WO2000027895A1 - Composition resineuse photopolymerisable et procede de formation de profile tridimensionnel - Google Patents

Composition resineuse photopolymerisable et procede de formation de profile tridimensionnel Download PDF

Info

Publication number
WO2000027895A1
WO2000027895A1 PCT/JP1999/006209 JP9906209W WO0027895A1 WO 2000027895 A1 WO2000027895 A1 WO 2000027895A1 JP 9906209 W JP9906209 W JP 9906209W WO 0027895 A1 WO0027895 A1 WO 0027895A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photocurable resin
compound
group
polymerizable compound
Prior art date
Application number
PCT/JP1999/006209
Other languages
English (en)
French (fr)
Inventor
Yorikazu Tamura
Tsuneo Hagiwara
Makoto Ohtake
Original Assignee
Teijin Seiki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Seiki Co., Ltd. filed Critical Teijin Seiki Co., Ltd.
Priority to US09/582,974 priority Critical patent/US6432607B1/en
Priority to DE69935707T priority patent/DE69935707T2/de
Priority to EP99954433A priority patent/EP1046657B1/en
Publication of WO2000027895A1 publication Critical patent/WO2000027895A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/12Esters of phenols or saturated alcohols
    • C08F222/22Esters containing nitrogen

Definitions

  • the present invention relates to a photocurable resin composition and a method for producing a three-dimensional structure using the photocurable resin composition. More specifically, the present invention has low volumetric shrinkage upon photocuring, excellent dimensional accuracy, high heat deformation temperature, excellent heat resistance, and transparency, mechanical properties such as bow I tensile strength.
  • the present invention relates to a light-hardening resin composition capable of obtaining excellent molded articles and three-dimensional molded articles, and a method for producing a molded article by optical three-dimensional molding using the photocurable resin composition.
  • liquid photocurable resin compositions are widely used as coatings (especially hard coatings), photoresists, dental materials, etc.
  • photocurable resin compositions based on data input to three-dimensional CAD have been used.
  • a method of three-dimensionally optically molding a curable resin composition has attracted particular attention.
  • a required amount of controlled light energy is supplied to the liquid photo-curable resin to cure it in a thin layer, and then the liquid photo-curable resin is further supplied, followed by light control under control.
  • 56-144,478 discloses an optical three-dimensional molding method for producing a three-dimensional molded product by repeating a process of irradiating and curing the laminate in a thin layer. Further, a basic practical method has been further proposed in Japanese Patent Application Laid-Open No. Sho 60-247715. After that, a number of proposals regarding optical three-dimensional molding technology were made in Japanese Patent Application Laid-Open Nos. Sho 62-35969, Hei 1-20949, and Hei 21-13925. Japanese Unexamined Patent Application, First Publication No. Hei 2-14545616, Japanese Unexamined Patent Application Publication No. Hei 2-155372, Japanese Unexamined Patent Publication No. 3-155020, Japanese Unexamined Patent Publication No. And Japanese Patent Application Laid-Open Publication No. Hei 3-4-1126.
  • a method for obtaining a desired pattern on a liquid surface of a liquid photocurable resin composition placed in a molding bath is provided.
  • photocurable resin compositions used for coating agents, photoresists, dental materials, etc. include unsaturated polyesters, epoxy (meth) acrylates, urethane (meth) acrylates, (meth) acrylate monomers, and the like.
  • a resin obtained by adding a photopolymerization initiator to a curable resin is widely used.
  • the photocurable resin composition used in the optical three-dimensional molding method includes a photopolymerizable (poly) urethane (meth) acrylate compound, an oligoesteracrylate compound, and an epoxyacrylate compound.
  • examples thereof include those containing one or more photopolymerizable compounds such as an epoxy compound, a polyimide compound, an aminoalkyd compound, and a vinyl ether compound as a main component, and a photopolymerization initiator added thereto.
  • Japanese Unexamined Patent Publication Nos. Hei 1-124149, Hei 1-23334, Hei 2-28 261, Hei 2-756 17 Japanese Patent Application Laid-Open Publication No. Hei 2-145056 / 1996, Japanese Patent Laid-Open Publication No. Hei 3-1046 / 26, Japanese Patent Laid-Open Publication No. No. 734 discloses various improved technologies.
  • the photo-curable resin composition used for optical three-dimensional modeling is a liquid material with low viscosity, small volume shrinkage during curing, and light curing, in terms of handleability, molding speed, molding accuracy, etc. It is necessary to have good mechanical properties such as good mechanical properties of the three-dimensional object obtained by using this method.
  • the demand and applications of optical three-dimensional objects have been expanding, and accordingly, depending on the application, in addition to the above-mentioned characteristics, it has a high heat deformation temperature, excellent heat resistance, and transparency Excellent three-dimensional objects have come to be required.
  • optical three-dimensional objects used in the design of complex heat transfer circuits, complex structures For optical three-dimensional objects used to analyze the behavior of heat medium, those with small volume shrinkage during light curing, high heat deformation temperature and excellent transparency are regarded as important.
  • an increase in the crosslink density of the photocurable resin composition can be expected to improve heat resistance, but at the same time, an increase in the crosslink density tends to increase the volume shrinkage during curing.
  • an increase in the crosslink density tends to increase the volume shrinkage during curing.
  • the present inventors have previously developed and proposed a photocurable resin composition in which a filler is blended with a specific photocurable resin (Japanese Patent Laid-Open No. 5-19). No. 6691 and Japanese Patent Laid-Open No. 5-196692).
  • this photocurable resin composition When this photocurable resin composition is used, it has an excellent effect of breaking the trade-off relationship described above and obtaining a molded article having excellent heat resistance and a small volume shrinkage.
  • the present inventors have further studied based on the above-described invention, and the photocurable resin composition has a high viscosity and a high flow viscosity due to the inclusion of the filler. Because of the thixotropic properties, it was found that there was room for improvement in handleability during molding.
  • Another object of the present invention is to provide a method for producing a three-dimensional object by performing optical three-dimensional object molding using the photocurable resin composition of the present invention. Still other objects and advantages of the present invention will become apparent from the following description. According to the present invention, the above objects and advantages of the present invention are firstly achieved by:
  • R 1 is an alicyclic group which may be substituted, an aromatic group which may be substituted or an aliphatic group which may be substituted, and R 2 is a residue of an amino alcohol R 3 is a hydrogen atom or a methyl group, and n represents 1 or 2.)
  • R 3 is a hydrogen atom or a methyl group, and n represents 1 or 2.
  • At least one polymerizable compound selected from the group consisting of a radical polymerizable compound other than the imidized acrylyl compound and a cation polymerizable compound;
