WO2000029634A1 - Wärmedämmende glas-metall/keramik-schichten - Google Patents

Wärmedämmende glas-metall/keramik-schichten Download PDF

Info

Publication number
WO2000029634A1
WO2000029634A1 PCT/DE1999/003599 DE9903599W WO0029634A1 WO 2000029634 A1 WO2000029634 A1 WO 2000029634A1 DE 9903599 W DE9903599 W DE 9903599W WO 0029634 A1 WO0029634 A1 WO 0029634A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
substrate
insulating layer
glass
metal
Prior art date
Application number
PCT/DE1999/003599
Other languages
English (en)
French (fr)
Inventor
Vadim Verlotski
Detlev STÖVER
Hans Peter Buchkremer
Robert Vassen
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Priority to EP99960901A priority Critical patent/EP1141437B1/de
Priority to JP2000582612A priority patent/JP2002530525A/ja
Publication of WO2000029634A1 publication Critical patent/WO2000029634A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/08Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating

Definitions

  • the invention relates to heat-insulating layers on a substrate and a method of use.
  • Heat-insulating layers consisting of YSZ are known. Between an metallic substrate and the heat-insulating layer there is regularly an intermediate layer, for example made of an MCrAlY alloy, which is known under the name “bond coat”. Examples of substrates are air-cooled layers made of Ni Superalloys existing gas turbine parts, blades and plates of combustion chambers.
  • Multi-layer systems consisting of yttrium-stabilized zirconium oxide (YSZ) and MCrA-1Y (M: Ni, Co, Fe or mixed) are applied to substrate surfaces made of Ni superalloys by plasma spraying (VPS and APS) or by EB-PVD processes, such as US 4,055,705 can be seen. These protect substrates from high temperatures and oxidation. Thermal insulation layers for gas turbines enable an increase in efficiency because the consumption of cooling air can be reduced. Furthermore, higher firing temperatures are possible, which reduces the emission of pollutants. Thermal insulation layers can lead to lower substrate temperatures and thus increase the life of a substrate.
  • YSZ yttrium-stabilized zirconium oxide
  • M Ni, Co, Fe or mixed
  • YSZ heat-insulating layers with a so-called column structure were created to avoid thermal stresses.
  • Such a layer consists of several thin columns which are separated from one another by thin cracks (US 4,321,310, US 4,321,311, US 4,401,697, US 4,405,659, WO92 / 0598).
  • Good adhesion between the columns and the layer underneath was achieved by providing a further A1 2 0 3 intermediate layer (US 4,880,614).
  • modified intermediate layers to which Hf and Si were added were used to improve the adhesion (WO92 / 0598).
  • Thermal insulation layers with a column structure or vertical cracks are not very porous. The thermal conductivity is undesirably increased.
  • the object of the invention is to create heat-insulating layers on a substrate which not only have a heat-insulating effect but also protect against oxidation.
  • the task is solved by a substrate on which a heat insulating layer is applied.
  • the heat insulating layer consists of 10-90% by mass of glass and moreover of a ceramic, a metal and / or a metal alloy. Ceramics such as YSZ, non-stabilized Zr0 2 or A1 2 0 3 and metals / metal alloys such as MCrAlY, Ni, Cr, Co, Fe or alloys from the aforementioned elements are suitable. Glass has very good heat-insulating properties. However, it is not sufficiently shock-resistant for its intended use and is therefore not suitable as the sole material. The sophisticated mix fulfills both requirements changes.
  • the expansion coefficient can also be adapted to the expansion coefficient of a metallic substrate by means of a suitable composition. In this way, thermal stresses are avoided.
  • the heat insulating layer is impermeable to oxygen. In contrast to the prior art mentioned at the beginning, it also serves to protect against oxidation. The mechanical stability is required.
  • the sophisticated substrate with the heat-insulating layer has been developed especially for substrates made of Ni superalloys and their use in gas turbines. Of course, the area of application is not limited to this. Highly-insulating layers on substrates are regularly used advantageously for components that are exposed to high temperatures that have a destructive effect on the substrate.
  • the glass ensures a reduction in the gas permeability (oxygen permeability) of the ceramic-glass and metal-glass compositions at normal and especially at high temperatures by forming a gas-tight glass matrix.
  • the glass matrix gas-tight glass films on the surfaces of the metal particles protects the metal part from oxidation.
  • the glass phase ensures good adhesion of the ceramic-glass and metal-glass compositions to metallic and ceramic surfaces thanks to the wetting effect of the glasses.
