TWI420129B - Nuclear magnetic resonance imaging RF coil cooling device - Google Patents

Nuclear magnetic resonance imaging RF coil cooling device Download PDF

Info

Publication number
TWI420129B
TWI420129B TW098130477A TW98130477A TWI420129B TW I420129 B TWI420129 B TW I420129B TW 098130477 A TW098130477 A TW 098130477A TW 98130477 A TW98130477 A TW 98130477A TW I420129 B TWI420129 B TW I420129B
Authority
TW
Taiwan
Prior art keywords
vacuum
liquid nitrogen
radio frequency
coil
cooling device
Prior art date
Application number
TW098130477A
Other languages
English (en)
Other versions
TW201109702A (en
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW098130477A priority Critical patent/TWI420129B/zh
Priority to US12/879,655 priority patent/US20110056228A1/en
Publication of TW201109702A publication Critical patent/TW201109702A/zh
Application granted granted Critical
Publication of TWI420129B publication Critical patent/TWI420129B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34015Temperature-controlled RF coils
    • G01R33/3403Means for cooling of the RF coils, e.g. a refrigerator or a cooling vessel specially adapted for housing an RF coil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34015Temperature-controlled RF coils
    • G01R33/34023Superconducting RF coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34076Birdcage coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • G01R33/3415Constructional details, e.g. resonators, specially adapted to MR comprising surface coils comprising arrays of sub-coils, i.e. phased-array coils with flexible receiver channels