  • the content ratio of the imidized acrylic compound (i) to the polymerizable compound (ii) is 80:20 to: 10: 90 (weight ratio). This can be achieved by a photocurable resin composition.
  • the above object and advantages of the present invention are as follows. Secondly, a method for producing a three-dimensional molded article characterized by subjecting the above photocurable resin composition of the present invention to optical three-dimensional molding. Achieved by
  • R 1 represents an optionally substituted alicyclic group, an optionally substituted aromatic group or a substituted.
  • substituted or unsubstituted cyclohexyldicarboxylic acid cyclohexyltetracarboxylic acid; substituted or unsubstituted hydrogenated biphenyldicarboxylic acid; substituted or unsubstituted hydrogenated biphenyl Diether tetracarboxylic acid; dicarboxylic acids such as pyromellitic acid, biphenyltetracarboxylic acid, and succinic acid; and dicarboxylic acid or tetracarboxylic acid residues derived from tetracarboxylic acids or anhydrides thereof.
  • R 2 is an amino alcohol residue.
  • R 2 is an amino alcohol represented by the general formula: H 2 N—R 4 —OH (wherein R 4 represents a linear or branched alkylene group having 2 to 10 carbon atoms) Residue (ie, a chain of 2 to 10 carbon atoms or Is preferably a branched alkylene group) from the viewpoint of ease of synthesis of the imidized acrylic compound (I), toughness and economical efficiency of the finally obtained imidized acrylic compound (I).
  • R 3 is a hydrogen atom or a methyl group, and n is 1 or 2.
  • the imidized acrylic compound (I) in which n is 1 has one (meth) acrylate group in the molecule, and the imidized acrylic compound (I) in which n is 2 has the (meth) acrylate group in the molecule. Have two.
  • the method for producing the imidized acrylic compound (I) used in the present invention is not particularly limited, but a typical method is as follows.
  • dicarboxylic acid or tetracarboxylic anhydride represented by the formula (II) used in the production of the imidized acrylic compound (I) include substituted or unsubstituted cyclohexyldicarboxylic anhydrides.
  • Examples of the amino alcohol represented by the formula (III) used in the production of the imidized acrylic compound (I) include, for example, a general formula: H 2 N—R 4 — ⁇ H (where R 4 is a chain And a branched or branched alkylene group having 2 to 10 carbon atoms.).
  • Ethylamino alcohol
  • Monopropylamino alcohol, isopropylamino alcohol, n-butylamino alcohol and the like are preferably used.
  • the photocurable resin composition of the present invention comprises, together with the imidized acrylic compound (I), at least one of another radically polymerizable compound (hereinafter sometimes simply referred to as “radical polymerizable compound”) and a cationically polymerizable compound. Contains one.
  • the radically polymerizable compound is a carbon-carbon unsaturated compound capable of reacting with an imidized acrylic compound (I) when irradiated with light, and reacting with each other to form a cured product.
  • Any radical polymerizable compound having a bond can be used.
  • acrylic compounds, aryl compounds and z or vinyl lactams are preferably used.
  • the radically polymerizable compound may be either monofunctional or polyfunctional, or may be a combination of a monofunctional compound and a polyfunctional '! 4 compound. Further, whether the radically polymerizable compound is a low molecular weight monomer or an oligomer, In some cases, the molecular weight may be large to some extent.
  • the photocurable resin composition of the present invention may contain only one kind of radically polymerizable compound or may contain two or more kinds of radically polymerizable compounds.
  • Examples of the radically polymerizable compound that can be used in the photohardenable resin composition of the present invention include: isopolnyl (meth) acrylate, bornyl (meth) methacrylate, dicyclopentenyl (meth) acrylate, 2-hydroxy (Meth) acrylates such as ethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, (poly) propylene glycol mono (meth) acrylate, t-butyl (meth) acrylate, morpholine (meth) acrylamide, etc.
  • Monofunctional radically polymerizable compounds such as (meth) acrylamides, N-vinylcaprolactone, and styrene; trimethylolpropanetri (meth) acrylate, ethylene oxide-modified trimethylolpropanetri (meth) acrylate, and ethylene Dali coal di (meth) acrylate, diethylene glycol (meth) acrylate, triethylene glycol (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, 1,4-butane diol (meta) Acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dicyclopentenyl di (meth) acrylate, diaryl phthalate, diaryl fumarate, ethylenoxide modified bisphenol A
  • Examples include polyfunctional radically polymerizable compounds such as diacryl
  • urethane-modified acrylic compounds epoxy (meth) acrylate compounds, and other ester (meth) acrylates, which are conventionally used in optical stereolithography resin compositions, etc., may be used. It can be used as a radical polymerizable compound.
  • morpholine (meth) acrylamide dicyclopentenyldi (meth) acrylate, N-vinylcaprolactam, Ure Tantalum acrylate is preferably used.
  • urethane acrylate and morpholine (meth) acrylamide are more preferably used.
  • molded products, three-dimensional molded products, and other light-cured products with smaller volumetric shrinkage and better dimensional accuracy, higher heat distortion temperature and better heat resistance, as well as excellent transparency and mechanical properties Is obtained.
  • Examples of the cationic polymerizable compound that can be used in the photocurable resin composition of the present invention include epoxy compounds such as an aliphatic diepoxy compound, an alicyclic diepoxy compound, and an aromatic diepoxy compound; Examples thereof include vinyl ether compounds such as a tell compound, an alicyclic divinyl ether compound, and an aromatic divinyl ether compound. These can be used alone or in combination of two or more.
  • the imidized acrylic compound (I), the radically polymerizable compound, and the cationically polymerizable compound can be used rather than using only the imidized acrylic compound (I) and the cationic polymerizable compound. It is preferable to use three members from the viewpoint of light curing properties, heat resistance, mechanical properties, and the like.
  • the content ratio of the imidized acrylic compound (I) to the radical polymerizable compound and the Z or force thione polymerizable compound is from 80:20 by weight ratio; L 0: 90 is required, preferably 65:35 to 25:75, more preferably 60:40 to 35:65.
  • the proportion of the imidized acrylic compound (I) is 10% by weight based on the total weight of the imidized acrylyl compound (I) and the radical polymerizable compound and Z or the cationic polymerizable compound.
  • the molded article or three-dimensional molded article having high heat resistance, tensile strength and rigidity based on the imido group when cured with light cannot be obtained. If the viscosity of the composition becomes too high, the handleability, moldability, and formability deteriorate, and it becomes impossible to smoothly produce a desired three-dimensional structure, particularly when used in an optical three-dimensional formation method.
  • the photopolymerization initiator used in the photocurable resin composition of the present invention includes a photoradical polymerization initiator conventionally used in photocurable resin compositions and
  • Either Z or a photothion polymerization initiator can be used.
