WO2000012724A1 - Glucoamylase thermophile de thermococcus hydrothermalis - Google Patents

Glucoamylase thermophile de thermococcus hydrothermalis Download PDF

Info

Publication number
WO2000012724A1
WO2000012724A1 PCT/FR1999/002069 FR9902069W WO0012724A1 WO 2000012724 A1 WO2000012724 A1 WO 2000012724A1 FR 9902069 W FR9902069 W FR 9902069W WO 0012724 A1 WO0012724 A1 WO 0012724A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
transformed
glucoamylase
strain
recovered
Prior art date
Application number
PCT/FR1999/002069
Other languages
English (en)
Inventor
Arnaud Galichet
Abdel Belarbi
Francis Duchiron
Original Assignee
Universite De Reims Champagne Ardennes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite De Reims Champagne Ardennes filed Critical Universite De Reims Champagne Ardennes
Publication of WO2000012724A1 publication Critical patent/WO2000012724A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2428Glucan 1,4-alpha-glucosidase (3.2.1.3), i.e. glucoamylase

Definitions

  • the present invention relates to a process for producing a thermophilic glucoamylase enzyme and to the enzyme thus obtained.
  • the transformation of starch into glucose syrup is traditionally carried out in two enzymatic stages.
  • the first stage called the liquefaction stage, is currently carried out in the presence of a thermostable ⁇ -amylase produced by Bacillus licheniformis or Bacillus subtilis, at a temperature of approximately 90 ° C. and at a pH of 6.
  • the second stage called the saccharification step, uses a glucoamylase or an ⁇ -glucosidase and a heat-sensitive pullulanase at a temperature of 60 ° C. and at a pH of 4.5.
  • thermophilic microorganisms belonging to the class of archaebacteria which are endowed with amylolytic activity such as: Pyrococcus furiosius, Pyrococcus woesei, Thermococcus profundus.
  • strain of the genus Thermococcus hydrothermalis (CNCMI 1319) is endowed with an amylolytic activity.
  • the methods of the prior art have the major drawback of comprising two stages using two types of enzymes.
  • microorganisms endowed with amylolytic activity they are of a rather delicate culture, but above all the production of enzyme is too low to be industrially profitable.
  • one of the aims of the present invention is to provide a process for preparing a glucoamylase enzyme which can be used in the starch industry to transform starch into glucose syrup in a single step, and this industrially.
  • thermophilic glucoamylase enzyme which is, according to the present invention, characterized in that it comprises the following stages: a) digest the chromosomal DNA of the Thermococcus hydrothermalis strain with a restriction enzyme; b) the fragments obtained by electroelution are recovered; c) each of the two types of fragment is ligated (500-1500 bp and 1500-9000 bp) with the plasmids PYME 1 and PYME 2; d) a strain of yeast Saccharomyces cerevisiae is transformed; e) the transformed yeasts are grown on a medium such that only those transformed with a plasmid containing a gene coding for an ⁇ -glucosidase develop; f) the cells selected in step e) are recovered, they are cultured and the enzyme glucoamylase excreted is recovered.
  • the bands between 500 and 1500 bp are digested with 0.2 U of restriction enzyme and the bands 1500 to 9000 bp with 0.06 U of this enzyme, these bands being obtained by electrophoresis of the chromosomal DNA.
  • step c) ligation is carried out into the plasmids PYME1 and PYME2 cut with the restriction enzyme Bam HI, using a T4 DNA ligase.
  • Saccharomyces cerevisiae yeasts are grown in step e) on a YNB and maltose medium without glucose.
  • step a 8 ⁇ g of chromosomal DNA of the Thermococcus hydrothermalis strain (CNCM 1-1319) is digested with from 0.2 to 0.06 U of the restriction enzyme Sau3A sold by the company BOEHRINGER MANNHEIM. The DNA fragments are then separated by electrophoresis in 0.8% agarose gel [weight / volume, 0.8% agarose; TBE buffer: 0.09 M Tris borate; ethylenediaminotetra-acetic acid (EDTA) 0.002 M
  • the cells were transformed by the lithium acetate method described by Gietz et al, (1992).
  • step e the cells were then cultured in YNB (Yeast Nitrogen Base) medium composed of Yeast Nitrogen base W / O Amino acids (6.7 g / l, company DIFCO) and maltose glucose free (20 g / 1).
  • YNB Yeast Nitrogen Base
  • Amino acids 6.7 g / l, company DIFCO
  • maltose glucose free 20 g / 1.
  • the plasmids contained in the transformed TCY70 yeast cells growing on maltose are extracted by the method described by Hoffmann and Winston (1987). The cells are recovered from 5 ml of culture. They are washed with 1 ml of TE buffer (10 mM Tris HCI; pH8; 1 mM EDTA).
  • E. coli DH5 ⁇ (Bethesda Research Laboratories, Gaithesburg, MD) by the CaCI2 method (Cohen et al, 1972). This is necessary in order to amplify the number of plasmids which is low in yeast.
