WO2000025096A1 - Method of setting flow coefficient and flow meter - Google Patents

Method of setting flow coefficient and flow meter Download PDF

Info

Publication number
WO2000025096A1
WO2000025096A1 PCT/JP1999/005889 JP9905889W WO0025096A1 WO 2000025096 A1 WO2000025096 A1 WO 2000025096A1 JP 9905889 W JP9905889 W JP 9905889W WO 0025096 A1 WO0025096 A1 WO 0025096A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
flow coefficient
coefficient
fluid
setting method
Prior art date
Application number
PCT/JP1999/005889
Other languages
English (en)
French (fr)
Inventor
Kenzo Ouji
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2000578623A priority Critical patent/JP3487589B2/ja
Priority to US09/830,202 priority patent/US6622096B1/en
Priority to EP99949408.1A priority patent/EP1150103B1/en
Publication of WO2000025096A1 publication Critical patent/WO2000025096A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/6965Circuits therefor, e.g. constant-current flow meters comprising means to store calibration data for flow signal calculation or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/001Means for regulating or setting the meter for a predetermined quantity
    • G01F15/002Means for regulating or setting the meter for a predetermined quantity for gases

Definitions

  • the present invention relates to a flow coefficient setting method for a flow meter that measures a flow rate of a fluid.
  • a flow velocity measuring means 2 such as a thermal flow sensor for measuring a flow velocity of a fluid is provided in a part of a fluid conduit 1 through which a fluid flows.
  • the flow velocity (Vm) obtained by the flow velocity measuring means 2 is multiplied by the cross-sectional area (S) of the fluid pipeline 1 and the flow coefficient (K) to calculate the flow rate (Qm). That is, the flow velocity measuring means 2 obtains the flow velocity (Vm) of the fluid by measuring the flow velocity of a part of the fluid flowing near the flow velocity measuring means 2. Therefore, it is necessary to determine the average flow velocity over the entire fluid line 1 as follows.
  • Arrow 3 in FIG. 21 indicates the direction in which the fluid flows.
  • Figure 22 shows the relationship between the flow velocity (Vm) and the flow coefficient (K) obtained in this way. In Fig. 22, the horizontal axis represents the flow measured by the flow velocity measurement means. The speed (Vm) is shown, and the vertical axis shows the flow coefficient (K).
  • the flow velocity (Vm) of the fluid measured by the flow velocity measuring means 2 is about 2 m / s
  • the flow rate coefficient (K) at that time can be read as about 0.89 from FIG. Therefore, the cross-sectional area of the fluid conduit 1 (S) is, when it is 0. 3 X 1 0 3 m 2 , measured flow rate (Qm) is,
  • the conventional flow measurement device had the following problems. That is, the flow velocity range is divided into appropriate areas by visual discrimination using a large number of sets of data (see Fig. 22) consisting of the flow velocity (Vm) and the flow coefficient (K) measured by the flow velocity measurement means. An optimal approximation line that optimally approximates a group of data sets (flow coefficient) within the area is set for each area, thereby obtaining a polygonal line that optimally approximates the group of data sets (flow coefficient) over the entire area. Ask for.
  • the present invention solves the above problem by using a set of n adjacent data points (Xi, Yi) among the flow velocity data measured by the flow velocity measurement section and the reference data stored in the reference data storage section.
  • An optimal approximation line is obtained using the data and the data, and the number n of the pairs is increased or decreased so that all of the n sets of data fall within a predetermined error Er with respect to the optimal approximation line.
  • the calculation process for setting the area in the section is performed, and the obtained flow coefficient is stored in the flow coefficient storage section.
  • the flow coefficient setting method of the present invention the flow coefficient can be automatically set easily using a personal computer or the like, and the flow value can be set within a predetermined error, and the reproducibility can be improved. Is also obtained.
  • the flow coefficient setting method of the present invention uses a plurality of sets of data points (Xi, Yi) of the flow velocity data measured by the flow velocity measurement section and the reference flow rate data stored in the reference data storage section.
  • the optimal curve is obtained by dividing the optimal curve into m regions, and a flow coefficient calculating unit performs an arithmetic process of approximating each region using an optimal approximation straight line, and stores the obtained flow coefficient in the flow coefficient storage. It is a method of memorizing in the department.
  • the optimal curve can be selected, and the flow coefficient with a small error can be set efficiently in a short time in a wider range.
  • the flow rate measuring device includes a flow rate measuring section, a flow rate coefficient storing section that stores a flow rate coefficient set by the flow rate coefficient setting method, and a flow rate measuring section that stores the measured flow rate in the flow rate coefficient storing section. And a flow rate calculation unit that calculates the flow rate using the calculated flow rate coefficient.
  • the flow coefficient setting method is a method of setting the flow rate data measured by the flow velocity measuring unit, wherein n sets of adjacent data points (Xi, Yi) and the reference data stored in the reference data storage unit are used. An optimal approximation line is obtained by using the data and the data. W
  • the number of sets n is increased or decreased so as to fall within a predetermined error Er with respect to the similar line, and a flow coefficient calculation unit performs a calculation process of setting an area, and the obtained flow coefficient is stored in the flow coefficient storage unit. It was a way to remember.
  • the flow coefficient setting method according to the embodiment of the present invention may be configured such that the n sets of data points (X i, Y i) are distributed on both sides of the optimal approximation line at the center of the optimal approximation line. Is a method of expressing the optimal approximation line using a linear function.
  • the flow coefficient setting method according to the embodiment of the present invention is configured such that, when the n sets of data points (X i, Y i) are distributed on one side of the optimal approximation line at the center of the optimal approximation line, The optimal approximation line was expressed using a quadratic function.
  • a plurality of sets of data points (X i, Y i) of the flow velocity data measured by the flow velocity measurement section are stored in the reference data storage section.
  • the optimal curve was obtained using the reference flow rate data, the optimal curve was divided into m regions, and the flow coefficient calculation unit performed an arithmetic process of approximating each region using the optimal approximation straight line.
  • the flow coefficient was stored in the flow coefficient storage unit.
  • the optimal curve can be selected, and the flow coefficient with a small error can be set efficiently in a short time in a wider range.
  • the flow coefficient setting method according to the embodiment of the present invention is a setting method in which the optimal approximation curve is equally divided into the m regions along the Y-axis direction.
  • one data range can be divided into m areas in the Y-axis direction in a short time.
  • the flow coefficient can be set efficiently.
  • the flow coefficient setting method according to the embodiment of the present invention is a setting method in which the optimal approximate curve is equally divided into the m regions along the X-axis direction.
  • one data range can be divided into m regions in the X-axis direction in a short time, and the flow coefficient can be set efficiently.
  • the flow coefficient setting method according to the embodiment of the present invention may further comprise: converting the optimal approximation curve along the X-axis direction into the m regions so that the width of each region is inversely proportional to the slope of the optimal approximation line of the region. Was set as the setting method.
  • one data range can be divided into m regions in a short time, and the flow coefficient can be set efficiently so that the error between the regions is substantially the same.
  • the set range can be divided into m regions, and each region can be approximated by a straight line.
  • a wide setting range can be divided into n regions, and each region can be approximated by a straight line.
  • the flow velocity measuring unit sets the flow coefficient including a thermal type flow sensor.
  • the flow rate measuring unit is a flow coefficient setting method including an ultrasonic current meter.
  • the quantity factor can be set.
  • the flow coefficient setting method according to the embodiment of the present invention is a flow coefficient setting method in which the optimal approximation line is represented by a linear function or a low-order function that is a quadratic function.
  • the data points included in two adjacent regions are smaller than the error E r calculated from the optimal approximation line in the two adjacent regions.
  • the flow coefficient setting method according to the embodiment of the present invention is a flow coefficient setting method in which an intersection of two optimal approximation lines of two adjacent regions is a boundary point between the two regions. With this configuration, the boundaries of the regions can be connected smoothly.
  • the flow coefficient setting method according to the embodiment of the present invention includes a flow coefficient setting method in which the error Er is gradually increased until all required data areas can be divided into a predetermined number of areas. did.
  • the flow coefficient setting method according to the present invention is characterized in that when the type of fluid changes from the first fluid to the second fluid, the value of the X axis is multiplied by a constant depending on the type of fluid, Is converted into a new flow coefficient.
  • the constant may be a new flow velocity (VmXVg / Vm) obtained by multiplying the flow velocity (Vm) of the first fluid by a flow velocity ratio (VgZVm). ), And Vg is a method of setting the flow velocity of the second fluid at an arbitrary flow coefficient value (Kc).
  • the flow coefficient can be updated using only one point of data according to the type of fluid, so that there is no need to measure the flow coefficient again.
  • the flow coefficient setting method according to the embodiment of the present invention is characterized in that when the temperature of the fluid changes from the first temperature to the second temperature, the X-axis value is multiplied by a temperature-dependent function value.
  • a flow conversion coefficient setting method for converting the flow coefficient into a new flow coefficient was adopted.
  • the function value used for obtaining the new flow coefficient is represented by the following equation:
  • T s is the first temperature
  • T i is the second temperature
  • V i is the flow rate of the fluid measured at T i
  • i is a power exponent
  • the flow coefficient setting method according to the embodiment of the present invention is a flow coefficient setting method for obtaining the absolute temperature (Tm) of a fluid from a temperature-sensitive resistor of a thermal flow sensor.
  • the flow coefficient setting method for obtaining the absolute temperature (Tm) of the fluid from the ultrasonic propagation time of the ultrasonic current meter is used.
  • the flow rate measuring device includes: a flow rate measuring section; a flow rate coefficient storing section that stores a flow rate coefficient set by the flow rate coefficient setting method; and a measured flow rate stored in the flow rate coefficient storing section. And a flow rate calculation unit that calculates the flow rate using the stored flow rate coefficient.
  • the flow rate measuring device has a configuration in which the flow velocity measuring unit includes a thermal flow sensor.
  • the flow measurement device has a configuration in which the flow velocity measurement unit includes an ultrasonic flow velocity meter.
  • FIG. 1 is a conceptual diagram of a flow rate measuring device for explaining Embodiment 1 of the present invention.
  • FIG. 2 shows a flow velocity measuring unit including the thermal flow sensor according to the first embodiment of the present invention.
  • FIG. 3 shows a flow velocity measuring unit including the ultrasonic transceiver according to the first embodiment of the present invention.
  • FIG. 4 is a characteristic diagram showing a flow coefficient for describing Embodiment 1 of the present invention.
  • FIG. 5 is a characteristic diagram showing a flow coefficient for explaining the first embodiment of the present invention.
  • FIG. 6 is a characteristic diagram showing a flow coefficient for explaining the first embodiment of the present invention.
  • FIG. 7 is a characteristic diagram showing a flow coefficient for describing Embodiment 1 of the present invention.
  • FIG. 1 is a conceptual diagram of a flow rate measuring device for explaining Embodiment 1 of the present invention.
  • FIG. 2 shows a flow velocity measuring unit including the thermal flow sensor according to the first embodiment of the present invention.
  • FIG. 3 shows
  • FIG. 8 is a characteristic diagram showing a flow coefficient for describing Embodiment 2 of the present invention.
  • FIG. 9 is a characteristic diagram showing a flow coefficient for describing Embodiment 3 of the present invention.
  • FIG. 10 is a characteristic diagram showing a flow coefficient for describing Embodiment 4 of the present invention.