  • the photopolymerization initiator (photoradical polymerization initiator) that can be used in the photocurable resin of the present invention include 2,2-dimethoxy-12-phenylacetophenone, 1-hydroxycyclohexylphenyl ketone, Ethoxyacetophenone, acetofphenone, 3-methylacetophenone, 2-hydroxymethyl-11-phenylpropane — 1-one, 4'-isopropyl-12-hydroxy-2-propionofenone, 2-hydroxy-1--2- Methyl-propiophenone, p-dimethylaminoacetophenone, p-t-butyldichloroacetophenone, p-t-butyltrichloroacetophenone, p-azidobenzaracetophenone, 1-hydroxycyclohexylphenyl ketone , Benzophenone, o_methyl benzoylbenzoate, Mich
  • the type of the photo-induced thione polymerization initiator is not particularly limited, and any conventionally known photo-induced thione polymerization initiator can be used.
  • the photoinitiated thione polymerization initiator is deactivated in the presence of a basic thiamine compound.
  • the imidized acrylic compound (I) used in the present invention comprises According to the present invention, a desired cured product can be produced by photopolymerization using a composition containing a cationic polymerizable compound together with the imidized acrylic compound (I) so as not to deactivate the polymerization initiator.
  • the amount of the photopolymerization initiator used may vary depending on the imidized acrylic compound (I), the type of the radically polymerizable compound, the cationically polymerizable compound, the type of the photopolymerization initiator, and the like.
  • the amount is preferably 0.1 to 10% by weight, more preferably 1 to 5% by weight, based on the total weight of (I) and the radical polymerizable compound and Z or cationic polymerizable compound.
  • the photocurable resin composition of the present invention may further comprise a leveling agent, a surfactant, an organic polymer modifier, an organic plasticizer, organic or inorganic solid fine particles, if necessary, in addition to the above-mentioned components. May be contained.
  • a leveling agent e.g., a surfactant, an organic polymer modifier, an organic plasticizer, organic or inorganic solid fine particles, if necessary, in addition to the above-mentioned components. May be contained.
  • examples of the above-mentioned organic solid fine particles include crosslinked polystyrene-based fine particles, crosslinked polymethacrylate-based fine particles, and polyethylene-based fine particles. And polypropylene-based fine particles.
  • the inorganic solid fine particles include glass beads, talc fine particles, and silicon oxide fine particles.
  • organic fine particles and Z or inorganic solid fine particles are contained in the photocurable resin composition of the present invention
  • fine particles treated with a silane coupling agent such as aminosilane, epoxysilane, or acrylicsilane can be used. It is often preferred that the mechanical strength of a cured product obtained by curing is improved.
  • the acrylic acid-based compound is copolymerized at about 1 to 10% by weight. It is preferable to use polyethylene-based solid fine particles and Z- or polypropylene-based solid fine particles because the affinity with the silane coupling agent is increased.
  • the heat resistance of the photocured product is often further improved.
  • the solid fine particles are formed into extremely small submicron fine particles, and a suitable surface treatment is applied to the light-curable resin. It is desirable that the photocurable resin composition is dispersed stably in the composition to suppress an increase in viscosity of the photocurable resin composition.
  • the viscosity of the photocurable resin composition of the present invention can be adjusted according to the use and the mode of use. Generally, the viscosity at room temperature (25 t :) when measured using a rotary B-type viscometer. However, it is preferably about 100 to 100,000 centiboise (cps) from the viewpoint of handleability, moldability, three-dimensional molding property, and the like, and more preferably about 300 to 50,000 cps. In particular, when the photohardening resin composition of the present invention is used for optical three-dimensional molding, the viscosity at room temperature should be in the range of 300 to 10,000 cps, so that the handleability during molding is good.
  • the viscosity of the photocurable resin composition can be adjusted by selecting the type of the imidized acrylyl compound (I) and the radically polymerizable compound, adjusting the mixing ratio thereof, and the like.
  • the photocurable resin composition of the present invention When the photocurable resin composition of the present invention is stored in a state capable of blocking light, it is usually modified at a temperature of 10 to 40 ° C. for a long period of about 6 to 18 months. Or polymerization Prevention and storage while maintaining good photocuring performance.
  • the method for preparing the photo-hardening resin composition of the present invention is not particularly limited, and the imidized acrylic compound (I), the radical polymerizable compound and the Z or cationic polymerizable compound are mixed at the above-mentioned ratio, and It may be prepared by mixing a polymerization initiator.
  • the photocurable resin composition of the present invention has excellent properties, in particular, a small volume shrinkage during photocuring, excellent dimensional accuracy, high tensile strength, excellent mechanical properties, good heat resistance and transparency. Utilizing the property of having properties, it can be effectively used for the production of various molded products and three-dimensional molded objects. It is particularly useful for the production of three-dimensional objects by the optical three-dimensional molding method.
  • any of conventionally known optical three-dimensional modeling methods and apparatuses can be used.
  • the light energy for curing the resin Ar laser, He-Cd laser, xenon lamp, metal octride lamp, 7 silver lamp, fluorescent lamp, etc. It is preferable to use an energy beam, and a laser beam is particularly preferably used.
  • a laser beam is used as the active energy beam, it is possible to increase the energy level to shorten the molding time, and to take advantage of the good light-condensing properties of the laser beam to obtain a three-dimensional object with high modeling accuracy. You can get a shaped object. '
  • any of conventionally known methods and conventionally known stereolithography system devices can be adopted and is not particularly limited. It is.
  • an active energy ray is selected so that a cured layer having a desired pattern is obtained in a liquid photocurable resin composition containing a light energy absorber. Irradiation to form a cured layer, and then supply an uncured liquid photocurable resin composition to the cured layer, and similarly irradiate an active energy ray to the cured layer to be continuous with the hard layer.
  • a method of finally obtaining a desired three-dimensional object by repeating the operation of laminating a new three-dimensional object can be mentioned.
  • the resulting three-dimensional object can be used as it is, or in some cases, it can be used after further enhancing the mechanical properties and shape stability by performing light exposure or heat exposure. You may make it.
  • the structure, shape, size, and the like of the three-dimensional object are not particularly limited, and can be determined according to each use.
  • a model for verifying an external design during a design, a model for checking the functionality of a part, and a ⁇ type are produced. Production of resin molds for production, base models for producing molds, direct molds for prototype molds, etc.
  • reaction rate 8 0% 1,624 g of a reaction product
  • imidated acrylate A a target imidized acrylate represented by the following chemical formula.
