium gas to liquid helium requires a very large amount of electrical energy to operate the refrigerator. Large amounts of water are needed to cool the compression pumps for
  • the liquid helium liquefied in the refrigerator is circulated to the liquid via the transfer line to the realm storage tank, it is difficult to completely isolate the liquid helm from the high-temperature part.
  • the rate of vaporization increases, and the transfer efficiency deteriorates. Therefore, enormous operation costs are required for the maintenance of the equipment, and as a result, the same cost as opening to the atmosphere is required. Therefore, there is a need for the development of a new form of liquid helm recirculation system that is more economical.
  • the present inventor has concluded that the amount of heat (vaporization heat) required when liquid helium changes from a liquefied state of about 4 ° K to a gaseous state of about 4 ° K.
  • the amount of heat (sensible heat) required to raise the temperature from a gas of about 4 ° K to a gas of about 300 ° K is much larger.
  • the present invention has been achieved by noting that much energy is not required but that large energy is required when liquefying a low-temperature helium gas into a liquid helm.
  • the high-temperature helium gas heated to about 300 ° K in the liquid helium storage tank is recovered, and the temperature can be relatively easily cooled by a refrigerator, for example, about A cooled helium gas of 40 ° K is supplied to the upper part of the storage tank and cooled near the liquid surface of the liquid in the liquid-helium storage tank.
  • the low-temperature helium gas at 0 ° K is recovered, reduced to liquid at about 4 ° K by a refrigerator, supplied to the storage tank, and the liquid evaporated in the storage tank can be easily replenished with lime. It is an object of the present invention to provide a new liquid helium recirculation device and solve the problems of the conventional recirculation system. Disclosure of the invention
  • the problem solving means adopted by the present invention is:
  • a liquid helium recondensing apparatus comprising: a line that supplies the liquid helium to the refrigerator and converts the liquid helium into a liquid hemisphere by the refrigerator and supplies the liquid helium into the storage tank.
  • This is a liquid helm recondensing device characterized by being placed in a single tube insulated by a vacuum layer.
  • the above arrangement is such that a line for supplying liquid helium is centered, a line for supplying low-temperature helium gas to the refrigerator is disposed around the line, and a line for supplying cooling helium gas cooled by the refrigerator around the line.
  • This is a liquid helium recondensing apparatus characterized in that it is formed so as to form a triple tube in which is disposed.
  • the arrangement is such that a line for supplying liquid helium, a line for supplying low-temperature helium gas to the refrigerator, and a line for supplying cooling helium gas cooled by the refrigerator are arranged in parallel with each other.
  • It is a liquid helm recondensing device characterized by the following.
  • each of the lines is formed by a tube having a vacuum layer around it.
  • a liquid helium recondensing device characterized by being arranged separately and with each line configured as a tube insulated by a vacuum layer. Further, the liquid helium recondensing apparatus is characterized in that the liquid helium liquefied by the refrigerator is supplied to the storage tank while its surroundings are insulated from the high temperature part by the low temperature helium gas.
  • liquid helium recondensing apparatus characterized in that a part of the high-temperature helium gas is liquefied by a refrigerator and can be supplied to the storage tank.
  • a liquefied helium liquefied by the refrigerator is supplied to a storage tank through a gas-liquid separator. Further, in the method of recondensing helium vaporized in the liquid helium storage tank, cooling and liquefying the helium gas, and supplying the helium gas to the liquid helium storage tank again, the high temperature raised in the liquid helium storage tank is increased. Helium gas is supplied to the refrigerator, cooled by the refrigerator and supplied to the upper part of the storage tank, and the low-temperature helium gas near the liquid level of the liquid helium in the liquid storage tank is supplied to the refrigerator.
  • a liquid helium recondensing method characterized in that the liquid helium is supplied to the storage tank and supplied to the storage tank.
  • liquid-helium recondensing method in which the liquid helium is supplied into the liquid-helium storage tank while at least one of a low-temperature helium gas or a cooled realm gas does not directly touch a high-temperature portion. .
  • Each of the lines has a vacuum layer on its outer periphery.
  • the transfer line is characterized in that each tube is arranged in a single tube whose periphery is insulated by a vacuum layer.
  • a line for supplying a low-temperature helium gas is disposed around the line for supplying the liquid helium, and a line for supplying a cooling helium gas having a higher temperature than the low-temperature helium gas is disposed around the line.
  • Each of the lines is constituted by a tube having a vacuum layer on its outer periphery. Is a transfer line.
  • the present invention having the above-described structure, a large amount of heat can be taken out by the sensible heat of the cooling helium gas in the liquid helium storage tank, and the amount of the evaporating liquid helium can be suppressed to a very small amount. Also, the energy required to cool from a high-temperature helium gas of about 300 ° C to a helium gas of about 40 ° K is necessary to convert the helium gas of about 40 ° K to a liquid of about 4 ° K. Since this device requires much less energy than the conventional method, the present device operates a refrigerator for liquefying helium gas, etc., as compared with the conventional method of liquefying all of the recovered helium gas. It is extremely economical because it is possible to greatly reduce the energy required for construction.
  • the energy for liquefying the helium gas can be largely saved by collecting and liquefying the low-temperature helium gas near the liquid level of the liquid helium stored in the liquid helium storage tank. It is possible to reduce the running cost.
  • FIG. 1 is a schematic configuration diagram of a multi-circulation liquid helium recondensing apparatus according to the present invention
  • FIG. 2 is an enlarged view of a part of the transfer line according to the present invention
  • FIG. FIG. 4 is a cross-sectional view of two different examples
  • FIG. 4 is a schematic configuration diagram of a conventional circulation type liquid helium recondensing apparatus.
  • FIG. 1 is a schematic configuration diagram of the device.
  • 1 is a liquid helium storage tank (FRP cryostat) that is placed in a magnetic shield room to contain SQUID
  • 1a is a gas-liquid separator placed in the tank
  • 1b is the tank
  • 1 c is a pipe for a collecting gas line 12 for collecting high-temperature helium gas heated to about 300 ° K in the storage tank 1
  • 2 is a flow control pump that supplies the high-temperature refrigerated gas recovered through the pipe 1c to the small refrigerator
  • 4 is a flow control valve
  • 5 is a 4 KGM small refrigerator that has recently made remarkable progress
  • 6 is the same refrigerator.
  • Heat exchanger, (7) Second heat exchanger, (6), (7) (a) High-temperature helium gas or cylinder for replenishing helium recovered from storage tank in case of shortage of liquid in storage tank.
  • the KW helium compressor 9 is provided with a pipe 9a for supplying the liquid helium liquefied by the refrigerator 5 to the liquid helium storage tank 1, a pipe 9b for collecting low-temperature helium gas from the storage tank 1, and a refrigerator 5.
  • a transfer line consisting of a pipe 9c that supplies helium gas cooled to about 40 ° K to liquid into the liquor storage tank 1 and a supply line 10 for replenishing helium that can compensate for helium gas shortage in an emergency
  • a cylinder 11 is an insertion pipe connected to the transfer line 9 and arranged in the liquid helium storage tank 1, and each device is connected to each other by a flow path indicated by an arrow in the flow direction as shown in the figure. ing. Further, a pressure gauge P is arranged in the flow path in the device as shown in the figure. 14 forms the magnetic shield room of FRP Cryos Sunset 1.
  • the structure of the transfer line will be described.
  • the transfer line may take various forms. Here, two examples will be described with reference to FIGS. Fig.
  • FIG. 3 is a cross-sectional view of a transfer line having a structure shown in FIG.
  • a pipe 9c provided with a flow path for cooling helium gas cooled to about 40 ° K by a refrigerator is arranged in parallel in the section, and these three pipes 9a, 9b, 9c are further arranged.