  • FIG. 11 is a characteristic diagram showing a flow coefficient for describing Embodiment 5 of the present invention.
  • FIG. 12 is a characteristic diagram showing a flow coefficient for describing Embodiment 6 of the present invention.
  • FIG. 13 is a characteristic diagram showing a flow coefficient for describing Embodiment 7 of the present invention.
  • FIG. 14 is a characteristic diagram showing a flow coefficient for explaining the eighth embodiment of the present invention.
  • FIG. 15 is a characteristic diagram showing a flow coefficient for explaining the eighth embodiment of the present invention.
  • FIG. 16 is a characteristic diagram showing a flow coefficient for explaining the eighth embodiment of the present invention.
  • FIG. 17 is a characteristic diagram showing a flow coefficient for explaining S in Embodiment 9 of the present invention.
  • FIG. 18 is a characteristic diagram showing flow coefficients for describing Embodiment 10 of the present invention.
  • FIG. 19 is a characteristic diagram showing a flow coefficient for describing Embodiment 11 of the present invention.
  • FIG. 20 is a diagram showing a configuration of a flow measuring device for describing Embodiment 16 of the present invention.
  • FIG. 21 is a diagram showing a configuration of a flow velocity measuring unit for explaining a conventional example.
  • FIG. 22 is a characteristic diagram showing a flow coefficient for explaining a conventional example.
  • FIG. 1 is a conceptual diagram of a flow measurement device for explaining a flow coefficient setting method according to a first embodiment of the present invention.
  • the flow rate measuring device includes a flow rate measuring unit 4 including a thermal flow sensor and an ultrasonic transceiver, a reference data storage unit 5 for storing a reference flow rate of fluid, and a flow rate measured by the flow rate measuring unit 4. It includes a flow velocity data storage section 6 for storing data, a flow coefficient calculation section 7 for calculating a flow coefficient, and a flow coefficient storage section 8 for storing the calculated flow coefficient.
  • the reference flow rate data of the fluid flowing through the flow rate measuring section 4 is stored in the reference flow rate storage section 5.
  • the measured flow velocity of the fluid flowing through the flow velocity measurement unit 4 is stored in the flow velocity data storage unit 6.
  • the flow coefficient calculation unit 7 calculates a flow coefficient using the reference flow data stored in the reference flow data storage unit 5 and the flow velocity data of the fluid stored in the flow data storage unit 6. The calculation result is stored in the flow coefficient storage unit 8.
  • Fig. 2 shows a flow velocity measuring unit equipped with a thermal flow sensor as flow velocity measuring means.
  • Fig. 3 shows another flow velocity measuring unit equipped with an ultrasonic transceiver as a flow velocity measuring means.
  • a thermal flow sensor 10 is provided in the fluid line 9 as a means for measuring the fluid flow velocity.
  • the thermal flow sensor 10 includes a temperature-sensitive resistor and a heating element. Electric power is instantaneously supplied to the heating element from an external device, and the balance between the temperature rise of the temperature sensing resistor by the heating element and the cooling of the temperature sensing resistor by the fluid is measured as the resistance value of the temperature sensing resistor. Convert to fluid velocity.
  • the flow velocity (Vi) of the fluid measured by the flow velocity measuring means represents the flow velocity of a part of the fluid near the flow velocity measuring means. If the temperature-sensitive resistor is calibrated in advance, the temperature of the fluid can be measured from the change in the resistance value.
  • ultrasonic transmitters 12 and 13 are provided on the upstream side and the downstream side as means for measuring the flow velocity of the fluid in the middle of the fluid pipeline 11.
  • the ultrasonic wave is transmitted from the upstream ultrasonic transceiver 12 to the downstream ultrasonic transceiver 13 and vice versa, and the propagation time of the ultrasonic wave in each direction is measured.
  • the broken line 14 indicates the propagation direction of the ultrasonic wave
  • Arrow 16 in the figure indicates the direction in which the fluid flows.
  • Reference numeral 17 (0) indicates the intersection angle between the ultrasonic wave propagation direction and the fluid flow direction.
  • the flow velocity (Vm) measured by the ultrasonic transceiver as the flow velocity measuring means is measured as an average flow velocity in a portion along the direction 14 in which the ultrasonic wave propagates.
  • Tud LZ (Vs + ViXcos (0)),
  • Tud is the time until the ultrasonic wave transmitted from the upstream ultrasonic transceiver 12 is received by the downstream ultrasonic transceiver 13
  • Tdu is the time from the downstream ultrasonic transceiver 13.
  • L is the distance between the ultrasonic transceivers 12 and 13
  • Vs is the speed of sound
  • Vm is the flow velocity of the fluid It is.
  • Vs + VmXcos (0) LZTud
  • Vs-VmXcos ( ⁇ ) L / Tdu
  • Vs (LZ2) X ⁇ (1 / Tud) + (1 / Tdu) ⁇
  • Vm ⁇ LZ (2 Xcos (0)) ⁇ X ⁇ (1 / Tud) ⁇ (l / Tdu) ⁇
  • the sound velocity Vs is measured.
  • the flow velocity Vm is measured from the distance L between the ultrasonic transceivers and the difference between the propagation times Tud and Tdu.
  • Figure 4 shows the relationship between the flow velocity (Vm) and the flow coefficient (K) of the fluid measured in this way for a number of data sets (Vm, K). These data sets are based on criteria It is stored in the data storage 5 and the flow data storage 6.
  • the horizontal axis shows the flow velocity (Vm) of the fluid measured by the flow velocity measuring means
  • the vertical axis shows the flow coefficient (K).
  • the optimal approximation line 22 is a straight line that gives a flow coefficient to the flow velocity value (Vm) measured by the flow velocity measuring means. This optimal approximation line 22 can be expressed by the following equation.
  • a and B indicate the slope and intercept of the straight line, respectively.
  • the optimal approximation straight line is calculated by the least square method, and it is determined whether or not these data sets are within the error Er.
  • a second region that satisfies the error Er is set in the same manner as described above. For example, if up to six data sets, 21, 23, 25, 26, 27, and 28, are within the error E r, the second region is assumed to include these six data sets.
  • another optimal approximation line 29 is obtained. This is shown in FIG. In this case, the data set 21 is a boundary point between the above two regions. Then, further areas are set in this way. When this setting operation is completed, the flow coefficient given by the optimal approximation straight line in each area falls within the predetermined error Er.
  • FIG. 7 shows the optimum approximate straight line including a plurality of regions obtained in this manner.
  • the optimal approximation line giving the flow coefficient including the plurality of regions 30 to 39 is stored in the flow coefficient storage unit.
  • the first region 30 includes five sets of data, and the optimal approximate straight line is indicated by reference numeral 22.
  • the second area 31 contains six sets of data, the best approximation line of which is indicated by reference numeral 32.
  • the third region 33 contains seven sets of data, the best fit straight line of which is indicated by reference numeral 34.
  • the fourth region 35 contains four sets of data, the best approximation line of which is indicated by reference numeral 36.
  • the fifth region 37 contains four sets of data, the best approximation line of which is indicated by reference numeral 38.
  • the sixth region 39 contains six sets of data, the best approximation line of which is indicated by reference numeral 40.
  • FIG. 8 shows the relationship between the flow velocity (Vm) and the flow coefficient (K) in one area stored in the flow coefficient storage unit.
  • reference numeral 40 denotes the optimal approximation line
  • reference numeral 41 denotes another optimal approximation line 0.5% larger than the optimal approximation line 40
  • reference numeral 42 denotes 0
  • Another optimal approximation line that is 5% smaller reference number 43 indicates the upper end of the area
  • reference number 44 indicates the lower end of the area.
  • the relationship between the measured flow velocity (Vm) and the flow coefficient (K) results in dispersion within ⁇ 0.5% with respect to the optimal approximation line 40 represented by a linear line.
  • the best fit line represented by a linear function is sufficient to approximate the data points obtained.
  • FIG. 9 shows the relationship between the flow velocity (Vm) and the flow coefficient (K) in other areas stored in the flow coefficient storage unit.
  • reference numeral 45 represents the optimal approximation line
  • reference numeral 46 represents another optimal approximation line which is 0.5% larger than the optimal approximation line 45
  • reference numeral 47 represents 0 from the optimal approximation line 45.
  • Another optimal approximation line that is 5% smaller indicates the upper end of the area, and reference number 49 indicates the lower end of the area.
  • the relationship between the measured flow velocity (Vm) and the flow coefficient (K) is distributed in a normal curve pattern.
  • the data point at the center of the area represented by the primary function (between 48 and 49) is biased above the optimal approximation line 45.
  • the data points near the upper end 48 and the data points near the lower end 49 are biased below the optimal approximation line 45.
  • the optimal approximation line is represented by the quadratic curve 50 having a normal curve shape
  • the data point is further approximated to the optimal approximate quadratic curve.
  • FIG 10 shows the relationship between the measured fluid velocity (Vm) and the flow coefficient (K) for multiple data sets (Vm, K). These data sets are stored in the reference data storage unit 5 and the flow velocity data storage unit 6.
  • the flow coefficient calculation unit 7 calculates an optimal approximation function that gives the flow coefficient K by a least square method or the like.
  • This optimal approximation curve is shown as a solid line 51 in FIG.
  • the predetermined flow velocity range is divided into a predetermined number n of regions. Using the obtained value on the solid line 51 as the true value of the flow coefficient, a linear approximation is made in each region. In this way, the flow coefficient (K) can be calculated from the flow velocity (Vm) using the fifth-order curve 51 even at a point where there is no measured value between the two measured data points. Therefore, an approximate straight line can be obtained more accurately.
  • the optimal approximation line calculated in this way is stored in the flow coefficient storage unit 8.
  • the flow coefficient can be set more efficiently by obtaining the relationship between the flow velocity (Vm) and the flow coefficient (K) according to the order of the optimal approximation line. it can.
  • Fig. 11 shows the case where the range of the flow velocity (Vm) is divided into five. More specifically, the flow velocity (Vm) range is from 0 to 1.3, 1.3 to 2.6, 2.6 to 3.9, 3.9 to 5.2, 5.2 to 6. Divide into 5 areas of 5. For each boundary value Vm, The number (K) is calculated using the fifth order curve 51. The calculated boundary points are connected by a straight line. The straight line (indicated by five solid lines 52, 53, 54, 55 and 56 in Fig. 11) is used as an approximate straight line for the flow coefficient.
  • Figure 12 shows the case where the flow coefficient (K) range is divided into three regions. More specifically, the flow coefficient (K) range is divided into three areas: 0.65 to 0.77, 0.77 to 0.88, and 0.88 to 0.98.
  • K For each boundary discharge coefficient (K), calculate a data set corresponding to the boundary point. Connect each calculated data point with a straight line. These straight lines (indicated by three solid lines 57, 58 and 59 in Fig. 12) are used as approximate straight lines for the flow coefficient in each region.
  • setting an upper limit value or a lower limit value for the flow velocity (Vm) (or the flow coefficient (K) in the case of the sixth embodiment) increases efficiency.
  • the setting operation can be performed well. In this way, particularly when the present invention is applied to a flow rate measuring device in which a required area, a flow velocity range, or a flow coefficient range is often determined in advance, the setting operation can be more efficiently performed. It can be done in time.
  • the width of each region (the width in the X-axis direction) is set to be inversely proportional to the slope of the approximation line.
  • the width in the X-axis direction becomes narrow in a region with a large inclination, and the width in the X-axis direction becomes large in a region with a small inclination.
  • the degree of approximation of the approximation straight line depending on the inclination is uniformed over the entire region.
  • Figure 13 shows a case where one data area is divided into five areas in this way.
  • the data range was set to 0.65 to 0.73, 0.73 to 0.83, 0.83 to 0.88, 0.88 to 0.93, for the flow coefficient (K). Divide into five areas 0.93 to 0.98.
  • Each approximate straight line is shown as five solid lines 60, 61, 62, 63, 64 in the figure. In this way, even at a point where there is no data, a data set corresponding to the boundary value can be easily calculated by using the quintic curve. Therefore, an approximate straight line can be easily set.
  • the approximate line for calculating the flow coefficient (K) set in this way is stored in the flow coefficient storage unit.