  • the glass leads to creepable properties of the composition at temperatures from 400-600 ° C and relatively low loads. Thermally Contingent tensions can be reduced due to the creeping activity. In addition, the glass phase relaxes possible residual stresses that can develop during manufacture, for example during plasma spraying. Glass with a share of only 10% by mass makes it possible, for example, to use non-stabilized Zr0 2 as an additional material. The glass compensates for all changes in volume of the Zr0 2 during phase changes without crack formation. An intermediate layer can be provided. However, this is not necessary, since the liability problems can also be solved by adjusting the expansion coefficients by choosing a suitable composition. Care must be taken to ensure that the coefficient of expansion of the substrate lies between the coefficients of expansion of two materials from which the heat-insulating layer is produced. In principle, the heat insulating layer can also consist of more than two materials. Silicate glasses are preferred in the thermal insulation
  • the thermal conductivity of silicate glasses is between 0.6 and 1.5Wrrf 1 K ⁇ 1 at normal temperature. Thanks to this low thermal conductivity of the glass, the thermal conductivity of a metal-glass composition is in the range 2.0-3.0 Wrrf 1 K "1. This is not much higher than the thermal conductivity of YSZ.
  • the provision of the sophisticated mixed layer enables a very wide range Interval of coefficient of thermal expansion ( ⁇ ) of metal-glass or ceramic-glass compositions By changing the glass composition and / or the metal-glass / ceramic-glass ratio, an adaptation to the coefficient of expansion of the substrate is possible a permanent one ⁇ -series of, for example, 2-3 to 20-25xl0 ⁇ 6 K " ⁇ 1.
  • This property of the glazers means that a good ⁇ -adaptation of substrates, metal-glass layers and YSZ-heat insulating layers with a glass phase is relatively easy to achieve. In the following the invention is explained in more detail by means of examples.
  • the substrate consists of the Ni super alloy IN-738. Then a 50-100 ⁇ m thick MCrAlY alloy with the composition Co-31, Cr-30, Ni-29.7, Al-8, Si-0.7, Y-0.8 (data in mass%) as Intermediate layer (bond coat) applied. On the intermediate layer there is a heat-insulating layer with the composition metal-glass 63:37 (% by mass). The alloy used for the intermediate layer is used as the metal. An alkali-lime-silicate glass with the composition Si0 2 - 70, Na 2 0-17, CaO-8, MgO-2, Al 2 0 3 -3 (data in mass%) is provided as the glass. The heat insulating layer is 500 ⁇ m thick.
  • This example is particularly suitable for use at operating temperatures of 1000 to 1200 ° C.
  • the intermediate layer avoids diffusion effects which would have occurred to a harmful extent without the intermediate layer in the aforementioned temperature range between the substrate and the heat-insulating layer.
  • the additional effort due to the provision of an intermediate layer is justified by the aforementioned effect.
  • the expansion coefficients of the substrate and the heat-insulating layer are approximately 14 10 ⁇ 6 K _1 . They tune very well up to a temperature of 800 ° C agree.
  • the coefficient of expansion of the metallic intermediate layer is approximately 17 * 10 "6 K " 1 . The difference is not critical, however, since the intermediate layer behaves plastically and is very thin.
  • the substrate and the intermediate layer correspond to Example 1.
  • the heat insulating layer on the intermediate layer has 85 mass% YSZ and 15 mass% glass.
  • the glass is composed according to SiO 2 -60, Rb 2 O-20, CaO-20 (data in mass%).
  • the heat insulating layer is 300 ⁇ m thick.
  • the coefficient of expansion of the heat-insulating layer corresponds better (compared to a layer consisting exclusively of YSZ) to that of the substrate. However, the agreement of the expansion coefficients achieved in Example 1 is not achieved here.
  • Example 3 corresponds to Example 1 without the provision of the intermediate layer.
  • the structure is easier. However, it is less suitable at ambient temperatures above 1000 ° C, since diffusion effects are damaging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Die Erfindung betrifft wärmedämmende Schichten auf einem Substrat sowie eine Verwendungsweise. Die wärmedämmende Schicht besteht zu 10-90 Masse-% aus Glas und darüber hinaus aus einer Keramik und/oder einem Metall und/oder einer Metallegierung. Als Substrat sind insbesondere Gasturbinenteile, -schaufeln sowie Platten von Brennkammern vorgesehen. Es wird bevorzugt bei Temperaturen oberhalb von 800 °C eingesetzt. Die wärmedämmende Schicht schützt zugleich vor Oxidation. Durch Anpassen von Ausdehnungskoeffizienten und aufgrund der Kriechfähigkeit der wärmedämmenden Schicht werden thermisch bedingte Spannungen vorteilhaft vermieden.