  • a large-diameter pipe 9A having a vacuum layer 9d for heat insulation is disposed around the periphery of the large-diameter pipe 9A, and a heat insulating material 13 is disposed in the large-diameter pipe 9A.
  • the transfer line 9 is configured as a triple tube, and a large-diameter tube 9′c having a vacuum layer 9d around the center has a vacuum layer 9d around the center.
  • a medium-diameter tube 9'b is arranged, and a small-diameter tube 9'a having a vacuum layer 9d around the center of the medium-diameter tube 9'b is arranged around the medium-diameter tube 9'b.
  • Cooling helium gas of K, low-temperature helium gas of about 10 ° K around small-diameter pipe 9'a, and liquid helium of about 4 ° K at the center of small-diameter pipe 9'a can be flown. You can do it.
  • each of the transfer lines 9 the end on the storage tank side is connected to an insertion pipe 11 arranged in the liquid helium storage tank 1 as shown in FIG. Separator 1a is provided.
  • This gas-liquid separator 1a is not an essential component of the apparatus according to the present invention, and is required when it is necessary to prevent a slight helium gas generated during the transport of the liquid helium from disturbing the temperature balance in the storage tank. It is desirable to provide.
  • the end of the pipe 9a that supplies the liquid helium liquefied by the refrigerator to the storage tank i is The end of the pipe 9b, which is connected to the gas-liquid separator 1a and collects the low-temperature helium gas in the storage tank 1 and supplies it to the refrigerator, is connected to the lowest possible temperature range in the tank (about 4 ° K Low-temperature helium gas can be recovered from the gas-liquid separator 1a of the insertion tube 1 or to the liquid in the storage tank 1 near the liquid surface of the lithium.
  • the end of the pipe 9c that supplies the cooling steam gas cooled to about 40 ° into the storage tank 1 is opened to the storage tank 1 at the upper part of the insertion pipe 11 (the upper part in the storage tank 1). .
  • the high-temperature helium gas heated to about 300 ° K is sucked by a flow control pump 2 through a helicoid gas recovery pipe 1 c arranged at an upper part of a storage tank 1, and the entire amount thereof is supplied to a first refrigerator 5.
  • the helium gas is cooled to about 40 ° K, and the cooled helium gas is supplied to the upper part of the liquid helium storage tank 1 through the pipe 9c in the transfer line.
  • the cooled helium gas of about 40 ° K sent to the liquid helium storage tank 1 efficiently cools the liquid helium storage tank 1 by sensible heat until the temperature rises to about 300 ° K in the tank. .
  • the lower part of the storage tank 1 is always kept at about 4 ° K by the vaporization of the liquid helium, and the above-mentioned helium gas suppresses heat intrusion from the upper part, so that the amount of vaporized lime to the liquid is suppressed.
  • a low-temperature helium gas of about 10 ° K is recovered from a pipe 9 b having an opening near the liquid helium liquid level in the storage tank 1 and the second heat of the small refrigerator 5 is recovered. It liquefies in exchanger 7.
  • the liquefied helium is supplied to the storage tank 1 through the pipe 9a in the transfer line 9 via the gas-liquid separator 1a as required. In this way, the liquid hemisphere reduced by evaporation in the tank is constantly supplemented at a low energy cost by liquefying the low-temperature helium gas of about 10 ° K with the small refrigerator 5.
  • the liquid helium flowing in the transfer line 9 is transferred while being protected from the high-temperature portion by the cooling helium gas or the low-temperature helium gas flowing in the transfer line 9, so that the vaporization of the liquid helium is suppressed as much as possible.
  • the low-temperature helium gas to be collected for liquefaction is drawn into the storage tank 1 by sucking helium gas at the lowest possible temperature, so that the liquefaction efficiency of the refrigerator is improved, and a small refrigerator can be used, and the running cost can be reduced.
  • a pipe 9c for supplying helium gas cooled to about 40 ° K to a storage tank by a refrigerator and a pipe 9b for transferring low-temperature helium gas of about 10 ° K recovered from the storage tank 1 are provided.
  • the pipe 9a for transferring liquid helium was arranged in the transfer line 9.However, only the pipe 9c for supplying the cooling helium gas to the storage tank 1 was separated from the transfer line, and independent heat insulation was performed. It can also be configured as a tube.
  • the total amount of the high-temperature helium gas heated to about 300 ° K in the storage tank 1 is cooled to about 40 ° K, and the cooled helium gas is supplied to the liquid through the flow path in the transfer line 9.
  • the flow control valve 4 When it is configured to supply to the upper part of the storage tank 1, if the replenishment amount of the liquid helium to be supplied to the storage tank 1 is insufficient, operate the flow control valve 4 and set the line indicated by 20 in the figure.
  • the first heat exchanger 6 a and the second heat exchanger 7 a which are different from those described above, in the refrigerator 5, and supplies it to the storage tank 1 via the above-mentioned pipe 9 a It is also possible.
  • the helium gas heated to about 300 ° K in the liquid helium storage tank is recovered, and the recovery helium is recovered.
  • the entire amount of the vapor gas is cooled to about 40 ° K and returned to the liquid helium storage tank, and is opened near the liquid helium liquid level in the storage tank.
  • the low-temperature helium gas of about 10 ° K is recovered from the tube having the section, liquefied through the second heat exchanger 7 of the small refrigerator, and vaporized to replenish the deficient liquid with the deficient liquid.
  • the helium gas at about 40 K was about 300.
  • liquid helium which evaporates and runs short in the storage tank, recovers liquefied gas to a cool low temperature near the liquid level in the storage tank, liquefies it, and returns it to the storage tank.
  • the energy loss during the operation can be made extremely small, and a high-efficiency, low-cost liquid helium recondensing device can be constructed.
  • the liquid helium liquefied by the refrigerator is transferred at least in a state where it does not come into contact with the high-temperature portion by the helium gas cooled by the refrigerator or the low-temperature helium gas recovered from the storage tank.
  • the amount of vaporization of the liquid helm during transfer can be greatly reduced.
  • the energy required to condense helium gas at about 40 ° K to liquid helium at about 4 ° K is enormous, but is about 10 in the present invention. Since the low-temperature helium gas of K is converted into liquid helium, the energy for liquefaction can be reduced, and a small refrigerator can be used.
  • refrigerators can be used in place of the small refrigerator described in the above embodiment, including a method of recirculating gas at a higher temperature using a multistage refrigerator.
  • control of the flow control valve and the like for supplementing the liquid helm in this system is controlled by a control device (not shown) based on information from a sensor such as a liquid level gauge arranged in the liquid helm storage tank. can do.
  • the equipment used in the device The material and the like can be appropriately selected and used as appropriate.
  • one small refrigerator is used to generate liquid helium and cooled helium gas.
  • multiple refrigerators with low power can be used for each function.
  • the temperature of the helium gas to be cooled in the refrigerator is about 40 ° K.
  • the temperature is not limited to this temperature, and a helium gas having various temperatures may be used according to the purpose. be able to.
  • Low-temperature helium gas (approximately 10 ° K) is collected from a tube that has an opening near the liquid surface of the liquid hemisphere in the storage tank, liquefied in a small refrigerator, and evaporated into a shortage of liquid that evaporates in the storage tank. Since the replenishment can be performed, the energy loss at the time of generating the liquid helm can be extremely reduced, and a liquid helium recondensing device with high efficiency and low running cost can be configured.
  • a large amount of sensible heat required while helium gas at about 400 ° K is heated to about 300 ° K can be effectively used to cool the liquid storage tank.
  • the liquid helium liquefied by the refrigerator is transferred in a state where the helium gas cooled by the refrigerator does not come into contact with the high-temperature portion.
  • the liquid helium can be prevented from being vaporized during the transfer, and the liquid helium can be returned to the tank in a stable state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