  • the resulting imidated acrylate A was a liquid having a viscosity of 700 cps at room temperature.
  • reaction rate 7 0% 1,259 g of a reaction product
  • a 5-liter three-necked flask equipped with a stirrer, a condenser tube, and a dropping funnel with a side tube was charged with the imidized acrylate A 1, 2 12 g obtained in Synthesis Example 1 and the radical obtained in Synthesis Example 3 in Synthesis Example 1. 2,020 g of the polymerizable compound mixture and 808 g of dicyclopentyl diacrylate were charged, and the mixture was purged with nitrogen under reduced pressure.
  • Example 4 Production of a light-cured molded product by a mold molding method '
  • Example 1 After injecting the photocurable resin composition prepared in Example 1 into a transparent silicon mold having a dumbbell test piece-shaped mold cavity according to JISK7113, a 30 W ultraviolet lamp was used. The resin composition was cured by irradiating UV rays from the entire surface of the silicon mold for 15 minutes to produce a molded article in the form of a dumbbell specimen that was light-cured. A molded article with excellent transparency (dumbbell-shaped specimen) was obtained. Obtained. The molded product was taken out of the mold, and its tensile properties (tensile strength, tensile elongation and tensile modulus) were measured in accordance with JIS K7113, and the results were as shown in Table 1 below.
  • Example 2 Using the photocurable resin composition obtained in Example 1, using an ultra-high-speed stereolithography system (“S ⁇ LI FORM500” manufactured by Teijin Seiki Co., Ltd.), a water-cooled Ar laser beam (output) 50 OMW; irradiated perpendicularly to the wavelength 333, 351, 364 nm) of the surface, a slice pitch (product layer thickness under the conditions of irradiation energy 20 ⁇ 3 OmJZcm 2) 0. 127 mm, the average per layer Stereolithography was performed in a molding time of 2 minutes to produce a three-dimensional molded article having a dumbbell specimen shape in accordance with JISK 7113.
  • S ⁇ LI FORM500 manufactured by Teijin Seiki Co., Ltd.
  • a slice pitch product layer thickness under the conditions of irradiation energy 20 ⁇ 3 OmJZcm 2
  • Example 6 Production of three-dimensional object by optical three-dimensional object formation method
  • Example 2 Except for using the photocurable resin composition obtained in Example 2, in the same manner as in Example 5 Optical three-dimensional modeling, washing and post-curing of the uncured resin were performed to produce three-dimensional molded articles (dumbbell-shaped test pieces) with excellent transparency. The tensile properties, heat deformation temperature and volume shrinkage of the resulting dumbbell-shaped specimen (three-dimensional molded article) were measured in the examples.
  • Example 7 Production of three-dimensional object by optical three-dimensional molding method
  • Example 5 Optical three-dimensional modeling, washing of uncured resin, and post-curing were performed in the same manner as in Example 5 except that the photo-hardening resin composition obtained in Example 3 was used to obtain a solid having excellent transparency. Molded objects (dumbbell-shaped test pieces) were manufactured. The tensile properties, heat deformation temperatures, and volume shrinkage rates of the resulting dumbbell-shaped test pieces (three-dimensional molded products) were measured in the same manner as in Example 5, and the results were as shown in Table 1 below.
  • Reference Example 2 Production of three-dimensional object by optical three-dimensional object formation method
  • Example 1 Mold forming 8.9 5.7 304 250 5.7
  • Example 5 Example 1 Solid modeling 8.7 4.6 290 255 5.5
  • Example 6 Example 2 3D modeling 9.1 5.1 311 270 6.0
  • Example 7 Example 3 3D modeling 9.4 5.6 321 275 5.5 Reference example 2
  • Reference example 1 3D modeling 6.8 1.5 294 270 7.2
  • the photocurable resin composition of the present invention exhibits a relatively low-viscosity liquid, has excellent handleability, and can be cured in a short curing time. It can be used effectively in the manufacture of products.
  • the photocurable resin composition of the present invention has a small volume shrinkage at the time of photocuring, a molded article or a three-dimensional molded article having excellent dimensional accuracy can be smoothly obtained by light irradiation molding or optical three-dimensional molding.
  • a photocured product such as a molded product or a three-dimensional molded product obtained by photocuring the photocurable resin composition of the present invention has a high heat deformation temperature exceeding 250 and is extremely excellent in heat resistance. It has high tensile strength, tensile elongation, tensile elasticity, etc., and also has excellent mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明 細 書 光硬化性樹脂組成物および光学的立体造形法 技術分野
本発明は、 光硬化性樹脂組成物および該光硬化性樹脂組成物を用いる立体造形 物の製造方法に関する。 より詳細には、 本発明は、 光硬化時の体積収縮率が小さ くて寸法精度に優れ、 熱変形温度が高くて耐熱性に優れ、 しかも透明性、 弓 I張強 度などの力学的特性に優れる成形品や立体造形物などを得ることのできる光硬ィ匕 性樹脂組成物、 および該光硬化性樹脂組成物を用いて光学的立体造形により造形 物を製造する方法に関する。
従来の技術
一般に、 液状の光硬化性樹脂組成物は被覆剤 (特にハードコート剤) 、 フォト レジスト、 歯科用材料などとして広く用いられているが、 近年、 三次元 C ADに 入力されたデータに基づいて光硬化性樹脂組成物を立体的に光学造形する方法が 特に注目を集めている。 光学的立体造形技術に関しては、 液状の光硬化性樹脂に 必要量の制御された光エネルギーを供給して薄層状に硬化させ、 その上にさらに 液状光硬化性樹脂を供給した後に制御下に光照射して薄層状に積層硬化させると いう工程を繰返すことによって立体造形物を製造する光学的立体造形法が特開昭 5 6 - 1 4 4 4 7 8号公報に開示されている。 またその基本的な実用方法がさら に特開昭 6 0 - 2 4 7 5 1 5号公報に提案されている。 その後、 光学的立体造形 技術に関する多数の提案が特開昭 6 2— 3 5 9 6 6号公報、 特開平 1— 2 0 4 9 1 5号公報、 特開平 2— 1 1 3 9 2 5号公報、 特開平 2— 1 4 5 6 1 6号公報、 特開平 2— 1 5 3 7 2 2号公報、 特開平 3— 1 5 5 2 0号公報、 特開平 3— 2 1 4 3 2号公報および特開平 3— 4 1 1 2 6号公報に開示されている。
立体造形物を光学的に製造する際の代表的な方法としては、 造形浴に入れた液 状をなす光硬化性樹脂組成物の液面に所望のパターンが得られるようにコンビュ —夕一で制御された紫外線レーザ一を選択的に照射して所定の厚みに硬化させ、 次にその硬化層の上に 1層分の液状樹脂組成物を供給して同様に紫外線レーザー を照射して前記と同様に硬ィヒさせて連続した硬ィヒ層を形成させるという積層操作 を繰返して最終的な形状を有する立体造形物を製造する方法が挙げられる。 この 方法による場合は、 造形物の形状がかなり複雑であっても簡単にかつ比較的短時 間で目的とする立体造形物を製造することができるためにこの方法は近年特に注 目を集めている。
被覆剤、 フォトレジスト、 歯科用材料などに用いられる光硬化性樹脂組成物と しては、 不飽和ポリエステル、 エポキシ (メタ) ァクリレート、 ウレタン (メタ) ァクリレート、 (メタ) アクリル酸エステルモノマ一などの硬化性樹脂に光重合 開始剤を添加したものが広く用いられている。
また、 光学的立体造形法で用いる光硬化性樹脂組成物としては、 光重合性の変 性 (ポリ) ウレタン (メタ) ァクリレート系化合物、 オリゴエステルァクリレー ト系化合物、 エポキシァクリレート系化合物、 エポキシ系化合物、 ポリイミド系 化合物、 アミノアルキッド系化合物およびビニルエーテル系化合物などの光重合 性化合物の 1種または 2種以上を主成分としこれに光重合開始剤を添加したもの が挙げられる。 最近では、 特開平 1一 2 0 4 9 1 5号公報、 特開平 1— 2 1 3 3 0 4号公報、 特開平 2— 2 8 2 6 1号公報、 特開平 2— 7 5 6 1 7号公報、 特開 平 2— 1 4 5 6 1 6号公報、 特開平 3— 1 0 4 6 2 6号公報、 特開平 3— 1 1 4 7 3 2号公報および特開平 3— 1 1 4 7 3 4号公報には各種の改良技術が開示さ れている。
光学的立体造形に用いる光硬化性樹脂組成物には、 取り扱い性、 造形速度、 造 形精度などの点から、 低粘度の液状物であること、 硬化時の体積収縮が小さいこ と、 光硬化して得られる立体造形物の力学的特性が良好であることなど力 S必要と されている。 近年、 光学的立体造形物の需要および用途が拡大する方向にあり、 それに伴って用途によっては前記した諸特性と併せて、 高い熱変形温度を有し、 耐熱性に優れ、 しかも透明性にも優れる立体造形物が求められるようになつてき た。 例えば、 複雑な熱媒回路の設計に用いられる光学的立体造形物、 複雑な構造 の熱媒挙動の解析に用いられる光学的立体造形物などでは、 光硬化時の体積収縮 が小さく、 熱変形温度が高くかつ透明性に優れるものが重要視されている。
従来、 耐熱性の向上した光学的立体造形物を得ることを目的として、 光硬化性 樹脂の分子中にベンゼン環を導入する方法や、 光硬化物における架橋密度を増加 させる方法などが検討されてきた。 しかし、 その場合でも高荷重下における熱変 形温度が高々 7 0〜 8 0 程度であり、 その耐熱性は十分なものではなかった。 しかも、 光硬化物の耐熱性を向上させようとすると、 その一方で硬化時の体積収 縮が大きくなつて寸法精度の低下を招くことになつた。
一般的には、 光硬化性樹脂組成物における架橋密度を増加すれば耐熱性の向上 が期待できるが、 同時に架橋密度を増すことによって硬化時の体積収縮が大きく なるという傾向があり、 耐熱性の向上と硬化時の体積収縮の低減とは二律背反の 関係にある。かかる二律背反の関係を打ち破る一つの方法として、本発明者らは、 充填材を特定の光硬化性樹脂に配合した光硬化性樹脂組成物を先に開発して提案 した (特開平 5— 1 9 6 6 9 1号公報および特開平 5— 1 9 6 6 9 2号公報参照)。 この光硬化性樹脂組成物を用いた場合には、 前記した二律背反の関係を打ち破つ て、 耐熱性に優れかつ体積収縮率の小さい造形物が得られるという優れた効果を 有する。 そして、 本発明者らが、 前記した発明に基づいてさらに検討を重ねたと ころ、 前記光硬化性樹脂組成物は充填材を含有していることに起因して、 粘度が 高く、 また流動粘性的にチキソトロピック性を示すところから、 造形時の取り扱 い性の点で改良の余地があることが判明した。
発明の開示
本発明の目的は、 低粘度の液状を呈していて取り扱い性に優れ、 短い光硬化時 間で硬化でき、 光で硬化した際に体積収縮が小さくて寸法精度に優れ、 しかも熱 変形温度が高くて耐熱性に優れ、 かつ透明性、 引張強度などの力学的特性にも優 れる成形品、 立体造形物、 その他の硬化物を得ることのできる光硬化性樹脂組成 物を提供することにある。
本発明の他の目的は、 本発明の光硬化性樹脂組成物を用いて光学的立体造形を 行つて立体造形物を製造する方法を提供することにある。 本発明のさらに他の目的および利点は以下の説明から明らかになろう , 本発明によれば、 本発明の上記目的および利点は、 第 1に、