  • the transformed E. coli cells are cultured in Luria-Bertani (LB) medium supplemented with ampicillin (50 ⁇ g / ml).
  • the plasmids contained in the bacteria are extracted with the method of Holmes and Quigley (1981).
  • a TCY70 yeast colony growing on maltose was studied.
  • the plasmid it contains has a genomic DNA insert of 1970 bp (p41 F2).
  • This plasmid p41 F2 when it is used to transform the strain TCY70, again allows growth on maltose whereas the same transformation with the empty PYME1 plasmid does not allow any growth.
  • the 1970 bp insert therefore seemed to have a gene coding for an enzyme capable of degrading maltose into glucose which can be used by yeast cells.
  • the insert of the plasmid p41 F2 named AG1970 has been sequenced (FIG. 1).
  • the sequencing was carried out with an ABI model 377 automatic sequencer (ABI- Perkin Elmer) from the company EUROGENTEC (Seraing, Belgium).
  • an open reading frame (ORF) for 726 nucleotides (Figure 2) encoding a 242 AA protein ( Figure 3) has sequence homologies with glucoamylase, ⁇ -glucosidase, isomaltase.
  • This deduced protein sequence has 37% identity and 56% similarity to the open phase PH1373 of unknown function of Pyrococcus horikoshii.
  • This protein is therefore a new ⁇ -glucosidase.
  • the yeast cells transformed by p41 F2 are capable of growing on medium supplemented with maltose, maltotriose, pullulan, starch or amylose as the only carbon source whereas the strain TCY70 transformed by the plasmid
  • the culture supernatant was recovered by centrifugation (5,000 g; 10 minutes) and concentrated 100 times then diafiltered with 100 mM citrate phosphate buffer pH 5.5 using an Amicon unit and a YM-type membrane. having a cutoff threshold of 10 kDa (Amicon, France).
  • the yeasts recovered by centrifugation and then taken up with a hundredth of initial volume in a 100 mM phosphate citrate buffer, pH 5.5, are ground with glass beads of 400-600 nm diameter. Cellular debris is removed by centrifugation (10,000 g for 30 minutes at 4 ° C) and the supernatant obtained serves as a cell extract.
  • the reaction media 200 ⁇ l successively consist of 0.5% of substrate (maltose or maltotriose or maltotetraose or starch or amylose), 10 ⁇ l of enzymatic solution (cell extract or concentrated diafiltered supernatant) and phosphate buffer pH 5 , 5.
  • substrate maltose or maltotriose or maltotetraose or starch or amylose
  • enzymatic solution cell extract or concentrated diafiltered supernatant
  • phosphate buffer pH 5 5.
  • the incubations were 15 minutes and then, after cooling in ice, either the reducing sugars formed were measured by the 3,5-dinitrosalycylic acid method (Bernfeld, 1955), or the glucose formed was measured by the Trinder enzymatic method (SIGMA company).
  • the enzyme activity was calculated by subtracting from the hydrolysis test carried out the values of two control tests: an enzyme control (reaction carried out without substrate) and a substrate control (reaction carried out without enzymatic solution
  • the positive results for the determination of the glucose formed show that the degradation product is glucose.
  • the action on substrates of different sizes show that this enzyme is a glucoamylase.
  • the enzyme activity is present in the culture supernatant indicates that the enzyme is secreted. This therefore allows, for its production on an industrial scale, easy recovery of this enzyme.
  • the enzyme is easier to purify because there are fewer proteins and undesirable enzymatic activities in the supernatant compared to the intracellular medium.
  • the citrate-phosphate buffer (citric acid 0.05; 0.1 M dibasic sodium phosphate) for pH from 2 to 7 and the Tris buffer -HCI (hydroxymethyl aminomethane 0.2 M; HCI 0.2 M) for pH 7 to 9.
  • the procedure is the same as that used for the activity measurements using maltose as substrate.
  • the results showed that the optimum pH is between 5.0 and 6.5 ( Figure 5).
  • the optimum temperature was determined as above at pH 5.5.
  • the media are incubated at temperatures varying from 30 ° C to 125 ° C.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Ce procédeé comprend les étapes suivantes: a) on fait digérer l'ADN chromosomique de la souche Thermococcus hydrothermalis par une enzyme de restriction; b) on récupère les fragments obtenus par électroélution; c) on ligature chacun des deux types de fragment (500-1500 pb et 1500-9000 pb) dans les plasmides PYME 1 et PYME 2; d) on transforme une souche de levure Saccharomyces cerevisiae; e) on fait croître les levures transformées sur un milieu tel que seules celles transformées par un plasmide contenant le gène codant pour une α-glucosidase se développent; f) on récupère les cellules sélectionnées à l'étape e), on les cultive et on récupère l'enzyme glucoamylase excrétée. Application notamment dans l'industrie de l'amidon.