明細書 液体へリゥム再凝縮装置およびその装置に使用するトランスファー ライン 技術分野
この発明は、 液体ヘリウム再凝縮装置およびその装置に使用するト ランスファーラインに関するものであり、 具体的には、 脳磁気計測シ ステム内で使用する脳磁計を極低温に維持するための液体ヘリウム貯 留槽において、 同槽から気化したヘリウムガスを再び液体ヘリゥム貯 留槽に循環利用できる液体ヘリゥム再凝縮装置およびトランスファ一 ラインに関するものである。 また、 この液体ヘリウム再凝縮装置およ びトランスファーラインは前記脳磁気計測システム以外にも心磁図ゃ
MR Iを測定する装置や、 極低温における様々の材料物性の開発評価 研究等に利用可能である。 背景技術
人間の脳から発生する磁界を検出する脳磁気計測システムの開発が 進められている。 このシステムでは脳の活動を高時空間分解能で非侵 襲的に計測できる S Q U I D (超電導量子干渉素子) が利用されてお り、 この S Q U I Dは断熱された槽内に貯留されている液体ヘリゥム に侵潰され、 冷却された状態で用いられる。
上記システムに使用している従来からの液体ヘリゥム貯留槽では、 同槽から蒸発したへリウ厶ガスはほとんどの場合大気に開放している 。 しかしこの方式では 1 リッ トル当たり 1 2 0 0円以上する高価なへ リゥムを多量に無駄に消費するため経済的に極めて不利である。 また 、 液体ヘリゥム貯留槽で減少した分の液体ヘリウムを液体ヘリゥム夕 ンクから補う必要があるが、 液体へリゥ厶を補充するための作業は極 めて煩雑である上、 業者に依頼する場合にはコストが嵩む等の問題が ある。
上記背景から最近では、 液体ヘリウム貯留槽で気化したヘリゥムガ スを全量回収し再凝縮して液化し、 再び液体ヘリウム貯留槽内に戻す 液体ヘリゥム再循環システムの開発が進められている。
こうした液体ヘリゥム再循環システムの一例の概略構成を図 4を参 照して簡単に説明すると、 図中 1 0 1は脳磁計を収容している液体へ リウ厶貯留槽、 1 0 2は貯留槽 1 0 1内で気化したヘリウムガスを回 収するドライポンプ、 1 0 3はヘリウムガス内に混入している水分を 除去する乾燥器、 1 0 4は流量調整弁、 1 0 5は精製器、 1 0 6は補 助冷凍機、 1 0 7は同補助冷凍機 1 0 6の第 1熱交換器、 1 0 8は再 凝縮冷凍機、 1 0 9は再凝縮冷凍機 1 0 8の再凝縮熱交換器であり、 液体ヘリウム貯留槽 1 0 1で気化し昇温した約 3 0 0 ° Kのヘリウム ガスはドライポンプ 1 0 2で吸引され、 乾燥器 1 0 3、 精製器 1 0 5 を経て補助冷凍機 1 0 6で約 4 0 ° Kの極低温ヘリウムガスに冷却さ れ、 さらに再凝縮冷凍機 1 0 8の再凝縮熱交換器 1 0 9で約 4。 Kの 液体ヘリウムに液化され、 ここからトランスファーライン 1 1 0を経 由して液体ヘリゥム貯留槽に供給される構成となっている。
この液体ヘリゥム再循環システムは基本的に、 液体ヘリゥム貯留槽 内で蒸発したヘリゥムガスを全量回収し再利用する方式であるため、 従来のように大気開放したり、 あるいはガスバッグ等に回収して再液 化を行う方法に比較して、 ヘリウムの使用量が非常に少なく、 極めて 経済的、 かつ、 効率的であり、 最近では積極的にその実用化が進めら れている。 また、 不足分の液体ヘリウムを充塡する作業もほとんど必 要ないため装置の維持管理の面で取扱いが容易である。
しかし、 上記のような再循環システムでは次のような改善すべき問 題点がある。
即ち、 液体ヘリウムは S Q U I Dなどを冷却するためには不可欠で あるが、 ヘリウムガスを液体ヘリウムにするためには、 冷凍機を作動 するための非常に大きな電気エネルギーが必要となり、 また、 冷凍機 用の圧縮ポンプを冷却するために大量の水が必要となる。 また、 冷凍 機で液化した液体へリウムをトランスファ一ラインを経由して液体へ リゥム貯留槽に循環する際に、 液体ヘリゥムを高温部と完全に隔離す ることが難しく液体へリゥムが、 移送途中で気化する割合が高くなり 移送効率が悪くなる。 よって装置の維持管理に莫大な運転コストが必 要となり、 結果的に大気開放と同程度のコストがかかっている。 この ためさらに経済効率に優れた新しい形態の液体ヘリゥム再循環システ ムの開発が必要とされている。 上記のような背景の中で、 本発明者 は、 液体ヘリウムは約 4 ° Kの液化状態から約 4 ° Kのガス状態に状 態変化する際に必要とする熱量 (気化熱) よりも、 約 4 ° Kのガスか ら約 3 0 0 ° Kのガスに昇温するまでに必要とする熱量 (顕熱) の方 が遙かに大きいこと、 同時に高温ヘリゥムガスを低温ヘリゥムガスに 冷却するのは、 それほどエネルギーを必要としないが、 低温ヘリウム ガスを液体ヘリゥムに液化する際には大きなエネルギーを必要とする ことに着目して、 本発明を成すに至った。
即ち、 本発明はヘリウムを循環する際に、 液体ヘリウム貯留槽内の 約 3 0 0 ° Kにまで昇温した高温ヘリウムガスを回収し、 冷凍機で比 較的容易に冷却できる温度、 例えば約 4 0 ° Kの冷却ヘリウムガスに して前記貯留槽内の上部に供給し、 また前記液体ヘリゥム貯留槽内の 液体へリゥ厶の液面近傍で冷えてレ、る低温へリウムガス、 例えば約 1 0 ° Kの低温ヘリウムガスを回収し、 冷凍機で約 4 ° Kの液体へリウ ムにして前記貯留槽内に供給し、 貯留槽内で蒸発した分の液体へリゥ ムを容易に補充できる新しい液体ヘリウム再循環装置を提供し、 上記 従来の再循環システムのもつ問題点を解決することを目的とする。 発明の開示
本発明が採用した課題解決手段は、
液体ヘリゥム貯留槽と、 該貯留槽で気化したヘリゥ厶ガスを回収し 同ヘリウムガスを冷却および液化する冷凍機とを有し、 同冷凍機によ つて冷却した冷却ヘリウムガスあるいは液化した液体ヘリゥ厶を前記 貯留槽内に戻すことができるようにした液体へリゥム再凝縮装置にお いて、 同装置は前記液体ヘリゥム貯留槽内で昇温した高温ヘリゥムガ スを前記冷凍機に供給し前記冷凍機で冷却ヘリウムガスにして前記貯 留槽内の上部に供給するラインと、 前記液体ヘリゥ厶貯留槽内の液体 ヘリゥムの液面近傍の低温ヘリウムガスを前記冷凍機に供給し前記令 凍機で液体ヘリゥムにして前記貯留槽内に供給するラインとを備えて なることを特徴とする液体ヘリウム再凝縮装置である。