(i) 下記式 (I)
(I)
Figure imgf000006_0001
(式中、 R 1は、 置換されていてもよい脂環族基、 置換されていてもよい芳香族 基または置換されていてもよい脂肪族基であり、 R 2はァミノアルコールの残基 であり、 R 3は水素原子またはメチル基であり、 そして nは 1または 2を示す。 ) で表されるイミド化アクリルィ匕合物の少なくとも 1種;
(i i) 前記のィミド化ァクリル化合物以外のラジカル重合性化合物およびカチ オン重合性化合物よりなる群から選ばれる少なくとも 1種の重合性化合物; 並びに、
(i i i) 光重合開始剤;
を含有し、 そして前記イミド化アクリルィ匕合物 (i)対前記重合性化合物(i i) の 含有割合が、 8 0 : 2 0〜: 1 0 : 9 0 (重量比) であることを特徴とする光硬化 性樹脂組成物によって達成される。 '
さらに、 本発明によれば、 本発明の上記目的および利点は、 第 2に、 本発明の上記光硬化性樹脂組成物を光学的立体造形に付すことを特徴とする立体 造形物を製造する方法によって達成される。
本発明者らは鋭意研究を重ねた結果、 特定の化学構造を有するイミド化ァクリ ル化合物が上記の目的の達成に極めて有効であり、 このイミド化アクリル化合物 に他のラジカル重合性化合物および Zまたはカチオン重合性化合物並びに光重合 開始剤を加えると、 粘度が低くて取り扱い性に優れる液状の光硬化性樹脂組成物 が得られること、 そしてその光硬化性樹脂組成物に光を照射すると短い時間で硬 化させることができること、 硬化時の体積収縮が小さくて、 所望の形状および寸 法を有する立体造形物やその他の成形品を高い寸法精度で製造できること、 しか も光硬化して得られる成形品や立体造形物は高い熱変形温度を有していて耐熱性 に優れること、 さらに透明性や力学的特性にも優れることを見出して、 上記本発 明を完成した。
発明の好ましい実施態様
まず、 本発明の光硬化性樹脂組成物で用いられるイミド化アクリル化合物 (I) について説明する。
本発明の光硬化性樹脂組成物で用いられるイミド化アクリル化合物(I)におい て、 R 1は置換されていてもよい脂環族基、 置換されていてもよい芳香族基また は置換されていてもよい脂肪族基である。 R 1の例としては、 アルキル基、 ハロ ゲン原子、 ニトロ基などの置換基で置換されているかまたは置換されていない脂 環族ジカルボン酸、 脂肪族テトラカルボン酸またはそれらの無水物に由来する残 基;アルキル基、 八ロゲン原子、 ニトロ基などの置換基で置換されているかまた は置換されていない芳香族ジカルボン酸、 芳香族テトラカルボン酸またはそれら の無水物に由来する残基;ハロゲン原子、 二ト口基などの置換基で置換されてい るかまたは置換されていない脂肪族ジカルボン酸、 脂肪族テトラカルボン酸 (好 ましくは飽和脂肪族ジカルボン酸またはテトラカルボン酸) またはそれらの無水 物に由来する残基などを挙げることができる。 より具体的には、 例えば、 置換ま たは非置換のシクロへキシルジカルボン酸、 シクロへキシルテトラカルボン酸; 置換または非置換の水素添加ビフエ二ルテトラカルボン酸;置換または非置換の 水素添加ビフエ二ルエーテルテトラカルボン酸;ピロメリット酸、 ビフエニルテ トラカルボン酸、 コハク酸などのジカルボン酸ゃテトラカルボン酸またはそれら の無水物に由来するジカルボン酸またはテトラカルボン酸残基を挙げることがで きる。
本発明の光硬化性樹脂組成物で用いられるイミド化アクリル化合物(I)におい て、 R 2はァミノアルコール残基である。 そのうちでも、 R 2は、 一般式: H2 N 一 R 4— OH (式中 R 4は鎖状または分岐鎖状の炭素数 2〜1 0のアルキレン基を 示す) で表されるァミノアルコールの残基 (すなわち炭素数 2〜1 0の鎖状また は分岐鎖状のアルキレン基) であることが、 イミド化アクリル化合物 (I) の合成 の容易性、最終的に得られるイミド化アクリル化合物(I ) の靭性および経済性な どの点から好ましい。 炭素数が 2〜4のアルキレン基例えばエチレン基、 n—プ ロピレン基、 イソプロピレン基、 n—ブチレン基であることがより好ましい。 また、 イミド化アクリル化合物 (I) において、 R 3は水素原子またはメチル 基であり、 nは 1または 2である。
nが 1であるイミド化アクリル化合物 (I) は、 (メタ) ァクリレート基を分子 中に 1個有し、 nが 2であるイミド化アクリル化合物 (I) は(メタ) ァクリレー ト基を分子中に 2個有する。
本発明で用いられるイミド化アクリル化合物(I)の製法は特に制限されないが、 代表的な製法としては以下の方法を挙げることができる。
イミド化アクリル化合物 (I) の製法例
下記式 (I I) ;
Figure imgf000008_0001
(式中、 R 1および nの定義は前記に同じである。 ) '
で表されるジカルボン酸またはテトラカルボン酸の無水物と、 下記式 (I I I)
H , N— R 2— OH … (I I I)
(式中、 R 2の定義は前記と同じである。 )
で表されるァミノアルコールを反応させて、 下記式 (IV)
Figure imgf000008_0002
(式中、 R R 2および nの定義は前記に同じである。 )
で表されるイミド化アルコール化合物を製造し、 そのイミド化アルコール化合物 に、 (メタ) アクリル酸または (メタ) アクリル酸ハライドを反応させて、 上記 式 (I) で表されるイミド化アクリル化合物 (I) を製造する。
上記イミド化アクリル化合物 (I) の製造に用いられる式 (I I) で表されるジカ ルボン酸またはテトラカルボン酸の無水物の代表例としては、 置換または非置換 のシクロへキシルジカルボン酸無水物、シクロへキシルテトラカルボン酸無水物、 置換または非置換の水素添加ビフエニルテトラカルボン酸無水物、 置換または非 置換の水素添加ビフエ二ルェ一テルテトラカルボン酸無水物、 ピロメリット酸無 水物、 ビフエニルテトラカルボン酸無水物、 コハク酸無水物などを挙げることが できる。
また、 上記イミド化アクリル化合物 (I) の製造に用いられる式 (I I I) で表さ れるァミノアルコールとしては、 例えば、 一般式: H2 N— R 4—〇H (式中 R 4 は鎖状または分岐鎖状の炭素数 2〜1 0のアルキレン基を示す。 ) で表されるァ ミノアルコールを挙げることができる。 そのうちでもェチルァミノアルコール、
II一プロピルァミノアルコール、 イソプロピルァミノアルコール、 n—ブチルァ ミノアルコールなどが好ましく用いられる。
本発明の光硬化性樹脂組成物は、 上記イミド化アクリル化合物 (I) と共に、 他 のラジカル重合性化合物(以下単に「ラジカル重合性化合物」 ということがある) およびカチオン重合性化合物のうちの少なくとも 1種を含有する。
ラジカル重合性化合物としては、 光照射を行った際にイミド化アクリルィヒ合物 (I) と反応し、 またラジカル重合性化合物同士が反応して硬化物を形成すること のできる炭素一炭素間不飽和結合を有するラジカル重合性化合物であればいずれ も使用可能である。 そのうちでもアクリル系化合物、 ァリル系化合物および zま たはビニルラクタム類が好ましく用いられる。
また、 ラジカル重合性ィヒ合物は単官能性または多官能性のいずれであつてもよ く、 あるいは単官能性化合物と多官能'! 4化合物の両方を併用してもよい。さらに、 ラジカル重合性化合物は低分子量のモノマーであつても、オリゴマーであっても、 また場合によってはある程度分子量の大きいものであってもよい。 本発明の光硬 化性樹脂組成物は、 1種類のラジカル重合性ィ匕合物のみを含有していてもまたは 2種以上のラジカル重合性化合物を含有していてもよい。
本発明の光硬ィヒ性樹脂組成物で用いられ得るラジカル重合性ィヒ合物の例として は、 イソポルニル (メタ) ァクリレート、 ボルニル (メタ) メタァクリレート、 ジシクロペンテニル (メタ) ァクリレート、 2—ヒドロキシェチル (メタ) ァク リレート、 2—ヒドロキシプロピル (メタ) ァクリレート、 (ポリ) プロピレン グリコールモノ (メタ) ァクリレート、 t一ブチル (メタ) ァクリレートなどの (メタ) ァクリレート類、 モルホリン (メタ) アクリルアミドなどの (メタ) ァ クリルアミド類、 N—ビニルカプロラクトン、 スチレンなどの単官能性ラジカル 重合性化合物; トリメチロールプロパントリ (メタ) ァクリレート、 エチレンォ キサイド変性トリメチロールプロパントリ (メタ) ァクリレート、 エチレンダリ コールジ (メタ) ァクリレート、 ジエチレングリコール (メタ) ァクリレート、 トリエチレングリコール(メタ)ァクリレート、テトラエチレングリコールジ(メ 夕) ァクリレート、 ポリエチレングリコール (メタ) ァクリレート、 1, 4—ブ 夕ンジォ一ルジ (メタ) ァクリレート、 1 , 6—へキサンジオールジ (メタ) ァ クリレート、 ネオペンチルグリコールジ (メタ) ァクリレート、 ジシクロペンテ ニルジ (メタ) ァクリレート、 ジァリルフタレート、 ジァリルフマレート、 ェチ レンォキサイド変性ビスフエノール Aジァクリレートなどの多官能性ラジカル重 合性化合物を挙げることができる。 これらの 1種または 2種以上で用いることが できる。
また、 上記したラジカル重合性化合物以外にも、 光学的立体造形用樹脂組成物 などで従来から用いられている、 ウレタン化アクリル化合物、 エポキシ (メタ) ァクリレート化合物、 他のエステル (メタ) ァクリレートなどをラジカル重合性 化合物として用いることができる。
本発明の光硬化性樹脂組成物では、 ラジカル重合性化合物としては、 上記した 種々のラジカル重合性化合物のうちでも、 モルホリン (メタ) アクリルアミド、 ジシクロペンテニルジ (メタ) ァクリレート、 N—ビニルカプロラクタム、 ウレ タン化ァクリレートが好ましく用いられる。 そのうちでもウレタン化ァクリレー トおよびモルホリン (メタ) アクリルアミドがより好ましく用いられる。 その場 合には、 体積収縮率がより小さくて寸法精度により優れ、 熱変形温度が高くて耐 熱性に優れ、 しかも透明性、 力学的特性に優れる成形品、 立体造形物、 その他の 光硬化物を生成する光硬化性樹脂組成物が得られる。
また、 本発明の光硬化性樹脂組成物に用いられ得るカチォン重合性化合物とし ては、 脂肪族ジエポキシ化合物、 脂環族ジエポキシ化合物、 芳香族ジエポキシ化 合物などのエポキシ系化合物;脂肪族ジビニルェ一テル化合物、 脂環族ジビニル エーテル化合物、 芳香族ジビニルエーテル化合物などのビニルエーテル系化合物 などを挙げることができる。これらは 1種または 2種以上で用いることができる。 カチオン重合性化合物を用いる場合は、 イミド化アクリル化合物(I) とカチォ ン重合性化合物の 2者のみを用いるよりも、 イミド化アクリル化合物 (I) 、 ラジ カル重合性化合物およびカチオン重合性化合物の 3者を用いる方が、 光硬化特 性、 耐熱性、 力学的特性などの点から好ましい。
そして、 本発明の光硬化性樹脂組成物では、 イミド化アクリル化合物(I)対ラ ジカル重合性化合物および Zまたは力チオン重合性化合物の含有割合が、 重量比 で、 8 0 : 2 0〜; L 0 : 9 0であることが必要であり、 6 5 : 3 5〜 2 5 : 7 5 であることが好ましく、 6 0 : 4 0〜 3 5 : 6 5であることがより好ましい。 光硬ィヒ性樹脂組成物において、 イミド化アクリル化合物(I) の割合が、 イミド 化ァクリル化合物(I)並びにラジカル重合性化合物および Zまたはカチオン重合 性化合物の合計重量に基づいて、 1 0重量%未満であると光で硬化した際にイミ ド基に基づく高い耐熱性、 引張強度および剛性を有する成形品や立体造形物など が得られなくなり、 一方 8 0重量%を超えると光硬化性樹脂組成物の粘度が高く なり過ぎて、 取り扱い性、 成形性、 造形性が低下し、 特に光学的立体造形法で用 いる場合に目的とする所望の立体造形物を円滑に製造できなくなる。
さらに、 本発明の光硬化性樹脂組成物で用いられる光重合開始剤としては、 光 硬化性樹脂組成物において従来から用いられている光ラジカル重合開始剤および
Zまたは光力チオン重合開始剤がいずれも使用できる。 本発明の光硬化性樹脂で用いられ得る光重合開始剤 (光ラジカル重合開始剤) の例としては、 2, 2—ジメトキシ一 2—フエニルァセトフエノン、 1ーヒドロ キシシクロへキシルフェニルケトン、 ジエトキシァセトフエノン、 ァセトフエノ ン、 3—メチルァセトフエノン、 2—ヒドロキシメチル一 1一フエニルプロパン — 1—オン、 4 ' 一イソプロピル一 2—ヒドロキシー 2—プロピオフエノン、 2 —ヒドロキシ一 2—メチル一プロピオフエノン、 p—ジメチルアミノアセトフエ ノン、 p— t—ブチルジクロロアセトフエノン、 p— t一ブチルトリクロロアセ トフエノン、 p—アジドベンザルァセトフエノン、 1—ヒドロキシシクロへキシ ルフエ二ルケトン、 ベンゾフエノン、 o _ベンゾィル安息香酸メチル、 ミヒラー ズケトン、 4, 4 ' —ビスジェチルァミノべンゾフエノン、 キサントン、 フルォ レノン、 フルオレン、 ベンズアルデヒド、 アントラキノン、 トリフエニルァミン、 力ルバゾールなどを挙げることができる。
また、 光力チオン重合開始剤としては、 その種類は特に制限されず、 従来既知 の光力チオン重合開始剤のいずれをも使用することができる。 一般的には、 光力 チオン重合開始剤は塩基性ィヒ合物の存在下で失活することが知られているが、 本 発明で用いられるイミド化アクリル化合物(I) は、光力チオン重合開始剤を失活 させないため、 本発明によれば、 イミド化アクリル化合物 (I) と共にカチオン重 合性化合物を含む組成物を用いて光重合により所望の硬化物を生成することがで きる。 '
光重合開始剤の使用量は、 イミド化アクリル化合物 (I) 、 ラジカル重合性化合 物の種類、 カチオン重合性化合物、 光重合開始剤の種類などに応じて変わり得る が、 一般に、 イミド化アクリル化合物 (I)並びにラジカル重合性化合物および Z またはカチオン重合性化合物の合計重量に基づいて、 0. 1〜1 0重量%でぁる ことが好ましく、 1〜5重量%であることがより好ましい。
本発明の光硬化性樹脂組成物は、 上記した成分以外にも、 必要に応じて、 レべ リング剤、 界面活性剤、 有機高分子改質剤、 有機可塑剤、 有機または無機の固体 微粒子などを含有していてもよい。 前記した有機固体微粒子の例としては架橋ポ リスチレン系微粒子、 架橋型ポリメタクリレート系微粒子、 ポリエチレン系微粒 子、 ポリプロピレン系微粒子などを挙げることができる。 また無機固体微粒子の 例としてはガラスビーズ、 タルク微粒子、 酸化ケィ素微粒子などを挙げることが できる。 本発明の光硬化性樹脂組成物中に有機固体微粒子および Zまたは無機固 体微粒子を含有させる場合は、 アミノシラン、 エポキシシラン、 アクリルシラン などのシラン系カップリング剤で処理した微粒子を用いると、 光硬化して得られ る硬化物の機械的強度が向上する場合が多く好ましい。 シランカツプリング剤処 理を施したポリエチレン系固体微粒子および Zまたはポリプロピレン系固体微粒 子を光硬化性樹脂組成物中に含有させる場合は、 アクリル酸系化合物を 1〜10 重量%程度共重合させたポリエチレン系固体微粒子および Zまたはポリプロピレ ン系固体微粒子を用いるとシラン力ップリング剤との親和性が高くなるので好ま しい。 前記した有機固体微粒子および Zまたは無機固体微粒子を本発明の光硬化 性樹脂組成物中に含有させると、 光硬化物の耐熱性が一層向上する場合が多い。 その際に、 耐熱性のさらなる向上をはかりながら良好な透明性を維持するために は、 前記の固体微粒子をサブミクロンの極めて小さな微粒子状にして、 適当な表 面処理を施して光硬化性樹脂組成物中に安定に分散せしめ、 光硬化性樹脂組成物 の粘度の上昇を抑制するようにするのが望ましい。
本発明の光硬化性樹脂組成物の粘度は、 用途や使用態様などに応じて調節し得 るが、 一般に、 回転式 B型粘度計を用いて測定したときに、 常温 (25t:) にお いて 100〜 100, 000センチボイズ(c p s)程度であるのが取り扱い性、 成形性、 立体造形性などの点から好ましく、 300〜 50, O O O c p s程度で あるのがより好ましい。 特に、 本発明の光硬ィ匕性樹脂組成物を光学的立体造形に 用いる場合は、 常温における粘度を 300〜10, 000 c p sの範囲にしてお くのが、 造形時の取り扱い性が良好になり、 しかも目的とする立体造形物を高い 寸法精度で円滑に製造することができる点から望ましい。 光硬化性樹脂組成物の 粘度の調節は、 ィミド化ァクリル化合物(I)およびラジカル重合性化合物の種類 の選択、 それらの配合割合の調節などによって行うことができる。
本発明の光硬化性樹脂組成物は、 光を遮断し得る状態に保存した場合には、 通 常、 10〜40°Cの温度で、 約 6〜 18ヶ月の長期に亙って、 その変性や重合を 防止しながら良好な光硬化性能を保ちながら保存することができる。
本発明の光硬ィヒ性樹脂組成物の調製方法は特に制限されず、 イミド化アクリル 化合物(I)並びにラジカル重合性化合物および Zまたはカチオン重合性化合物を 上記した割合で混合すると共に、 さらに光重合用開始剤を混合して調製すればよ い。