Description

Titre : GLUCOAMYLASE THERMOPHILE DE THERMOCOCCUS HYDROTHERMAL IS
La présente invention est relative à un procédé pour produire une enzyme glucoamylase thermophile et à l'enzyme ainsi obtenue.
Dans l'industrie amidonnière, la transformation de l'amidon en sirop de glucose est traditionnellement réalisée en deux étapes enzymatiques. La première étape, dite étape de liquéfaction, est actuellement mise en œuvre en présence d'une α-amylase thermostable produite par Bacillus licheniformis ou Bacillus subtilis, à une température d'environ 90°C et à un pH de 6. La seconde étape, dite étape de saccharification, utilise une glucoamylase ou une α-glucosidase et une pullulanase thermosensible à une température de 60°C et à un pH de 4,5.
On connaît, par ailleurs, des micro-organismes thermophiles appartenant à la classe des archaebactéries qui sont doués d'activité amylolytique tels que : Pyrococcus furiosius, Pyrococcus woesei, Thermococcus profundus. De même on sait que la souche du genre Thermococcus hydrothermalis (CNCMI 1319) est douée d'une activité amylolytique.
Les procédés de l'art antérieur présentent l'inconvénient majeur de comporter deux étapes mettant en oeuvre deux types d'enzymes. Quant aux micro-organismes doués d'activité amylolytique, ils sont de culture assez délicate, mais surtout la production d'enzyme est trop faible pour être industriellement rentable.
Ainsi un des buts de la présente invention est-il de fournir un procédé pour préparer une enzyme glucoamylase qui puisse être utilisée dans l'industrie amidonnière pour transformer l'amidon en sirop de glucose en une seule étape, et ce de manière industrielle.
Ces buts, ainsi que d'autres qui apparaîtront par la suite, sont atteints par un procédé est pour produire une enzyme glucoamylase thermophile qui est, selon la présente invention, caractérisé par le fait qu'il comprend les étapes suivantes : a) on fait digérer l'ADN chromosomique de la souche Thermococcus hydrothermalis par une enzyme de restriction ; b) on récupère les fragments obtenus par électroélution ; c) on ligature chacun des deux types de fragment (500-1500 pb et 1500-9000 pb) par les plasmides PYME 1 et PYME 2 ; d) on transforme une souche de levure Saccharomyces cerevisiae ; e) on fait croître les levures transformées sur un milieu tel que seules celles transformées par un plasmide contenant un gène codant pour une α-glucosidase se développent ; f) on récupère les cellules sélectionnées à l'étape e), on les cultive et on récupère l'enzyme glucoamylase excrétée.
Avantageusement, on fait digérer les bandes entre 500 et 1500 pb par 0,2 U d'enzyme de restriction et les bandes 1500 à 9000 pb par 0,06 U de cette enzyme, ces bandes étant obtenues par électrophorèse de l'ADN chromosomique.
De préférence, à l'étape c), on ligature dans les plasmides PYME1 et PYME2 coupés par l'enzyme de restriction Bam Hl, en utilisant une ligase T4 DNA.
Avantageusement, on cultive à l'étape e) les levures Saccharomyces cerevisiae sur un milieu YNB et maltose sans glucose.
La description qui va suivre et qui ne présente aucun caractère limitatif ? doit permettre à l'homme du métier de refaire la présente invention. Selon la première, étape, étape a), du présent procédé, on fait digérer 8 μg d'ADN chromosomique de la souche Thermococcus hydrothermalis (CNCM 1-1319) par de 0,2 à 0,06 U de l'enzyme de restriction Sau3A commercialisée par la société BOEHRINGER MANNHEIM. Les fragments d'ADN sont ensuite séparés par électrophorèse en gel d'agarose à 0,8 % [poids/volume, Agarose 0,8 % ; tampon TBE : Tris borate 0,09 M ; acide éthylènediaminotétra-acétique (EDTA) 0,002 M
(pH 8,2) ; Bromure d'éthidium 1 μg/l ; 80 V, 1 h]. Les bandes entre 500 et 1500 pb sont récupérées pour la digestion par 0,2 U et les bandes entre 1500 et 9000 pb sont récupérées pour la digestion par 0,06 U d'enzyme Sau3A.
La récupération des fragments est effectuée par électroélution, étape b) : le morceau de gel d'agarose contenant l'ADN est placé dans une cupule. L'ensemble est soumis à une électrophorèse pendant une heure sous une tension de 100 V. Sous l'effet du courant, l'ADN sort de l'agarose et s'accumule au fond de la cupule où on le récupère.