また、 前記冷凍機と前記液体ヘリゥム貯留槽内の上部とを接続する ラインと、 前記低温ヘリウムガスを前記冷凍機に供給し前記冷凍機で 液体ヘリウムにして前記貯留槽内に供給するラインとを周囲が真空層 で断熱された一つの管内に配置したことを特徴とする液体ヘリゥム再 凝縮装置である。
また、 前記配置は、 液体ヘリウムを供給するラインを中心とし、 そ の周囲に低温ヘリゥムガスを冷凍機に供給するラインを配置し、 さら にその周囲に冷凍機で冷却された冷却ヘリゥムガスを供給するライン を配置した 3重管となるように形成したことを特徴とする液体へリウ 厶再凝縮装置である。
また、 前記配置は、 液体ヘリウムを供給するラインと、 低温へリウ ムガスを冷凍機に供給するラインと、 冷凍機で冷却された冷却ヘリゥ ムガスを供給するラインとを互いに並列に配置してなることを特徴と する液体ヘリゥム再凝縮装置である。
また、 前記ラインは夫々が真空層を周囲に有する管で形成されてい ることを特徴とする液体ヘリゥム再凝縮装置である。
また、 前記冷凍機と前記液体ヘリゥム貯留槽内の上部とを接続する ラインと、 前記低温ヘリウムガスを前記冷凍機に供給し前記冷凍機で 液体ヘリゥムにして前記貯留槽内に供給するラインとを分離して配置 し、 各ラインを真空層で断熱した管として構成したことを特徴とする 液体ヘリウム再凝縮装置である。 また、 前記冷凍機で液化された液体ヘリゥムはその周囲を低温ヘリ ゥムガスによつて高温部と断熱した状態で貯留槽に供給されるように したことを特徴とする液体ヘリウム再凝縮装置である。
また、 前記高温ヘリウムガスの一部を冷凍機で液化し、 前記貯留槽 に供給可能にした特徴とする液体へリウム再凝縮装置である。
また、 前記冷凍機によって液化された液化ヘリゥムは気液分離器を 通して貯留槽内に供給されるようにしたことを特徴とする液体へリゥ ム再凝縮装置である。 また、 液体ヘリウム貯留槽で気化したへリウ ムガスを回収し、 同ヘリゥムガスを冷却および液化し再び液体ヘリゥ ム貯留槽に供給するヘリゥム再凝縮方法において、 前記液体ヘリゥ厶 貯留槽内で昇温した高温ヘリウムガスを冷凍機に供給し、 同冷凍機で 冷却ヘリウムガスにして前記貯留槽内の上部に供給し、 また前記液体 ヘリゥム貯留槽内の液体ヘリウムの液面近傍の低温ヘリゥムガスを冷 凍機に供給し同冷凍機で液体へリウムにして前記貯留槽内に供給して なることを特徴とする液体ヘリゥム再凝縮方法である。
また、 前記液体ヘリウムを、 少なくとも低温ヘリウムガスまたは冷 却へリゥムガスの一方のガスによって高温部に直接触れないようにし ながら前記液体ヘリゥ厶貯留槽内に供給するようにした液体ヘリゥム 再凝縮方法である。
また、 液体ヘリウムを供給するラインと、 低温ヘリウムガスを供給 するラインと、 前記低温ヘリゥムガスよりも高温の冷却ヘリゥムガス を供給するラインとを備え、 前記ラインは夫々が真空層を外周に有す る管で形成されているとともに、 各管は周囲が真空層で断熱された一 つの管内に配置して構成されてことを特徴とするトランスファーライ ンである。
また、 液体ヘリウムを供給するラインを中心に、 その周囲に低温へ リゥムガスを供給するラインを配置し、 さらにその周囲に前記低温へ リゥムガスよりも高温の冷却ヘリゥ厶ガスを供給するラインを配置し 、 前記ラインは夫々が真空層を外周に有する管で構成されていること を特徴とするトランスファ一ラインである。
上記構成からなる本発明は、 液体ヘリゥム貯留槽内では冷却ヘリゥ 厶ガスの顕熱によって大量の熱を奪うことができ、 蒸発する液体ヘリ ゥムを極めて少量に押さえることが可能となる。 また約 3 0 0 ° の 高温ヘリウムガスから約 4 0 ° Kの冷却ヘリウムガスにまで冷却する エネルギーは、 約 4 0 ° Kのヘリウムガスから約 4 ° Kの液体へリウ 厶とするまでに必要とするエネルギーに比較して格段に少なくてすむ ことから、 本装置では従来のように回収したへリゥ厶ガスを全量液化 する従来の方法に比較してヘリウムガスを液化するための冷凍機運転 等に必要なエネルギーを大幅に低下させることが可能となり極めて経 済的である。
また、 本装置によれば液体ヘリゥム貯留槽内に貯留されている液体 ヘリウムの液面近傍の低温ヘリゥムガスを回収し液化することでヘリ ゥムガスを液化するためのエネルギーを大幅に節約することができラ ンニングコス卜の低減を図ることができる。
さらに、 冷凍機で液化したヘリウムを供給するラインの周囲に、 冷 却したヘリゥムガスや低温のヘリゥ厶ガスを流すことにより、 液体へ リゥムを供給するラインを外部の高温部と遮断し、 輸送中の液体ヘリ ゥムの気化を防止しているため、 ヘリゥ厶ガスを液化するためのエネ ルギロスがなくなり、 効率の良いヘリウム再凝縮装置を得ることがで きる。 図面の簡単な説明
第 1図は本発明に係わる多重循環式液体ヘリウム再凝縮装置の概略 構成図であり、 第 2図は本発明に係わるトランスファーラインの拡大 —部破断側面図であり、 第 3図はトランスファーラインの異なる二つ の例の断面図であり、 第 4図は従来の循環式式液体ヘリウム再凝縮装 置の概略構成図である。 発明を実施するための最良の形態
以下図面を参照して本発明に係わる多重循環式液体ヘリゥム再凝縮 装置を説明すると図 1は同装置の概略構成図である。