  • FIG. 14 shows a quintic curve 51 obtained using the measurement data set (Vm, K). More specifically, FIG. 14 shows that the fifth-order curve 51 is used as the true value of the flow coefficient (K), and the setting operation is started from the upper limit value 65 (indicated by a “ ⁇ ” mark) and is set in advance. The case where the error is set to 2% is shown. At a flow velocity (Vm) smaller than point 65, select an arbitrary point on the quintic curve 51, for example, point 66 (also indicated by a “ ⁇ ” mark).
  • point 65 and point 66 are connected by a straight line (indicated by dotted line 67). It is assumed that this straight line 67 is an approximate straight line that gives the flow coefficient (K). Since the straight line 67 is a straight line passing through the two points 65 and 66 on the curve 51, the coordinates (Vm, K) of the two points 65 and 66 can be easily calculated using the above-described quintic equation. . Therefore, 2 points 65, W
  • the flow coefficient (K) is calculated. That is, the true value of the flow coefficient (K) is calculated using the fifth order curve 51.
  • an approximate value (Kc) of the flow coefficient is calculated using the straight line 67.
  • the approximate value (Kc) calculated in this way is compared with the true value (K), and the error is calculated.
  • Er 2%
  • the point 66 is slightly moved to a lower flow velocity (Vm) (that is, in the leftward direction in FIG. 15), and the operation described above is performed. Is repeated.
  • FIG. 16 shows the result of the calculation in this manner.
  • the range of the predetermined flow velocity (Vm) is divided into five regions. This result shows that any point on the fifth-order curve 51, when calculated using these approximate lines, has an error within 2%.
  • the approximation straight line for calculating the flow coefficient (K) set in this way is stored in the flow coefficient storage unit.
  • the preset error Er is gradually reduced, for example, to 1.5%, 0.5%, and so on. It is possible to obtain 10 approximate straight lines (regions) that give the best error distribution over the years. In the case of the data shown in Figs. 14 to 16, if the error Er is 0.5%, the number of approximate straight lines is nine. In this way, it is possible to obtain an optimal error distribution according to the number of any specific approximate straight line.
  • the approximation straight line for calculating the flow coefficient (K) set in this way is stored in the flow coefficient storage unit.
  • X indicates the flow velocity (Vm)
  • Y indicates the flow coefficient (K).
  • X indicates the flow velocity (Vm)
  • Y indicates the flow coefficient ( ⁇ )
  • a, b, and c are unknowns.
  • the unknown b indicates a constant value in the low flow velocity region, that is, a lower limit value of the flow coefficient.
  • the unknown a indicates a constant value in the high flow velocity region, that is, the upper limit of the flow coefficient.
  • each “ ⁇ ” indicates a measured value
  • a solid line 73 indicates a curve obtained based on the above equation.
  • the above function including the three unknowns a, b, and c shows a good approximation over a very wide range.
  • Vm, K the above equation can be calculated.
  • the approximate straight line for calculating the set flow coefficient (K) is stored in the flow coefficient storage unit.
  • the constant a in the above function form is replaced by dXX
  • the above-described function form is applied to all regions. Alternatively, the setting operation can be performed efficiently even when partially applied to a part of the area.
  • intersection of the two lower-order optimal approximation lines is used as a boundary value between the regions.
  • This method eliminates steps that can occur between two adjacent optimal approximation lines, and allows the optimal approximation lines to be connected more smoothly.
  • this method uniquely determines the boundary between two adjacent regions, so that the measured flow velocity (Vm) and the flow coefficient (K) can be in one-to-one correspondence.
  • the flow coefficient (K) is measured for air, the measured value (indicated by the “ ⁇ ” mark in Fig. 18) is obtained, and the flow coefficient (represented by the solid line 73 in Fig. 18) is obtained.
  • the fluid to be measured is changed to nitrogen, methane or propane.
  • the change of the flow coefficient (K) in the air is about 0.65 to 0.98 in the flow velocity range of 0 to 7 mZs from FIG.
  • the flow velocity of the new fluid is measured by the flow velocity measuring means, and the flow velocity ratio Rv between the two is calculated by the following equation.
  • the measured flow velocity Vm (Air) obtained from FIG. 18 is multiplied by the flow velocity ratio Rv to obtain a new flow velocity.
  • the result is shown as a two-dot chain line 74 in FIG.
  • the flow velocity ratio Rv is about 2-3.
  • the two-dot chain line 74 obtained in this way indicates the converted flow coefficient (K) in the new fluid (Gas).
  • the solid line 73 in Fig. 19 shows the flow coefficient (K) in air.
  • the flow coefficient (K) can be easily recalculated. Therefore, the flow coefficient for the new target fluid (Gas) can be easily obtained without measuring the flow coefficient (K) newly for the new target fluid (Gas). That is, by changing the flow velocity (Vm) (in this case, reducing the scale) according to the type of the fluid, a flow coefficient for another fluid can be obtained. If the target fluid changes in this way, it can be easily handled by multiplying the horizontal axis (Vm) value of the flow coefficient (K) graph by a constant (ie, flow velocity ratio Rv) according to the type of fluid. Can be.
  • the flow coefficient (K) shown in FIG. 18 is set at a temperature Ts (for example, 20 ° C., 293.15 K, a reference temperature). Then, before measuring the flow rate of the fluid, if the temperature of the fluid changes to a new temperature T i (for example, due to a change in ambient temperature), the preset flow coefficient (K) is used at the new temperature.
  • Ts for example, 20 ° C., 293.15 K, a reference temperature
  • V i 2 V (T s / T i) "i
  • Ts is the temperature of the fluid when the flow coefficient (K) is set
  • T i is the temperature of the fluid when measuring the flow rate
  • V i is the flow velocity of the fluid measured at the new temperature T i
  • i is an index to be described later.
  • the temperature, Ts, and Ti are both absolute temperatures [K].
  • a flow coefficient K i at a new temperature T i is obtained from FIG. 18 as a flow coefficient value for the converted flow velocity V i 2 .
  • the flow rate of the fluid is calculated based on the obtained flow coefficient K i.
  • the exponent i is preferably about 1.5 to about 3.0, and it has been confirmed that the power exponent i of about 2.5 best matches the experimental value.
  • the flow coefficient K is set when the fluid temperature is 20 (293K), and then the measured flow velocity Vi of the fluid is 2m / sec when the fluid temperature is 0 ° C (273K). I do.
  • the flow coefficient (K) for a flow rate of 2ffl / sec can be read from Fig. 12 as approximately 0.89.
  • the flow coefficient (K) should be obtained as follows. First, using the above equation, the measured flow velocity V i is converted as follows.
  • the flow coefficient at the new temperature is converted by converting the flow coefficient at the first temperature (at 20) into the solid line 73 in FIG. Since a numerical value can be obtained, there is no need to measure the flow coefficient at a new temperature, and the setting operation becomes very efficient. In other words, since the approximate straight line of the flow coefficient is set using the optimal function, In the event of a change, a new flow rate at the new temperature can be obtained by a simple coordinate transformation, ie, by multiplying the X-axis value (flow velocity) by a temperature-dependent function (eg, the temperature ratio in this case). The coefficient can be calculated.
  • a separate temperature sensor may be provided in the fluid conduit to measure the temperature of the fluid.
  • the thermal flow sensor includes a temperature-sensitive resistor, so the temperature of the fluid can be easily measured by measuring the resistance value. .
  • the distance L between the upstream ultrasonic transceiver and the downstream ultrasonic transceiver is constant and known. Therefore, the sound velocity Vs in the fluid to be measured is equal to the average propagation time between the ultrasonic transceivers (that is, the sum of the reciprocal of the propagation time from the upstream side to the downstream side and the reciprocal of the propagation time from the downstream side to the upstream side). Based on the following equation.
  • Vs (L / 2) X ⁇ (1 / Tud) + (1 / Tdu) ⁇
  • this sonic formula doesn't include the term of fluid velocity. This means that the velocity of sound Vs in the fluid to be measured can be known regardless of the flow velocity of the fluid.
  • V (Air) m / s The sound velocity in air, V (Air) m / s, is a well-known linear function expressed as follows.
  • V (Air) 331.5 + 0.6Xt
  • the fluid temperature t can be easily measured from the sound velocity V (Air). In the case of, there is no need to provide a separate temperature sensor to measure the temperature of the fluid.
  • the temperature ratio (absolute temperature) of the fluid was used when converting the flow coefficient in order to cope with the change in the temperature of the fluid.
  • the sound speed ratio of the fluid may be used instead of the absolute temperature ratio.
  • the power index i may be slightly different from the above.
  • the flow rate measuring device includes a flow rate measuring section 4 for measuring a flow rate of a fluid, a flow rate coefficient storing section 8 for storing a flow rate coefficient set based on the present invention described above, and a flow rate measuring section.
  • a flow rate calculation unit 75 that calculates the flow rate of the fluid using the flow velocity (V m) measured in the part 4 and the flow rate coefficient (K) stored in the flow rate coefficient storage unit 8, and a flow rate value obtained by the calculation (Qcal).
  • the flow measurement device of the present invention includes the flow coefficient storage unit 8 that stores the flow coefficient set based on the flow coefficient setting method described in detail in the above embodiment.
  • the flow measurement device of the present invention can output a flow value with a small error.
  • the flow coefficient can be easily converted as described above, so that the flow measurement device of the present invention has a small error even in this case. It can output the flow value.
  • the flow coefficient can be easily changed as described above, so that the flow measurement device of the present invention can also output a flow value with a small error in this case.
  • the flow rate measuring device of the seventeenth embodiment is the same as that described in the sixteenth embodiment, but the flow velocity measuring unit 4 of the seventeenth embodiment uses a thermal flow sensor. That is, the flow velocity measuring unit 4 was configured as shown in FIG. With this configuration, it is possible to realize a flow measurement device with a particularly small error in a low flow rate region.
  • the temperature of the fluid can be measured directly from the temperature-sensitive resistor of the thermal flow sensor. Therefore, the present flow measuring device can be configured more simply without separately providing a temperature sensor for measuring the temperature of the fluid.
  • the flow rate measuring device is the same as that described in the sixteenth embodiment, but the flow velocity measuring unit 4 according to the eighteenth embodiment is provided on the upstream side and the downstream side of the flow velocity measuring unit. It includes a pair of ultrasonic transceivers. That is, the flow velocity measuring unit 4 was configured as shown in FIG. With this configuration, a flow measurement device with a particularly small error can be realized in a wide flow rate range. Also, the temperature of the fluid can be directly measured from the speed of sound. Therefore, the present flow measurement device can be configured more simply without separately providing a temperature sensor for measuring the temperature of the fluid. Industrial applicability
  • the flow coefficient setting method of the present invention first determines a low-order optimal approximation line using an arbitrarily selected number of adjacent data sets, and thereafter, all data sets are Since the number of data sets is selected (or adjusted) so that the maximum number of data sets is within the predetermined error E r, the optimal approximation line can be set efficiently.
  • a higher-order function representing the optimal approximation curve may be obtained by using a plurality of data sets over a wide range, and then a lower-order function representing the optimal approximation line of the flow coefficient may be obtained based on the optimal approximation curve. In this case, even a small set The quantity coefficient can be calculated efficiently in a short time.
  • the flow coefficient for one kind of fluid is converted into a new flow coefficient for another kind of fluid by multiplying the value of the X-axis by a constant depending on the kind of fluid.
  • the flow coefficient at one temperature is converted to a new flow coefficient at another temperature by multiplying the value of the X-axis by a function value depending on the temperature. In this way, even if the temperature of the fluid changes from the temperature at which the flow coefficient was set, the flow coefficient could be easily converted to a new flow coefficient corresponding to the new temperature, and the temperature of the fluid changed. Even in this case, a flow coefficient with a small error can be realized.
  • the flow rate measuring device using the above flow rate coefficient setting method can perform flow rate measurement with a small error in a wide flow rate range.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)
  • Complex Calculations (AREA)