Chacun des deux types de fragments (500-1500 pb et 1500-9000 pb) sont ligaturés, étape c), dans 2 plasmides nommés PYME1 et PYME2 (Yao, Marmur,
Solliti 1993) coupés par l'enzyme de restriction Bam Hl. La ligation des fragments est réalisée en utilisant l'enzyme T4 DNA, ligase de la Société EUROGENTEC avec un rapport fragment/vecteur de 20. La ligation d'un fragment coupé par Sau3A dans un plasmide coupé par l'enzyme BamHI permet de restaurer le site BamHI. Ces deux plasmides sont identiques sauf pour l'orientation des sites de clonage inverse dans PYME2 par rapport à PYME1 . Ce sont des plasmides navettes E. Coli/Saccharomyces cerevisiae possédant le gène codant pour une résistance à l'ampicilline et un marqueur d'auxotrophie chez la levure : le gène ura 3 ; Ce sont des plasmides d'expression. Quatre banques d'expression comptant 13.000 clones indépendants ont donc été ainsi construites. Chacune de ces banques a servi à la transformation, étape d), d'une souche de levure Saccharomyces cerevisiae TCY70 (Chow T 1987) (mal 1 S : LEU3, ura3). Cette souche, dont le gène codant pour la maltase (mal IS) a été interrompu par le marqueur d'auxotrophie LEU2, est incapable de croître sur un milieu contenant du maltose comme seule source carbonée.
Les cellules ont été transformées par la méthode à l'acétate de lithium décrite par Gietz et al, (1992).
Lors de l'étape e), les cellules ont ensuite été cultivées en milieu YNB (Yeast Nitrogen Base) composé de Yeast Nitrogen base W/O Amino acids (6,7 g/l , société DIFCO) et de maltose glucose free (20 g/1). Ainsi seules les cellules transformées avec un plasmide contenant un gène codant pour une α-glucosidase pourront croître.
Les plasmides contenus dans les cellules de levure TCY70 transformées poussant sur maltose sont extraits par la méthode décrite par Hoffmann et Winston (1987). Les cellules sont récupérées à partir de 5 ml de culture. Elles sont lavées avec 1 ml de tampon TE (Tris HCI 10mM ; pH8 ; EDTA 1 mM). Elles sont ensuite remises en suspension dans 0,1 ml de tampon TE, puis 0,2 ml de tampon de lyse sont additionnés (Triton X-100 2 % ; Sodium Dodécyl Sulfate 1 % ; NaCI 0,1 M TriHCI pH8 10mM ; EDTA 1 mM) ainsi que 0,2 ml de billes de verre de diamètre 0,4- 0,6 mm (SIGMA) et 0,2 ml de mélange phénol/chloroforme (1 :1 v/v). L'ensemble est agité sur vortex 2 minutes puis centrifugé (5 minutes ; 15.000 g ; 4°C). La phase aqueuse est récupérée et un volume de chloroforme lui est ajouté pour éliminer les traces de phénol. Après une nouvelle centrifugation, la phase aqueuse est récupérée. Elle contient les plasmides des levures étudiées. La fraction contenant ces plasmides est utilisée pour transformer la couche
E.coli DH5α (Bethesda Research Laboratories, Gaithesburg, MD) par la méthode au CaCI2 (Cohen et al , 1972). Cela est nécessaire afin d'amplifier le nombre de plasmide qui est faible chez la levure. Les cellules E.coli transformées sont cultivées en milieu Luria-Bertani (LB) additionné d'ampicilline (50 μg/ml). Les plasmides contenus dans la bactérie sont extraits avec la méthode de Holmes et Quigley (1981 ).
Une colonie de levure TCY70 poussant sur maltose a été étudiée. Le plasmide qu'elle contient possède un insert d'ADN génomique de 1970 pb (p41 F2).
Ce plasmide p41 F2, lorsqu'il sert à transformer la souche TCY70, permet de nouveau la croissance sur maltose alors que la même transformation avec le plasmide PYME1 vide ne permet aucune croissance. L'insert de 1970 pb semblait donc posséder un gène codant pour une enzyme capable de dégrader le maltose en glucose utilisable par les cellules de levure.
L'insert du plasmide p41 F2 nommé AG1970 a été séquence (figure 1 ). Le séquençage a été réalisé avec un séquenceur automatique ABI modèle 377 (ABI- Perkin Elmer) de la société EUROGENTEC (Seraing, Belgique). Dans ce fragment, une phase ouverte de lecture (ORF pour Open reading frames) de 726 nucléotides (figure 2) codant pour une protéine de 242 AA (figure 3) possède des homologies de séquence avec des glucoamylase, α-glucosidase, isomaltase. Cette séquence protéique déduite possède 37 % d'identité et 56 % de similarité avec la phase ouverte PH1373 de fonction inconnue de Pyrococcus horikoshii.