図 1において、 1は磁気シールドルー厶内に配置され S Q U I Dを 収容するための液体ヘリウム貯留槽 (F R Pクライオスタツ ト) 、 1 aは同槽内に配置した気液分離器、 1 bは槽内の液体ヘリウム 1 3の 液面を測定する液面計、 1 cは貯留槽 1内で約 3 0 0 ° Kに昇温した 高温ヘリウムガスを回収するための回収ガスライン 1 2用の管、 2は 管 1 cを介して回収した高温へリゥムガスを小型冷凍機に供給する流 量調節ポンプ、 4は流量調整弁、 5は最近進歩の著しい 4 K G M小型 冷凍機、 6は同冷凍機の第 1熱交換器、 7は第 2熱交換器、 6 a、 7 aは万一貯留槽内の液体へリゥムが不足した時に貯留槽内から回収し た高温ヘリゥ厶ガスあるいはヘリゥ厶補給用ボンべ 1 0からのヘリゥ ムガスをライン 2 0を経由して液化するための第 3熱交換器、 第 4熱 交換器、 8は 6 . 5 KWヘリウムコンプレッサー、 9は冷凍機 5によ つて液化された液体ヘリゥムを液体ヘリウム貯留槽 1に供給する管 9 aと貯留槽 1内から低温ヘリゥムガスを回収するための管 9 bと冷凍 機 5によって約 4 0 ° Kにまで冷却されたヘリウムガスを液体へリウ ム貯留槽 1に供給する管 9 cとを束ねてなるトランスファーライン、 1 0は緊急時にヘリウムガス不足を補うことができるヘリゥム補給用 ボンべ、 1 1はトランスファーライン 9に接続されるとともに液体へ リウム貯留槽 1に配置される挿入管であり、 各機器は、 図示のように 流れ方向を矢印で示している流路で連通されている。 また、 前記装置 内の流路中には、 圧力計 Pが図のように配置されている。 なお、 1 4 は F R Pクライオス夕ッ ト 1の磁気シールドルー厶を形成している。 前記トランスファーラインの構造について説明すると、 トランスフ ァーラインには種々の形態のものが考えられる力 \ ここでは図 2、 図 3を参照して二つの例を説明する。 図 2はトランスファーラインの一 部破断側面図、 図 3 ( a ) は図 2中の A— A断面図、 同 (b ) は異な る構造からなるトランスファーラインの断面図である。
第 1の例は、 図 3中 ( a ) に示すように周囲に真空層 9 dを有 そ の中心部に約 4 ° Kの液体ヘリウムが流れる流路を備えた管 9 aと、 周囲に真空層 9 dを有しその中心部に貯留槽 1内から回収した約 1 0 ° Kの低温ヘリウムガスが流れる流路を備えた管 9 bと、 周囲に真空 層 9 dを有しその中心部に冷凍機によって約 4 0 ° Kに冷却された冷 却ヘリウムガスが流れる流路を備えた管 9 cとを並列に配置し、 さら にこれらの三つの管 9 a、 9 b、 9 cの周囲に断熱用の真空層 9 dを 有している大径の管 9 Aを配置して構成したものであり、 大径の管 9 A内には断熱材 1 3が配置されている。
また、 第 2の例は、 トランスファーライン 9を 3重管として構成し たものであり、 周囲に真空層 9 dを有する大径の管 9 ' cの中心部に 周囲に真空層 9 dを有する中径の管 9 ' bを配置し、 さらに中径の管 9 ' bの中心部に周囲に真空層 9 dを有する小径の管 9 ' aを配置し 、 中径の管 9 ' bの周囲に約 4 0。 Kの冷却ヘリウムガスを、 小径の 管 9 ' aの周囲に約 1 0 ° Kの低温ヘリウムガスを、 さらに、 小径の 管 9 ' aの中心部に約 4 ° Kの液体ヘリウムを流すことができるよう にしてある。
前記 (a ) の例の場合には、 三つの管を束ねることができるため、 前記 (b ) のように 3重管とする場合に比較してトランスファーライ ンの外径を小さくできるというメリッ トがある。
前記いずれのトランスファーライン 9も貯留槽側端部は図 1に示す ように液体ヘリウム貯留槽 1に配置される挿入管 1 1に接続され、 さ らに揷入管 1 1の端部には気液分離器 1 aが設けられている。 この気 体液分離器 1 aは本発明に関わる装置では必須の構成要件ではなく、 液体ヘリゥム輸送中に生じる僅かなヘリウムガスが貯留槽内の温度平 衡を乱すことを防止する必要がある場合に設けることが望ましい。 ト ランスファーライン 9内に配置されている三つの管のうち、 冷凍機に よって液化された液体ヘリウムを貯留槽 iに供給する管 9 aの端部は 気液分離器 1 aに接続され、 さらに、 貯留槽 1内の低温ヘリウムガス を回収し冷凍機に供給する管 9 bの端部は、 槽内の可能な限りの低温 域 (約 4 ° Kに近い低温域) から低温ヘリウムガスを回収できるよう 挿入管 1 1の気液分離器 1 aの近く、 もしくは、 貯留槽 1内の液体へ リウ厶の液面近傍に配置され、 さらに、 冷凍機によって約 4 0 ° に 冷却された冷却へリゥムガスを貯留槽 1内に供給する管 9 cの端部は 挿入管 1 1の上部 (貯留槽 1内の上部) において貯留槽 1に開放され ている。
以上のように構成された液体ヘリゥム再凝縮装置の作動を説明する o
液体ヘリウム貯留槽 1内に貯留された液体ヘリゥムは、 同槽内で約
4 ° Kの液体からガス化され、 さらに、 約 3 0 0 ° Kの常温状態にな るまで昇温しながら顕熱によって同槽 1内の冷却作用を行う。
約 3 0 0 ° Kに昇温した高温ヘリウムガスは、 貯留槽 1の上部に配 置したヘリゥムガス回収管 1 cを介して流量調節ポンプ 2で吸引され 、 その全量が小型冷凍機 5の第 1熱交換器 6に送られる。 第 1熱交換 器 6では、 ヘリウムガスを約 4 0 ° Kまで冷却し、 冷却したヘリウム ガスをトランスファ一ライン内の管 9 cを通して液体ヘリゥ厶貯留槽 1内の上部に供給する。 液体ヘリウム貯留槽 1に送られた約 4 0 ° K の冷却ヘリウムガスは同槽内で約 3 0 0 ° Kに昇温するまで間、 顕熱 により効率的に液体ヘリウム貯留槽 1を冷却する。 また、 貯留槽 1の 下部は液体ヘリウムの気化により常に約 4 ° Kに保持され、 上記ヘリ ゥムガスが上部からの熱侵入を押さえることから液体へリゥム蒸発量 が押さえられる。 なお、 貯留槽の保冷性能を上げるためには貯留槽 1 内に約 4 0 ° K以下のできるだけ冷えた冷却ヘリウムガスを供給する ことが望ましいが、 冷凍能力がその分多く必要となり、 コスト面で不 利となる。