本発明の光硬化性樹脂組成物は、 その優れた特性、 特に、 光硬化時に体積収縮 率が小さくて寸法精度に優れ、 高い引張強度を有し力学的特性に優れ、 良好な耐 熱性および透明性を有するという特性を活かして、 各種成形品や立体造形物の製 造に有効に用いることができる。 特に光学的立体造形法による立体造形物の製造 に有用である。
本発明の光硬化性樹脂組成物を用いて光学的立体造形を行うに際しては、 従来 既知の光学的立体造形方法および装置のいずれもが使用できる。 そのうちでも、 本発明では、 樹脂を硬化させるための光エネルギーとして、 A rレーザー、 H e 一 C dレーザー、 キセノンランプ、 メタル八ライドランプ、 7銀灯、 蛍光灯など 力 ^は発生される活性エネルギー光線を用いるのが好ましく、 レーザー光線が特 に好ましく用いられる。 活性エネルギー光線としてレーザー光線を用いた場合に は、 エネルギーレベルを高めて造形時間を短縮することが可能であり、 しかもレ 一ザ一光線の良好な集光性を利用して、 造形精度の高い立体造形物を得ることが できる。 '
本発明の光硬ィ匕性樹脂組成物を用いて光学的立体造形を行うに際しては、 従来 既知の方法や従来既知の光造形システム装置のいずれもが採用でき特に制限され ないことは上述のとおりである。 本発明で好ましく用いられる光学的立体造形法 の代表例としては、 光エネルギー吸収剤を含有する液状の光硬化性樹脂組成物に 所望のパターンを有する硬化層が得られるように活性エネルギー光線を選択的に 照射して硬化層を形成し、 次いでその硬化層に未硬化液状の光硬化性樹脂組成物 を供給し、 同様に活性エネルギー光線を照射して前記の硬ィヒ層と連続した硬化層 を新たに形成する積層する操作を繰返すことによつて最終的に目的とする立体的 造形物を得る方法を挙げることができる。 それによつて得られる立体造形物はそのまま用いても、 また場合によってはさ らに光照射によるボストキユアや熱によるボストキユアなどを行って、 その力学 的特性や形状安定性などを一層高いものとしてから使用するようにしてもよい。 立体造形物の構造、 形状、 サイズなどは特に制限されず、 各々の用途に応じて 決めることができる。 そして、 本発明の光学的立体造形法の代表的な応用分野と しては、 設計の途中で外観デザインを検証するためのモデル、 部品の機能性をチ エックするためのモデル、 铸型を制作するための樹脂型、 金型を制作するための ベースモデル、 試作金型用の直接型などの作製などを挙げることができる。 より 具体的には、 精密部品、 電気 ·電子部品、 家具、 建築構造物、 自動車用部品、 各 種容器類、 铸物、 金型、 母型などのためのモデルや加工用モデルなどの製作を挙 げることができる。 特にその良好な耐熱性および透明性という特性を活かして、 高温部品の試作、 例えば複雑な熱媒回路の設計、 複雑な構造の熱媒挙動の解析企 画用の部品の製造などに極めて有効に使用することができる。
実施例
以下で実施例等によって本発明について具体的に説明するが、 本発明は以下の 例によって何ら限定されない。
合成例 1 :イミド化アクリル化合物 (I) の製造
( 1 ) 攪拌機、 温度調節器、 温度計および凝縮器を備えた内容積 5リットルの 三つ口フラスコに、 脱水したトルエン 1 , 0 0 0 gおよびシクロへキシルジカル ボン酸無水物 1 , 6 0 0 gを入れた。 一方滴下器に、 脱水したトルエン 3 0 0 g 中にァミノエチルアルコール 6 1 0 gを溶解した溶液を入れ、 室温下に攪拌しな がら滴下器中のアミノエチルアルコール溶液を三つ口フラスコに 1時間かけて滴 下した。 全量滴下後に、 室温でさらに 2時間攪拌下に反応させた。 次に、 フラス コ内の内容物をトルエン還流下に 3時間加熱して反応させた後、 反応混合物から トルエンを留去して、 反応生成物 1, 6 2 4 gを得た (反応率 8 0 %) 。 得られ た反応生成物の元素分析および I R分析の結果、 下記の化学式で表されるイミド 化アルコールであること力 s確認された。
Figure imgf000016_0001
( 2 ) 攪拌機、 温度調節器、 温度計および凝縮器を備えた内容積 5リットルの 三つ口フラスコに上記 (1 ) で得られたイミド化アルコール 1, 5 0 0 gおよび 脱水したトルエン 1, 0 0 0 gを入れた。 一方滴下器に、 脱水したトルエン 6 0 0 g中にアクリル酸クロライド 6 8 5 gを溶解した溶液を入れ、 室温下に攪拌し ながら滴下器中のァクリル酸ク口ライド溶液を三つ口フラスコに 1時間かけて滴 下した。 全量滴下後に室温でさらに 2時間攪拌下に反応させた。 次に、 フラスコ 内の反応混合物からトルエンを留去して、 下記の化学式で表される、 目的とする イミド化ァクリレート (以下 「イミド化ァクリレート A」 という) 1, 3 0 0 g を得た。 得られたィミド化ァクリレート Aは室温で 7 0 0 c p sの粘度を有する 液体であった。
Figure imgf000016_0002
合成例 2 :イミド化アクリル化合物 (I) の製造
( 1 ) 攪拌機、 温度調節器、 温度計および凝縮器を備えた内容積 5リットルの 三つ口フラスコに、 脱水したトルエン 1, 0 0 0 gおよび水素添加ジフエニルテ トラカルボン酸無水物 1 , 5 3 0 gを入れた。 一方滴下器に、 脱水したトルエン 3 0 0 g中にァミノエチルアルコール 3 0 5 gを溶解した溶液を入れ、 室温下に 攪拌しながら滴下器中のァミノエチルアルコール溶液を三つ口フラスコに 1時間 力 ナて滴下した。全量滴下後に、室温でさらに 2時間攪拌下に反応させた。次に、 フラスコ内の内容物をトルエン還流下に 3時間加熱して反応させた後、 反応混合 物からトルエンを留去して、 反応生成物 1, 2 5 9 gを得た (反応率 7 0 %) 。 得られた反応生成物の元素分析および I R分析の結果、 下記の化学式で表される ィミド化アルコールであることが確認された。
HO—
Figure imgf000017_0001
( 2 ) 攪拌機、 温度調節器、 温度計および凝縮器を備えた内容積 5リットルの 三つ口フラスコに、 脱水した上記 (1 ) で得られたイミド化アルコール 1 , 2 0 0 gおよびトルエン 1, 0 0 0 gを入れた。 一方滴下器に、 脱水したトルエン 6 0 0 g中にアクリル酸クロライド 5 5 1 gを溶解した溶液を入れておき、 室温下 に攪拌しながら滴下器中のアクリル酸クロライド溶液を三つ口フラスコに 1時間 かけて滴下した。 全量滴下後に室温でさらに 2時間攪拌下に反応させた。 次に、 フラスコ内の反応混合物からトルエンを留去して、 下記の化学式で表される目的 とするイミド化ァクリレート (以下 「イミド化ァクリレート B」 という) 1, 1 4 8 gを得た。
Figure imgf000017_0002
合成例 3 :ラジカル重合性化合物混合物の製造
( 1 ) 攪拌機、 温度調節器、 温度計および凝縮器を備えた内容積 5リットルの 三つ口フラスコに、 イソホロンジイソシァネート 8 8 8 g、 モルホリンアクリル アミド 9 0 6 gおよびジブチル錫ジラウレート 1 . 0 gを仕込んでオイルバスで 内温が 8 0〜9 0 になるように加熱した。
( 2 ) グリセリンモノメタクリレートモノアクリレート 8 5 6 gにメチルヒド ロキノン 0 . 7 gを均一に混合溶解させた液をあらかじめ 5 0 °Cに保温しておい た側管付きの滴下ロートに仕込み、 この滴下ロート内の液を、 上記 (1 ) のフラ スコ中の内容物に、 窒素雰囲気下でフラスコ内容物の温度を 8 0〜9 0 °Cに保ち ながら攪拌下に滴下混合して、 同温度で 2時間攪拌して反応させた。
( 3 ) 次いで、 フラスコ内容物の温度を 6 0 °Cに下げた後、 別の滴下ロートに 仕込んだペン夕エリスリトールのプロピレンォキサイド 4モル付加物 (ペンタエ リスリトールの 4個の水酸基のそれぞれにプロピレンォキサイドが 1モル付加し たもの) 3 6 6 gを素早く滴下して加え、 フラスコ内容物の温度を 8 0〜9 0 °C に保つて 4時間反応させて、 ウレタン化ァクリル化合物を含有するラジカル重合 性化合物混合物を製造し、 得られたラジカル重合性化合物混合物を温かいうちに フラスコから取り出した。 得られたラジカル重合性化合物混合物は、 無色で、 常 温 (2 5 °C) で粘稠な液状を呈していた。
実施例 1 :光硬化性樹脂組成物の調製
攪拌機、 冷却管および側管付き滴下ロートを備えた内容積 5リットルの三つ口 フラスコに、 合成例 1で得られたイミド化ァクリレート A 1 , 2 1 2 g、 合成例 3で得られたラジカル重合性化合物混合物 2 , 0 2 0 gおよびジシクロペン夕二 ルジァクリレート 8 0 8 gを仕込み、 減圧脱気窒素置換した。 次いで、 紫外線を 遮断した環境下に、 1—ヒドロキシシクロへキシルフェニルケトン (チバガイギ 一社製 「ィルガキュア一 1 8 4」 ;光ラジカル重合開始剤) 1 2 l gを添加し、 完全に溶解するまで温度 2 5 °Cで混合攪拌して (混合攪拌時間約 1時間) 、 無色 透明な粘稠液体である光硬ィ匕性樹脂組成物 (常温にお ίナる粘度約 2 , 5 0 0 c ρ S ) を得た。
実施例 2 :光硬化性樹脂組成物の調製
攪拌機、 冷却管および側管付き滴下ロートを備えた内容積 5リットルの三つ口 フラスコに、 合成例 2で得られたイミド化ァクリレート Β 1, 0 0 0 g、 合成例 3で得られたラジカル重合性ィヒ合物混合物 1 , 0 1 0 gおよびジシクロペン夕二 ルジァクリレート 4 0 0 gを仕込み、 減圧脱気窒素置換した。 次いで、 紫外線を 遮断した環境下に、 実施例 1で使用したのと同じ 1—ヒドロキシシクロへキシル フエ二ルケトン 7 5 gを添加し、 完全に溶解するまで温度 2 5 °Cで混合攪拌して (混合攪拌時間約 1時間) 、 無色透明な粘稠液体である光硬化性樹脂組成物 (常 温における粘度約 7 , 5 0 0 c p s ) を得た。
実施例 3 :光硬化性樹脂組成物の調製
攪拌機、 冷却管および側管付き滴下ロートを備えた内容積 5リットルの三つ口 フラスコに、 合成例 1で得られたイミド化ァクリレート A 1 , 4 0 0 g、 モルホ リンアクリルアミド 1, 4 0 0 gおよびジシクロペン夕ニルジァクリレート 1 , 2 0 0 gを仕込み、減圧脱気窒素置換した。次いで、紫外線を遮断した環境下に、 実施例 1で使用したのと同じ 1—ヒドロキシシクロへキシルフェニルケトン 1 2 0 gを添加し、 完全に溶解するまで温度 2 5 °Cで混合攪拌して (混合攪拌時間約 1時間) 、 無色透明な粘稠液体である光硬化性樹脂組成物 (常温における粘度約 3, 8 0 0 c p s ) を得た。
参考例 1 :光硬化性樹脂組成物の調製
攪拌機、 冷却管および側管付き滴下ロートを備えた内容積 5リットルの三つ口 フラスコに、 合成例 3で得られたラジカル重合性化合物混合物 2 , 0 2 0 gおよ びジシク口ペン夕ニルジァクリレート 2 , 0 2 0 gを仕込み、 減圧脱気窒素置換 した。 次いで、 紫外線を遮断した環境下に、 実施例 1で使用したのと同じ 1—ヒ ドロキシシクロへキシルフェニルケトン 1 2 1 gを添加し、 完全に溶解するまで 温度 2 5 °Cで混合攪拌して (混合攪拌時間約 1時間) 、 無色透明な粘稠液体であ る光硬化性樹脂組成物 (常温における粘度約 1 , 5 0 0 c p s ) を得た。
実施例 4 :モ一ルド成形法による光硬化成形品の製造'
( 1 ) J I S K 7 1 1 3に準拠するダンベル試験片形状の型キヤビテーを 有する透明なシリコン型に、 実施例 1で調製した光硬化性樹脂組成物を注入した 後、 3 0 Wの紫外線ランプを用いてシリコン型の全面から 1 5分間紫外線照射し て樹脂組成物を硬化させて光硬化したダンベル試験片形状の成形品を製造したと ころ、 透明性に優れる成形品 (ダンベル形状試験片) が得られた。 その成形品を 型から取り出して、 J I S K 7 1 1 3に準拠して、 その引っ張り特性 (引張 強度、 引張伸度および引張弾性率) を測定したところ、 下記表 1に示すとおりで あった。
( 2 ) また、上記(1 )で得られたダンベル形状試験片の熱変形温度を J I S K 7207に準拠して A法 (荷重 18. 5 kg/mm2) で測定したところ、 下記 表 1に示すとおりであった。
(3) さらに、 この実施例 4のモールド成形に用いた光硬ィヒ性樹脂組成物の光 硬化前の比重 (d と、 得られたモールド成形品 (ダンベル形状試験片) の比 重 (d2) をそれぞれ測定して、 下記式 (1) によりその体積収縮率 (%) を求 めたところ、 下記表 1に示すとおりであった。
体積収縮率 (%) = { (d2— (1 /d2} x 100 (1) 実施例 5 :光学的立体造形法による立体造形物の製造
実施例 1で得られた光硬化性樹脂組成物を用いて、 超高速光造形システム (帝 人製機株式会社製 「S〇L I FORM500」 ) を使用して、 水冷 A rレーザ一 光 (出力 50 OmW;波長 333, 351, 364 nm) を表面に対して垂直に 照射して、照射エネルギー 20〜3 OmJZcm2の条件下にスライスピッチ(積 層厚み) 0. 127 mm、 1層当たりの平均造形時間 2分で光造形を行って、 J I S K 7113に準拠するダンベル試験片形状の立体造形物を製造した。 得 られた立体造形物をィソプロピルアルコールで洗浄して立体造形物に付着してい る未硬ィ匕の樹脂液を除去した後、 3 KWの紫外線を 10分間照射してボストキュ ァしたところ、 透明性に優れる立体造形物が得られた。 その立体造形物 (ダンべ ル形状試験片) の引っ張り特性 (引張強度、 引張伸度および引張弾性率) を J I S K 7113に準拠して測定したところ、 下記表 '1に示すとおりであった。 また、 上記で得られたポストキュア後のダンベル形状試験片 (立体造形物) の 熱変形温度を実施例 4と同様にして測定したところ、 下記表 1に示すとおりであ つた。
さらに、 この実施例 5の立体造形法に用いた光硬化前の光硬化性樹脂組成物の 比重 ( ) と、 ポストキュア後の立体造形物の比重 (d2) をそれぞれ測定して、 上記式 (1) によりその体積収縮率 (%) を求めたところ、 下記表 1に示すとお りであった。
実施例 6 :光学的立体造形法による立体造形物の製造
実施例 2で得られた光硬化性樹脂組成物を用いた以外は実施例 5と同様にして 光学的立体造形、 未硬化樹脂の洗浄およびポストキュアを行って、 透明性に優れ る立体造形物 (ダンベル形状試験片) を製造した。 その結果得られたダンベル形 状試験片 (立体造形物) の引っ張り特性、 熱変形温度および体積収縮率を実施例
5と同様にして測定したところ、 下記表 1に示すとおりであった。
実施例 7 :光学的立体造形法による立体造形物の製造
実施例 3で得られた光硬ィヒ性樹脂組成物を用いた以外は実施例 5と同様にして 光学的立体造形、 未硬化樹脂の洗浄およびポストキュアを行って、 透明性に優れ る立体造形物 (ダンベル形状試験片) を製造した。 その結果得られたダンベル形 状試験片 (立体造形物) の引っ張り特性、 熱変形温度および体積収縮率を実施例 5と同様にして測定したところ、 下記表 1に示すとおりであった。
参考例 2 :光学的立体造形法による立体造形物の製造
参考例 1で得られた光硬化性樹脂組成物を用いた以外は実施例 5と同様にして 光学的立体造形、 未硬化樹脂の洗浄およびポストキュアを行って、 透明な立体造 形物 (ダンベル形状試験片) を製造した。 その結果得られたダンベル形状試験片
(立体造形物) の引っ張り特性、 熱変形温度および体積収縮率を実施例 5と同様 にして測定したところ、 下記表 1に示すとおりであった。
例 光硬化性 ダンベル?! 状試験片 (光硬化物) 体 積 樹脂組成物 製造法 引張強度 引張伸度 引張弾性率 熱変形温度 収縮率 n
(kg/mm2) (%) (kg/mm2) CC) (%) 実施例 4 実施例 1 モ -ルド成形 8.9 5.7 304 250 5.7 実施例 5 実施例 1 立体造形 8.7 4.6 290 255 5.5 実施例 6 実施例 2 立体造形 9.1 5.1 311 270 6.0 実施例 7 実施例 3 立体造形 9.4 5.6 321 275 5.5 参考例 2 参考例 1 立体造形 6.8 1.5 294 270 7.2
1 ) 光硬化時の体積収縮率
上記表 1の結果から、 イミド化アクリル化合物 (I ) を含有する実施例 1〜3 の光硬化性樹脂組成物を使用して光照射下にモールド成形または光学的立体造形 を行っている実施例 4〜7では、 引張強度、 引張伸度、 引張弾性率などの引っ張 り特性に優れ、 しかも熱変形温度が高くて耐熱性に優れる成形品または立体造形 物を、 小さい体積収縮率で寸法精度よく製造できることがわかる。
本発明の光硬化性樹脂組成物は、 比較的低粘度の液状を呈していて取り扱い性 に優れ、 短い硬化時間で硬化できるので、 光照射法による各種の成形品、 立体造 形物、 その他の製品の製造に有効に使用することができる。
本発明の光硬化性樹脂組成物は光硬化時の体積収縮率が小さいため、 寸法精度 に優れる成形品や立体造形物を光照射成形や光学的立体造形によって円滑に得る ことができる。
本発明の光硬化性樹脂組成物を光硬化させて得られる成形品や立体造形物など の光硬化物は、 2 5 0でを超える高い熱変形温度を有していて耐熱性に極めて優 れており、 しかも引張強度、 引張伸度、 引張弾性率などが高く、 力学的特性にも 優れている。