La séquence de cette protéine est différente de celle déterminée par séquençage de l'α-glucosidase déjà décrite dans la souche Thermococcus hydrothermalis (Legin, thèse de doctorat, 1997) (figure 4).
Cette protéine est donc bien une nouvelle α-glucosidase. Les cellules de levure transformées par p41 F2 sont capables de croître sur milieu supplémenté en maltose, maltotriose, pullulane, amidon ou amylose comme seule source carbonée alors que la souche TCY70 transformée par le plasmide
PYME vide en est incapable.
La souche Saccharomyces cerevisiae transformée par le plasmide p41 F2, (étape f), a été cultivée en milieu YNB plus maltose. Le surnageant de culture a été récupéré par centrifugation (5.000 g ; 10 minutes) et concentré 100 fois puis diafiltré avec du tampon citrate phosphate 100 mM pH 5,5 à l'aide d'une unité Amicon et d'une membrane de type YM ayant un seuil de coupure de 10 kDa (Amicon, France). Les levures récupérées par centrifugation puis reprises avec un centième de volume initial dans un tampon citrate phosphate 100 mM pH 5,5 sont broyées avec des billes de verre de diamètre 400-600 nm. Les débris cellulaires sont éliminés par centrifugation (10.000 g pendant 30 minutes à 4°C) et le surnageant obtenu sert d'extrait cellulaire.
Chacune des deux fractions a été utilisée pour mesurer l'activité enzymatique sur différents substrats à 80°C (température optimale de croissance de Thermococcus hydrothermalis) . Les milieux réactionnels (200 μl) sont constitués successivement de 0,5 % de susbstrat (maltose ou maltotriose ou maltotétraose ou amidon ou amylose), de 10 μl de solution enzymatique (extrait cellulaire ou surnageant concentré diafiltré) et de tampon citrate phosphate pH 5,5. Les incubations ont été de 15 minutes puis, après refroidissement dans la glace, soit les sucres réducteurs formés ont été dosés par la méthode à l'acide 3,5- dinitrosalycylique (Bernfeld, 1955), soit le glucose formé a été dosé par la méthode enzymatique Trinder (Société SIGMA). Le calcul d'activité de l'enzyme a été réalisé en retranchant à l'essai d'hydrolyse réalisé les valeurs de deux essais témoins : un témoin enzyme (réaction réalisée sans substrat) et un témoin substrat (réaction réalisée sans solution enzymatique).
Les résultats ont montré que l'enzyme produite est capable d'hydrolyser l'ensemble des substrats essayés et ce avec les deux solutions enzymatiques (extrait cellulaire et surnageant). Les résultats positifs de dosage du glucose formé montrent que le produit de dégradation est du glucose. L'action sur des substrats de tailles différentes montrent que cette enzyme est une glucoamylase.
Le fait que l'activité enzymatique soit présente dans le surnageant de culture indique que l'enzyme est sécrétée. Cela permet donc, pour sa production à l'échelle industrielle, une récupération aisée de cette enzyme. De plus, l'enzyme est plus facile à purifier car il y a moins de protéines et d'activités enzymatiques indésirables dans le surnageant par rapport au milieu intracellulaire.
L'étude des propriétés physico-chimiques de l'α-glucosidase a été faite et en paticulier l'acitivité en fonction du pH et de la température.
Deux tampons ont été utilisés pour une gamme totale de pH allant de 2 à 9. Le tampon citrate-phosphate (acide citrique 0,05 ; phosphate de sodium dibasique 0,1 M) pour les pH allant de 2 à 7 et le tampon Tris-HCI (hydroxyméthyl aminométhane 0,2 M ; HCI 0,2 M) pour les pH de 7 à 9. Le mode opératoire est le même que celui utilisé pour les mesures d'activités en utilisant le maltose comme substrat. Les résultats ont montré que l'optimum de pH est compris entre 5,0 et 6,5 (figure 5). La température optimale a été déterminée comme précédemment à pH 5,5. Les milieux sont incubés à des températures variant de 30°C à 125°C. Ces expériences ont montré que l'activité maximale est obtenue pour des températures comprises entre 70°C et 95°C (figure 6).