Description

B e s c h r e i b u n g
Warmedammende Glas-Metall/Keramik - Schichten
Die Erfindung betrifft warmedammende Schichten auf einem Substrat sowie eine Verwendungsweise.
Bekannt sind aus YSZ bestehende warmedammende Schich- ten. Zwischen einem metallischen Substrat und der wärmedämmenden Schicht befindet sich regelmäßig eine zum Beispiel aus einer MCrAlY-Legierung bestehende Zwischenschicht, die unter der Bezeichnung „Bondcoat" bekannt ist. Beispiele f r Substrate sind luftgekühlte aus Ni-Superlegierungen bestehende Gasturbinenteile, - schaufeln sowie Platten von Brennkammern.
Aus yttriumstabilisiertem Zirkoniumoxid (YSZ) und MCrA- 1Y (M: Ni, Co, Fe oder gemischt) bestehende Mehrfachschichtsysteme werden auf Substratoberflachen aus Ni- Superlegierungen durch Plasmaspritzen (VPS und APS) oder durch EB-PVD- Verfahren aufgebracht, wie der Druckschrift US 4,055,705 zu entnehmen ist. Diese schützen Substrate vor hohen Temperaturen und Oxidation. Warmedammende Schichten für Gasturbinen ermöglichen eine Erhöhung des Wirkungsgrades, da der Verbrauch von Kuhlluft gesenkt werden kann. Ferner sind erhöhte Brenntemperaturen möglich, wodurch der Ausstoß von Schadstoffen reduziert wird. Warmedammende Schichten können zu niedrigeren Substrattemperaturen fuhren und so die Lebensdauer eines Substrats steigern.
Nachteilhaft sind die bekannten aus YSZ bestehenden Schichten für Sauerstoff durchlassig. Die darunter lie- gende Schicht oxidiert. Der Druckschrift „W. Beele, N. Czesh, W.J. Quadakkers, W. Stamm. Long-term. Oxidations tests on a Re- containmg MCrAlY coating. Surface and Coatings Technology, 94-95 (1997), 41-45" ist zu ent- nehmen, daß mechanische Zerstörungen die Folge sind.
Problematisch sind ferner große Unterschiede zwischen Wärmeausdehnungskoeffizienten (α) von metallischen Substraten und YSZ- wärmedämmenden Schichten. Temperaturanderungen bewirken daher zerstörerisch wirkende me- chanische Spannungen, wie der Druckschrift „J.T. De Ma- si, K.D. Sheffler, S. Böse, Mechanismus of Degradation and Failure in a Plasma- Deposited Thermal Barrier Coating, j. Eng. Gas Turbines Power, vol. 112, Ost. 1990, 521-526" entnommen werden kann. Zur Losung des Problems wurden Herstellungsverfahren vorgeschlagen, die eine gewisse Nachgiebigkeit (Toleranz) der YSZ- Keramik erreichten.
Es wurde eine keramische, warmedammende Schicht mit Mi- krorissen entwickelt, bei der sich Risse im wesentli- chen senkrecht zur Oberflache verbreiten. Thermische Spannungen werden so kompensiert (UK 2 100 621 A. ; US 4,377,371, W091/05888, US 5,169,689).
Alternativ wurden zur Vermeidung von thermischen Spannungen YSZ- warmedammende Schichten mit sogenannter Saulenstruktur geschaffen. Eine solche Schicht besteht aus mehreren dünnen Säulen, die voneinander durch dünne Risse getrennt sind (US 4,321,310, US 4,321,311, US 4,401,697, US 4,405,659, W092/0598). Eine gute Haftung zwischen den Säulen und der darunter befindlichen Schicht wurde durch Vorsehen einer weiteren A1203- Zwischenschicht erreicht (US 4,880,614). Außerdem wurde für eine Verbesserung der Haftung modifizierte Zwischenschichten verwendet, denen Hf und Si zugesetzt wurde (W092/0598) . Warmedammende Schichten mit Saulenstruktur oder senkrechten Rissen sind wenig porös. Die Wärmeleitfähigkeit wird so unerwünscht gesteigert.
Zur Losung dieses Problems wurde vorgeschlagen (EP 0 605 196 AI), auf eine YSZ-Schicht mit einer Saulenstruktur eine obere YSZ-Schicht ohne Saulenstruktur aufzuspritzen.
In allen vorgenannten Druckschriften wurde betont, daß YSZ- warmedammende Schichten das Substrat nur vor hohen Temperaturen, nicht aber vor einer Oxidation schützen. Ein Oxidationsschutz des Substrates ist in allen Fallen nur durch die Zwischenschicht möglich.