また、 貯留槽 1内の液体へリウムの液面近傍に開口部を有する管 9 bから約 1 0 ° Kの低温ヘリウムガスを回収し小型冷凍機 5の第 2熱 交換器 7で液化する。 液化されたヘリウムはトランスファ一ライン 9 内の管 9 aを通って必要に応じて気液分離器 1 aを介して貯留槽 1内 に供給される。 こうして同槽内で蒸発によって減少した分の液体ヘリ ゥムは約 1 0 ° Kの低温ヘリウムガスを小型冷凍機 5で液化すること により低いエネルギーコストで常時補われる。 また、 トランスファー ライン 9内を流れる液体ヘリゥムは同ライン 9内を通る冷却ヘリゥ厶 ガスあるいは低温ヘリウムガスによって高温部から保護されながら移 送されるため、 液体ヘリウムの気化が極力押さえられる。 なお、 液化 するために回収する低温ヘリゥムガスは貯留槽 1内のできるだけ温度 の低いヘリウムガスを吸引すると、 冷凍機による液化効率がよくなり 、 冷凍機に小型のものを使用でき、 ランニングコストが少なくできる o
上記実施形態では、 冷凍機で約 4 0 ° Kにまで冷却したヘリウムガ スを貯留槽に供給する管 9 c、 貯留槽 1内から回収した約 1 0 ° Kの 低温ヘリゥムガスを移送する管 9 b、 液体ヘリウムを移送する管 9 a をトランスファーライン 9内に配置したものについて説明したが、 冷 却ヘリウムガスを貯留槽 1に供給する管 9 cのみをトランスファーラ ィンから分離し、 独立した断熱管として構成することも可能である。 また、 上記実施形態では貯留槽 1内で約 3 0 0 ° Kに昇温した高温 ヘリウムガスを全量約 4 0 ° Kまで冷却し、 冷却ヘリウムガスをトラ ンスファーライン 9内の流路を通して液体へリゥム貯留槽 1内の上部 に供給する構成としているが、 貯留槽 1内に供給する液体ヘリウムの 補充量が不足する場合には、 流量調整弁 4を操作し、 図中 2 0で示す ラインを通して高温ヘリゥムガスの一部を冷凍器 5内の前述とは別の 第 1熱交換器 6 a、 第 2熱交換器 7 aを通して液化し、 前述の管 9 a を介して貯留槽 1に供給することも可能である。
以上のように、 上記液体ヘリウム再凝縮装置では、 液体へリウ厶貯 留槽で約 3 0 0 ° Kにまで昇温したヘリウムガスを回収し、 回収ヘリ ゥムガスの全量を冷凍機の第 1段目の冷凍サイクルを利用して約 4 0 ° Kにまで冷却して液体ヘリウム貯留槽に還流し、 また、 貯留槽内の 液体ヘリウムの液面近傍に開口部を有する管からは約 1 0 ° Kの低温 ヘリウムガスを回収し小型冷凍機の第 2熱交換器 7を経て液化し、 蒸 発して不足した分の液体へリゥムを補充することができるようにした ため、 約 4 0 ° Kのヘリウムガスが約 3 0 0。 Kにまで昇温して行く 間に奪う大量の熱量によつて液体へリゥム貯留槽を冷却することがで き、 貯留槽下部は液体ヘリウムによって約 4 ° Kに保たれるため冷却 効果としては従来の装置と遜色のない装置とすることができる。 また 、 貯留槽内で蒸発し不足した液体ヘリウムは、 貯留槽内の液面に近い 冷えた低温へリウ厶ガスを回収して液化し貯留槽に戻す構成としたた め、 液体ヘリゥ厶を生成する際のエネルギーロスを極めて小さくでき 、 高効率、 かつ、 低コストの液体ヘリウム再凝縮装置を構成すること ができる。
また、 冷凍機で液化された液体ヘリウムは、 少なくとも前記冷凍機 で冷却されたヘリウムガスあるいは貯留槽から回収した低温ヘリゥム ガスによつて高温部と接触することを無く した状態で移送されるため 、 移送中に液体ヘリゥムが気化する量を大幅に低減できる。
また、 約 4 0 ° Kのヘリウムガスを約 4 ° Kの液体ヘリウムに凝縮 するまでに必要とするエネルギーは莫大であるが、 本発明では約 1 0 。 Kの低温ヘリウムガスを液体ヘリウムとするため、 液化するための エネルギーを少なく押さえることができ、 小型の冷凍機を使用するこ とができる。
なお、 上記実施形態中で説明した小型冷凍器に代えて他の冷凍機を 使用することができることは当然であり、 多段の冷凍機を用いてさら に多くの温度のガスを還流させる方法を含むこともでき、 また、 本シ ステムで液体ヘリゥムを補うための流量調整弁等の制御は液体ヘリゥ ム貯留槽内に配置した液面計等のセンサからの情報により図示せぬ制 御機器によって制御することができる。 また、 装置内に使用する機器 の材質等は適宜最適なものを選択して使用することができる。
上記例では液体ヘリウム、 冷却ヘリゥムガスを生成するために一台 の小型冷凍器を使用しているが、 パワーの小さい冷凍機を機能別に複 数使用することも可能である。 さらに、 上記実施形態では冷凍機にお いて冷却するヘリウムガスの温度は約 4 0 ° Kとしているが、 この温 度に限ることはなく目的に応じて種々の温度のヘリゥ厶ガスを使用す ることができる。
本発明はその精神または主要な特徴から逸脱することなく、 他のい かなる形でも実施できる。 そのため、 前述の実施形態はあらゆる点で 単なる例示にすぎず限定的に解釈してはならなレ、。 産業上の利用可能性
本発明によれば、
貯留槽内の液体ヘリゥムの液面近傍に開口部を有する管から低温へ リウムガス (約 1 0 ° K ) を回収し小型冷凍機で液化し、 貯留槽内で 蒸発して不足した液体へリゥムを補充することができるようにしたた め、 液体ヘリゥムを生成する際のエネルギーロスを極めて小さくでき 、 高効率、 かつ、 低ランニングコストの液体ヘリウム再凝縮装置を構 成することができる。
約 4 0 ° Kのヘリウムガスが約 3 0 0 ° Kにまで昇温する間に必要 とする大量の顕熱を液体へリゥム貯留槽を冷却するために有効利用で きるため、 従来装置のようにヘリゥムガスを全量液体ヘリウムにする 必要がなくなり、 従来システムに比較して多大なエネルギー、 費用を 節約できる。
また、 ヘリウムを完全回収して再利用できるため、 煩雑なヘリウム ガスの補充作業を不要にできるとともに液体へリゥムに掛かる費用を 大幅に低減できる。
冷凍機で液化された液体ヘリゥムは、 前記冷凍機で冷却されたヘリ ゥムガスによつて高温部と接触することを無く した状態で移送される ようにしてあるため移送中に液体ヘリウムが気化することを防止でき 、 安定した状態で液体ヘリウムを槽内に還流することができる。 -