Claims

請求の範囲
1 . (i) 下記式 (I)
R ' (I)
Figure imgf000024_0001
(式中、 R 1は、 置換されていてもよい脂環族基、 置換されていてもよい芳香族 基または置換されていてもよい脂肪族基であり、 R 2はァミノアルコールの残基 であり、 R 3は水素原子またはメチル基であり、 そして nは 1または 2を示す。 ) で表されるイミド化ァクリル化合物の少なくとも 1種;
(i i) 前記のィミド化ァクリル化合物以外のラジカル重合性化合物およびカチ オン重合性化合物よりなる群から選ばれる少なくとも 1種の重合性化合物; 並びに、
(i i i) 光重合開始剤;
を含有し、 そして前記イミド化アクリル化合物 (i)対前記重合性化合物(i i) の 含有割合が、 8 0 : 2 0〜1 0 : 9 0 (重量比) であ ことを特徴とする光硬化 性樹脂組成物。
2 . R 1が脂環族テトラカルボン酸、 脂環族ジカルボン酸またはそれらの酸無水 物の残基でありそして該残基がアルキル基、 ハロゲン原子または二ト口基で置換 されていてもよい請求項 1に記載の光硬化性樹脂組成物。
3 . R 1が芳香族テトラカルボン酸、 芳香族ジカルボン酸またはそれらの酸無水 物の残基でありそして該残基がアルキル基、 ハロゲン原子またはニトロ基で置換 されていてもよい請求項 1に記載の光硬化性樹脂組成物。
4. R1が脂肪族テトラカルボン酸、 脂肪族ジカルボン酸またはそれらの酸無水 物の残基でありそして該残基がハロゲン原子またはニトロ基で置換されていても よい請求項 1に記載の光硬化性樹脂組成物。
5. R2が炭素数 2〜10の鎖状もしくは分岐鎖状のアルキレン基である請求項 1に記載の光硬化性樹脂組成物。
6. ラジカル重合性^:合物がアクリル系化合物、 ァリル系化合物およびビニルラ クタム化合物よりなる群から選ばれる少なくとも 1種である請求項 1に記載の光 硬化性樹脂組成物。
7. カチオン重合性化合物がエポキシ化合物およびビニルェ一テル化合物よりな る群から選ばれる少なくとも 1種である請求項 1に記載の光硬化性樹脂組成物。
8. 重合性化合物 (ii) がラジカル重合性化合物とカチオン重合性化合物の組合 せである請求項 1に記載の光硬化性樹脂組成物。
9. 光重合開始剤(iii)が光ラジカル重合開始剤およ 光力チオン重合開始剤よ りなる群から選ばれる少なくとも 1種である請求項 1に記載の光硬化性樹脂組成 物。
10.光重合開始剤(iii)を、イミド化アクリル化合物(i) と重合性化合物(ii) の合計重量に基づき 0. 1〜 10重量%で含有する請求項 1に記載の光硬化性樹 脂組成物。
11. 25でにおける粘度が 100〜100, 000センチボイズである請求項 1に記載の光硬化性樹脂組成物。
1 2 . 光学的立体造形用である請求項 1に記載の光硬化性樹脂組成物。
1 3 . 請求項 1に記載の光硬化性樹脂組成物の光学的立体造形への使用。
1 4. 請求項 1の光硬化性樹脂組成物を、 光学的立体造形に付すことを特徴とす る立体造形物を製造する方法。
PCT/JP1999/006209 1998-11-10 1999-11-08 Composition resineuse photopolymerisable et procede de formation de profile tridimensionnel WO2000027895A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/582,974 US6432607B1 (en) 1998-11-10 1999-11-08 Photocurable resin composition and method of optically forming three-dimensional shape
DE69935707T DE69935707T2 (de) 1998-11-10 1999-11-08 Photohärtbare harzzusammensetzung und verfahren zur herstellung einer dreidimensionalen form
EP99954433A EP1046657B1 (en) 1998-11-10 1999-11-08 Photocurable resin composition and method of optically forming three-dimensional shape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/319351 1998-11-10
JP31935198A JP4007704B2 (ja) 1998-11-10 1998-11-10 光学的立体造形用の光硬化性樹脂組成物