Aufgabe der Erfindung ist die Schaffung warmedammender Schichten auf einem Substrat, die nicht nur über eine warmedammende Wirkung verfugen, sondern auch vor Oxidation schützen.
Die Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelost. Vorteilhafte Ausgestaltungen ergeben sich aus den Unteranspruchen.
Die Aufgabe wird durch ein Substrat gelost, auf der eine warmedammende Schicht aufgebracht ist. Die warmedammende Schicht besteht zu 10-90 Masse-% Glas und darüber hinaus aus einer Keramik, einem Metall und/oder einer Metallegierung. Geeignet sind Keramiken wie YSZ, nicht stabilisiertes Zr02 oder A1203 sowie Metalle/ Metallegierungen wie MCrAlY, Ni, Cr, Co, Fe oder Legierungen aus den vorgenannten Elementen. Glas verfugt zwar über sehr gute warmedammende Eigenschaften. Es ist jedoch für den bezweckten Einsatz nicht hinreichend schockbe- standig und daher als alleiniger Werkstoff nicht geeignet. Die anspruchsgemaße Mischung erfüllt beide Anfor- derungen. Auch kann durch eine geeignete Zusammensetzung der Ausdehnungskoeffizient an den Ausdehnungskoeffizienten eines metallischen Substrates angepaßt werden. Thermisch bedingte Spannungen werden so vermie- den.
Die warmedammende Schicht ist für Sauerstoff undurchlässig. Sie dient also im Unterschied zum eingangs genannten Stand der Technik auch dem Schutz vor Oxidation. Die mechanische Stabilität wird so gefordert. Das anspruchsgemaße Substrat mit der wärmedämmenden Schicht ist insbesondere für Substrate aus Ni- Superlegierungen und ihre Verwendung in Gasturbinen entwickelt worden. Selbstverständlich ist das Einsatzgebiet hierauf nicht beschrankt. Anspruchsgemaße warme- dammende Schichten auf Substraten werden regelmäßig bei Bauteilen vorteilhaft eingesetzt, die hohen, auf das Substrat zerstörerisch wirkenden Temperaturen ausgesetzt sind.
Das Glas gewahrleistet eine Verminderung der Gasdurch- lassigkeit (Sauerstoffdurchlassigkeit) der Keramik- Glas- und Metall-Glas-Zusammensetzungen bei normalen und besonders bei hohen Temperaturen durch Bildung einer gasdichten Glasmatrix. Im Fall einer Metall-Glas- Zusammensetzung schützt die Glasmatrix (gasdichte Glasfilme auf Oberflachen der Metallteilchen) den Metallanteil vor der Oxidation.
Die Glasphase gewährleistet eine gute Haftung der Keramik-Glas- und Metall-Glas-Zusammensetzungen auf metal- lischen und keramischen Oberflachen dank benetzender Wirkung der Glaser.
Das Glas (Glasmatrix) fuhrt bei Temperaturen ab 400- 600°C und relativ niedrigen Belastungen zu kriechfahi- gen Eigenschaften der Zusammensetzung. Thermisch be- dingte Spannungen können aufgrund der Kriechtahigkeit abgebaut werden. Außerdem relaxiert die Glasphase mögliche Restspannungen, die sich bei Herstellung, z.B., beim Plasmaspritzen, entwickeln können. Glas mit einem Anteil von nur 10 Masse-% ermöglicht es, als zusatzlichen Werkstoff zum Beispiel nicht stabilisierte Zr02 einzusetzen. Das Glas kompensiert nämlich ohne Rißbildung samtliche Volumenanderungen des Zr02 bei Phasenumwandlungen . Eine Zwischenschicht kann vorgesehen werden. Diese ist jedoch entbehrlich, da die Probleme bezuglich der Haftung auch durch Anpassung der Ausdehnungskoeffizienten durch Wahl einer geeigneten Zusammensetzung gelost werden kann. Dabei ist darauf zu achten, daß der Ausdeh- nungskoeffizient der Substrates zwischen den Ausdehnungskoeffizienten von zwei Materialien liegt, aus dem die warmedammende Schicht hergestellt wird. Grundsatzlich kann die warmedammende Schicht auch aus mehr als zwei Materialien bestehen. Bevorzugt werden Silikatglaser in der wärmedämmenden