Claims

請求の範囲
1 . 液体ヘリウム貯留槽と、 該貯留槽で気化したヘリウムガスを回 収し同ヘリゥ厶ガスを冷却および液化する冷凍機とを有し、 同冷凍機 によって冷却した冷却ヘリゥムガスあるいは液化した液体ヘリゥムを 前記貯留槽内に戻すことができるようにした液体ヘリゥ厶再凝縮装置 において、 同装置は前記液体ヘリゥム貯留槽内で昇温した高温ヘリゥ ムガスを前記冷凍機に供給し前記冷凍機で冷却ヘリゥ厶ガスにして前 記貯留槽内の上部に供給するラインと、 前記液体ヘリウム貯留槽内の 液体ヘリゥムの液面近傍の低温ヘリゥムガスを前記冷凍機に供給し前 記冷凍機で液体ヘリゥ厶にして前記貯留槽内に供給するラインとを備 えてなることを特徴とする液体ヘリウム再凝縮装置。
2 . 前記冷凍機と前記液体ヘリゥム貯留槽内の上部とを接続するラ インと、 前記低温ヘリウムガスを前記冷凍機に供給し前記冷凍機で液 体ヘリゥムにして前記貯留槽内に供給するラインとを周囲が真空層で 断熱された一つの管内に配置したことを特徴とする請求項 1に記載の 液体ヘリゥム再凝縮装置。
3 . 前記配置は、 液体ヘリウムを供給するラインを中心とし、 その 周囲に低温ヘリゥムガスを冷凍機に供給するラインを配置し、 さらに その周囲に冷凍機で冷却された冷却ヘリウムガスを供給するラインを 配置した 3重管となるように形成したことを特徴とする請求項 2に記 載の液体へリゥム再凝縮装置。
4 . 前記配置は、 液体ヘリウムを供給するラインと、 低温ヘリウム ガスを冷凍機に供給するラインと、 冷凍機で冷却された冷却ヘリゥム ガスを供給するラインとを互いに並列に配置してなることを特徴とす る請求項 2に記載の液体へリゥム再凝縮装置。
5 . 前記ラインは夫々が真空層を周囲に有する管で形成されている ことを特徴とする請求項 3または請求項 4に記載の液体ヘリゥム再凝 縮装置。
6 . 前記冷凍機と前記液体ヘリゥム貯留槽内の上部とを接続するラ インと、 前記低温へリゥムガスを前記冷凍機に供給し前記冷凍機 液 体ヘリゥ厶にして前記貯留槽内に供給するラインとを分離して配置し 、 各ラインを真空層で断熱した管として構成したことを特徴とする請 求項 1に記載の液体ヘリゥム再凝縮装置。
7 . 前記冷凍機で液化された液体ヘリゥムはその周囲を低温ヘリゥ ムガスによつて高温部と断熱した状態で貯留槽に供給されるようにし たことを特徴とする請求項 6に記載の液体ヘリウム再凝縮装置。
8 . 前記高温ヘリウムガスの一部を冷凍機で液化し、 前記貯留槽に 供給可能にしたことを特徴とする請求項 1〜請求項 7のいずれか 1項 に記載の液体ヘリゥム再凝縮装置。
9 . 前記冷凍機によって液化された液化ヘリウムは気液分離器を通 して貯留槽内に供給されるようにしたことを特徴とする請求項 1〜請 求項 8に記載の液体へリゥム再凝縮装置。
1 0 . 液体ヘリウム貯留槽で気化したヘリウムガスを回収し、 同ヘリ ゥムガスを冷却および液化し再び液体へリゥム貯留槽に供給するヘリ ゥム再凝縮方法において、 前記液体ヘリゥム貯留槽内で昇温した高温 ヘリゥ厶ガスを冷凍機に供給し、 同冷凍機で冷却ヘリゥ厶ガスにして 前記貯留槽内の上部に供給し、 また前記液体へリゥム貯留槽内の液体 ヘリゥムの液面近傍の低温ヘリゥムガスを冷凍機に供給し同冷凍機で 液体ヘリウムにして前記貯留槽内に供給してなることを特徴とする液 体ヘリゥム再凝縮方法。
1 1 . 前記液体ヘリウムを、 少なくとも低温ヘリウムガスまたは冷却 ヘリゥムガスの一方のガスによって高温部に直接触れないようにしな がら前記液体ヘリゥム貯留槽内に供給するようにした請求項 1 0に記 載の液体へリゥム再凝縮方法。
1 2 . 液体ヘリウムを供給するラインと、 低温ヘリウムガスを供給す るラインと、 前記低温ヘリゥムガスよりも高温の冷却ヘリゥムガスを 供給するラインとを備え、 前記ラインは夫々が真空層を外周に有する 管で形成されているとともに、 各管は周囲が真空層で断熱された一^ D の管内に配置して構成されてことを特徴とするトランスファーラ-イン
1 3 . 液体ヘリウムを供給するラインを中心に、 その周囲に低温ヘリ ゥムガスを供給するラインを配置し、 さらにその周囲に前記低温ヘリ ゥムガスよりも高温の冷却ヘリゥムガスを供給するラインを配置し、 前記ラインは夫々が真空曆を外周に有する管で構成されていることを 特徴とするトランスファーライン。
PCT/JP1999/006683 1998-12-25 1999-11-30 Liquid helium recondensation device and transfer line used therefor WO2000039513A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002355821A CA2355821C (en) 1998-12-25 1999-11-30 Liquid helium circulation system and transfer line used therewith
DE69926087T DE69926087T2 (de) 1998-12-25 1999-11-30 Vorrichtung zur rekondensation von flüssigem helium und dafür verwendete transportleitung
US09/868,574 US6442948B1 (en) 1998-12-25 1999-11-30 Liquid helium recondensation device and transfer line used therefor
EP99973547A EP1197716B1 (en) 1998-12-25 1999-11-30 Liquid helium recondensation device and transfer line used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/369064 1998-12-25
JP36906498A JP3446883B2 (ja) 1998-12-25 1998-12-25 液体ヘリウム再凝縮装置およびその装置に使用するトランスファーライン

Publications (1)

Publication Number Publication Date
WO2000039513A1 true WO2000039513A1 (en) 2000-07-06

Family

ID=18493470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006683 WO2000039513A1 (en) 1998-12-25 1999-11-30 Liquid helium recondensation device and transfer line used therefor

Country Status (6)

Country Link
US (1) US6442948B1 (ja)
EP (2) EP1477755B1 (ja)
JP (1) JP3446883B2 (ja)
CA (1) CA2355821C (ja)
DE (2) DE69943345D1 (ja)
WO (1) WO2000039513A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9494359B2 (en) 2008-09-09 2016-11-15 Koninklijke Philips N.V. Horizontal finned heat exchanger for cryogenic recondensing refrigeration