Publications (1)

Publication Number Publication Date
WO2000027895A1 true WO2000027895A1 (fr) 2000-05-18

Family

ID=18109191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006209 WO2000027895A1 (fr) 1998-11-10 1999-11-08 Composition resineuse photopolymerisable et procede de formation de profile tridimensionnel

Country Status (6)

Country Link
US (1) US6432607B1 (ja)
EP (1) EP1046657B1 (ja)
JP (1) JP4007704B2 (ja)
AT (1) ATE358686T1 (ja)
DE (1) DE69935707T2 (ja)
WO (1) WO2000027895A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018944B1 (en) * 2002-07-19 2006-03-28 Nanolab, Inc. Apparatus and method for nanoscale pattern generation
US7235195B2 (en) * 2002-09-06 2007-06-26 Novartis Ag Method for making opthalmic devices
EP1661690A4 (en) * 2003-08-27 2009-08-12 Fujifilm Corp METHOD FOR PRODUCING A THREE-DIMENSIONAL MODEL
JP5111880B2 (ja) * 2007-02-02 2013-01-09 シーメット株式会社 面露光による光学的立体造形用樹脂組成物
EP2759289A1 (en) 2013-01-24 2014-07-30 DENTSPLY DETREY GmbH Polymerizable dental composition
JP7136815B2 (ja) * 2017-06-30 2022-09-13 株式会社ニコン 重合された材料で作られる物品を製造する方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626497A (en) * 1979-05-18 1986-12-02 Ciba-Geigy Ag Process for the production of colored photographic polymer images
JPH01242569A (ja) * 1988-03-25 1989-09-27 Nippon Kayaku Co Ltd イミド(メタ)アクリレート、これを用いた樹脂組成物及びソルダーレジスト樹脂組成物
JPH07300458A (ja) * 1994-04-28 1995-11-14 Three Bond Co Ltd 重合性イミド化合物及び光硬化性組成物
JPH08151559A (ja) * 1994-11-28 1996-06-11 Nitto Denko Corp 粘着剤及びその粘着部材
JPH1036462A (ja) * 1996-07-26 1998-02-10 Toagosei Co Ltd 活性エネルギー線硬化型組成物

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144478A (en) 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device
US4416975A (en) * 1981-02-04 1983-11-22 Ciba-Geigy Corporation Photopolymerization process employing compounds containing acryloyl groups and maleimide groups
US4575330A (en) 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
JP2525216B2 (ja) 1988-01-27 1996-08-14 ディーエスエム・エヌヴィ 光学的立体造形用樹脂組成物
JP2590215B2 (ja) 1988-07-15 1997-03-12 旭電化工業株式会社 光学的造形用樹脂組成物
JPH0826121B2 (ja) 1988-02-19 1996-03-13 旭電化工業株式会社 光学的造形用樹脂組成物
JP2590230B2 (ja) 1988-09-13 1997-03-12 旭電化工業株式会社 光学的造形用樹脂組成物
JP2676838B2 (ja) 1988-10-24 1997-11-17 ソニー株式会社 立体像形成方法
JP2612484B2 (ja) 1988-11-18 1997-05-21 ディーエスエム・エヌヴィ 光学的立体造形用樹脂組成物
US5002855A (en) 1989-04-21 1991-03-26 E. I. Du Pont De Nemours And Company Solid imaging method using multiphasic photohardenable compositions
US4942060A (en) 1989-04-21 1990-07-17 E. I. Du Pont De Nemours And Company Solid imaging method utilizing photohardenable compositions of self limiting thickness by phase separation
US5014207A (en) 1989-04-21 1991-05-07 E. I. Du Pont De Nemours And Company Solid imaging system
US4942066A (en) 1989-04-21 1990-07-17 E. I. Du Pont De Nemours And Company Solid imaging method using photohardenable materials of self limiting thickness
US5006364A (en) 1989-08-24 1991-04-09 E. I. Du Pont De Nemours And Company Solid imaging method utilizing compositions comprising thermally coalescible materials
JPH02153722A (ja) 1989-09-25 1990-06-13 Osaka Prefecture 光学的造形法
JPH03114734A (ja) 1989-09-28 1991-05-15 Osaki Kogyo Kk 樹脂製シート及び樹脂製シートの製造方法
JPH03271272A (ja) * 1990-03-20 1991-12-03 Hitachi Chem Co Ltd 重合性イミド単量体及びその製造法並びに光硬化性組成物
JP3114732B2 (ja) 1990-10-11 2000-12-04 三菱レイヨン株式会社 ポリアリーレンサルファイド樹脂組成物
JP3114734B2 (ja) 1990-12-29 2000-12-04 日本電産株式会社 スピンドルモータ及びこれに適用されるディスククランプ機構
KR940001809B1 (ko) 1991-07-18 1994-03-09 금성일렉트론 주식회사 반도체 칩의 테스터
US5205741A (en) 1991-08-14 1993-04-27 Hewlett-Packard Company Connector assembly for testing integrated circuit packages
WO1998007759A1 (en) * 1996-08-23 1998-02-26 First Chemical Corporation Polymerization processes using aliphatic maleimides
JP3104626B2 (ja) 1996-09-30 2000-10-30 ダイキン工業株式会社 空気調和装置の電力算出装置及び電力算出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626497A (en) * 1979-05-18 1986-12-02 Ciba-Geigy Ag Process for the production of colored photographic polymer images
JPH01242569A (ja) * 1988-03-25 1989-09-27 Nippon Kayaku Co Ltd イミド(メタ)アクリレート、これを用いた樹脂組成物及びソルダーレジスト樹脂組成物
JPH07300458A (ja) * 1994-04-28 1995-11-14 Three Bond Co Ltd 重合性イミド化合物及び光硬化性組成物
JPH08151559A (ja) * 1994-11-28 1996-06-11 Nitto Denko Corp 粘着剤及びその粘着部材
JPH1036462A (ja) * 1996-07-26 1998-02-10 Toagosei Co Ltd 活性エネルギー線硬化型組成物

Also Published As

Publication number Publication date
JP2000143740A (ja) 2000-05-26
EP1046657A4 (en) 2004-10-20
DE69935707T2 (de) 2007-08-02
JP4007704B2 (ja) 2007-11-14
DE69935707D1 (de) 2007-05-16
US6432607B1 (en) 2002-08-13
EP1046657A1 (en) 2000-10-25
EP1046657B1 (en) 2007-04-04
ATE358686T1 (de) 2007-04-15

Similar Documents

Publication Publication Date Title
US6200732B1 (en) Photocurable resin composition
US6017973A (en) Photocurable resin composition, method of producing photo-cured shaped object, vacuum casting mold, vacuum casting method and novel urethane acrylate
JP5235056B2 (ja) 面露光による光学的立体造形用樹脂組成物
JP2008189782A (ja) 面露光による光学的立体造形用樹脂組成物
JP2001310918A (ja) 光造形用硬化性組成物および成形品
JP4409683B2 (ja) 光学的造形用樹脂組成物、その製造方法及び光学的造形物
JP2762389B2 (ja) 光学的立体造形用樹脂組成物
US5932625A (en) Photo-curable resin composition and process for preparing resin-basedmold
JPH0726060A (ja) 光学的立体造形用樹脂組成物
JPH02145616A (ja) 光学的立体造形用樹脂組成物
JP3410799B2 (ja) 光学的立体造形用樹脂組成物
EP4281509A1 (en) Radiation curable compositions for additive manufacturing of tough objects
JP3705511B2 (ja) 光学的立体造形用の光硬化性樹脂組成物
JP3657057B2 (ja) 成型用樹脂製型製造用光硬化性樹脂組成物および成型用樹脂製型の製造方法
WO2000027895A1 (fr) Composition resineuse photopolymerisable et procede de formation de profile tridimensionnel
JP4021347B2 (ja) 耐熱性に優れる光硬化性樹脂組成物
US6413698B1 (en) Photohardenable resin composition providing heat-resistant photohardened product
JPH10279819A (ja) 光学的立体造形用樹脂組成物
JP2001026609A (ja) 光造形用樹脂組成物
US6203966B1 (en) Stereolithographic resin composition
JP3705508B2 (ja) 耐熱性に優れる光硬化性樹脂組成物
JP2006028499A (ja) 光硬化性樹脂組成物
JPH10120739A (ja) 耐熱性に優れる光硬化性樹脂組成物
JPH10330626A (ja) 光造形用樹脂組成物
JP3942224B2 (ja) 真空注型用型

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999954433

Country of ref document: EP

Ref document number: 09582974

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999954433

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999954433

Country of ref document: EP