Schicht vorgesehen. Die Wärmeleitfähigkeit von Silikatglasern liegt bei normaler Temperatur zwischen 0,6 und 1, 5Wrrf1K~1. Dank dieser niedrigen Wärmeleitfähigkeit des Glases liegt die Wärmeleitfähigkeit einer Metall-Glas- Zusammensetzung im Bereich 2,0-3,0 Wrrf1K"1. Diese ist nicht viel hoher als die Wärmeleitfähigkeit von YSZ. Das Vorsehen der anspruchsgemaßen Mischschicht ermöglicht ein sehr breites Intervall an Wärmeausdehnungskoeffizienten (α) von Metall-Glas- oder Keramik-Glas- Zusammensetzungen. Durch Änderung der Glaszusammensetzung und/oder des Metall- Glas- / Keramik- Glas- Verhältnisses gelingt eine Anpassung an den Ausdehnungskoeffizienten des Substrats. Silikatglaser mit unterschiedlichen Zusammensetzungen bilden eine permanente α-Reihe von z.B., 2-3 bis 20-25xl0~6K"~1. Durch diese Eigenschaft der Glaser ist eine gute α- Anpassung von Substraten, Metallglas- Schichten und YSZ- warmedammende Schichten mit Glasphase relativ leicht erreichbar. Im folgenden wird die Erfindung anhand von Beispielen naher erläutert.
Im folgenden wird die Erfindung anhand von Beispielen naher erläutert.
Beispiel 1
Das Substrat besteht aus der Ni-Superlegierung IN-738. Hierauf ist eine 50-100 μm dicke MCrAlY-Legierung der Zusammensetzung Co-31, Cr-30, Ni-29,7, Al-8, Si-0,7, Y- 0,8 (Angaben in Masse-%) als Zwischenschicht (Bondcoat) aufgebracht. Auf der Zwischenschicht befindet sich als warmedammende Schicht der Zusammensetzung Metall-Glas 63:37 (Masse-%). Als Metall ist die bei der Zwischenschicht verwendete Legierung eingesetzt. Als Glas ist ein Alkali-Kalk-Silikatglas der Zusammensetzung Si02- 70, Na20-17, CaO-8, MgO-2, Al203-3 (Angaben in Masse-%) vorgesehen. Die warmedammende Schicht ist 500 μm dick. Dieses Beispiel eignet sich insbesondere für den Einsatz bei Betriebstemperaturen von 1000 bis 1200 °C. Durch die Zwischenschicht werden Diffusionseffekte vermieden, die ohne die Zwischenschicht im vorgenannten Temperaturbereich zwischen dem Substrat und der wärmedämmenden Schicht in einem schädigenden Umfang auftreten wurden. Der Mehraufwand aufgrund des Vorsehens einer Zwischenschicht wird durch die vorgenannte Wirkung gerechtfertigt. Die Ausdehnungskoeffizienten des Substrates und der wärmedämmenden Schicht betragen ca. 14«10~6 K_1. Sie stimmen bis zu einer Temperatur von 800 °C sehr gut uberein. Der Ausdehnungskoeffizient der metallischen Zwischenschicht betragt zwar ca. 17*10"6 K"1. Die Differenz ist jedoch unkritisch, da sich die Zwischenschicht plastisch verhalt und sehr dünn ist.
Beispiel 2
Substrat und Zwischenschicht stimmen mit dem Beispiel 1 uberein. Die warmedammende Schicht auf der Zwischenschicht weist 85 Masse-% YSZ und 15 Masse-% Glas auf. Das Glas setzt sich gemäß SiO2-60, Rb2O-20, CaO-20 (Angaben in Masse-%) zusammen. Die warmedammende Schicht ist 300 μm dick.
Der Ausdehnungskoeffizient der wärmedämmenden Schicht stimmt besser (im Vergleich zu einer ausschließlich aus YSZ bestehenden Schicht) mit dem des Substrats uberein. Die bei Beispiel 1 erzielte Übereinstimmung der Ausdehnungskoeffizienten wird hier jedoch nicht erreicht.
Beispiel 3
Das Beispiel 3 entspricht dem Beispiel 1 ohne Vorsehen der Zwischenschicht. Der Aufbau ist einfacher. Er ist jedoch bei Umgebungstemperaturen oberhalb von 1000 °C weniger geeignet, da dann Diffusionseffekte schädigend wirken.
Versuche an den Beispielen 1 bis 3 zeigten ein verbessertes Oxidationsverhalten, eine größere thermische Stabilität bei vergleichbaren wärmedämmenden Eigenschaften im Vergleich zum eingangs genannten Stand der Technik.