Description

明 細 書 流量係数設定方法とそれを用いた流量計測装置 技術分野
本発明は、 流体の流量を計測する流量計における流量係数設定方法に関するも のである。 背景技術
従来の流量計について、 図 2 1を用いて説明する。 流体の流れる流体管路 1の 一部に流体の流速を計測する熱式フローセンサなどの流速計測手段 2が設けられ る。 この流速計測手段 2で得られた流速 (Vm) に、 流体管路 1の断面積 (S ) と流量係数 (K) とを乗算し、 流量 (Qm) を演算する。 即ち、 流速計測手段 2 は、 流速計測手段 2の近傍を流れる一部の流体の流速を計測することによって、 流体の流速 (Vm) を得る。 従って、 以下のようにして流体管路 1全域にわたる 平均流速を求める必要がある。 即ち、 基準流量を設定することのできる基準流量 設定部を流体管路 1に接続し、 流体管路 1に適当な基準流量で流体を流し、 平均 流量 (Qa) を求める。 そして、 その平均流量値から計算した平均流速 (Va) と、 その時に流速計測手段で計測した流速 (Vm) との関係 (K = VaZVm ;流量係 数) を求める。 この関係を種々の基準流量に対して実測し、 流体の流速 (Vm) と、 流量計数 (K) 力 なる多数個のデ一夕組を得る。
次に、 流量計測手段 2で計測した流体の流速 (Vm) に、 流量係数 (K) と流 路 1の断面積 (S ) とを乗算し、 計測流量 (Qm) を求める。 即ち、 Qm= K * S · Vmなる演算をし、 計測流量 (Qm) を求める。 なお、 図 2 1中の矢印 3は 流体の流れる方向を示す。 図 2 2に、 このようにして求めた流速 (Vm) と流量 係数 (K) との関係を示す。 図 2 2において、 横軸は流速計測手段で計測した流 速 (Vm) を示し、 縦軸は流量係数 (K) を示す。 例えば、 流速計測手段 2で計 測した流体の流速 (Vm) が、 約 2m/ sであったとすると、 その時の流量計数 (K) は、 図 22から約 0. 89と読みとれる。 従って、 流体管路 1の断面積 (S) が、 0. 3 X 1 0 3m2であるとすると、 計測流量 (Qm) は、
Qm=2 X 0. 89X 0. 3X 10~zm3/ s
=0. 534X 10 -3 m3/s
=1. 9m3Zhとなる。
従来の流量計測装置では、 次のような課題があった。 すなわち、 流速計測手段 で計測された流速 (Vm) と流量係数 (K) とからなる多数組のデータ (図 22 参照) を用いて、 目視判別により、 流速範囲を適当な領域に分割し、 その領域内 にある一群のデータ組 (流量係数) を最適に近似する最適近似線を各領域につい て設定し、 これにより、 全領域にわたって上記一群のデータ組 (流量係数) を最 適に近似する折れ線を求める。
このため、 煩雑な計算を繰返し、 最適な近似直線を設定するのに多大な時間と 労力が必要であった。 また、 目視判別により設定していたため、 設定するたびに 得られる最適近似直線が異なることもあり、 再現性が悪かった。 なお、 この場合、 高次の次数を有する曲線で近似する方法もあるが、 マイコンなどに演算させる場 合には、 マイコンの使用に伴う演算時間や、 有効桁数などの制約のため、 低次の 一次直線あるいは二次曲線による近似が望まれている。
また、 基準流量を計測し、 流量係数を設定した時に用いた流体から流体の種類 が変わった場合、 その新しい流体について、 平均流量 (Qa) と流速 (Vm) を 再計測し、 新たな流量係数 (K) を再度設定する必要がある。
また、 流体の温度が変わった場合、 流体の特性が温度により変化するため、 流 量係数が変化したりするため、 流量計測精度が悪くなる場合もある。 発明の開示 本発明は上記課題を解決するために、 流速計測部で計測した流速デー夕の内、 隣合う n組のデータ点 (X i、 Y i) と、 基準デ一夕記憶部に記憶された基準デー 夕とを用いて最適近似線を求め、 前記 n組の全てのデータが、 前記最適近似線に 対し予め決められた誤差 E r内に入るように前記組数 nを増減し、 流量係数演算 部において領域を設定する演算処理を行い、 得られた流量係数を流量係数記憶部 に記憶する方法とした。
この構成により、 本発明の流量係数設定方法に従えば、 パソコンなどを用いて 簡単に流量係数を自動設定することが可能となり、 流量値を予め決められた誤差 内にすることができ、 再現性も得られる。
また、 本発明の流量係数設定方法は、 流速計測部で計測された流速データの複 数組のデータ点 (X i、 Y i) と、 基準データ記憶部に記憶された基準流量データ とを用いて最適曲線を求め、 前記最適曲線を m個の領域に分割し、 流量係数演算 部において各領域内を最適近似直線を用いて近似する演算処理を行い、 得られた 流量係数を前記流量係数記憶部に記憶する方法とした。
この構成により、 少ないデータ数であっても、 最適な曲線を選択し、 より広い 範囲を少ない誤差の流量係数を短時間に効率よく設定することができる。
そして、 本発明の流量計測装置は、 流速計測部と、 上記流量係数設定方法によ り設定された流量係数を記憶する流量係数記憶部と、 計測した流速から、 前記流 量係数記憶部に記憶された流量係数を用いて流量を演算する流量演算部とを含む 構成とした。
この構成により、 広い流領域において、 誤差の少ない流量計測装置を提供でき る。
それら各発明の実施の形態を以下に記載する。
本発明の実施の形態の流量係数設定方法は、 流速計測部で計測した流速データ の内、 隣合う n組のデータ点 (X i、 Y i) と、 基準データ記憶部に記憶された基 準データとを用いて最適近似線を求め、 前記 n組の全てのデータが、 前記最適近 W
似線に対し予め決められた誤差 E r内に入るように前記組数 nを増減し、 流量係 数演算部において領域を設定する演算処理を行い、 得られた流量係数を流量係数 記憶部に記憶する方法とした。
この構成により、 本発明の流量係数設定方法に従えば、 パソコンなどを用いて 簡単に自動設定することが可能となり、 流量値を予め決められた誤差内にするこ とができ、 再現性も得られる。
また、 本発明の実施の形態の流量係数設定方法は、 前記 n組のデ一夕点 (X i、 Y i) が、 前記最適近似線の中央部において前記最適近似線の両側に分布すると きは、 前記最適近似線を一次関数を用いて表す方法とした。
この構成により、 簡単な一次関数で設定するので、 誤差の小さい流量値を簡単 な演算で得られる。
また、 本発明の実施の形態の流量係数設定方法は、 前記 n組のデータ点 (X i、 Y i) が、 前記最適近似線の中央部において前記最適近似線の片側に分布すると きは、 前記最適近似線を二次関数を用いて表す方法とした。
この構成により、 一次関数に比べ、 より広い範囲を、 誤差の少ない曲線で近似 することができる。
また、 本発明の実施の形態の流量係数設定方法は、 流速計測部で計測された流 速データの複数組のデ一夕点 (X i、 Y i) と、 基準データ記憶部に記憶された基 準流量データとを用いて最適曲線を求め、 前記最適曲線を m個の領域に分割し、 流量係数演算部において各領域内を最適近似直線を用いて近似する演算処理を行 レ 得られた流量係数を前記流量係数記憶部に記憶する方法とした。
この構成により、 少ないデータ数であっても、 最適な曲線を選択し、 より広い 範囲を少ない誤差の流量係数を短時間に効率よく設定することができる。
また、 本発明の実施の形態の流量係数設定方法は、 前記最適近似曲線を Y軸方 向に沿って前記 m個の領域に等分割する設定方法とした。
この構成により、 1つのデータ範囲を短時間に Y軸方向に m個の領域に分割で き、 効率よく流量係数を設定することができる。
また、 本発明の実施の形態の流量係数設定方法は、 前記最適近似曲線を X軸方 向に沿って前記 m個の領域に等分割する設定方法とした。
この構成により、 1つのデ一夕範囲を短時間に X軸方向に m個の領域に分割で き、 効率よく流量係数を設定することができる。
また、 本発明の実施の形態の流量係数設定方法は、 各領域の幅が該領域の最適 近似直線の傾きに反比例するように、 前記最適近似曲線を X軸方向に沿って前記 m個の領域に分割する設定方法とした。
この構成により、 1つのデータ範囲を短時間に m個の領域に分割するとともに、 領域間での誤差が同程度となるように、 効率よく流量係数を設定することができ る。
また、 本発明の実施の形態の流量係数設定方法は、 最適近似曲線を、 Y = a x Log(X) + で表す流量係数設定とした。
この構成により、 少なくとも 2点のデータがあれば、 設定範囲を m個の領域に 分割し、 各領域内を直線近似することができる。
また、 本発明の実施の形態の流量係数設定方法は、 最適近似曲線を、 Y = ( a 一 b ) ノ [ 1 +exp (— c X X) ] + b で表す流量係数設定方法とした。
この構成により、 少ないデータ点から、 幅広い設定範囲を n個の領域に分割し、 各領域内を直線近似することができる。
また、 本発明の実施の形態の流量係数設定方法は、 前記流速計測部が、 熱式フ 口一センサを含む流量係数設定とした。
この構成により、 特に低流領域において誤差が小さく、 再現性に優れた流量係 数を設定することができる。
また、 本発明の実施の形態の流量係数設定方法は、 前記流速計測部が、 超音波 流速計を含む流量係数設定方法とした。
この構成により、 広い範囲の流量域において誤差が小さく、 再現性に優れた流 量係数を設定することができる。
また、 本発明の実施の形態の流量係数設定方法は、 前記最適近似線を、 一次関 数あるいは二次関数である低次の関数で表す流量係数設定方法とした。
この構成により、 簡単な演算で誤差の少ない流量値を得ることができる。
また、 本発明の実施の形態の流量係数設定方法は、 隣り合う 2つの領域に含ま れるデータ点が、 前記隣り合う 2つの領域の内、 前記最適近似線から演算される 誤差 E rがより小さい方に属するように設定される流量係数設定方法とした。 この構成により、 境界値での誤差を小さくすることができる。
また、 本発明の実施の形態の流量係数設定方法は、 隣り合う 2つの領域の 2つ の最適近似線の交点を、 前記 2つの領域の境界点とする流量係数設定方法とした。 この構成により、 領域の境界を滑らかに接続することが出来る。
また、 本発明の実施の形態の流量係数設定方法は、 要求される全データ領域が 予め決められた領域数に分割され得るまで、 誤差 E rが徐々に大きくされる、 流 量係数設定方法とした。
この構成により、 予め領域数が決められている場合にも、 1つのデ一夕範囲を その領域数に分割しながら、 誤差を最小とする流量係数を設定することができる。 また、 本発明の実施の流量係数設定方法は、 流体の種類が第 1の流体から第 2 の流体へと変化した時に、 X軸の値に流体の種類に依存した定数を乗じ、 流量係 数を新たな流量係数に変換する流量係数設定方法とした。
この構成により、 流量係数を設定した流体から、 流体の種類が変わっても、 簡 単に流量係数をその流体に対応した流量係数に変換することができ、 流体の種類 が変更したことによって生じ得る誤差を抑えることができる。
また、 本発明の実施の形態の流量係数設定方法は、 前記定数が、 前記第 1の流 体の流速 (Vm) に流速比 (VgZVm) を乗じて求められる新たな流速 (VmX V g/Vm) であり、 Vgは任意の流量係数値 (Kc) での前記第 2の流体の流速であ る設定方法とした。 W
この構成により、 流体の種類が変わっても、 流体の種類に対応してただ一点の データを用いて流量係数を更新することが出来るので、 再度流量係数を測定する 必要がなくなる。
また、 本発明の実施の形態の流量係数設定方法は、 流体の温度が第 1の温度か ら第 2の温度へと変化した時に、 X軸の値に温度に依存した関数値を乗じて前記 流量係数を新たな流量係数に変換する流量換算係数設定方法とした。
この構成により、 流量係数を設定した温度から、 流体の温度が変わっても、 簡 単に流量係数をその温度に対応した新たな流量係数に変換でき、 流体の温度が変 化したことによって生じ得る誤差を抑えることができる。
また、 本発明の実施の形態の流量係数設定方法は、 前記新たな流量係数を求め るために用いる前記関数値が、 次式
V i · (Ts/T i) " i
によって求められ、 T sは前記第 1の温度であり、 T iは前記第 2の温度であ り、 V iは T iにおいて測定された前記流体の流速であり、 iはべき指数である、 流量係数設定方法とした。
この構成により、 流体の温度が変化しても、 その新たな温度に対応した流量係 数が得られるので、 流体の温度が変化したことによって生じ得る誤差を抑えるこ とができる。
また、 本発明の実施の形態の流量係数設定方法は、 流体の絶対温度 (Tm) を、 熱式フローセンサの感温抵抗体から求める流量係数設定方法とした。
この構成により、 新たに温度センサを設置する必要もなく、 効率的な設定方法 とすることができる。
また、 本発明の実施の形態の流量係数設定方法は、 流体の絶対温度 (Tm) を、 超音波流速計の超音波伝搬時間から求める流量係数設定方法とした。
この構成により、 新たに温度センサを設置する必要もなく、 また流体の特性を 利用した正確な流体的温度計測を実現する。 そして、 本発明の実施の形態の流量計測装置は、 流速計測部と、 上記流量係数 設定方法により設定された流量係数を記憶する流量係数記憶部と、 計測した流速 を、 前記流量係数記憶部に記憶された流量係数を用いて流量を演算する流量演算 部とを含む構成とした。