Claims

R E V E N D I C A T I O N S
1. Procédé pour produire une enzyme glucoamylase thermophile, caractérisé par le fait qu'il comprend les étapes suivantes : a) on fait digérer l'ADN chromosomique de la souche Thermococcus hydrothermalis par une enzyme de restriction ; b) on récupère les fragments obtenus par électroélution ; c) on ligature chacun des deux types de fragment (500-1500 pb et 1500-9000 pb) dans les plasmides PYME 1 et PYME 2 ; d) on transforme une souche de levure Saccharomyces cerevisiae ; e) on fait croître les levures transformées sur un milieu tel que seules celles transformées par un plasmide contenant le gène codant pour une α-glucosidase se développent ; f) on récupère les cellules sélectionnées à l'étape e), on les cultive et on récupère l'enzyme glucoamylase excrétée.
2. Procédé selon la revendication 1 , caractérisé par le fait qu'on fait digérer les bandes entre 500 et 1500 pb par 0,2 U d'enzyme de restriction et les bandes 1500 à 9000 pb par 0,06 U de cette enzyme, ces bandes étant obtenues par électrophorèse de l'ADN chromosomique.
3. Procédé selon la revendication 1 , caractérisé par le fait qu'à l'étape c), on ligature par les plasmides PYME1 et PYME2 coupés par l'enzyme de restriction Bam Hl, en utilisant une ligase T4 DNA.
4. Procédé selon la revendication 1 , caractérisé par le fait que l'on cultive à l'étape e) les levures Saccharomyces cerevisiae sur un milieu YNB et maltose sans glucose.
PCT/FR1999/002069 1998-08-28 1999-08-30 Glucoamylase thermophile de thermococcus hydrothermalis WO2000012724A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9810796A FR2782731B1 (fr) 1998-08-28 1998-08-28 Procede pour produire une enzyme glucoamylase thermophile et enzyme ainsi obtenue
FR98/10796 1998-08-28