Claims

P a t e n t a n s p r ü c h e
1. Substrat mit einer aufgebrachten wärmedämmenden Schicht, dadurch gekennzeichnet, daß die warmedammende Schicht zu 10-90 Masse-% aus Glas und darüber hinaus aus einer Keramik und/oder einem Metall und/oder einer Metallegierung besteht.
2. Substrat nach vorhergehendem Anspruch, bei dem als Substrat Gasturbinenteile, -schaufeln sowie Platten von Brennkammern vorgesehen sind.
3. Substrat nach einem der vorhergehenden Anspr che, bei dem die Oberflächen des Substrats, die während eines Betriebes heißer Umgebungsluft ausgesetzt sind, vollständig durch die warmedammende Schicht bedeckt sind.
4. Substrat nach einem der vorhergehenden Ansprüche, bei dem als Glas Silikatglaser vorgesehen sind.
5. Substrat nach einem der vorhergehenden Ansprüche, bei dem das Substrat aus einer Ni-Superlegierung besteht .
6. Substrat nach einem der vorhergehenden Ansprüche, bei dem als Keramik YSZ und/oder Zr02 eingesetzt sind.
7. Verwendung eines Substrats nach einem der vorhergehenden Ansprüchen bei Betriebstemperaturen oberhalb von 800°C.
8. Verwendung eines Substrats nach Anspruch 7, bei dem die warmedammende Schicht durch eine metallische Schicht vom Substrat getrennt ist, bei Temperaturen oberhalb von 1000 °C.
9. Verwendung eines Substrats nach Anspruch 7, bei dem die warmedammende Schicht unmittelbar an das Substrat angrenzt, bei Temperaturen unterhalb von 1000 °C.
PCT/DE1999/003599 1998-11-13 1999-11-09 Wärmedämmende glas-metall/keramik-schichten WO2000029634A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99960901A EP1141437B1 (de) 1998-11-13 1999-11-09 Wärmedämmende glas-metall/keramik-schichten
JP2000582612A JP2002530525A (ja) 1998-11-13 1999-11-09 ガラス−金属/セラミック−断熱層

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998152285 DE19852285C1 (de) 1998-11-13 1998-11-13 Wärmedämmende Glas-Metall/Keramik-Schichten
DE19852285.1 1998-11-13

Publications (1)

Publication Number Publication Date
WO2000029634A1 true WO2000029634A1 (de) 2000-05-25

Family

ID=7887627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003599 WO2000029634A1 (de) 1998-11-13 1999-11-09 Wärmedämmende glas-metall/keramik-schichten