この構成により、 広い流領域において、 誤差の少ない流量計測装置を提供でき る。
また、 本発明の実施の形態の流量計測装置は、 流速計測部が、 熱式フローセン サを含む構成とした。
この構成により、 特に低流量域において誤差が小さく、 再現性に優れた流量計 測装置を提供することができる。
また、 本発明の実施の形態の流量計測装置は、 流速計測部が、 超音波流速計を 含む構成とした。
この構成により、 広い範囲の流量域において誤差が小さく、 再現性に優れた流 量計測装置を実現することができる。 図面の簡単な説明
図 1は、 本発明の実施の形態 1を説明するための流量計測装置の概念図である。 図 2は、 本発明の実施の形態 1の熱式フローセンサを含む流速計測部である。 図 3は、 本発明の実施の形態 1の超音波送受信器を含む流速計測部である。 図 4は、 本発明の実施の形態 1を説明するための流量係数を示す特性図である。 図 5は、 本発明の実施の形態 1を説明するための流量係数を示す特性図である。 図 6は、 本発明の実施の形態 1を説明するための流量係数を示す特性図である。 図 7は、 本発明の実施の形態 1を説明するための流量係数を示す特性図である。 図 8は、 本発明の実施の形態 2を説明するための流量係数を示す特性図である。 図 9は、 本発明の実施の形態 3を説明するための流量係数を示す特性図である。 図 1 0は、 本発明の実施の形態 4を説明するための流量係数を示す特性図であ る。
図 1 1は、 本発明の実施の形態 5を説明するための流量係数を示す特性図であ る。
図 1 2は、 本発明の実施の形態 6を説明するための流量係数を示す特性図であ る。
図 1 3は、 本発明の実施の形態 7を説明するための流量係数を示す特性図であ る。
図 1 4は、 本発明の実施の形態 8を説明するための流量係数を示す特性図であ る。
図 1 5は、 本発明の実施の形態 8を説明するための流量係数を示す特性図であ る。
図 1 6は、 本発明の実施の形態 8を説明するための流量係数を示す特性図であ る。
図 1 7は、 本発明の実施の形態 9を S¾明するための流量係数を示す特性図であ る。
図 1 8は、 本発明の実施の形態 1 0を説明するための流量係数を示す特性図で ある。
図 1 9は、 本発明の実施の形態 1 1を説明するための流量係数を示す特性図で ある。
図 2 0は、 本発明の実施の形態 1 6を説明するための流量計測装置の構成を示 す図である。
図 2 1は、 従来例を説明するための流速計測部の構成を示す図である。
図 2 2は、 従来例を説明するための流量係数を示す特性図である。 発明を実施するための最良の形態
(実施の形態 1 ) 図 1は、 本発明の実施の形態 1の流量係数設定方法を説明するための流量計測 装置の概念図である。 図 1において、 流量計測装置は、 熱式フローセンサや超音 波送受信器を含む流速計測部 4と、 流体の基準流量を記憶する基準データ記憶部 5と、 流速計測部 4で計測された流速デ一夕を記憶する流速データ記憶部 6と、 流量係数を演算処理する流量係数演算部 7と、 演算された流量係数を記憶する流 量係数記億部 8とを含む。
流速計測部 4を流れる流体の基準流量データは基準流量デ一夕記憶部 5に記憶 される。 流速計測部 4を流れる流体の計測された流速は流速データ記憶部 6に記 憶される。 流量係数演算部 7は、 基準流量デ一夕記憶部 5に記憶された基準流量 データと、 流速データ記憶部 6に記憶された流体の流速デ一夕とを用いて流量係 数を演算する。 演算結果は流量係数記憶部 8に記憶される。
図 2に、 流速計測手段として熱式フローセンサを備えた流速計測部を示す。 図 3に、 流速計測手段として超音波送受信器を備えた別の流速計測部を示す。
図 2において、 流体管路 9の途中に流体の流速計測手段として熱式フローセン サ 1 0を設けた。 熱式フローセンサ 1 0は、 感温抵抗体と、 発熱素子とを含む。 発熱素子に外部装置から電力を瞬間的に供給し、 発熱素子による感温抵抗体の昇 温と、 流体による感温抵抗体の冷却とのバランスを感温抵抗体の抵抗値として計 測し、 流体の流速に換算する。 この場合、 流速計測手段で計測する流体の流速 (Vi) は、 流速計測手段の近傍における一部の流体の流速を表している。 なお、 感温抵抗体を予め校正しておくと、 その抵抗値の変化から流体の温度を計測する ことができる。
図 3において、 流体管路 1 1の途中に流体の流速計測手段として、 上流側と下 流側とに超音波送受信器 1 2、 1 3を設けた。 超音波を、 上流側の超音波送受信 器 1 2から下流側の超音波送受信器 1 3へ、 およびその逆に、 送信し、 それぞれ の方向における超音波の伝搬時間を計測し、 その時間差から流体の流速を計測す る。 なお、 図 3において、 破線 1 4は超音波の伝搬方向を、 一点鎖線 1 5および 図中の矢印 16は流体の流れる方向を示す。 参照符号 17 (0) は超音波の伝搬 方向と流体の流れる方向との交叉角を示す。 この場合、 流速計測手段としての超 音波送受信器で計測される流速 (Vm) は、 超音波が伝搬する方向 14に沿った 部分の平均流速として計測される。
上記動作は、 数学的には、 次のように表すことができる。
Tud = LZ (Vs + ViXcos(0) ) 、 および
Tdu-L/ (Vs-Vmxcos(0) )
但し、 Tudは、 上流側の超音波送受信器 12から送信された超音波が下流側 の超音波送受信器 13で受信されるまでの時間であり、 Tduは、 下流側の超音波 送受信器 13から送信された超音波が上流側の超音波送受信器 12で受信される までの時間であり、 Lは超音波送受信器 12、 13間の距離であり、 Vsは音速 であり、 Vmは流体の流速である。
よって、
Vs + VmXcos(0) =LZTud、 および
Vs-VmXcos(^) =L/Tdu
この 2式の和と差は、 それぞれ、 以下のようになる。
2 XVs= (LZTud) + (LZTdu) 、 および
2 xVmXcos(^) = (L/Tud) - (L/Tdu)
従って、
Vs= (LZ2) X { (1/Tud) + (1/Tdu) } 、 および
Vm= {LZ (2 Xcos(0) ) } X { (1/Tud) ― ( l/Tdu) } 上記から分かるように、 超音波送受信器間の距離 Lと、 伝播時間 Tud、 Tdu の逆数の和とから、 音速 Vsが計測される。 また、 超音波送受信器間の距離 Lと、 伝播時間 Tud、 Tdu の逆数の差とから、 流速 Vmが計測される。
図 4に、 このようにして計測した流体の流速 (Vm) と流量係数 (K) との関 係を多数個のデータ組 (Vm、 K) について示した。 これらのデータ組は、 基準 デー夕記憶部 5および流速デー夕記憶部 6に記憶されている。
図 4は、 横軸に流速計測手段で計測した流体の流速 (Vm) を、 縦軸に流量係 数 (K) を示す。 なお、 流量係数 (K) は、 前記で説明したように、 K = VaZ Vmとして算出できる。 ここで、 平均流速 (Va) は、 Va=QaZSとして算出で きる (但し、 Qaは規準流量であり、 Sは流体管路の断面積である) 。 従って、 規準流量 (Qa) は、 Qa=S XVa=S XKX Vm と表すことができる。
次に、 本発明による流量係数演算部 7において使用される流量計数 (K) の設 定方法について説明する。 まず、 任意の数 (例えば、 5) の隣り合うデータ組 (Vm、 K) (図 4中、 1 7、 18、 19、 20、 2 1) を選ぶ。 そして、 流量 換算係数 (K) を与える最適近似直線 22を最小二乗法などの方法で算出する。 この最適近似線 22は、 流速計測手段が計測した流速値 (Vm) に対する流量 係数を与える直線である。 この最適近似線 22は、 次式で示すことができる。
Kc=AX Vm+B
ここで、 Aおよび Bは、 それぞれ、 直線の傾きおよび切片を示す。
この最適近似直線 22に対し、 選んだ 5組のデータ組のそれぞれの誤差を演算 し、 あらかじめ決められた誤差範囲、 Er、 例えば、 0. 5%以内にあるかどう かを判定する。 即ち、 計測された流速 Vmを、 最適近似直線 22 (Kc = AXVm + B) に代入し、 近似化された流量係数 (Kc) を計算する。 この計算された流 量係数 (Kc) を、 計測された流量係数 (K) と比較し誤差を求める。
もし、 全てのデータ組 (この場合 5組のデータ) が誤差 Er (0. 5%) 以内 にあれば、 図 5に示すように、 新たなデータ組、 1組 23を追加しデータ組数を 6組とする。 上記と同様に、 この 6組のデータを用いて、 最小二乗法で、 流量係 数 (Κ) を与える別の最適近似直線 24を求める。 この最適近似直線 24に対し て、 6組のデータ組全てが、 誤差 Er以内かどうかを判定する。 図示した例の場 合、 6組のデータ組の内 1組 (例えば、 デ一夕組 20) の誤差が、 Erより大き い。 従って、 この場合には予め決められた誤差、 Er内に入る隣り合うデータ組 の最大数は、 5となる。 このように、 5組、 1 7、 1 8、 1 9、 2 0、 2 1のデ 一夕を含む第 1の領域が設定される。
次に、 この第 1の領域の一番最後のデータ組、 2 1から出発して、 任意の数の データ組 (2 3、 2 5、 2 6 · · · · ) を選ぶ。 そして、 上記と同様に、 最適近 似直線を最小二乗方法で算出し、 これらのデータ組が誤差 E r以内かどうかを判 別する。 これにより、 上記と同様にして、 誤差 E rを満足する第 2の領域を設定 する。 例えば、 6組までのデータ組、 2 1、 2 3、 2 5、 2 6、 2 7および 2 8 が誤差 E r内となれば、 これら 6組のデータ組を含むものとして第 2の領域を決 定し、 これにより、 別の最適近似直線 2 9が得られることになる。 これを図 6に 示す。 この場合、 データ組 2 1は、 上記 2つの領域の境界点となる。 その後、 こ のようにしてさらに領域を設定していく。 この設定動作が完了した時には、 各領 域において最適近似直線で与えられる流量係数が予め決められた誤差 E r内にあ ることになる。
このようにして求めた、 複数の領域を含む最適近似直線を図 7に示す。 この複 数の領域 3 0 ~ 3 9を含む流量係数を与える最適近似線は、 流量係数記憶部に記 憶される。 第 1の領域 3 0は、 5組のデ一夕を含み、 その最適近似直線は参照符 号 2 2で示される。 第 2の領域 3 1は、 6組のデータを含み、 その最適近似直線 は参照符号 3 2で示される。 第 3の領域 3 3は、 7組のデータを含み、 その最適 近似直線は参照符号 3 4で示される。 第 4の領域 3 5は、 4組のデータを含み、 その最適近似直線は参照符号 3 6で示される。 第 5の領域 3 7は、 4組のデータ を含み、 その最適近似直線は参照符号 3 8で示される。 第 6の領域 3 9は、 6組 のデータを含み、 その最適近似直線は参照符号 4 0で示される。
なお、 上記設定方法を領域の一部分に適用して用いる際に、 上限値あるいは下 限値を設け、 あるデータ組より下限値の一方向に、 あるいは上限値の一方向に向 かって設定動作を行うことも可能である。 そのような場合、 設定動作をより効率 的に行い、 時間を節約することができる。 (実施の形態 2 )
図 8に、 流量係数記憶部に記憶されている一つの領域の流速 (Vm) と流量係 数 (K) との関係を示す。 図 8において、 参照符号 4 0は最適近似線を、 参照符 号 4 1は最適近似線 4 0より 0 . 5 %大きい別の最適近似線を、 参照符号 4 2は 最適近似線 4 0より 0 . 5 %小さい別の最適近似線を、 参照符号 4 3は領域の上 端を、 参照符号 4 4は領域の下端を示す。 この場合、 計測された流速 (Vm) と 流量係数 (K) との関係は、 一次直線で代表される最適近似線 4 0に対して ± 0 . 5 %以内の範囲内に分散する結果となった。 従って、 一次関数で表される最適近 似線は、 得られたデータ点を近似するのに十分である。
(実施の形態 3 )
図 9に、 流量係数記憶部に記憶されている他の領域の流速 (Vm) と流量係数 (K) との関係を示す。 図 9において、 参照符号 4 5は最適近似線を、 参照符号 4 6は最適近似線 4 5より 0 . 5 %大きい別の最適近似線を、 参照符号 4 7は最 適近似線 4 5より 0 . 5 %小さい別の最適近似線を、 参照符号 4 8は領域の上端 を、 参照符号 4 9は領域の下端を示す。 この場合、 計測された流速 (Vm) と流 量係数 (K) との関係は、 正規曲線状のパターンに分布している。 即ち、 一次関 数で代表される領域 (4 8と 4 9の間) の中央部のデータ点は、 最適近似線 4 5 の上方に偏る。 一方、 上端 4 8近傍のデータ点および下端 4 9近傍のデ一夕点は、 最適近似線 4 5の下方に偏っている。 この場合、 正規曲線状の二次曲線 5 0で最 適近似線を代表させると、 より一層データ点が最適近似二次曲線に近く近似され る。
従って、 このように領域の中央部におけるデータ組が最適近似直線の一方に偏 つた場合には、 最適近似線を一次関数で代表させるよりも、 二次関数で代表させ る方が、 より誤差を小さくできたり、 およびノまたはより広い範囲を一つの領域 と設定することができ、 設定動作が効率的となる。
(実施の^態 4 ) 次に他の流量係数の設定方法について説明する。
図 10に、 計測した流体の流速 (Vm) と流量係数 (K) との関係を、 複数の データ組 (Vm、 K) について示す。 これらのデータ組は、 基準データ記憶部 5 および流速デ一夕記憶部 6に記憶されている。
まず最初に、 図 10中のすべてのデータ組 (Vm、 K) を用い、 流量係数演算 部 7は、 流量係数 Kを与える最適近似関数を最小二乗法などで算出する。 この最 適近似関数は、 例えば 5次曲線、 Y=a5XX5+ a4XX4+a3XX3+a2X XS+aiXXi + aoXX0であり得る。 この最適近似曲線を図 10中に実線 51 として示す。 予め決められている流速範囲を、 予め決められている領域数 nに分 割する。 求めた実線 51上の値を流量係数の真値として用いて各領域内を直線近 似する。 このようにすれば、 2つの測定データ点間の測定値のない点でも、 5次 曲線 5 1を用いて流速 (Vm) から流量係数 (K) を算出することが出来る。 従 つて、 より正確に近似直線を求めることが出来る。
このようにして算出した最適近似線は、 流量係数記憶部 8に記憶される。
なお、 上述の 5次曲線からも解るように、 5次曲線を求めるのに必要なのは、 わずかに 6個のデータ点 (または、 6個の未知数、 a5、 a 4、 a3、 a2、 aい a0) である。 従って、 4次曲線を求めるには 5個、 3次曲線を求めるには 4個 のデ一夕点でよいことになる。 従って、 上記のようにすれば、 少ないデータ点で 広い範囲をカバーすることが出来るようになる。 また、 予め傾向がわかっている 場合、 最適近似線の次数に応じて、 流速 (Vm) と流量係数 (K) との関係を求 めることにより、 より効率的に流量係数を設定することができる。
(実施の形態 5)
次に、 予め与えられている流速の範囲を n分割する方法について説明する。 図 1 1に流速 (Vm) の範囲を 5分割した場合を示す。 より具体的には、 流速 (V m) 範囲を 0〜; 1. 3、 1. 3〜2. 6、 2. 6〜3. 9、 3. 9〜5. 2、 5. 2〜6. 5の 5つの領域に分割する。 それぞれの境界値の Vmについて、 流量係 数 (K) を 5次曲線 51を用いて算出する。 それら算出された境界点を直線で結 ぶ。 その直線 (図 1 1中、 5本の実線 52、 53、 54、 55および 56で示 す) を流量係数の近似直線として用いる。 例えば、 実線 52の場合には、 その両 端のデータ組は図 10に示した 5次曲線 51から演算で求め、 これにより、 2つ のデータ組 (Vm、 K) : (0, 0. 65) および (1. 3、 0. 87) を得る。 従って、 流量係数 (K) は次式、 K=0. 16 X Vm+ 0. 65で示される。 こ の様に、 計測データのない点をも簡単に算出することが出来る。 従って、 容易に 近似直線を設定することができる。
(実施の形態 6)
次に、 他の n分割の方法について説明する。 図 12に流量係数 (K) 範囲を 3 つの領域に分割した場合を示す。 より具体的には、 流量係数 (K) 範囲を、 0. 65〜0. 77、 0. 77〜0. 88、 0. 88〜0. 98 の 3つの領域に分 割する。 それぞれの境界流量係数 (K) について、 境界点に相当するデータ組を 算出する。 算出したデータ点それぞれを直線で結ぶ。 これらの直線 (図 12中、 3本の実線 57、 58および 59で示す) を、 各領域内での流量係数の近似直線 として用いる。
実施の形態 5と同様に、 計測データが無い点をも簡単に算出することが出来る。 従って、 容易に近似直線を設定することができる。 このようにして設定した流量 係数 (K) を算出する近似直線は、 流量係数記億部に記憶される。
なお、 実施の形態 5で示した設定方法においては、 流速 (Vm) (あるいは実 施の形態 6の場合には流量係数 (K) ) について、 上限値あるいは下限値を設け ておくと、 より効率よく設定動作を行うことができる。 このようにすれば、 特に、 要求される領域、 流速範囲あるいは流量係数の範囲が予め決められていることが 多い流量計測装置などに本発明を応用する場合、 設定動作をより効率的に、 短時 間で行うことができる。
(実施の形態 7 ) 次に、 他の]!分割の方法について説明する。 本実施の形態においては、 流量係 数 (K) の近似度をより向上させるために、 各領域の幅 (X軸方向の幅) を、 近 似直線の傾きに反比例するように設定した。 このようにすることにより、 傾きの 大きい領域では、 X軸方向の幅が狭くなり、 また傾きの小さい領域では、 X軸方 向の幅が大きくなる。 このため傾きに依存する近似直線の近似度が全領域にわた つて均一化される結果となる。 この様にして 1つのデ一夕範囲を 5つの領域に分 割した場合を図 13に示す。 より具体的には、 データ範囲を、 流量係数 (K) に ついて、 0. 65〜0. 73、 0. 73〜0. 83、 0. 83〜0. 88、 0. 88〜0. 93、 0. 93〜0. 98の 5つの領域に分割する。 それぞれの近似 直線を図中に、 5本の実線 60、 61、 62、 63、 64として示した。 このよ うにデ一夕の無い点でも、 5次曲線を用いることにより、 簡単に境界値に相当す るデ一夕組を算出することができる。 従って、 近似直線を簡単に設定することが 出来る。 このようにして設定した流量係数 (K) を算出する近似直線は、 流量係 数記憶部に記憶される。
(実施の形態 8)
次に、 流量係数の近似度をより向上させ、 誤差を予め決められた誤差 Er内に より良く抑える他の n分割の方法について図 14を用いて説明する。 図 14は、 計測データ組 (Vm、 K) を用いて得た 5次曲線 51を示す。 より具体的には、 図 14は、 この 5次曲線 51を流量係数 (K) の真値として用い、 設定動作を上 限値 65 ( 「〇」 印で示す) からスタートし、 予め設定された誤差を例えば 2% とした場合を示す。 点 65よりも小さい流速 (Vm) において、 5次曲線 51上 の任意の点、 例えば点 66 (これも 「〇」 印で示す) を選択する。 図 1 5の拡大 図を参照して、 点 65と点 66とを直線で結ぶ (点線 67で示す) 。 この直線 6 7が流量係数 (K) を与える近似直線と仮定する。 直線 67は、 曲線 51上の 2 点 65および 66を通る直線であるから、 前述の 5次式を用いてその 2点 65お よび 66の座標 (Vm、 K) を簡単に算出することができる。 従って、 2点 65、 W
66を通る直線 67を表わす式も簡単に算出することが出来る。
次に、 点 65と点 66との間で選択されたある流速、 Vmについて、 流量係数 (K) を算出する。 即ち、 5次曲線 51を用いて流量係数 (K) の真値を算出す る。 また、 その流速 Vmについて、 直線 67を用いて流量係数の近似値 (Kc) を 算出する。 このようにして算出した近似値 (Kc) と真値 (K) とを比較し、 誤差 を演算する。 この結果、 予め決められた誤差 Er (2%) 以内であれば、 点 66 を、 より小さい流速 (Vm) へと (即ち、 図 15では、 左側の方向に) わずかに 移動し、 上述した動作を繰返す。 一方、 算出誤差が予め決めれた誤差 E r (2 %) より大きかった塲合、 点 66をより大きい流速 (Vm) へと (即ち、 図 1 5では、 右側) に移動し、 上述した動作を繰返す。 点 66を一度に動かす量は、 要求される精度に依存する。 本実施の形態では、 この量を 0. 001に設定して いる。
このようにして演算した結果を図 16に示す。 図 16を参照して、 上限値 65 ( 「〇」 印で示す) から出発し、 各近似直線に対して誤差が誤差 E r (2%) 以 内である 5本の近似直線 (67、 68、 69、 70、 71の点線で示す) を設定 する。 このようにして予め決められている流速 (Vm) の範囲を、 5つの領域に 分割する。 この結果は、 5次曲線 51上の任意の点が、 これらの近似直線を用い て算出すると、 全て誤差が 2%以内であることを示している。 このようにして設 定した流量係数 (K) を算出する近似直線は、 流量係数記憶部に記憶される。
(実施の形態 9)
次に、 実施の形態 8と同様であるが、 予め最大領域数、 即ち、 近似直線の最大 数に制約がある場合により適している他の n分割の方法について説明する。 例え ば、 近似直線 (領域) の数を 3と仮定する。 誤差を 2%として、 実施の形態 8で 示した設定動作を行い、 近似直線 (領域) の数が 5となった。 これでは使用可能 な最大領域数 (即ち、 3) を越えているので、 予め設定する誤差 E rを徐々に大 きくし、 例えば、 2. 5%> 3. 0%、 等々、 とし、 実施の形態 8で説明した手 順を繰返す。 このようにすれば、 全領域にわたって最適な誤差配分となる 3つの 近似直線 (領域) を得ることが出来る。
また、 近似直線の最大数が 1 0本と多い場合には、 予め設定する誤差 E rを 徐々に小さく、 例えば、 1. 5%、 0. 5%、 等々、 とし、 これにより、 全領域 にわたつて最適な誤差配分となる 10個の近似直線 (領域) を得ることが出来る。 図 14〜図 1 6に示すデータの場合、 誤差 Erを 0. 5%とすると近似直線の数 は、 9本となる。 このように、 あらゆる特定の近似直線の数に応じた最適な誤差 配分を得ることが出来る。 このようにして設定した流量係数 (K) を算出する近 似直線は、 流量係数記憶部に記憶される。
(実施の形態 10)
次に、 流量係数 (K) の真値として用いることができる、 5次曲線以外の関数 形について説明する。 図 2、 図 3に示した流速計測部の配置では、 以下に示す関 数形が、 5次関数よりもよりよい近似度を示すことが解つた。
Y=a XL o g (X) +b
ここで、 Xは流速 (Vm) を、 Yは流量係数 (K) を示す。
図 17は、 この式において、 a = 0. 067、 b = 0. 299とした場合に得 られる実線 72を示す。 図 17から、 流速 (Vm) が 0. 2〜6. 0の広い範囲 において実線 72がよい近似曲線であることが解る。 この場合、 未知数が 2個 (a、 b) しかないので、 2つの計測データ点でのみで、 上記の式を算出するこ とが出来、 広い範囲にわたる近似曲線を算出するいことができる。 従って、 2つ のデ一夕組 (Vm、 K) から上式を算出し、 算出される値を流量係数の真値とし て用いることによって近似直線を算出できる。 これにより、 大変効率がよくなる。 なお、 実施の形態 10においては、 全領域に対して上記に示した関数形を適用し ている。 あるいは、 一部の領域に部分的に適用しても設定動作を効率よく行うこ とができる。
(実施の形態 1 1 ) 次に、 他の関数形について説明する。 図 2、 図 3に示した流速計測部の配置に おいて、 流路中の流速計測部に対して上流側に整流部を設けると、 流量係数 (K) が、 低流速領域および高流速領域において、 一定値に近づく傾向になるこ とが解った。 この場合には、 実施の形態 10に示した関数形よりも、 次式で示す 関数形の方がより高い近似度を示すことが解った。
Y= (a-b) / [1 +exp (_cX) ] + b
ここで、 Xは流速 (Vm) 、 Yは流量係数 (Κ) を示し、 a、 b、 cは未知 数である。
ここで、 未知数 bは低流速域での一定値、 即ち流量係数の下限値を示す。 また、 未知数 aは高流速域での一定値、 即ち流量係数の上限値を示す。 上流側に整流部 を設けた時の流量係数の計測値と、 a = 0. 920、 b = 0. 385、 c = l. 50とした場合の上記式の演算結果とを図 1 8に示す。 図 1 8において、 各 「◊」 印は計測値を示し、 実線 73は、 上式に基づいて得られた曲線を示す。 こ の場合には、 a、 b、 cの 3つの未知数を含む上記関数が非常に広い範囲におい て、 良い近似度を示すことが解る。 この場合、 わずかに 3つのデータ組 (Vm、 K) があれば、 上式を算出することができる。 得られる値を流量係数 (K) の真 値として用いることにより、 多くの計測データをとることもなく簡単に、 流量係 数 (K) の近似直線を設定することが出来る。
なお、 この場合も設定された流量係数 (K) を算出する近似直線は、 流量係数 記憶部に記憶される。 なお、 高流量域において流量係数 (K) が右上がり特性を 示す場合 (即ち、 流速に比例して流量係数 (K) が増加する場合) には、 上記の 関数形において、 定数 aを、 dXX+eに置き換えれば、 実測値と良い近似度を 示すことも確認した。 但し、 この場合には、 新たな未知数 dがーつ増えることに なる。 なお、 実施の形態 1 1においては、 全領域に対して上記に示した関数形を 適用している。 あるいは、 一部の領域に部分的に適用しても設定動作を効率よく 行うことができる。 (実施の形態 1 2 )
次に、 隣り合う 2つの領域間の境界点の処理の仕方について説明する。 順次デ —夕組を用いて、 流量係数を設定し、 領域を設定していく。 その結果、 2つの領 域の境界に相当するデータ組は、 両方の領域に属することになる。 流速計測部で 計測した流体の流速が丁度境界の流速値に合致した場合、 どちらの領域の流量係 数を採用するのかを決定する必要がある。 実施の形態 1 2では、 2つの隣り合う 領域間の境界値は、 誤差のより少ない流量係数を与える領域に属するように設定 される。 この結果、 境界値での誤差をより小さくすることができる。
(実施の形態 1 3 )
次に、 境界値の設定方法について説明する。 2つの隣り合う領域に設定された
2つの低次最適近似線の交点をその領域間の境界値として用いる。
この方法により、 2本の隣り合う最適近似線間で発生し得る段差が解消され、 最適近似線がより滑らかに接続されるようになる。 また、 この方法により、 2つ の隣り合う領域の境界が一意的に決まり、 計測された流速 (Vm) と、 流量係数 (K) とが一対一で対応させることもできる。
(実施の形態 1 4 )
流量係数 (K) を設定した後、 流量計測する対象となる流体の種類が変わつ た場合に適した別の流量係数設定方法について説明する。 例えば、 まず最初に流 量係数 (K) を空気について計測し、 計測値 (図 1 8中、 「◊」 印で示す) を得、 流量係数 (図 1 8中、 実線 7 3で表す) を設定した後で、 計測対象となる流体が 窒素、 メタンあるいはプロパンなどに変わった場合を仮定する。 例えば、 空気で の流量係数 (K) の変化が、 図 1 8から流速範囲 0〜7 mZ sにおいて、 約 0 . 6 5〜0 . 9 8程度である。 これらの流量係数値 0 . 6 5および 0 . 9 8の中間 値は K= 0 . 8 0程度となる。 そして、 新たな流体の流速を流速計測手段で計測 し、 これにより、 次式により両者間の流速比 Rvを算出する。
Rv= Vm(GaS 0. 80) /Vm(Ai r, 0. 80) 但し、 Vm (Gas、 0. 80)は、 K= 0 . 8 0における新たな流体の流速であり、 Vm (Ai r、 0. 80) は、 K= 0 . 8 0における空気の流速である。
そして、 図 1 8から得られる計測流速 Vm (Ai r)に、 上記流速比 Rvを乗じ、 こ れにより、 新しい流速を得る。 その結果を図 1 9に 2点鎖線 7 4として示す。 図 示した例の場合、 流速比 Rvは、 約 2〜3程度である。 このようにして得られた 2点鎖線 7 4が、 新たな流体 (Gas) での変換された流量係数 (K) を示す。 な お、 図 1 9中の実線 7 3は空気での流量係数 (K) を示す。
このように対象流体が変わっても簡単に、 流量係数 (K) を算出し直すことが できる。 このため、 新たな対象流体 (Gas) において新たに流量係数 (K) を測 定することもなく、 簡単に、 新たな対象流体 (Gas) に対する流量係数を得るこ とが出来る。 即ち、 流体の種類に応じて、 流速 (Vm) を変更する (この場合、 縮尺する) ことにより、 別の流体での流量係数を得ることができる。 このように 対象となる流体が変わった場合、 流量係数 (K) グラフの横軸 (Vm) 値に流体 の種類に応じた定数 (即ち、 流速比 Rv) を乗じることにより簡単に対応するこ とができる。
(実施の形態 1 5 )
流量係数 (K) をある流体の、 ある温度で設定した後、 流量計測する流体の温 度が変化した場合に適した流量係数設定方法について説明する。 流体の温度が変 化すると、 流体の特性が変化し、 流量測定値に誤差が発生する場合がある。 実施 の形態 1 5の方法は、 流体の温度が変化しても誤差の小さい流量値を提供できる。 例えば、 まず最初に、 図 1 8で示される流量係数 (K) を、 温度 Ts (例えば、 2 0 °C、 2 9 3 . 1 5 K、 規準温度) で設定したと仮定する。 その後、 流体の 流量を計測する前に、 (例えば、 周囲温度の変化によって) 流体の温度が新たな 温度 T iに変化した場合、 予め設定した流量係数 (K) を、 その新たな温度で用 いると誤差が発生し得る。 以下のようにすれば、 実用上問題の無い程度 (例えば、 約 1 . 5 %以下) にまで誤差を抑えることができることを実験的に確かめた。 ま ず、 新たな温度 T iにおいて流速 V iを測定する。 そして、 次式によって流速 V iを新たな流速 V i 2に変換する。
V i 2 = Vい (T s/T i) " i
但し、 Tsは、 流量係数 (K) を設定した時の流体の温度であり、 T iは、 流量測定時の流体の温度であり、 V iは、 新たな温度 T iにおいて計測した流体 の流速であり、 iは、 後述するべき指数である。 ここで、 温度、 Ts、 T iは共 に絶対温度 [K] である。
そして、 図 18から、 変換された流速 V i 2に対する流量係数値として、 新た な温度 T iにおける流量係数 K iを得る。 最後に、 得られた流量係数 K iに基づ いて流体の流量を算出する。
べき指数 iに関して、 べき数 iは、 好ましくは約 1.5〜約 3.0であり、 なか でもべき数 iは、 2. 5程度がもっともよく実験値と合うことを確かめた。
例えば、 流体の温度が 20 (293K) の時に流量係数 Kを設定し、 その後、 流体の温度が 0°C (273K) の時に同流体の計測流速 Viが 2m/secであった場 合を仮定する。 20°Cでは、 流速 2ffl/secに対する流量係数 (K) は、 図 12よ り約 0.89と読むことが出来る。 しかし、 温度が 0°Cに変化しているので、 流 量係数 (K) は以下のように求めるべきである。 まず、 上記の式を用いて、 計測 した流速 V iを以下のように変換する。
Vi=2 · (293/273) "2.5= 2. 38m/sec
すると、 流体の温度 0°Cでの、 流量係数 (Ki) は図 18から約 0. 91と読み とれる (流速 Vm=2. 38m/secに対応) 。
このように、 流体の温度が変化した場合でも、 図 18の実線 73、 即ち第 1の 温度 (20で) における流量係数を新たな温度における流量係数に変換すること によって、 新たな温度における流量係数値を得ることができるので、 新たな温度 での流量係数を新たに測定する必要がなくなり、 設定動作が非常に効率的となる。 換言すれば、 最適関数を用いて流量係数の近似直線を設定しているので、 温度が 変化した場合にも、 簡単な座標変換で、 即ち X軸値 (流速) に温度に依存した関 数値 (例えば、 今の場合温度比) を乗じることにより、 その新たな温度にあった 新たな流量係数を算出することが出来る。
なお、 この場合、 流体の温度を計測するために、 流体管路に別途温度センサを 設けてもよい。 しかし、 本発明では、 必ずしもその必要はない。 例えば、 流体の 流速を熱式フローセンサによって計測する場合、 熱式フローセンサは感温抵抗体 を含んでいるので、 その抵抗値を計測することにより流体の温度を簡単に計測す ることが出来る。
また、 流体の流速を (流体管路内において上流側と下流側とに設けた) 一対の 超音波送受信器によって計測する場合、 以下の理由から、 温度センサを別途設け る必要はない。
上流側超音波送受信器と下流側超音波送受信器との間の距離 Lは、 一定且つ既 知である。 従って、 測定対象流体中の音速 Vsは、 超音波送受信器間の平均伝搬 時間 (即ち、 上流側から下流側への伝搬時間の逆数と下流側から上流側への伝搬 時間の逆数と和) に基づいて、 次式によって求めることができる。
Vs= (L/2) X { (1/Tud) + (1/Tdu) }
見て分かるように、 この音速式には、 流体の流速の項が入っていない。 これは、 流体の流速とは無関係に測定対象流体中の音速 Vsを知ることができることを意 味している。
また、 流体中を伝播する音速は、 強く流体の温度に依存するので、 音速から流 体の温度を求めることが可能となる。 空気中での音速 V(Air)m/sは、 よく知られ ているように一次関数で次のように表される。
V(Air) = 331. 5 + 0. 6X t、 または
V(Air) = 331. 5 + 0. 6 X (Tabs- 273. 15)
但し、 Uま摂氏 (°C) であり、 Tabsは、 絶対温度 [K] である。
このように、 音速 V (Air) から容易に流体の温度 tを計測できるので、 本発明 の場合、 流体の温度を計測するのに温度センサを別途設ける必要はない。
なお、 上記実施の形態 1 5において、 流体の温度の変化に対応するために流量 係数を変換する際に流体の温度比 (絶対温度) を用いた。 しかし、 ある流体の温 度とその流体中の音速とは上記で説明したように非常に強い相関があるので、 絶 対温度比の代わりに流体の音速比を用いてもよい。 但し、 この場合には、 上記の べキ指数 iは、 上記のものとは若干異なり得る。
(実施の形態 1 6 )
本発明の流量係数設定方法に基づき得られた流量係数 (K) を用いた流量計測 装置について、 図 2 0を用いて説明する。 図 2 0を参照して、 流量計測装置は、 流体の流速を計測する流速計測部 4と、 上記で説明した本発明に基づき設定され た流量係数を記憶する流量係数記憶部 8と、 流速計測部 4で計測した流速 (V m) と流量係数記憶部 8に記憶された流量係数 (K) とを用いて流体の流量を演 算する流量演算部 7 5と、 演算して得た流量値 (Qcal) を出力する出力部 7 6 とを含む。 流速計測部 4で流体の流速を Vmと計測した場合、 この流速 Vmに相当 する流量係数 (K) を流量係数記憶部 8から求める。 そして、 流量演算部 7 5で は、 Qcal = S X VmX Kなる演算を実行し、 流体の流量 (Qcal) を得る。 この 演算結果は、 液晶表示器などを含む出力部 7 6に出力される。
以上説明したように、 本発明の流量計測装置は、 上記実施の形態において詳細 に説明したような流量係数設定方法に基づき設定された流量係数を記億する流量 係数記憶部 8を含んでいる。 これにより、 本発明の流量計測装置は、 誤差の小さ い流量値を出力することができる。 また、 流体の種類が流量係数を設定した時に 用いた流体から変わっても、 上記のようにして、 簡単に流量係数を変換できるの で、 本発明の流量計測装置は、 この場合でも誤差の小さい流量値を出力すること ができる。 また、 流体の温度が変化した場合でも、 上記のようにして、 流量係数 を簡単に変更できるので、 本発明の流量計測装置は、 この場合も誤差の小さい流 量値を出力することができる。 W
(実施の形態 1 7 )
実施の形態 1 7の流量計測装置は、 実施の形態 1 6で説明したものと同様であ るが、 実施の形態 1 7の流速計測部 4は、 熱式フローセンサを用いている。 即ち、 流速計測部 4を図 2に示した構成とした。 この構成により、 低流量域において、 特に誤差の小さい流量計測装置を実現することができる。 また、 熱式フローセン サの感温抵抗体から流体の温度を直接計測することができる。 従って、 本流量計 測装置は、 流体の温度を計測する温度センサを別途設けることなく、 より簡単に 構成することができる。
(実施の形態 1 8 )
実施の形態 1 8の流量計測装置は実施の形態 1 6で説明したものと同様である が、 実施の形態 1 8の流速計測部 4は、 流速計測部の上流側と下流側とに設けた 一対の超音波送受信器を含んでいる。 即ち、 流速計測部 4を図 3に示した構成と した。 この構成により、 広い流量域において、 特に誤差の小さい流量計測装置を 実現することができる。 また、 音速から流体の温度を直接計測することができる。 従って、 本流量計測装置は、 流体の温度を計測する温度センサを別途設けること なく、 より簡単に構成することができる。 産業上の利用可能性
. 以上の説明から明らかなように本発明の流量係数設定方法は、 まず、 任意に選 んだ数の隣り合うデータ組を用いて低次の最適近似線をもとめ、 その後、 全ての データ組が予め決められた誤差 E r内となるような最大デ一夕組数となるように データ組数を選択 (または、 調節) するので、 効率よく最適近似線を設定するこ とが出来る。
また、 広範囲にわたる複数のデータ組を用いて、 最適近似曲線を表す高次関数 を求め、 その後、 この最適近似曲線を基にして流量係数の最適近似線を表す低次 関数を求めてもよい。 この場合、 少ないデ一夕組であっても、 広範囲にわたる流 量係数を、 短時間で効率よく算出することができる。
本発明による別の流量係数設定方法では、 X軸の値に流体の種類に依存した定 数を乗じて、 ある種類の流体に対する流量係数を別の種類の流体に対する新たな 流量係数に変換する。 このようにして、 流量係数を設定した時に用いた流体から、 流体の種類が変わっても、 簡単に流量係数をその新たな流体に対応した新たな流 量係数に変換することができ、 流体の種類が変わった場合でも誤差の小さい流量 係数を実現できる。
本発明による別の流量係数設定方法では、 X軸の値に温度に依存した関数値を 乗じて、 ある温度における流量係数を別の温度における新たな流量係数に変換す る。 このようにして、 流量係数を設定した時の温度から、 流体の温度が変わって も、 簡単に流量係数をその新たな温度に対応した新たな流量係数に変換でき、 流 体の温度が変わった場合でも誤差の小さい流量係数を実現できる。
そして、 上記流量係数設定方法を用いた流量計測装置は、 広い流量域において、 誤差の少ない流量計測を行うことができる。