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

核磁共振造影射頻線圈冷卻裝置
本發明是有關於一種核磁共振造影射頻線圈冷卻裝置,特別是指一種藉由真空層保護,進而可穩定長時間使用的冷卻裝置。
1.二維磁共振成像原理:
核磁共振射頻(亦稱磁振造影,magnetic resonance imaging,MRI)是近年來在臨床診斷上相當重要的影像工具。
磁振造影利用強大主磁場原理,使體內大多數氫原子排列為主磁場方向。並藉由儀器產生脈衝改變體內氫原子的旋轉排列方向,原子核就會釋放吸收的能量,能量激發後放出電磁波信號,再經由電腦分析組合成影像,就是一般看到的MRI影像。
同樣的原理,人體內的水分子含有很多氫原子核,這些氫原子核本身又具有磁場特性。核磁共振掃描是將人體置於強大且均勻的靜磁場中,再利用特定的射頻無線電波脈衝,激發人體組織內的氫原子核。
MRI系統的組成包括磁鐵系統和射頻系統。磁鐵系統包括主磁場,其為達到磁場的高均勻度、梯度場:用來產生並控制磁場中的梯度,以實現NMR信號的空間編碼。這個系統有三組線圈,產生x、y、z三個方向的梯度場,線圈組的磁場疊加起來,可得到任意方向的梯度場。
射頻系統包括射頻(RF)發生器,其用於產生短而強的射頻場,以脈衝方式加到樣品上,使樣品中的氫核產生核磁共振(nuclear magnetic resonance,簡稱NMR)現象和射頻(RF)接收器,其用於接收NMR信號,放大後進入圖像處理系統。
2.其他相關技術:
射頻線圈為磁振造影系統中發射以及接收射頻信號之元件,射頻線圈之品質與影像品質及重建結果之準確度有極高之相關性。先前技術中有利用保麗龍容做為容器,放入梯度場內,根據核磁共振訊噪比以及射頻線圈溫度、射頻線圈電阻、受測物溫度以及受測物電阻之平方根反比關係(如下式所示Hoult and Richards[1])
,從過去文獻[2]-[6],我們可以知道降低射頻線圈溫度以及電阻可有效地提升核磁共振影像之訊噪比。但過去大多數的文獻都採取高密度的保利龍來當做低溫裝置,由於它容易取得,且設計便利,且可儲存液態氮做為冷卻材料,但是經過一定的時間,保麗龍盒外會結冰,進而冷凍待測物。因而提出此新穎可長時間使用的低溫裝置設計。
與本次專利相關的先前技術介紹如下:
1. High-Tc superconducting receiving coils for nuclear magnetic resonance imaging[7]:其實驗設計採取保麗龍盒當作低溫裝置,優點為取得容易,設計便利,但經過一定時間,保麗龍盒外會結冰,進而冷凍待測物。所採取的線圈系統架構為三個,一為高溫超導接收線圈,一為信號擷取線圈,一為調整頻率線圈。使用方式為高溫超導接收線圈位置固定,改變信號擷取線圈與調整頻率線圈的相對位置,但因只能前後移動,因此可調整的頻率範圍有限,並且操作複雜。且Q值不高,無法精確地調整到能量最大值,因阻抗的虛部項無法完全抵消掉,而造成能量的損耗。
2.美國專利,專利號5258710,Cryogenic probe for NMR microscopy[8],使用低溫液體來降低線圈溫度,高溫超導薄膜採直接浸泡式。樣品放置於一管中,因此為小尺寸,並通入氮氣,使其溫暖不結冰。擷取線圈部份採取電感式耦合,獲取信號,傳遞信號模式為:RF信號經過擷取信號線圈感應引起高溫超導薄膜傳遞信號到樣品。接收信號模式為:從樣品身上接收信號,再透過電感耦合來產生影像。利用直接浸泡式的方式,會損耗超導本身特性。雖然溫度下降的速度快,由於樣品只能放於管子中,由於線圈大小尺寸為18mm,因此只可做小尺寸的樣品,此外該專利的設計為多個複雜腔體設計,不易組裝。
3.美國專利,專利號7003963,Cooling of receive coil in MRI scanners[9],為目前法國實驗室所採用的低溫裝置設計,前端為冷機,提供降溫,中段放置傳遞溫度物體,使用間接冷卻方法使高溫超導薄膜達到臨界溫度。該美國專利設計為兩個真空室,缺點在於操作方法需要降溫時間為四小時以及中段放置傳遞溫度為造價高的單晶藍寶石,並且低溫裝置只能放置尺寸為12mm大小的薄膜。
4.法國實驗室提出的論文:
(a)Development,manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T,Methods[10]
(b)Performance of a Miniature High-Temperature Superconducting (HTS)Surface Coil for In Vivo Microimaging of the Mouse in a Standard 1.5T Clinical Whole-Body Scanner[11]
此兩篇優點是能保護樣品不結冰,且採取不浸泡在液態氮中,因此能保護超導薄膜。所採取的線圈系統架構為三個:一個為超導薄膜、一個為匹配線圈、一個為調整頻率線圈。該裝置信號擷取方式複雜,由三個線圈相對位置來調整。缺點是在於需要4個小時才能達到臨界溫度,方能使用。
目前低溫系統都無法有效率的達到臨界溫度,及目前系統結構繁雜,因此提出一種新型的核磁共振造影射頻線圈冷卻裝置,來改善先前問題。
本發明之目的即在於提出一種藉由真空層保護,進而可穩定長時間使用的低溫系統,以特定射頻線圈來擷取磁振造影之訊號,藉由阻抗值降低,使得雜訊降低,造成訊噪比之提升,進而達到高影像解析度,並可大幅縮短掃描時間。
本發明之目的即在於提供一種核磁共振造影射頻線圈冷卻裝置為高硬度的隔熱材料所製作成,其主要優點在於隔熱材料可一體成型,因此可以設計真空層在其中,並且可以保護高溫導線圈的壽命。
本發明之目的即在於提供一種核磁共振造影射頻線圈冷卻裝置,其可裝置於不同型式的高溫超導射頻線圈,例如表面線圈、體線圈、鳥籠線圈、陣列線圈。
本發明之目的即在於提供一種核磁共振造影射頻線圈冷卻裝置,其線圈冷卻系統包含一液態或是氣態冷卻循環或是儲存裝置、加壓幫浦與傳輸管,用以冷卻耦合線圈。