Country Status (4)

Country Link
EP (1) EP1141437B1 (de)
JP (1) JP2002530525A (de)
DE (1) DE19852285C1 (de)
WO (1) WO2000029634A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005050661A1 (de) * 2005-10-20 2007-05-16 Forschungszentrum Juelich Gmbh Mehrlagige Wärmedämmschichtsysteme und Verfahren zur Herstellung

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376091B1 (en) * 2000-08-29 2002-04-23 Amorphous Technologies International Article including a composite of unstabilized zirconium oxide particles in a metallic matrix, and its preparation
DE10056617C2 (de) * 2000-11-15 2002-12-12 Forschungszentrum Juelich Gmbh Werkstoff für temperaturbelastete Substrate
DE102004018999B4 (de) * 2004-04-20 2006-04-20 Forschungszentrum Jülich GmbH Federelement sowie Herstellung und Verwendung derselben
US7754342B2 (en) * 2005-12-19 2010-07-13 General Electric Company Strain tolerant corrosion protecting coating and spray method of application
DE102007028109A1 (de) * 2007-06-19 2008-12-24 Märkisches Werk GmbH Thermisch gespritzte, gasdichte Schutzschicht für metallische Substrate
DE102009035841A1 (de) 2009-08-01 2011-02-03 Matthäus Götz Verfahren zur Herstellung einer Oxidationsschutz- und Wärmedämmschicht auf hohen Temperaturen ausgesetzten Substraten
EP2915892B1 (de) 2012-10-31 2018-02-07 Fukuda Metal Foil&powder Co., Ltd. Legierung auf ni-cr-co-basis mit hochtemperatur-korrosionsresistenz sowie tellerventil mit einer damit bearbeiteten oberfläche
DE102014018693A1 (de) 2014-12-18 2016-06-23 Mahle International Gmbh Verfahren zum Herstellen einer Wärmedämmschicht sowie mittels dieses Verfahrens hergestellte Wärmedämmschicht

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330575A (en) * 1980-03-22 1982-05-18 Rolls-Royce Limited Coating material
US5320909A (en) * 1992-05-29 1994-06-14 United Technologies Corporation Ceramic thermal barrier coating for rapid thermal cycling applications
JPH0790619A (ja) * 1993-09-22 1995-04-04 Toshiba Corp 高温耐熱部材

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055705A (en) * 1976-05-14 1977-10-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thermal barrier coating system
JPH06102822B2 (ja) * 1986-03-12 1994-12-14 株式会社日立製作所 セラミツク被覆を有する耐熱部材
JPS6342324A (ja) * 1986-08-09 1988-02-23 Nippon Steel Corp 熱処理炉用ハ−スロ−ル
JPS6353249A (ja) * 1986-08-22 1988-03-07 Kawasaki Steel Corp 熱処理炉用ロ−ラ
JPH01172554A (ja) * 1987-12-25 1989-07-07 Toyota Motor Corp 溶射材料
JP2747087B2 (ja) * 1990-05-31 1998-05-06 新日本製鐵株式会社 溶射被覆用材料及び溶射被覆耐熱部材
JPH0711416A (ja) * 1993-06-23 1995-01-13 Sumitomo Metal Ind Ltd 耐高温エロージョン性に優れた表面被覆構造
JP3219594B2 (ja) * 1994-04-27 2001-10-15 三菱重工業株式会社 高温酸化防止用遮熱コーティング方法
JPH08158804A (ja) * 1994-12-02 1996-06-18 Mitsubishi Heavy Ind Ltd ガスタービン翼
JPH09316622A (ja) * 1996-05-28 1997-12-09 Toshiba Corp ガスタービン部材及びその遮熱コーティング方法
JPH09327779A (ja) * 1996-06-07 1997-12-22 Mitsubishi Heavy Ind Ltd セラミック皮膜の割れ形成方法及び同方法によるセラミック皮膜部品
JPH1025578A (ja) * 1996-07-10 1998-01-27 Toshiba Corp 耐熱部材およびその製造方法
JP2933160B2 (ja) * 1997-03-25 1999-08-09 川崎重工業株式会社 複合セラミック遮熱コーティング及びその形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330575A (en) * 1980-03-22 1982-05-18 Rolls-Royce Limited Coating material
US5320909A (en) * 1992-05-29 1994-06-14 United Technologies Corporation Ceramic thermal barrier coating for rapid thermal cycling applications
JPH0790619A (ja) * 1993-09-22 1995-04-04 Toshiba Corp 高温耐熱部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 07 31 August 1995 (1995-08-31) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005050661A1 (de) * 2005-10-20 2007-05-16 Forschungszentrum Juelich Gmbh Mehrlagige Wärmedämmschichtsysteme und Verfahren zur Herstellung
WO2007045225A3 (de) * 2005-10-20 2007-11-22 Forschungszentrum Juelich Gmbh Mehrlagige wärmedämmschichtsysteme und verfahren zur herstellung
US7998601B2 (en) 2005-10-20 2011-08-16 Forschungszentrum Juelich Gmbh Sandwich thermal insulation layer system and method for production