Claims

請求の範囲
1 . 流速計測部で計測した流速データを記憶する流速データ記憶部に記憶された 流速データの内、 隣合う n組のデータ点 (X i、 Y i) と、 基準データ記憶部に記 憶された基準データとを用いて最適近似線を求めるステップと、
前記 n組の全てのデータが、 前記最適近似線に対し予め決められた誤差 E r内 に入るように前記組数 nを増減するステップと、
流量係数演算部において領域を設定する演算処理を行うステップと、 得られた流量係数を流量係数記憶部に記憶するステツプと
を包含する、 流量係数設定方法。
2 . 前記 n組のデータ点 (X i、 Y i) が、 前記最適近似線の中央部において前記 最適近似線の両側に分布するときは、 前記最適近似線を一次関数を用いて表す、 請求の範囲第 1項に記載の流量係数設定方法。
3 . 前記 n組のデータ点 (X i、 Y i) が、 前記最適近似線の中央部において前記 最適近似線の片側に分布するときは、 前記最適近似線を二次関数を用いて表す、 請求の範囲第 1項に記載の流量係数設定方法。
4. 流速計測部で計測した流速データを記憶する流速データ記憶部に記憶された 流速データの複数組のデータ点 (X i、 Y i) と、 基準データ記憶部に記憶された 基準流量デ一夕とを用いて最適曲線を求めるステップと、
前記最適曲線を m個の領域に分割するステップと、
流量係数演算部において各領域内を最適近似直線を用いて近似する演算処理を 行うステップと、
得られた流量係数を前記流量係数記憶部に記憶するステップと を包含する、 流量係数設定方法。
5. 前記最適近似曲線を Y軸方向に沿って前記 m個の領域に等分割する、 請求の 範囲第 4項に記載の流量係数設定方法。
6. 前記最適近似曲線を X軸方向に沿って前記 m個の領域に等分割する、 請求の 範囲第 4項に記載の流量係数設定方法。
7. 各領域の幅が該領域の最適近似直線の傾きに反比例するように、 前記最適近 似曲線を X軸方向に沿って前記 m個の領域に分割する、 請求の範囲第 4項に記載 の流量係数設定方法。
8. 前記最適近似曲線を、 Y=aXLog (X) + b で表す、 請求の範囲第 4 項に記載の流量係数設定方法。
9. 前記最適近似曲線を、 Y= (a-b) / [1 +exp (— c XX)] +b で表す、 請求の範囲第 4項に記載の流量係数設定方法。
10. 前記流速計測部は、 熱式フローセンサを含む、 請求の範囲第 1項または第 4項に記載の流量係数設定方法。
1 1. 前記流速計測部は、 超音波流速計を含む、 請求の範囲第 1項または第 4項 に記載の流量係数設定方法。
12. 前記最適近似線を、 一次関数あるいは二次関数である低次の関数で表す、 請求の範囲第 1項または第 4項に記載の流量係数設定方法。
1 3 . 隣り合う 2つの領域に含まれるデータ点が、 前記隣り合う 2つの領域の内、 前記最適近似線から演算される誤差 E rがより小さい方に属するように設定され る、 請求の範囲第 1項または第 4項に記載の流量係数設定方法。
1 4. 隣り合う 2つの領域の 2つの最適近似線の交点を、 前記 2つの領域の境界 点とする、 請求の範囲第 1項または第 4項に記載の流量係数設定方法。
1 5 . 要求される全データ領域が予め決められた領域数に分割され得るまで、 誤 差 E rが徐々に大きくされる、 請求の範囲第 1項または第 4項に記載の流量係数 設定方法。
1 6 . 流体の種類が第 1の流体から第 2の流体へと変化した時に、 流量係数の X 軸の値に流体の種類に依存した定数を乗じ、 前記流量係数を新たな流量係数に変 換する、 請求の範囲第 1項または第 4項に記載の流量換算係数設定方法。
1 7 . 前記定数は、 前記第 1の流体の流速 (Vm) に流速比 (VgZVm) を乗じ て求められる新たな流速 (VmX VgZVm) であり、 V gは任意の流量係数値
(Kc) での前記第 2の流体の流速である、 請求の範囲第 1 6項に記載の流量係 数設定方法。
1 8 . 流体の温度が第 1の温度から第 2の温度へと変化した時に、 X軸の値に温 度に依存した関数値を乗じて前記流量係数を新たな流量係数に変換する、 請求の 範囲第 1項または第 4項に記載の流量換算係数設定方法。
1 9 . 前記新たな流量係数を求めるために用いる前記関数値は、 次式 V i · (TsZT i) ^ i
によって求められ、 T sは前記第 1の温度であり、 T iは前記第 2の温度であ り、 V iは T iにおいて測定された前記流体の流速であり、 iはべき指数である、 請求の範囲第 1 8項に記載の流量係数設定方法。
2 0 . 流体の絶対温度 (Tm) は、 熱式フローセンサの感温抵抗体から求められ る、 請求の範囲第 1 8項に記載の流量係数設定方法。
2 1 . 流体の絶対温度 (Tm) は、 超音波流速計の超音波伝搬時間から求められ る、 請求の範囲第 1 9項に記載の流量係数設定方法。
2 2 . 流速計測部と、
請求の範囲第 1項または第 4項に記載の流量係数設定方法により設定された流 量係数を記憶する流量係数記億部と、
計測した流速を、 前記流量係数記憶部に記憶された流量係数を用いて流量を演 算する流量演算部と
を備えた流量計測装置。
2 3. 前記流速計測部は、 熱式フローセンサを含む、 請求の範囲第 2 2項に記載 の流量計測装置。
2 4. 前記流速計測部は、 超音波流速計を含む、 請求の範囲第 2 2項に記載の流 量計測装置。
PCT/JP1999/005889 1998-10-26 1999-10-25 Method of setting flow coefficient and flow meter WO2000025096A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000578623A JP3487589B2 (ja) 1998-10-26 1999-10-25 流量係数設定方法とそれを用いた流量計測装置
US09/830,202 US6622096B1 (en) 1998-10-26 1999-10-25 Method of setting flow coefficient and flow meter using the same
EP99949408.1A EP1150103B1 (en) 1998-10-26 1999-10-25 Method of setting flow coefficient and flow meter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP30358598 1998-10-26
JP10/303585 1998-10-26
JP10/303580 1998-10-26
JP30358098 1998-10-26

Publications (1)

Publication Number Publication Date
WO2000025096A1 true WO2000025096A1 (en) 2000-05-04

Family

ID=26563561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005889 WO2000025096A1 (en) 1998-10-26 1999-10-25 Method of setting flow coefficient and flow meter

Country Status (8)

Country Link
US (1) US6622096B1 (ja)
EP (1) EP1150103B1 (ja)
JP (1) JP3487589B2 (ja)
KR (1) KR100457116B1 (ja)
CN (1) CN1207538C (ja)
MY (1) MY121843A (ja)
TW (1) TW407197B (ja)
WO (1) WO2000025096A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106886A (ja) * 2001-09-28 2003-04-09 Yamatake Corp 熱式流量計
JP2004085489A (ja) * 2002-08-28 2004-03-18 Yamatake Corp 熱式流量計
JP2010216807A (ja) * 2009-03-12 2010-09-30 Horiba Stec Co Ltd マスフローメータ、マスフローコントローラ、それらを含むマスフローメータシステムおよびマスフローコントローラシステム
JP2015043006A (ja) * 2014-12-05 2015-03-05 日立オートモティブシステムズ株式会社 気体流量測定装置
JP7070768B1 (ja) 2021-07-15 2022-05-18 富士電機株式会社 制御サーバ、制御方法、制御システム、及びプログラム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030001299A1 (en) * 2001-06-29 2003-01-02 Nachappa Gopalsami Method and apparatus for ultrasonic temperature monitoring
JP5942085B2 (ja) * 2011-12-26 2016-06-29 パナソニックIpマネジメント株式会社 流量補正係数設定方法とこれを用いた流量計測装置
CN105222839B (zh) * 2015-08-21 2018-04-24 浙江天信超声技术有限公司 超声波流量计仪表系数的非线性修正方法
JP6751609B2 (ja) * 2016-07-05 2020-09-09 サーパス工業株式会社 流量調整装置
JP2019020291A (ja) * 2017-07-19 2019-02-07 アズビル株式会社 熱式流量計および流量補正方法
JP6843014B2 (ja) 2017-07-31 2021-03-17 アズビル株式会社 熱式流量計および流量補正方法
JP6843024B2 (ja) * 2017-09-15 2021-03-17 アズビル株式会社 熱式流量計
KR101843138B1 (ko) * 2018-01-09 2018-03-28 (주)수인테크 회선 단락시 유속 보정방법을 갖는 유속비인지형 초음파유량계
CN108362911B (zh) * 2018-02-09 2022-02-08 西京学院 一种基于最小二乘法和插值法的流速仪标定方法
CN114812707B (zh) * 2022-05-16 2023-03-14 瑞纳智能设备股份有限公司 一种超声波计量表计量方法
CN116793462B (zh) * 2023-08-21 2023-11-03 成都千嘉科技股份有限公司 基于超声波燃气表的标定方法和标定装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0882540A (ja) * 1994-09-12 1996-03-26 Toshiba Corp 超音波流量測定方法及びその超音波流量計
JPH10206203A (ja) * 1997-01-24 1998-08-07 Kaijo Corp 超音波流量計

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3713542C2 (de) * 1986-04-25 1994-04-28 Tokyo Keiki Kk Verfahren und Gerät zur Messung des Durchflußvolumens
US5107441A (en) * 1990-10-31 1992-04-21 Otis Engineering Corporation System for evaluating the flow performance characteristics of a device
US5365795A (en) * 1993-05-20 1994-11-22 Brower Jr William B Improved method for determining flow rates in venturis, orifices and flow nozzles involving total pressure and static pressure measurements
JP3380345B2 (ja) * 1994-11-14 2003-02-24 東京瓦斯株式会社 熱式流速センサ
US5684250A (en) * 1995-08-21 1997-11-04 Marsh-Mcbirney, Inc. Self-calibrating open-channel flowmeter
JPH09317623A (ja) * 1996-03-29 1997-12-09 Mitsubishi Electric Corp 水車またはポンプ水車の特性の解析方法およびその方法を実施する発電プラント模擬装置
US5960369A (en) * 1997-10-23 1999-09-28 Production Testing Services Method and apparatus for predicting the fluid characteristics in a well hole

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0882540A (ja) * 1994-09-12 1996-03-26 Toshiba Corp 超音波流量測定方法及びその超音波流量計
JPH10206203A (ja) * 1997-01-24 1998-08-07 Kaijo Corp 超音波流量計

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106886A (ja) * 2001-09-28 2003-04-09 Yamatake Corp 熱式流量計
JP2004085489A (ja) * 2002-08-28 2004-03-18 Yamatake Corp 熱式流量計
JP2010216807A (ja) * 2009-03-12 2010-09-30 Horiba Stec Co Ltd マスフローメータ、マスフローコントローラ、それらを含むマスフローメータシステムおよびマスフローコントローラシステム
US8851105B2 (en) 2009-03-12 2014-10-07 Horiba Stec, Co., Ltd. Mass flow meter, mass flow controller, mass flow meter system and mass flow control system containing the mass flow meter and the mass flow controller
JP2015043006A (ja) * 2014-12-05 2015-03-05 日立オートモティブシステムズ株式会社 気体流量測定装置
JP7070768B1 (ja) 2021-07-15 2022-05-18 富士電機株式会社 制御サーバ、制御方法、制御システム、及びプログラム
JP2023013107A (ja) * 2021-07-15 2023-01-26 富士電機株式会社 制御サーバ、制御方法、制御システム、及びプログラム

Also Published As

Publication number Publication date
EP1150103A1 (en) 2001-10-31
US6622096B1 (en) 2003-09-16
EP1150103B1 (en) 2017-07-26
KR100457116B1 (ko) 2004-11-16
EP1150103A4 (en) 2006-02-22
JP3487589B2 (ja) 2004-01-19
CN1330764A (zh) 2002-01-09
CN1207538C (zh) 2005-06-22
MY121843A (en) 2006-02-28
KR20010089353A (ko) 2001-10-06
TW407197B (en) 2000-10-01

Similar Documents

Publication Publication Date Title
WO2000025096A1 (en) Method of setting flow coefficient and flow meter
JP4020433B2 (ja) 平均ピトー管型一次要素を備えた伝送器およびその使用方法
US3891391A (en) Fluid flow measuring system using improved temperature compensation apparatus and method
KR101472146B1 (ko) 실제 흐름 검증을 실시하는 방법
US7363182B2 (en) System and method for mass flow detection device calibration
CA1095163A (en) Method and system for measuring flow rate
CN104040299B (zh) 流量计的管线内验证方法
CN105222839B (zh) 超声波流量计仪表系数的非线性修正方法
CN109506730B (zh) 热式流量计
JP5177903B2 (ja) 物理量変化履歴記録方法及びそのプログラム、並びに流量計測装置及び流体供給システム
CN114812707B (zh) 一种超声波计量表计量方法
Kupnik et al. Numerical simulation of ultrasonic transit-time flowmeter performance in high temperature gas flows
JP2001174339A (ja) 音波を用いた温度測定時のセンサーの最適位置決定方法
Hardy et al. Empirical correlations for thermal flowmeters covering a wide range of thermal-physical properties
JPH07260532A (ja) 超音波流量計
RU2533329C1 (ru) Установка для поверки и калибровки счетчиков, расходомеров и расходомеров-счетчиков газа
JPH09243431A (ja) 流量センサ及びこれを利用した流量計
JP2023028497A (ja) 熱量計
JP5182153B2 (ja) 流量計測装置および流体供給システム
TWI416619B (zh) 執行實際流動驗證的方法
CN115876286A (zh) 一种并联流量计组切换测量的流量系数修正方法
JP3146603B2 (ja) フルイディックメーター制御装置
JP3146602B2 (ja) フルイディックメーター制御装置
Moon Implementation of a Monitoring System for the Measurement of Temperature, Flow Rate, and Fluid Pressure of Cooling
JPS62103558A (ja) シ−ト状材料の熱伝導率測定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99814687.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN JP KR US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2000 578623

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/00347/DE

Country of ref document: IN

Ref document number: 1200100382

Country of ref document: VN

Ref document number: 1020017005197

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 1999949408

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1999949408

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09830202

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020017005197

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999949408

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017005197

Country of ref document: KR