為達成上述發明目的,本發明包括有一底座、一杯、一傳入管和一輸出管組合而成。該傳入管和輸出管與杯相連接。再利用抽氣時的負壓力產生真空,進而將底座與杯緊密吸住,結合為一體真空室。利用真空層的保護,可阻絕低溫的傳導。該底座、杯、傳入管和輸出管可利用高硬度的隔熱材料所製作成。
為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:首先,請參閱圖一,二維磁共振影像之成像原理,主要是將一待測物2置於靜磁場5中,然後配合射頻線圈3來激發待測物2某區域中的所有原子核激發(Excitation)、弛緩(Relaxation)的訊號,並加入梯度(Gradient)磁場,再以射頻線圈3接收後處理為磁共振影像,若要了解該區域不同位置的結構或功能性變化,則改變梯度磁場4以決定要在那個位置取得截面。因為需要射頻線圈3在高速信號傳輸運作下,射頻線圈3的溫度需保持在超導體的溫度內。於一般導體內,電子通過時會與導體內原子所構成之晶格作用,能量部分傳遞至晶格上形成晶格振動而造成損失,而形成電阻。在金屬導體中,晶格與導電電子作用程度隨溫度上升而增加,故其電阻亦隨溫度上升。當溫度高於其臨界溫度時,超導體表現出一般導體或半導體之特性,此時仍有電阻產生;但溫度降至以下時,電子在結構中運動完全不會受到晶格之影響,產生所為的零電阻,此溫度稱為臨界溫度。此外有電必有磁,超導體的溫度低於臨界溫度時,則超導體內之磁場便全被排出其內部,成為一零磁場狀態,即為反磁性。為了有效利用超導體的零電阻和反磁性的特性,本發明所述之核磁共振造影射頻線圈冷卻裝置1之目的即在於將射頻線圈3的溫度冷卻至射頻線圈3的臨界溫度以下。
請參閱圖二A、B,本發明所述之核磁共振造影射頻線圈冷卻裝置實施之示意圖,本發明所述之核磁共振造影射頻線圈冷卻裝置包括有一底座21、一杯22、一傳入管23和一輸出管24組合而成。該傳入管23和輸出管24與杯22相連接。再利用抽氣時的負壓力產生真空,進而將底座21與杯22緊密吸住,結合為一體真空室。利用真空層的保護,可阻絕低溫的傳導。該底座21、杯22、傳入管23和輸出管24可利用高硬度的隔熱材料所製作成。例如高硬度的玻璃纖維、玻璃、石英玻璃...等等。
請參閱圖一和圖三,本發明所述之核磁共振造影射頻線圈冷卻裝置實施之剖面圖,該傳入管23內設置有一液態氮螺旋輸入管31和一輸入連接管32。傳入管23與液態氮螺旋輸入管31和輸入連接管32之間為一真空層36。本發明主要利用高真空隔熱亦稱為單純真空隔熱。一般要求在隔熱空間1.33mPa以下壓力之真空度,這樣就可以消除氣體之對流熱傳與絕大部分之殘餘氣體導熱,以達到良好之隔熱效果以及快速降溫與復溫的優勢。這種雙壁夾層保持高真空之低溫管道與容器稱為杜瓦管(Dewer)。在這類隔熱結構中,漏入低溫區之熱量主要是輻射熱,其次是小量之剩餘氣體導熱及固體構件之導熱。
液態氮可由液態氮儲存裝置6經由管路7導入導液態氮螺旋輸入管31的入口端。該液態氮螺旋輸入管31的另一端連接輸入連接管32,將液態氮經由液態氮螺旋輸入管31的導入輸入連接管32。杯22設置有一凹槽33,而該輸入連接管32連接杯22內的凹槽33,使得液態氮可經由輸入連接管32傳輸到杯22內的凹槽33內。該液態氮螺旋輸入管31呈螺旋型態繞設,使該液態氮螺旋輸入管31內的水熱交換面積增大,更加速液態氮的增溫,並使液態氮快速地傳遞至杯22內的凹槽33內。
該底座21內設置有一凹槽34,而該底座22和杯21可利用抽真空的方法配合O-Ring的使用,使得底座21和杯22的凹槽34邊緣密合在一起形成一暫存液態氮的空間。O-Ring可放置於環型的溝槽35內,將其溝槽內的空間抽真空,使得底座21和杯22得以結合。液態氮經由輸入連接管32傳輸到底座21和杯22的凹槽33、34結合而成的暫存液態氮的空間。由於該底座21的底部可接觸線圈或將線圈裝置於底座21的底部,該底座的底部裝置於不同型式的高溫超導射頻線圈,例如面線圈、體線圈、鳥籠線圈、陣列線圈。當線圈在高速的運作時,會產生高溫。當一個物體的不同部份在溫度有差異,傳導就會發生,而熱就會從較熱的部份傳遞到較冷的部份。由於隔熱材料的內外表面的溫度不同,高速運作線圈的熱以傳導方式透過隔熱材料傳遞到液態氮暫存於底座21和杯22的凹槽33、34內的液態氮散熱。
請參閱圖一和圖四,吸收熱能的液態氮經由輸出管24傳輸到外部。該輸出管24內設置有一液態氮螺旋輸出管41、一輸出連接管42。真空輸出管24與液態氮螺旋輸出管41、輸出連接管42之間為一真空層43。該輸出連接管42的一端連接杯22的凹槽33,另一端與液態氮螺旋輸出管41連接。吸收熱能的液態氮經由輸出連接管42流入液態氮螺旋輸出管41內後排出到液態氮儲存裝置6。液態氮儲存裝置6可設置有廢料儲存槽,其用於儲存使用後的液態氮。該液態氮儲存裝置可設置回收裝置用於回收液態氮重新使用。
本發明所提供之核磁共振造影射頻線圈冷卻裝置,與其他習用技術相互比較時,更具備下列優點
1.本發明利用液態氮將射頻線圈冷卻,藉由阻抗值降低,使得雜訊降低,造成訊噪比之提升,進而達到高影像解析度,並可大幅縮短掃描時間。
2.本發明設計有真空層在其中,並且可以保護高溫導線圈的壽命。
3.本發明之核磁共振造影射頻線圈冷卻裝置可裝置於不同型式的高溫超導射頻線圈,例如面線圈、體線圈、鳥籠線圈、陣列線圈。
綜上所述,本發明確已符合發明專利要件,爰依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,舉凡熟悉本案技藝之人士,於援依本案發明精神所作之等效修飾或變化,皆應包含於以下之申請專利範圍內。
【參考文獻】
[1]D. I. Hoult and R. E. Richards,"The signal-to-noise ratio of the nuclear magnetic resonance experiment,"J. Magn. Reson.,vol. 24,pp. 71-85,1976.
[2]R. D. Black,T. A. Early,P. B. Roemer,O. M. Mueller,A. Mogro-Campero,L. G. Turner,and G. A. Johnson,"A high-temperature superconducting receiver for nuclear magnetic resonance microscopy,"Science,vol. 259,pp. 793-5,1993.
[3]J. R. Miller,S. E. Hurlston,Q. Y. Ma,D. W. Face,D. J. Kountz,J. R. MacFall,L. W. Hedlund,and G. A. Johnson,"Performance of a high-temperature superconducting probe for in vivo microscopy at 2.0 T,"Magn Reson Med,vol. 41,pp. 72-9,Jan 1999
[4]G. Grasso,A. Malagoli,N. Scati,P. Guasconi,S. Roncallo,and A. S. Siri,"Radio frequency response of Ag-sheathed(Bi,Pb)(2)Sr2Ca2Cu3O10+x superconducting tapes,"Superconductor Science & Technology,vol. 13,pp. L15-L18,Oct 2000.
[5]J. Yuan and G. X. Shen,"Quality factor of Bi(2223) high-temperature superconductor tape coils at radio frequency," Superconductor Science & Technology,vol. 17,pp. 333-336,Mar 2004.
[6]M. C. Cheng,B. P. Yan,K. H. Lee,Q. Y. Ma,and E. S. Yang,"A high temperature superconductor tape RF receiver coil for a low field magnetic resonance-imaging system,"Superconductor Science & Technology,vol. 18,pp. 1100-1105,Aug 2005.
[7]Hsu-Lei Lee,In-Tsang Lin,Jyh-Horng Chen,Herng-Er Horng,and Hong-Chang Yang,High-Tc superconducting receiving coils for nuclear magnetic resonance imaging,Applied Superconductivity Conference,Jacksonville,FL,ETATS-UNIS 2004.
[8]美國專利,專利號5258710,Cryogenic probe for NMR microscopy.
[9]美國專利,專利號7003963,Cooling of receive coil in MRI scanners.
[10]Jean-Christophe Ginefri,Marie Poirier-Quinot,Olivier Girard,Luc Darrasse,Technical aspects:Development,manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T,Methods (San Diego,Calif.)2007;43(1):54-67.
[11]Marie Poirier-Quinot,Jean-Christophe Ginefri,Olivier Girard,Philippe Robert,and Luc Darrasse,Performance of a Miniature High-Temperature Superconducting (HTS)Surface Coil for In Vivo Microimaging of the Mouse in a Standard 1.5T Clinical Whole-Body Scanner,Magnetic resonance in medicine:official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 2008;60(4):917-27.
1...核磁共振造影射頻線圈冷卻裝置
2...待測物
3...射頻線圈
4...梯度磁場
5...靜磁場
6...液態氮儲存裝置
7...管路
21...真空底座
22...真空杯
23...真空傳入管
24...真空輸出管
31...液態氮螺旋輸入管
32...輸入連接管
33...凹槽
34...凹槽
35...溝槽
36...真空層
41...液態氮螺旋輸出管
42...輸出連接管
43...真空層
請參閱以下有關本發明一較佳實施例之詳細說明及其附圖,將可進一步瞭解本發明之技術內容及其目的功效;有關該實施例之附圖為:
圖一為本發明的核磁共振造影射頻線圈冷卻裝置與核磁共振系統關系示意圖;
圖二A為本發明的核磁共振造影射頻線圈冷卻裝置立體圖;
圖二B為本發明的核磁共振造影射頻線圈冷卻裝置立體剖面圖;
圖三為本發明的核磁共振造影射頻線圈冷卻裝置之真空傳入管剖面圖;
圖四為本發明的核磁共振造影射頻線圈冷卻裝置之真空輸出管剖面圖。
1...核磁共振造影射頻線圈冷卻裝置
2...待測物
3...射頻線圈
4...梯度磁場
5...靜磁場
6...液態氮儲存裝置

Claims (14)

  1. 一種核磁共振造影射頻線圈冷卻裝置,其包括有一真空傳入管,其用於傳輸液態氮從真空傳入管的一端到真空傳入管另一端;一真空杯,其與該真空傳入管連接;一真空底座,其裝置於真空杯上,該真空底座,其內設置有一凹槽,該真空底座和該真空杯的凹槽邊緣密合在一起形成一暫存液態氮的空間,液態氮經由該真空傳入管的輸入連接管傳輸到該真空底座和該真空杯的凹槽結合而成的暫存液態氮的空間,該真空底座的底部接觸線圈或將線圈裝置於真空底座的底部;以及一真空輸出管,其與該真空杯連接。
  2. 如申請專利範圍第1項所述之核磁共振造影射頻線圈冷卻裝置,其中該真空傳入管,其內設置有一液態氮螺旋輸入管和一輸入連接管,真空傳入管與液態氮螺旋輸入管和輸入連接管之間為一真空層,液態氮由液態氮儲存裝置經由管路導入導液態氮螺旋輸入管的入口端,該液態氮螺旋輸入管的另一端連接,將液態氮經由液態氮螺旋輸入管的導入輸入連接管。
  3. 如申請專利範圍第2項所述之核磁共振造影射頻線圈冷卻裝置,其中該真空杯,其設置有一凹槽,而該真空傳入管內的輸入連接管連接真空杯內的凹槽,使得液態氮經由輸入連接管傳輸到真空杯內的凹槽內。
  4. 如申請專利範圍第3項所述之核磁共振造影射頻線圈冷卻裝置,其 中該真空輸出管,其內設置有一液態氮螺旋輸出管和一輸出連接管,真空輸出管與液態氮螺旋輸出管和輸出連接管之間為一真空層,該輸出連接管的一端連接真空杯的凹槽,另一端與液態氮螺旋輸出管連接,吸收熱能的液態氮經由輸出連接管流入液態氮螺旋輸出管內後排出到一液態氮儲存裝置。
  5. 如申請專利範圍第1項所述之核磁共振造影射頻線圈冷卻裝置,其中該線圈之型式為表面線圈。
  6. 如申請專利範圍第1項所述之核磁共振造影射頻線圈冷卻裝置,其中該線圈之型式為體線圈。
  7. 如申請專利範圍第1項所述之核磁共振造影射頻線圈冷卻裝置,其中該線圈之型式為鳥籠線圈。
  8. 如申請專利範圍第1項所述之核磁共振造影射頻線圈冷卻裝置,其中該線圈之型式為陣列線圈。
  9. 如申請專利範圍第1項所述之核磁共振造影射頻線圈冷卻裝置,其中該真空底座、真空杯、真空傳入管和真空輸出管利用隔熱材料所製作成。
  10. 如申請專利範圍第9項所述之核磁共振造影射頻線圈冷卻裝置,其中該隔熱材料為高硬度的石英玻璃。
  11. 如申請專利範圍第9項所述之核磁共振造影射頻線圈冷卻裝置,其中該隔熱材料為高硬度的玻璃纖維。
  12. 如申請專利範圍第9項所述之核磁共振造影射頻線圈冷卻裝置,其中該隔熱材料為玻璃。
  13. 如申請專利範圍第1項所述之核磁共振造影射頻線圈冷卻裝置,其中該線圈為冷卻射頻線圈。
  14. 如申請專利範圍第1項所述之核磁共振造影射頻線圈冷卻裝置,其中該線圈為冷卻高溫超導射頻線圈。
TW098130477A 2009-09-10 2009-09-10 Nuclear magnetic resonance imaging RF coil cooling device TWI420129B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW098130477A TWI420129B (zh) 2009-09-10 2009-09-10 Nuclear magnetic resonance imaging RF coil cooling device
US12/879,655 US20110056228A1 (en) 2009-09-10 2010-09-10 Cooling apparatus for nuclear magnetic resonance imaging rf coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098130477A TWI420129B (zh) 2009-09-10 2009-09-10 Nuclear magnetic resonance imaging RF coil cooling device

Publications (2)

Publication Number Publication Date
TW201109702A TW201109702A (en) 2011-03-16
TWI420129B true TWI420129B (zh) 2013-12-21

Family

ID=43646603

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098130477A TWI420129B (zh) 2009-09-10 2009-09-10 Nuclear magnetic resonance imaging RF coil cooling device

Country Status (2)

Country Link
US (1) US20110056228A1 (zh)
TW (1) TWI420129B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576109A (zh) * 2013-11-15 2014-02-12 厦门大学 一种核磁共振造影射频线圈冷却装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4739634A (en) * 1986-01-20 1988-04-26 Kabushiki Kaisha Toshiba Cylindrical counter-flow heat exchanger
US5410286A (en) * 1994-02-25 1995-04-25 General Electric Company Quench-protected, refrigerated superconducting magnet
US5694775A (en) * 1995-09-28 1997-12-09 Kabushiki Kaisha Toshiba Magnetic resonance diagnostic apparatus
US6377836B1 (en) * 1999-02-17 2002-04-23 Toshiba America Mri, Inc. RF coil array for vertical field MRI
TW200801566A (en) * 2006-04-05 2008-01-01 Koninkl Philips Electronics Nv Double resonant transmit receive solenoid coil for MRI
TWM362975U (en) * 2009-03-06 2009-08-11 Yen-Chih Wang Apparatus for processing ultra-low temperature and thermal treatment at same tank

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3064451A (en) * 1960-01-14 1962-11-20 Union Carbide Corp Cooling head for small chambers
US3273356A (en) * 1964-09-28 1966-09-20 Little Inc A Heat exchanger-expander adapted to deliver refrigeration
US5258710A (en) * 1992-03-27 1993-11-02 General Electric Company Cryogenic probe for NMR microscopy
JP2758786B2 (ja) * 1992-07-30 1998-05-28 三菱電機株式会社 超電導マグネット
JPH0765835B2 (ja) * 1993-03-18 1995-07-19 東洋酸素株式会社 横型クライオスタット
US5595065A (en) * 1995-07-07 1997-01-21 Apd Cryogenics Closed cycle cryogenic refrigeration system with automatic variable flow area throttling device
US5687574A (en) * 1996-03-14 1997-11-18 Apd Cryogenics, Inc. Throttle cycle cryopumping system for Group I gases
DE19648253C2 (de) * 1996-11-22 2002-04-04 Siemens Ag Pulsröhrenkühler und Verwendung desselben
JP3446883B2 (ja) * 1998-12-25 2003-09-16 科学技術振興事業団 液体ヘリウム再凝縮装置およびその装置に使用するトランスファーライン
US6416215B1 (en) * 1999-12-14 2002-07-09 University Of Kentucky Research Foundation Pumping or mixing system using a levitating magnetic element
GB0026145D0 (en) * 2000-10-26 2000-12-13 South Bank Univ Entpr Ltd Cooling of receive coil in MRI scanners
US8511100B2 (en) * 2005-06-30 2013-08-20 General Electric Company Cooling of superconducting devices by liquid storage and refrigeration unit
EP1953478A3 (de) * 2007-02-01 2014-11-05 Diehl BGT Defence GmbH & Co.KG Verfahren zur Kühlung eines Detektors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4739634A (en) * 1986-01-20 1988-04-26 Kabushiki Kaisha Toshiba Cylindrical counter-flow heat exchanger
US5410286A (en) * 1994-02-25 1995-04-25 General Electric Company Quench-protected, refrigerated superconducting magnet
US5694775A (en) * 1995-09-28 1997-12-09 Kabushiki Kaisha Toshiba Magnetic resonance diagnostic apparatus
US6377836B1 (en) * 1999-02-17 2002-04-23 Toshiba America Mri, Inc. RF coil array for vertical field MRI
TW200801566A (en) * 2006-04-05 2008-01-01 Koninkl Philips Electronics Nv Double resonant transmit receive solenoid coil for MRI
TWM362975U (en) * 2009-03-06 2009-08-11 Yen-Chih Wang Apparatus for processing ultra-low temperature and thermal treatment at same tank

Also Published As

Publication number Publication date
TW201109702A (en) 2011-03-16
US20110056228A1 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
US7772842B2 (en) Dedicated superconductor MRI imaging system
US7728592B2 (en) Integrated superconductor MRI imaging system
RU2586390C2 (ru) Система магнитно-резонансной томографии, включающая сверхпроводящий главный магнит, сверхпроводящую градиентную катушку и охлаждаемую радиочастотную катушку
US9074798B2 (en) Tubular thermal switch for the cryo-free magnet
RU2572650C2 (ru) Модуль с градиентными катушками из сверхпроводника с криогенным охлаждением для магнитно-резонансной томографии
RU2570219C2 (ru) Комплект сверхпроводящих рч-катушек с криогенным охлаждением для головы и система магнитно-резонансной томографии (мрт) только для головы, использующая такой комплект рч-катушек
US6489769B2 (en) Nuclear magnetic resonance apparatus
US6825664B2 (en) Cryogenically cooled phased array RF receiver coil for magnetic resonance imaging
US9170310B2 (en) Cryogenically cooled whole-body RF coil array and MRI system having same
KR100845826B1 (ko) 엠알아이 스캐너 내의 수신 코일의 냉각 장치 및 방법
TWI420129B (zh) Nuclear magnetic resonance imaging RF coil cooling device
Ginefri et al. Technical aspects: Development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T
CN103576109A (zh) 一种核磁共振造影射频线圈冷却装置
CN114706027A (zh) 磁共振线圈组件、多核素成像方法及扫描设备
Wright et al. Use of a Joule–Thomson micro-refrigerator to cool a radio-frequency coil for magnetic resonance microscopy
Laistler et al. Sub-nanoliter microscopic MR imaging of the human skin in vivo using a 12 mm superconducting surface coil at 1.5 Tesla
WO2003001886A2 (en) Joule-thomson micro-refrigerator-cooled radio-frequency coils as detectors for imaging systems
Wosik et al. Cryogenic Receive-only 7 Tesla Coil for MRI of Hyperpolarized 13C
Tanaka et al. Ultra-Low Field MRI Food Inspection System Using HTS-SQUID with Flux Transformer
Kim et al. Study on fabricated RF coil using high-temperature superconductor tape and matching circuit for low field MRI system
Cheong et al. Investigation of liquid Nitrogen cooled coils for low field MR Imaging
Chong et al. HTS Volume Coil with Improved Imaging Volume