Also Published As

Publication number Publication date
JP2002530525A (ja) 2002-09-17
DE19852285C1 (de) 2000-04-27
EP1141437A1 (de) 2001-10-10
EP1141437B1 (de) 2003-10-01

Similar Documents

Publication Publication Date Title
DE602004010841T2 (de) Oxidationsbarrierebeschichtungen für keramiken auf siliciumbasis
EP2006410B1 (de) Thermischgespritzte, gasdichte schutzschicht für metallische substrate
DE60114495T2 (de) Umwelt/thermische Sperrschicht für einen Substrat auf der Basis von Silizium
EP0786017B1 (de) Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
DE602005003866T2 (de) Gegenstand umfassend ein Silizium enthaltendes Substrat und eine Hafniumoxid enthaltende Sperrschicht an der Oberfläche
EP1386017B1 (de) WÄRMEDÄMMSCHICHT AUF BASIS VON La2 Zr2 O7 FÜR HOHE TEMPERATUREN
EP1373685B1 (de) Gasturbinenschaufel
WO2007045225A2 (de) Mehrlagige wärmedämmschichtsysteme und verfahren zur herstellung
DE10056617C2 (de) Werkstoff für temperaturbelastete Substrate
EP1029115A1 (de) Erzeugnis, insbesondere bauteil einer gasturbine, mit keramischer wärmedämmschicht
DE112008003502T5 (de) Verfahren zum Verbessern der Beständigkeit gegen CMAS-Infiltration
EP2197813B1 (de) Keramischer schichtverbund
EP1141437B1 (de) Wärmedämmende glas-metall/keramik-schichten
EP2824220B1 (de) CMAS-inerte Wärmedämmschicht und Verfahren zur ihrer Herstellung
EP3426815A1 (de) Haftvermittlerschicht zur anbindung einer hochtemperaturschutzschicht auf einem substrat, sowie verfahren zur herstellung derselben
DE10040591C1 (de) Verfahren zur Herstellung einer Beschichtung auf einem feuerfesten Bauteil und deren Verwendung
EP1260602A1 (de) Verfahren zum Erzeugen eines wärmedämmenden Schichtsystems auf einem metallischen Substrat
WO2008110161A1 (de) Schichtsystem und verfahren zu dessen herstellung
DE102006030235B4 (de) Verfahren zum Schutz von Heißgaskorrosion von keramischen Oberflächen oder eines Körpers, hochtemperaturbeständiger Körper und deren Verwendung
DE4015010C2 (de) Metallbauteil mit einer wärmedämmenden und titanfeuerhemmenden Schutzschicht und Herstellungsverfahren
DE19807359A1 (de) Wärmedämmschichtsystem mit integrierter Aluminiumoxidschicht
EP1256636B1 (de) Wärmedämmmaterial mit im wesentlichen magnetoplumbitischer Kristallstruktur
DE19801424B4 (de) Wärmedämmstoff für hohe Temperaturen und seine Verwendung
DE102004002303A1 (de) Verfahren zum Zweifach- oder Mehrfachbeschichten eines Kohlenstoff/Kohlenstoff-Verbundwerkstoffes
DE102004002304A1 (de) Verfahren zum Beschichten eines Kohlenstoff/Kohlenstoff-Verbundwerkstoffes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999960901

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09806630

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 582612

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1999960901

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999960901

Country of ref document: EP