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4145673B2 (ja) 2003-02-03 2008-09-03 独立行政法人科学技術振興機構 汚染物質排出機能を備えた循環式液体ヘリウム再液化装置、その装置からの汚染物質排出方法、その装置に使用する精製器およびトランスファーチューブ
US6903687B1 (en) 2003-05-29 2005-06-07 The United States Of America As Represented By The United States National Aeronautics And Space Administration Feed structure for antennas
JP2008008482A (ja) * 2006-05-31 2008-01-17 Univ Of Tokyo トランスファーチューブおよびトランスファーチューブにおけるスペーサの製造方法
JP4823768B2 (ja) * 2006-05-31 2011-11-24 常広 武田 トランスファーチューブ
JP4908439B2 (ja) * 2008-02-28 2012-04-04 住友重機械工業株式会社 冷却システム及び脳磁計
TWI420129B (zh) * 2009-09-10 2013-12-21 Univ Nat Taiwan Nuclear magnetic resonance imaging RF coil cooling device
US20110173996A1 (en) * 2010-01-20 2011-07-21 Mark Glajchen Methods for recovering helium
AT510064B1 (de) * 2010-07-12 2012-04-15 Wild Johannes Kühlvorrichtung
JP5798560B2 (ja) 2010-09-10 2015-10-21 コニカミノルタ株式会社 生体磁気計測装置、及び生体磁気計測システム
US20120167598A1 (en) * 2010-09-14 2012-07-05 Quantum Design, Inc. Vacuum isolated multi-well zero loss helium dewar
JP5639916B2 (ja) * 2011-02-04 2014-12-10 大陽日酸株式会社 低温液化ガス移送装置
US8933696B2 (en) 2011-05-20 2015-01-13 Konica Minolta, Inc. Magnetic sensor and biomagnetism measurement system
GB2502629B (en) * 2012-06-01 2015-03-11 Siemens Plc A closed cryogen cooling system and method for cooling a superconducting magnet
DE102012209754B4 (de) * 2012-06-12 2016-09-22 Siemens Healthcare Gmbh Spuleneinrichtung für einen Kernspintomographen
JP6201171B2 (ja) * 2013-06-20 2017-09-27 株式会社新領域技術研究所 低振動トランスファーチューブ
JP6164409B2 (ja) * 2013-06-20 2017-07-19 株式会社新領域技術研究所 Nmrシステム
US10684047B2 (en) * 2015-04-08 2020-06-16 Ajay Khatri System for cryogenic cooling of remote cooling target
WO2019060298A1 (en) 2017-09-19 2019-03-28 Neuroenhancement Lab, LLC METHOD AND APPARATUS FOR NEURO-ACTIVATION
CN107726039A (zh) * 2017-10-20 2018-02-23 广东锐捷安全技术股份有限公司 一种用于液态气体低温储存的容器组
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11478603B2 (en) 2017-12-31 2022-10-25 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
WO2020056418A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
CN110108066B (zh) * 2019-05-17 2024-04-19 中国科学院理化技术研究所 一种低温液体过冷装置
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
US11747076B2 (en) 2020-08-18 2023-09-05 Ajay Khatri Remote cooling of super-conducting magnet using closed cycle auxiliary flow circuit in a cryogenic cooling system
CN114383350A (zh) * 2020-10-19 2022-04-22 国仪量子(合肥)技术有限公司 用于顺磁共振谱仪的氦循环低温恒温系统
DE102022209941A1 (de) 2022-09-21 2024-03-21 Bruker Switzerland Ag Vorrichtung zum Transfer von flüssigem Helium, mit verringerten Transfer-Verlusten

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277949A (en) * 1979-06-22 1981-07-14 Air Products And Chemicals, Inc. Cryostat with serviceable refrigerator
US4790147A (en) * 1986-11-18 1988-12-13 Kabushiki Kaisha Toshiba Helium cooling apparatus
JPH0260207U (ja) * 1988-10-27 1990-05-02
JPH0370960A (ja) * 1989-08-09 1991-03-26 Hitachi Ltd 冷媒の給排機
JPH07243712A (ja) * 1994-03-08 1995-09-19 Toyo Sanso Kk クライオスタットへの液体ヘリウム補給装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2303663A1 (de) * 1973-01-25 1974-08-01 Linde Ag Verfahren und vorrichtung zum kuehlen eines kuehlobjektes
FR2288956A1 (fr) * 1973-03-27 1976-05-21 Commissariat Energie Atomique Procede de reduction de la consommation d'un cryostat et dispositif correspondant
NL7311471A (nl) * 1973-08-21 1975-02-25 Philips Nv Inrichting voor het vloeibaar maken van bij zeer lage temperatuur condenserende gassen.
JPS5862483A (ja) * 1981-10-09 1983-04-13 株式会社ほくさん Heガスの液化装置
JPS5880474A (ja) * 1981-11-06 1983-05-14 株式会社日立製作所 極低温冷却装置
US4796433A (en) * 1988-01-06 1989-01-10 Helix Technology Corporation Remote recondenser with intermediate temperature heat sink
US5782095A (en) * 1997-09-18 1998-07-21 General Electric Company Cryogen recondensing superconducting magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277949A (en) * 1979-06-22 1981-07-14 Air Products And Chemicals, Inc. Cryostat with serviceable refrigerator
US4790147A (en) * 1986-11-18 1988-12-13 Kabushiki Kaisha Toshiba Helium cooling apparatus
JPH0260207U (ja) * 1988-10-27 1990-05-02
JPH0370960A (ja) * 1989-08-09 1991-03-26 Hitachi Ltd 冷媒の給排機
JPH07243712A (ja) * 1994-03-08 1995-09-19 Toyo Sanso Kk クライオスタットへの液体ヘリウム補給装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1197716A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9494359B2 (en) 2008-09-09 2016-11-15 Koninklijke Philips N.V. Horizontal finned heat exchanger for cryogenic recondensing refrigeration

Also Published As

Publication number Publication date
EP1197716B1 (en) 2005-07-06
DE69943345D1 (de) 2011-05-19
JP3446883B2 (ja) 2003-09-16
EP1197716A1 (en) 2002-04-17
EP1197716A4 (en) 2002-10-02
US6442948B1 (en) 2002-09-03
CA2355821C (en) 2008-01-08
CA2355821A1 (en) 2000-07-06
JP2000193364A (ja) 2000-07-14
DE69926087D1 (de) 2005-08-11
DE69926087T2 (de) 2006-04-20
EP1477755B1 (en) 2011-04-06
EP1477755A1 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
WO2000039513A1 (en) Liquid helium recondensation device and transfer line used therefor
CN105324601B (zh) 用冷却回路中的过冷液体冷却耗能器的装置
CA2461827C (en) Method for providing cooling to superconduction cable
JP2005351613A (ja) 冷却装置
US20170370638A1 (en) System and method for improving the liquefaction rate in cryocooler-based cryogen gas liquifiers
US6640552B1 (en) Cryogenic superconductor cooling system
US7263841B1 (en) Superconducting magnet system with supplementary heat pipe refrigeration
US10132560B2 (en) Device and method for cooling a unit
JPH11248326A (ja) 冷凍機
JP3530040B2 (ja) 多重循環式液体ヘリウム再凝縮装置および方法
JP3523085B2 (ja) トランスファーライン
CN101105358B (zh) 用于冷却的装置
Green Cooling the MICE magnets using small cryogenic coolers
CN108630377A (zh) 多箱式超导磁体低温容器系统及方法
JPH1092627A (ja) 超電導電力貯蔵システム
KR100454702B1 (ko) 지엠냉각기를 구비한 극저온용기 및 극저온용기의 제어방법
JP2003086418A (ja) 極低温装置
RU2011129C1 (ru) Криостат для транспортного средства на магнитной подвеске
CA2577611C (en) Liquid helium circulation system and transfer line used therewith
Thomas Medical imaging: why helium prevails
JP2004211935A (ja) ガス液化装置
Green Cooling the MICE Liquid Hydrogen Absorbers using Small Cryogenic Coolers
JPS59222976A (ja) 極低温冷却装置
JPH0645812Y2 (ja) 極低温冷凍機
CN114137461A (zh) 高温超导射频线圈的在线冷却循环系统

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA FI US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Ref document number: 2355821

Country of ref document: CA

Ref country code: CA

Ref document number: 2355821

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09868574

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999973547

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999973547

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999973547

Country of ref document: EP