Publications (1)

Publication Number Publication Date
WO2000012724A1 true WO2000012724A1 (fr) 2000-03-09

Family

ID=9529943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/002069 WO2000012724A1 (fr) 1998-08-28 1999-08-30 Glucoamylase thermophile de thermococcus hydrothermalis

Country Status (2)

Country Link
FR (1) FR2782731B1 (fr)
WO (1) WO2000012724A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026058A1 (fr) * 1996-12-11 1998-06-18 Universite De Reims Champagne Ardennes Alpha-glucosidase et pullulanase thermostables et leurs utilisations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026058A1 (fr) * 1996-12-11 1998-06-18 Universite De Reims Champagne Ardennes Alpha-glucosidase et pullulanase thermostables et leurs utilisations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOPETZKI E ET AL: "Cloning and characterization of baker's yeast alpha-glucosidase: over-expression in a yeast strain devoid of vacuolar proteinases", YEAST, vol. 5, no. 1, 1989, pages 11 - 24, XP002103760 *

Also Published As

Publication number Publication date
FR2782731B1 (fr) 2002-01-18
FR2782731A1 (fr) 2000-03-03

Similar Documents

Publication Publication Date Title
CA1214407A (fr) Amylase maltogenique, preparation et utilisation
RU1838410C (ru) Способ получени альфа-амилазы
De Moraes et al. Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express α-amylase and glucoamylase separately or as bifunctional fusion proteins
KR0127560B1 (ko) 단백질 분해 효소 코드화 유전자의 분자클로닝 및 발현
US20080187971A1 (en) Glucoamylase Variants
WO2019128454A1 (fr) Nouveau trichoderma et son application
Sills et al. ISOLATION AND CHARACTERISATION OF THE AMYLOTIC SYSTEM OF SCHWANNIOMYCES CASTELLII
US5912150A (en) Pyrodictium xylanase, amylase and pullulanase
WO1995023852A1 (fr) AMYLASE ET PULLULANASE DE $i(THERMOCOCCUS)
JP3025625B2 (ja) アルカリα−アミラーゼ活性を有するアルカリプルラナーゼ遺伝子
WO2000012724A1 (fr) Glucoamylase thermophile de thermococcus hydrothermalis
JP2002531121A (ja) N末端伸長を有するグルコアミラーゼ
EP0205371A1 (fr) Vecteurs d'expression de l'alpha-amylase dans bacillus subtilis, souches obtenues et procédé de préparation d'alpha-amylase
EP0753056A1 (fr) Amylase et pullulanase de desulfurococcus
US5714369A (en) Fervidobacterium amylase and pullulanase
JPH0671428B2 (ja) ウリカーゼのdna配列および製法
Chagnaud et al. Construction of a new shuttle vector for Lactobacillus
KR100186716B1 (ko) 말토오스 생성 아밀라제, 그것을 코드하는 유전자를 포함하는 재조합 벡터 및 그의 형질전환체
US5882906A (en) Staphylothermus amylase
EP0640138B1 (fr) Fragment d'adn contenant un gene, codant pour la pullulanase alcaline
EP0149915A2 (fr) Utilisation d'amidon par des microorganismes gram-négatifs
KR101014802B1 (ko) 복합 탈분지 효소를 이용하여 전분으로부터 포도당을 제조하는 방법
JP2863607B2 (ja) アミラーゼ及びその製造法
JPH07143880A (ja) 超耐熱性α−アミラーゼ遺伝子
BE1006483A3 (fr) Pullulanase, microorganismes la produisant, procedes de preparation de cette pullulanase, utilisations et compositions comprenant celle-ci.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase