WO2000012417A1 - Gas jetting structure for float transport devices and method of forming jet holes - Google Patents

Gas jetting structure for float transport devices and method of forming jet holes Download PDF

Info

Publication number
WO2000012417A1
WO2000012417A1 PCT/JP1999/004700 JP9904700W WO0012417A1 WO 2000012417 A1 WO2000012417 A1 WO 2000012417A1 JP 9904700 W JP9904700 W JP 9904700W WO 0012417 A1 WO0012417 A1 WO 0012417A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
receiving hole
gas
hole
ejection
Prior art date
Application number
PCT/JP1999/004700
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Tsujimura
Michio Yagai
Masayuki Toda
Masaki Kusuhara
Original Assignee
Kabushi Kaisha Watanabe Shoko
Wacom Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushi Kaisha Watanabe Shoko, Wacom Electric Co., Ltd. filed Critical Kabushi Kaisha Watanabe Shoko
Publication of WO2000012417A1 publication Critical patent/WO2000012417A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67784Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G51/00Conveying articles through pipes or tubes by fluid flow or pressure; Conveying articles over a flat surface, e.g. the base of a trough, by jets located in the surface
    • B65G51/02Directly conveying the articles, e.g. slips, sheets, stockings, containers or workpieces, by flowing gases
    • B65G51/03Directly conveying the articles, e.g. slips, sheets, stockings, containers or workpieces, by flowing gases over a flat surface or in troughs

Definitions

  • the present invention relates to a gas ejection structure for a levitation transfer device and an ejection hole forming method.
  • a gas jet is ejected to a levitation transport device that moves, stops, stops, and changes the direction of the plate substrate in this state by ejecting gas to the plate substrate.
  • the present invention relates to a gas ejection structure for a floating conveyance device for providing holes and a method for forming a jet hole for a floating conveyance device.
  • INDUSTRIAL APPLICABILITY The present invention is suitably used for a levitation transfer device or a levitation transfer system that performs airflow transfer of a glass plate used for a liquid crystal display or a wafer on which a semiconductor device is formed.
  • FIG. 17 As a system for floating and transporting a plate-like substrate, for example, there is a system for transporting a glass plate for a TFT type liquid crystal display.
  • This transport system is shown in Figure 17.
  • This transport system is configured by combining a transfer unit 100 and a control unit 200.
  • the transfer unit 100 floats the rectangular glass plate 300 and moves it in the moving direction 310.
  • the control unit 200 stops and stops while the glass plate 300 is floated, and turns the glass plate 300 in the turning direction 311.
  • the transport system includes a processing unit for performing various processing on the glass plate 300.
  • the transfer unit 100 is usually used in conjunction to move the glass plate 300 linearly.
  • An example of this transfer unit 100 is shown in FIG.
  • the transfer unit 100 is provided with a base 110, an enclosure, and a material 120.
  • the base 110 has a supply system 111 for supplying a gas for floating the glass plate 300, for example, a nitrogen gas, an argon gas, or other gas that does not affect the glass plate 300. It is plumbed.
  • the surface 112 of the enclosure 120, the base 110 of the base 110 is a transfer surface of the transfer path, and the transfer surface 112 has a plurality of ejection holes 113.
  • the ejection holes 1 13 are provided to be inclined with respect to the transfer surface 1 12,
  • the oblique direction of the ejection hole 113 is inclined toward the center 112 of the moving direction 310 of the glass plate 300.
  • the ejection holes 115 for propulsion are aligned in parallel with the moving direction 310 of the glass plate 300, and are inclined with respect to the transfer surface 112. It is empty.
  • the ejection holes 113 and 115 are provided between the transfer surface 112 and the gas chambers 114 and 116.
  • the gas chambers 1 14 and 1 16 communicate with the supply system 1 1 1 respectively.
  • the gas supplied from the supply system 111 through the outlets 113, 115 is ejected from the outlets 113, 115 through the gas chambers 114, 116.
  • the ejection direction of gas from the ejection holes 113 and 115 is inclined obliquely upward with respect to the transfer surface 112, and the ejection hole 113 is perpendicular to the moving direction 310. Are parallel.
  • the ejection of such a gas is represented two-dimensionally by the ejection directions 113A and 115A in FIG.
  • the gas ejected from the ejection holes 113 and 115 in the ejection directions 113 A and 115 A causes the glass plate 300 to float and move in the movement direction 310, and at the same time, the center of the glass plate 300 As it moves along the center 112A, the side of the glass plate 300 is enclosed and the side of the material 120 is not controlled. That is, the glass plate 300 is moved in a non-worming state with respect to the transport surface 112, the surrounding area, and the material 120.
  • the control unit 200 receives the glass plate 300 sent from the transfer unit 100, stops the glass plate 300, changes the moving direction of the glass plate 300, and rotates the glass plate 300 itself.
  • the control unit 200 includes a base 210 and an enclosure 220, as shown in FIG. As in the case of the base 110, a supply system 211 for supplying a gas for floating the glass plate 300 is connected to the enclosure 220.
  • the surface 212 of the base 210 covered by the enclosure 220 is the transport surface of the transport path, and the transport surface 212 is provided with a suction port and a plurality of ejection holes.
  • a suction port 213 is provided as shown in FIG.
  • the suction port 213 sucks the gas in the vicinity of the center, and stops the glass plate 300 while floating.
  • setting lines 221 to 224 are set in order from the inside.
  • the setting line 222 has an orifice 215. Vent hole 215 squirts As in the case of the holes 113, the force S, which is provided obliquely upward with respect to the transfer surface 211, and the jetting direction of the gas is the counterclockwise jetting direction 215A. The glass plate 300 is rotated in the counterclockwise direction by the gas from the ejection holes 2 15.
  • the setting line 222 has an orifice 216.
  • the orifice 2 16 is provided diagonally above the transport surface 2 12, but the gas is emitted in the clockwise is there.
  • the glass plate 300 is rotated clockwise by the gas from the orifice 2 16.
  • the setting lines 2 2 1, 2 2 3, 2 2 4 have openings 2 14, 2 17, 2 18.
  • the vents 2 14, 2 17, 2 18 are, like the vents 1 13, open diagonally above the transport surface 2 12.
  • the gas from the ejection holes 2 14, 2 17, 2 18 is ejected in the ejection direction 2 14 A, 2 17 A, 2 18 A toward the suction port 2 13.
  • the gas from the ejection directions 2 14 A, 2 17 A, and 2 18 A causes the center of the glass plate 300 to be located at the suction port 2 13.
  • control unit 200 is provided with two rows of setting lines 2 25 and 2 26 for each of the ejection holes 25 1 to 25 3 for propelling and capturing the glass plate 300.
  • the ejection hole 251 in the direction of movement of the glass plate 300, ejects gas in the ejection direction 251, A, which is opposite to the direction 180 degrees by 180 degrees, and the ejection hole 252, the movement direction 3
  • the gas is ejected in the ejection direction 2 52 A, which is the same direction as 10.
  • the ejection holes 25 3 eject gas in the ejection direction 2 53 A, which is the same direction as the turning direction 3 11 1 of the glass plate 300.
  • the gas outlets 205 blow gas out in the direction opposite to the moving direction 310.
  • the glass plate 300 is captured by the deceleration action of the ejected gas, and is smoothly stopped at the center of the transport surface 212. With this, the glass plate 300 can be smoothly stopped and rotated. For example, when the glass plate 300 is turned in the turning direction 311, the ejection holes 25 3 eject gas. Thereby, the glass plate 300 is propelled in the turning direction 311.
  • the direction of the glass plate 300 is changed.
  • the gas outlets 25 I do.
  • a processing system for the glass plate 300 is constructed.
  • One example of such a transport system is shown in International Application No. PCTZ J P91 01 469.
  • the base 110 of the transfer unit 100 and the base 210 of the control unit 200 are made as follows.
  • the base 110 includes a transfer plate 110A as shown in FIG.
  • the transport plate 110A is composed of a calorie plate 130 and a sealing plate 140.
  • processing of the processed plate 130 has been performed as follows. That is, as shown in FIG. 25, a hole 132 was drilled from the back surface 131 of the processed plate 130 by a drill (not shown). The diameter of the hole 132 was about several mm, and the hole was drilled from a direction perpendicular to the back surface 131. Dorinore is set in advance in a processing machine (not shown) for processing the processed plate 130.
  • a hole 13 4 was formed from the surface 13 3 of the processed plate 13 toward the hole 13 2 as shown in FIG.
  • the hole 134 has a diameter of about 0.3 mm and penetrates the hole 132. Drilling of holes 13 4 was performed by a drill (not shown) from a direction inclined with respect to surface 13 3.
  • a hole 1332 and a hole 134 are formed in the work plate 130, the hole 132 is the gas chamber 114 and the gas chamber 116, and the hole 134 is ejected. These are holes 1 13 and vent holes 1 15.
  • the grooves 1 3 5, 1 3 6 were processed as shown in Fig. 27. It was provided on the back surface 13 1 of the plate 130. At this time, a groove 135 was provided so as to connect only the gas chambers 114, and a groove 136 was provided so as to connect only the gas chambers 116.
  • the sealing plate 140 is attached to the back surface 13 1 as shown in FIG. , 136 were sealed independently of each other.
  • a supply system was formed in the transfer unit 100 by the grooves 135 and 136.
  • the transport plate 11 OA was formed by the processed plate 13 and the sealing plate 14. W Further, the supply system in the transfer plate 11 OA was connected to the supply system 11 1 via a valve or the like for controlling the gas flow, and the base 110 was formed. Similarly, control unit 20
  • the base 210 of 0 was also made by the working plate and the sealing plate.
  • the transport plate was made of a processed plate and a sealing plate, and the processed plate was provided with a large number of ejection holes. Since the direction in which the gas outlet blows out the gas is inclined with respect to the surface of the processing plate, the processing for opening the hole was performed from the direction inclined with respect to the surface of the processing plate.
  • machining of the orifice was started after the direction of the drill of the processing machine for opening the orifice was set so as to be inclined with respect to the surface of the work plate.
  • the inclination direction of the injection hole is different, it becomes necessary to rotate the processing plate placed on the processing machine, causing a problem. This complicates the processing for providing the ejection holes because the processing involves rotation of the processing plate.
  • the present invention provides a gas ejection structure for a levitation transfer device and an ejection hole formation for a levitation transfer device, which enable a discharge plate to be easily provided on a transfer plate used for a base of a transfer unit or a control unit.
  • the aim is to provide a method. Disclosure of the invention
  • a gas ejection structure for a levitation transport device includes a transport plate that floats a plate-like substrate with gas ejected from a transport surface, and a gas that is provided on the transport plate and supplies the gas ejected from the transport surface.
  • a gas discharge structure for a levitation transfer device including a supply system, a receiving hole that is provided on the transfer surface at a position where the gas is discharged, and receives supply of gas from the supply system; And an engaging body inserted into the receiving hole and having an ejection hole for ejecting the gas supplied to the receiving hole.
  • the ejection hole forming method for a floating conveyance device includes: a conveyance plate for floating a plate-like substrate with gas jetted from a conveyance surface; and a conveyance plate provided on the conveyance plate and jetted from the conveyance surface. And a supply system for supplying a gas.
  • the method for forming an ejection hole for a levitation transfer device comprising: a supply surface for supplying a gas; A receiving hole is formed in the receiving surface, and an ejection hole for ejecting gas is formed in the receiving hole, and an engaging body having a shape to be fitted in the receiving hole is inserted into the receiving hole of the transport surface. I do.
  • the engagement body having the ejection hole is inserted into the receiving hole formed in the transport plate.
  • the engagement bodies may be inserted into the receiving holes so that the ejection directions of the engagement bodies match the arranged ejection directions. It becomes easy to form the ejection holes on the transfer surface of the transfer plate.
  • FIG. 1 is a plan view showing a gas ejection structure for a levitation transfer device according to the first embodiment.
  • FIG. 2 is an enlarged view showing a partial enlargement of FIG.
  • FIG. 3 is a plan view showing a processing position set on the transfer surface.
  • FIG. 4 is a cross-sectional view showing a II section of FIG.
  • FIG. 5 is a cross-sectional view showing a II-II section of FIG.
  • FIG. 6 is a front view showing a chip for making an engagement body.
  • FIG. 7 is a cross-sectional view showing a state in which the ejection holes are formed in the engagement body.
  • FIG. 8 is a cross-sectional view showing how the engagement body is attached.
  • FIG. 9 is a cross-sectional view showing the transfer plate.
  • FIG. 10 is an enlarged view showing a gas ejection structure for a levitation transfer device according to the second embodiment.
  • FIG. 11 is a cross-sectional view showing a cross section taken along the line III-III of FIG. 10.
  • FIG. 12 is a plan view showing a processed plate according to the third embodiment.
  • FIG. 13 is a plan view showing an engagement body according to the third embodiment.
  • FIG. 14 is a plan view showing a gas ejection structure for a levitation transfer device according to Embodiment 4. is there.
  • FIG. 15 is a cross-sectional view showing a gas ejection structure for a levitation transfer device according to the fifth embodiment.
  • FIG. 16 is a cross-sectional view showing a gas ejection structure for a levitation transfer device according to Embodiment 6.
  • FIG. 17 is a plan view showing a conventional plate-shaped substrate transfer system.
  • FIG. 18 is a perspective view showing a conventional transfer unit.
  • FIG. 19 is a cross-sectional view taken along the line IV-IV of FIG.
  • FIG. 20 is a sectional view taken along line VV of FIG.
  • FIG. 21 is an explanatory view showing a jetting direction by a conventional transfer unit.
  • FIG. 22 is a perspective view showing a conventional control unit.
  • FIG. 23 is an explanatory diagram showing a jetting direction by a conventional transfer unit.
  • FIG. 24 is a cross-sectional view showing the structure of a conventional transfer unit.
  • FIG. 25 is a cross-sectional view showing a state of processing of a conventional transfer unit on a processing plate.
  • FIG. 26 is a cross-sectional view showing a state of processing of a conventional transfer unit on a processing plate.
  • FIG. 27 is a bottom view showing the bottom surface of the processing plate of the conventional transfer unit.
  • FIG. 1 is a plan view showing a gas ejection structure for a levitation transfer device according to Embodiment 1.
  • FIG. 2 is an enlarged view showing a partial enlargement of FIG.
  • FIG. 3 is a plan view showing the Karoe position set on the transport surface.
  • FIG. 4 is a cross-sectional view showing a II section of FIG.
  • FIG. 5 is a cross-sectional view showing a II-II cross section of FIG.
  • FIG. 6 is a front view showing a chip for making an engagement body.
  • FIG. 7 is a cross-sectional view showing a state of formation of the ejection holes with respect to the engagement body.
  • FIG. 8 is a cross-sectional view showing how the engagement body is attached.
  • FIG. 9 is a cross-sectional view showing the transfer plate.
  • the gas ejection structure for the levitation transfer device has a structure in which the transfer unit 100 in the levitation transfer system shown in FIG. 17 includes the ejection holes 1 13, 1 15 and the gas chamber 1 1 4.
  • the mechanism is a combination of the orifices 2 14 to 2 18 and 25 1 to 25 3 and the gas chambers communicating with these orifices.
  • a receiving hole 1 is formed in a transfer surface 21 of a processing plate 20.
  • FIG. 2 is an enlarged view of a broken line portion 2OA in FIG.
  • the receiving hole 1 is provided at the processing position 22 of the ejection hole of the transfer unit, which is set on the transfer surface 21 of the processing plate 20 of the transfer unit.
  • the receiving hole 1 is a cylindrical hole having a diameter of a 2 that penetrates the processing plate 20.
  • the length of the receiving hole 1 is the thickness a 1 of the processing plate 20. It is.
  • the penetration direction of the receiving hole 1 is perpendicular to the transfer surface 21. That is, the processing for forming the receiving hole 1 is performed at a processing position 22 from a direction perpendicular to the transport surface 21.
  • the engagement body 2 has a cylindrical shape with a diameter of a2, which fits into the receiving hole 1. As shown in FIG. 5, an ejection hole 2B is formed on the front surface 2A of the engagement body 2, and a gas chamber 2D connected to the ejection hole 2B is formed on the back surface 2C.
  • the engagement body 2 is made as follows. That is, as shown in FIG. 6, a round bar-shaped chip 30 having a diameter a 2 and a length a 1 from the front surface 31 to the back surface 32 was prepared. A hole 33 having a diameter of about several mm was formed in the chip 30 from the rear surface 32 using a drill. The processing for making the holes 33 was performed at right angles to the back surface 32. This hole 3 3 becomes the gas chamber 2D of the force engaging body 2.
  • a hole 34 having a diameter of about 0.3 mm was provided.
  • the hole 34 was drilled from the surface 31 to the hole 33 using a drill 34A.
  • the hole 34 is the ejection hole 2B of the engagement body 2.
  • the direction opposite to the traveling direction of the drill 34A (the direction indicated by the arrow 401) is the direction of ejection of the ejection hole 2B.
  • the processing for forming the hole 34 was performed by setting the chip 30 with a jig so as to sandwich the chip 30 in the processing machine, and thereafter, using a drill attached to the caro machine. As a result, even when the hole 34 is inclined with respect to the surface 31, since the tip 30 is held by being inclined by the jig, it is possible to perform machining from a right angle direction by the Kalo machine. .
  • the ejection direction indicated by the arrow 401 is set to a predetermined direction as shown in FIG.
  • the engaging body 2 was driven into the receiving hole 1 from the back surface 23 of the plate 20, and the engaging body 2 was inserted.
  • a processed plate 20 shown in FIG. 1 was produced.
  • a groove 35 is provided as a ventilation groove to connect the ejection hole 2B of the engagement body 2 that blows out gas in the same direction to the processing plate 20.
  • the back surface 23 of the processed plate 20 was adhered to the sealing plate 40.
  • a transport plate 50 for the transfer unit was produced.
  • engaging body 2 formed separately from work plate 20 is driven into receiving hole 1 of work plate 20 to form ejection hole 2B.
  • ejection hole 2B can be extremely easily formed. In addition, this makes it possible to reduce the processing time for the transport plate 50.
  • the engaging body 2 is driven into the receiving hole 1, it is possible to completely prevent generation of emis- sions of the ejection holes with respect to the transport plate 50.
  • FIG. 10 is an enlarged view showing a gas ejection structure for a levitation transfer device according to the second embodiment.
  • FIG. 11 is a sectional view showing a section taken along a line III-III in FIG. 10.
  • a guide portion is provided in the first embodiment. That is, as shown in FIGS. 10 and 11, the groove 3 is provided as a guide groove on the side wall of the receiving hole 1 in the gas ejection direction.
  • a protrusion 4 that fits with the groove 3 of the receiving hole 1 is provided as a guide protrusion on the side wall of the engagement body 2 where the ejection hole 2B faces.
  • the guide portion includes a groove 3 and a projecting portion 4.
  • FIG. 12 is a plan view showing a processed plate according to the third embodiment.
  • FIG. 13 is a plan view showing an engagement body according to the third embodiment.
  • a guide portion different from that of the second embodiment is provided in the receiving hole 1 and the engagement body 2 of the first embodiment. That is, as shown in FIG. 12, the alignment mark 5 is provided on the back surface 23 of the processing plate 20. The alignment mark 5 is formed around the receiving hole 1 by printing or the like.
  • a matching mark 6 is provided on the back surface 2C of the engagement body 2.
  • the alignment mark 6 is for alignment with the alignment mark 5, and indicates the direction of the ejection hole 2B.
  • the alignment mark 6 is formed near the outer periphery of the back surface 2C by printing or the like.
  • the guide part is formed by the alignment marks 5 and 6.
  • the alignment mark 6 of the engaging body 2 is aligned with the alignment mark 5 provided around the receiving hole 1. This makes it possible to easily set the ejection direction of the ejection hole 2B with respect to the receiving hole 1.
  • FIG. 14 is a plan view showing a gas ejection structure for a levitation transfer device according to the fourth embodiment.
  • a hexagonal receiving hole 7 as a polygon is formed in the processing plate 20.
  • a hexagonal engaging body 8 having a shape fitting with the receiving hole 7 is inserted into the receiving hole 7.
  • a guide portion is formed by the hexagonal receiving hole 7 and the combination 8. With the hexagonal guide portion, the ejection direction of the ejection hole 2B can be specified. [Embodiment 5]
  • FIG. 15 is a cross-sectional view showing a gas ejection structure for a levitation transfer device according to the fifth embodiment.
  • the locking portion is provided in the first to fourth embodiments. That is, when the receiving hole 9 having the diameter a2 is formed, the step 9A is provided as the first step in the receiving hole 9 near the transfer surface 21. Due to the step 9A, the receiving hole 9 is smaller than the diameter a2. Thus, a receiving hole 9 having a stepped portion 9 A and a force S are formed in the processed plate 20.
  • the engagement body 10 has a shape that fits into the receiving hole 9. That is, a portion near the surface 1OA of the engaging body 10 having the diameter a2 is formed to be narrower than the diameter a2. Thus, similarly to the receiving hole 9, the engaging portion 10 is also provided with the stepped portion 10B as the second stepped portion.
  • the locking portion is formed by the step 9A of the receiving hole 9 and the step 9B of the engaging body 10. With this locking portion, it is possible to prevent the surface of the engaging body 10 from jumping out of the transport surface 21 when the engaging body 10 is driven into the receiving hole 9. As a result, the surface of the engagement body 10 can be easily flattened with respect to the transfer surface 21 of the processing plate 20.
  • FIG. 16 is a cross-sectional view showing a gas ejection structure for a levitation transfer device according to the sixth embodiment.
  • a different locking portion from the fifth embodiment is provided in the first to fourth embodiments.
  • a cone-shaped receiving hole 11 having a diameter a 2 as the maximum diameter and a diameter a 3 as the minimum diameter is formed in the work plate 20.
  • the maximum diameter of the receiving hole 11 is located on the back surface 23 of the processing plate 20, and the minimum diameter is located on the transfer surface 21 of the processing plate 20.
  • the engagement body 12 has a shape that fits into the receiving hole 11. That is, the engaging body 12 is a cone having the diameter a2 as the maximum diameter, the diameter a3 as the minimum diameter, and the length a1 as the height.
  • the engaging portion is formed by the conical shape of the receiving hole 11 and the conical shape of the engaging body 12.
  • the engaging body is provided in the same manner as in the fifth embodiment.
  • the present invention is not limited to these embodiments.
  • the caroe board is for a transfer unit, but the present invention is similarly applied to a work board for a control unit.
  • high-purity dry air high-purity nitrogen gas, high-purity argon gas, high-purity carbon dioxide gas, or the like can be used as the gas ejected from the ejection holes.
  • a high-purity nitrogen gas having an impurity concentration of several ppb or less is optimal to use as a carrier gas.
  • a system that transports a glass plate or the like for a TFT-type liquid crystal display by air flow is used as an example. It is possible.
  • the receiving hole is provided on the transfer surface at a position where the gas is ejected, and the receiving hole receiving the supply of gas from the supply system is fitted to the receiving hole of the transfer plate. And an engaging body which is inserted into the receiving hole and has an ejection hole for ejecting the gas supplied to the receiving hole.
  • a gap may be formed between the transfer surface and the supply system, at a position where the gas is blown out, a receiving hole may be formed in the transfer surface, and a blowout hole for blowing out the gas may be formed.
  • an engaging body having a shape to be fitted in the receiving hole is inserted into the receiving hole of the transport surface.
  • the ejection holes can be formed in the conveyance plate by inserting the engagement body having the ejection holes into the receiving holes of the conveyance plate. This makes it possible to easily form the ejection holes on the transport plate.
  • the transport plate includes: a processed plate having a surface as the transport surface; and a sealing plate that covers a back surface of the processed plate.
  • Receiving hole 14 CT / JP99 / 04700 are provided respectively, and a ventilation groove for connecting the ejection hole of the same direction is provided for the processing plate in which the engagement body is inserted into the receiving hole, and the ventilation groove is used as the supply system.
  • the present invention provides the working plate having a transfer surface as a transfer surface, and a sealing plate closing a back surface of the work plate, forming the transfer plate, and forming receiving holes so as to penetrate the work plate.
  • the engaging body is inserted into the receiving hole, and a ventilation groove is provided on the back surface of the processing plate so that the direction of the ejection hole connects the engaging body, and the back surface is covered with the sealing plate. Is a supply system.
  • the receiving plate is opened in the processing plate, and the back surface is covered with the sealing plate, so that the production of the transport plate can be simplified.
  • a guide portion for determining the direction of the ejection hole of the engaging body with respect to the receiving hole is provided in the receiving hole and the engaging body. Further, as the guide portion, a guide groove is provided on a side wall of the receiving hole, and a guide protrusion having a shape to be fitted into the guide groove is provided on a side wall of the engagement body. Further, according to the present invention, a guide portion for determining the direction of the ejection hole of the engaging body with respect to the receiving hole is provided in the receiving hole and the engaging body. Further, as the guide portion, a guide groove is provided on a side wall of the receiving hole, and a guide protrusion having a shape to be fitted into the guide groove is provided on a side wall of the engagement body. As a result, according to the present invention, the ejection direction of the gas ejected from the ejection holes is indicated by the guide portion, so that the ejection direction of the gas can be easily determined.
  • a locking portion for locking the engaging body inserted into the receiving hole is provided in the receiving hole and the engaging body. Further, a first step portion is provided on a side wall of the receiving hole as the locking portion, and a second step portion fitted with the first step portion is provided on the engagement body. Further, according to the present invention, a locking portion for locking the engaging body inserted into the receiving hole is provided in the receiving hole and the engaging body. Further, a first step portion is provided on a side wall of the receiving hole as the locking portion, and a second step portion fitted with the first step portion is provided in the engagement body.
  • the engaging body when the engaging body is inserted into the receiving hole, the engaging body is stopped by the locking portion, so that the engaging body can be prevented from protruding from the transport surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A gas jetting structure for float transport devices and a method of forming jet holes for float transport devices, wherein it is made possible to form jet holes easily in a transport plate used as a base for a transport unit or control unit. A gas jetting structure for float transport devices comprises a transport plate for floating a plate-like base by gas jetting from a transport surface (21), and a feeding system installed in this transport plate and feeding gas jetting from the transport surface (21), wherein a receiving hole (1) for receiving gas from the feeding system is formed in the transport surface (21) at a position where gas is jetted, and an engaging body is provided which is shaped to fit in the receiving hole (1) and is fitted in the receiving hole (1) and which is formed with a jet hole through which the gas fed to the receiving hole (1) is jetted.

Description

浮上搬送装置用の気体噴出構造および噴出孔形成方法 技術分野  TECHNICAL FIELD The present invention relates to a gas ejection structure for a levitation transfer device and an ejection hole forming method.
本発明は、 板状基体に対する気体の噴出によって、 板状基体を浮上した状態にし、 この状態で板状基体を移動、 停止、 静止および方向転換させる浮上搬送装置に対し て、 気体を噴出する噴出孔を設けるための浮上搬送装置用の気体噴出構造および浮 上搬送装置用の噴出孔形成方法に関する。 本発明は、 液晶ディスプレイ等に用いら れるガラス板や半導体装置が形成されるウェハ等の気流搬送をする浮上搬送装置 や浮上搬送システムに好適に用いられる。 背景技術  According to the present invention, a gas jet is ejected to a levitation transport device that moves, stops, stops, and changes the direction of the plate substrate in this state by ejecting gas to the plate substrate. The present invention relates to a gas ejection structure for a floating conveyance device for providing holes and a method for forming a jet hole for a floating conveyance device. INDUSTRIAL APPLICABILITY The present invention is suitably used for a levitation transfer device or a levitation transfer system that performs airflow transfer of a glass plate used for a liquid crystal display or a wafer on which a semiconductor device is formed. Background art
板状基体を浮上させて搬送するシステムとして、 例えば、 T F T型液晶ディスプ レイ用のガラス板を搬送するものがある。 この搬送システムを図 1 7に示す。 この 搬送システムは、 移送ュニット 1 0 0と制御ュニット 2 0 0とを組み合わせて、 構 成されたものである。 移送ュニット 1 0 0は、 四角形状のガラス板 3 0 0を浮上さ せて移動方向 3 1 0の方向に移動させる。 制御ュニット 2 0 0は、 ガラス板 3 0 0 を浮上させた状態で停止、 静止させると共に、 転換方向 3 1 1に方向転換させる。 さらに、 搬送システムは、 図示を省略しているが、 ガラス板 3 0 0に対して各種の 処理を行う処理ュニットを備えている。  As a system for floating and transporting a plate-like substrate, for example, there is a system for transporting a glass plate for a TFT type liquid crystal display. This transport system is shown in Figure 17. This transport system is configured by combining a transfer unit 100 and a control unit 200. The transfer unit 100 floats the rectangular glass plate 300 and moves it in the moving direction 310. The control unit 200 stops and stops while the glass plate 300 is floated, and turns the glass plate 300 in the turning direction 311. Further, although not shown, the transport system includes a processing unit for performing various processing on the glass plate 300.
移送ュニット 1 0 0は、 ガラス板 3 0 0を直線的に移動させるために、 通常、 連 結されて用いられる。 この移送ュニット 1 0 0の一例を図 1 8に示す。 移送ュニッ ト 1 0 0は、 基台 1 1 0と囲レ、材 1 2 0とを備えている。 基台 1 1 0には、 ガラス 板 3 0 0を浮上させるための気体、 例えば、 ガラス板 3 0 0に影響を与えない窒素 ガス、 アルゴンガスやその他のガスを供給する供給系 1 1 1が配管されている。 囲 ぃ材 1 2 0カ覆ぅ、 基台 1 1 0の面 1 1 2が搬送路の搬送面であり、 搬送面 1 1 2 には、 複数の噴出孔 1 1 3が空けられている。  The transfer unit 100 is usually used in conjunction to move the glass plate 300 linearly. An example of this transfer unit 100 is shown in FIG. The transfer unit 100 is provided with a base 110, an enclosure, and a material 120. The base 110 has a supply system 111 for supplying a gas for floating the glass plate 300, for example, a nitrogen gas, an argon gas, or other gas that does not affect the glass plate 300. It is plumbed. The surface 112 of the enclosure 120, the base 110 of the base 110 is a transfer surface of the transfer path, and the transfer surface 112 has a plurality of ejection holes 113.
噴出孔 1 1 3は、 図 1 9に示すように、 搬送面 1 1 2に対して傾斜して設けられ、 噴出孔 1 13の ί頃斜方向は、 ガラス板 300の移動方向 310の中心 1 12 Αに向 力つて傾斜している。 また、 噴出孔 1 13とは別に、 図 20に示すように、 推進用 の噴出孔 1 15力 ガラス板 300の移動方向 310と平行に並んで、 かつ、 搬送 面 1 12に対して傾斜して空けられている。 噴出孔 113, 1 15は、 搬送面 1 1 2から気体室 114, 1 16に至る間に空けられている。 気体室 1 14, 1 16は、 供給系 1 1 1にそれぞれ通じている。 As shown in FIG. 19, the ejection holes 1 13 are provided to be inclined with respect to the transfer surface 1 12, The oblique direction of the ejection hole 113 is inclined toward the center 112 of the moving direction 310 of the glass plate 300. In addition to the ejection holes 113, as shown in FIG. 20, the ejection holes 115 for propulsion are aligned in parallel with the moving direction 310 of the glass plate 300, and are inclined with respect to the transfer surface 112. It is empty. The ejection holes 113 and 115 are provided between the transfer surface 112 and the gas chambers 114 and 116. The gas chambers 1 14 and 1 16 communicate with the supply system 1 1 1 respectively.
各噴出孔 1 13, 115によって、 供給系 1 11から供給される気体は、 気体室 1 14, 1 16を経て、 嘖出孔 113, 115から噴出する。 噴出孔 1 13, 1 1 5からの気体の噴出方向は、 搬送面 1 12に対して斜め上方に傾斜し、 かつ、 移動 方向 310に対して、 噴出孔 1 13は直角に、 噴出孔 1 15は平行になっている。 このような気体の噴出が、 図 21の噴出方向 113A, 115Aによって、 平面的 に表されている。  The gas supplied from the supply system 111 through the outlets 113, 115 is ejected from the outlets 113, 115 through the gas chambers 114, 116. The ejection direction of gas from the ejection holes 113 and 115 is inclined obliquely upward with respect to the transfer surface 112, and the ejection hole 113 is perpendicular to the moving direction 310. Are parallel. The ejection of such a gas is represented two-dimensionally by the ejection directions 113A and 115A in FIG.
こうして、 各噴出孔 113, 115から噴出方向 1 13 A, 1 15Aに噴出され た気体によって、 ガラス板 300が浮上して移動方向 310に動くと同時に、 ガラ ス板 300の中心が搬送面 1 12の中心 112 Aに沿って移動するので、 ガラス板 300の側面が囲レ、材 120の側壁に御することがなレ、。 つまり、 ガラス板 30 0は、 搬送面 112や囲レ、材 120に対して非翻虫の状態で移動される。  Thus, the gas ejected from the ejection holes 113 and 115 in the ejection directions 113 A and 115 A causes the glass plate 300 to float and move in the movement direction 310, and at the same time, the center of the glass plate 300 As it moves along the center 112A, the side of the glass plate 300 is enclosed and the side of the material 120 is not controlled. That is, the glass plate 300 is moved in a non-worming state with respect to the transport surface 112, the surrounding area, and the material 120.
制御ュニット 200は、 移送ュ-ット 100から送られてくるガラス板 300を 受け取り、 このガラス板 300の停止、 静止および移動方向の変更や、 ガラス板 3 00自身の回転等を行う。 制御ュ-ット 200は、 図 22に示すように、 基台 21 0と囲い材 220とを備えている。 囲い材 220には、 基台 110と同じように、 ガラス板 300を浮上させるための気体を供給する供給系 21 1が配管されてい る。 囲い材 220が覆う、 基台 210の面 212が搬送路の搬送面であり、 搬送面 212には、 吸引口と複数の噴出孔とが空けられている。  The control unit 200 receives the glass plate 300 sent from the transfer unit 100, stops the glass plate 300, changes the moving direction of the glass plate 300, and rotates the glass plate 300 itself. The control unit 200 includes a base 210 and an enclosure 220, as shown in FIG. As in the case of the base 110, a supply system 211 for supplying a gas for floating the glass plate 300 is connected to the enclosure 220. The surface 212 of the base 210 covered by the enclosure 220 is the transport surface of the transport path, and the transport surface 212 is provided with a suction port and a plurality of ejection holes.
搬送面 212の中心には、 図 23に示すように、 吸引口 213が空けられている。 吸引口 213は、 中心付近の気体を吸い込んで、 ガラス板 300を浮上させたまま、 静止させる。 吸引口 213の周りには、 内側から順に設定ライン 221〜224が 設定されている。  At the center of the transfer surface 212, a suction port 213 is provided as shown in FIG. The suction port 213 sucks the gas in the vicinity of the center, and stops the glass plate 300 while floating. Around the suction port 213, setting lines 221 to 224 are set in order from the inside.
設定ライン 222には、 噴出孔 215が空けられている。 噴出孔 215は、 噴出 孔 1 1 3と同じように、 搬送面 2 1 2に対して斜め上方に空けられている力 S、 気体 の噴出方向は、 反時計方向の噴出方向 2 1 5 Aである。 噴出孔 2 1 5からの気体に よって、 ガラス板 3 0 0が反時計方向に回転する。 The setting line 222 has an orifice 215. Vent hole 215 squirts As in the case of the holes 113, the force S, which is provided obliquely upward with respect to the transfer surface 211, and the jetting direction of the gas is the counterclockwise jetting direction 215A. The glass plate 300 is rotated in the counterclockwise direction by the gas from the ejection holes 2 15.
また、 設定ライン 2 2 2には、 噴出孔 2 1 6が空けられている。 噴出孔 2 1 6は、 噴出孔 1 1 3と同じように、 搬送面 2 1 2に対して斜め上方に空けられているが、 気体の噴出方向は、 時計方向の噴出方向 2 1 6 Aである。 噴出孔 2 1 6からの気体 によって、 ガラス板 3 0 0が時計方向に回転する。  In addition, the setting line 222 has an orifice 216. As with the orifice 1 13, the orifice 2 16 is provided diagonally above the transport surface 2 12, but the gas is emitted in the clockwise is there. The glass plate 300 is rotated clockwise by the gas from the orifice 2 16.
設定ライン 2 2 1 , 2 2 3 , 2 2 4には、 噴出孔 2 1 4, 2 1 7, 2 1 8が空け られている。 噴出孔 2 1 4 , 2 1 7, 2 1 8は、 噴出孔 1 1 3と同じように、 搬送 面 2 1 2に対して斜め上方に空けられている。 噴出孔 2 1 4 , 2 1 7, 2 1 8によ る気体は、 吸引口 2 1 3に向かう噴出方向 2 1 4 A, 2 1 7 A, 2 1 8 Aに噴出さ れる。 噴出方向 2 1 4 A, 2 1 7 A, 2 1 8 Aからの気体によって、 ガラス板 3 0 0の中心が吸引口 2 1 3に位置するようになる。  The setting lines 2 2 1, 2 2 3, 2 2 4 have openings 2 14, 2 17, 2 18. The vents 2 14, 2 17, 2 18 are, like the vents 1 13, open diagonally above the transport surface 2 12. The gas from the ejection holes 2 14, 2 17, 2 18 is ejected in the ejection direction 2 14 A, 2 17 A, 2 18 A toward the suction port 2 13. The gas from the ejection directions 2 14 A, 2 17 A, and 2 18 A causes the center of the glass plate 300 to be located at the suction port 2 13.
さらに、 制御ュニット 2 0 0には、 ガラス板 3 0 0の推進および捕捉用の噴出孔 2 5 1〜2 5 3力 各 2列の設定ライン 2 2 5 , 2 2 6に空けられている。 噴出孔 2 5 1は、 ガラス板 3 0 0の移動方向 3 1 0と 1 8 0度逆の方向である噴出方向 2 5 1 Aに気体を噴出し、 噴出孔 2 5 2は、 移動方向 3 1 0と同じ方向である噴出方 向 2 5 2 Aに気体を噴出する。  Further, the control unit 200 is provided with two rows of setting lines 2 25 and 2 26 for each of the ejection holes 25 1 to 25 3 for propelling and capturing the glass plate 300. The ejection hole 251, in the direction of movement of the glass plate 300, ejects gas in the ejection direction 251, A, which is opposite to the direction 180 degrees by 180 degrees, and the ejection hole 252, the movement direction 3 The gas is ejected in the ejection direction 2 52 A, which is the same direction as 10.
噴出孔 2 5 3は、 ガラス板 3 0 0の転換方向 3 1 1と同方向である噴出方向 2 5 3 Aに気体を噴出する。  The ejection holes 25 3 eject gas in the ejection direction 2 53 A, which is the same direction as the turning direction 3 11 1 of the glass plate 300.
ガラス板 3 0 0が移動方向 3 1 0から制御ュニット 2 0 0に入ってくると、 噴出 孔 2 1 5が気体を、 移動方向 3 1 0とは逆の方向に噴出する。 これによつて、 ガラ ス板 3 0 0は、 噴出された気体の減速作用によって捕捉され、 搬送面 2 1 2の中心 に円滑に停止される。 これによつて、 ガラス板 3 0 0の静止、 回転動作がスムーズ に行える。 例えば、 ガラス板 3 0 0が転換方向 3 1 1に方向転換される場合、 噴出 孔 2 5 3が気体を噴出する。 これによつて、 ガラス板 3 0 0は、 転換方向 3 1 1に 推進される。  When the glass plate 300 enters the control unit 200 from the moving direction 310, the gas outlets 205 blow gas out in the direction opposite to the moving direction 310. As a result, the glass plate 300 is captured by the deceleration action of the ejected gas, and is smoothly stopped at the center of the transport surface 212. With this, the glass plate 300 can be smoothly stopped and rotated. For example, when the glass plate 300 is turned in the turning direction 311, the ejection holes 25 3 eject gas. Thereby, the glass plate 300 is propelled in the turning direction 311.
このような動作によって、 ガラス板 3 0 0の方向転換が行われる。 なお、 ガラス 板 3 0 0を移動方向 3 1 0と同じ方向に送り出す場合、 噴出孔 2 5 2が気体を噴出 する。 By such an operation, the direction of the glass plate 300 is changed. When the glass plate 300 is sent out in the same direction as the moving direction 310, the gas outlets 25 I do.
このような移送ュニット 1 0 0および制御ュニット 2 0 0とで構成される搬送 システムと、 各種の処理ユニットとを組み合わせることによって、 ガラス板 3 0 0 の処理システムが構築される。 このような搬送システムの一例が国際出願番号 P C TZ J P 9 1ノ0 1 4 6 9に示されている。  By combining such a transport system composed of the transfer unit 100 and the control unit 200 with various processing units, a processing system for the glass plate 300 is constructed. One example of such a transport system is shown in International Application No. PCTZ J P91 01 469.
ところで、移送ュニット 1 0 0の基台 1 1 0と制御ュニット 2 0 0の基台 2 1 0 は、 次のようにして作られている。 例えば、 移送ュニット 1 0 0の場合、 基台 1 1 0は、 図 2 4に示すように、 搬送板 1 1 0 Aを備えている。 搬送板 1 1 0 Aは、 カロ ェ板 1 3 0と封止板 1 4 0とで構成されている。  By the way, the base 110 of the transfer unit 100 and the base 210 of the control unit 200 are made as follows. For example, in the case of the transfer unit 100, the base 110 includes a transfer plate 110A as shown in FIG. The transport plate 110A is composed of a calorie plate 130 and a sealing plate 140.
従来、 加工板 1 3 0に対する加工は、 次のようにして行われた。 すなわち、 図 2 5に示すように、 加工板 1 3 0の裏面 1 3 1から、 ドリル (図示を省略) によって、 穴 1 3 2が空けられた。 穴 1 3 2の直径が数 mm程度であり、 穴空けの加工が裏面 1 3 1に対して直角方向から行われた。 ドリノレは、 加工板 1 3 0を加工するための 加工機 (図示を省略) に、 あらかじめセットされている。  Conventionally, processing of the processed plate 130 has been performed as follows. That is, as shown in FIG. 25, a hole 132 was drilled from the back surface 131 of the processed plate 130 by a drill (not shown). The diameter of the hole 132 was about several mm, and the hole was drilled from a direction perpendicular to the back surface 131. Dorinore is set in advance in a processing machine (not shown) for processing the processed plate 130.
穴 1 3 2の形成が終了すると、 図 2 6に示すように、加工板 1 3 0の表面 1 3 3 から、 孔 1 3 4が穴 1 3 2に向けて空けられた。 孔 1 3 4は、 直径が 0 . 3 mm程 度であり、 穴 1 3 2に貫通している。 孔 1 3 4の孔空け加工は、 表面 1 3 3に対し て傾斜した方向から、 ドリル (図示を省略) によって行われた。  When the formation of the hole 13 2 was completed, a hole 13 4 was formed from the surface 13 3 of the processed plate 13 toward the hole 13 2 as shown in FIG. The hole 134 has a diameter of about 0.3 mm and penetrates the hole 132. Drilling of holes 13 4 was performed by a drill (not shown) from a direction inclined with respect to surface 13 3.
こうして、 加工板 1 3 0には、 穴 1 3 2と孔 1 3 4とが形成され、 穴 1 3 2が気 体室 1 1 4や気体室 1 1 6であり、 孔 1 3 4が噴出孔 1 1 3や噴出孔 1 1 5である。 加工板 1 3 0に対する噴出孔 1 1 3 , 1 1 5と気体室 1 1 4, 1 1 6の形成が終 了すると、 図 2 7に示すように、 溝 1 3 5 , 1 3 6が加工板 1 3 0の裏面 1 3 1に 設けられた。 このとき、 気体室 1 1 4だけを連結するように、 溝 1 3 5が設けられ、 また、 気体室 1 1 6だけを連結するように、 溝 1 3 6が設けられた。  In this way, a hole 1332 and a hole 134 are formed in the work plate 130, the hole 132 is the gas chamber 114 and the gas chamber 116, and the hole 134 is ejected. These are holes 1 13 and vent holes 1 15. After the formation of the injection holes 1 13, 1 15 and the gas chambers 1 14, 1 16 with respect to the processing plate 13 0, the grooves 1 3 5, 1 3 6 were processed as shown in Fig. 27. It was provided on the back surface 13 1 of the plate 130. At this time, a groove 135 was provided so as to connect only the gas chambers 114, and a groove 136 was provided so as to connect only the gas chambers 116.
溝 1 3 5, 1 3 6の形成が終了すると、 先の図 2 4に示すように、 裏面 1 3 1に 封止板 1 4 0が取り付けられて、 裏面 1 3 1の各溝 1 3 5 , 1 3 6が互いに独立し て密封された。 これらの溝 1 3 5 , 1 3 6によって、 移送ュニット 1 0 0内に供給 系が形成された。  When the formation of the grooves 13 5 and 13 36 is completed, the sealing plate 140 is attached to the back surface 13 1 as shown in FIG. , 136 were sealed independently of each other. A supply system was formed in the transfer unit 100 by the grooves 135 and 136.
こうして、 加工板 1 3 0と封止板 1 4 0とによって、 搬送板 1 1 O Aが作られた。 W さらに、 搬送板 1 1 O A内の供給系が、 気体の流れを制御するバルブ等を経て、 供 給系 1 1 1に接続されて、 基台 1 1 0が作られた。 同様にして、 制御ュニット 2 0Thus, the transport plate 11 OA was formed by the processed plate 13 and the sealing plate 14. W Further, the supply system in the transfer plate 11 OA was connected to the supply system 11 1 via a valve or the like for controlling the gas flow, and the base 110 was formed. Similarly, control unit 20
0の基台 2 1 0も加工板と封止板とによつて作られた。 The base 210 of 0 was also made by the working plate and the sealing plate.
し力 し、 移送ュニット 1 0 0や制御ュ-ット 2 0 0の搬送板を作る技術には次に 示すような問題があった。 つまり、 搬送板は、 加工板と封止板とによって作られ、 加工板には、 多数の噴出孔が設けられた。 噴出孔が気体を噴出する方向が加工板の 表面に対して傾斜しているので、 噴出孔を空けるための加工は、 加工板の表面に対 して傾斜した方向から行われた。  However, there are the following problems with the technology for producing the transfer plate of the transfer unit 100 and the control unit 200. In other words, the transport plate was made of a processed plate and a sealing plate, and the processed plate was provided with a large number of ejection holes. Since the direction in which the gas outlet blows out the gas is inclined with respect to the surface of the processing plate, the processing for opening the hole was performed from the direction inclined with respect to the surface of the processing plate.
このために、 噴出孔を空けるための加工機のドリルの方向が、 加工板の表面に対 して傾斜するようにセットされた後で、 噴出孔の加工が開始された。 この結果、 噴 出孔の傾斜方向が異なると、 加工機に置力れた加工板を回すことが必要になるとレ、 う問題が発生した。 これによつて、 噴出孔を設けるための加工が加工板の回転等を 含むために、 複雑になってしまう。  For this purpose, machining of the orifice was started after the direction of the drill of the processing machine for opening the orifice was set so as to be inclined with respect to the surface of the work plate. As a result, if the inclination direction of the injection hole is different, it becomes necessary to rotate the processing plate placed on the processing machine, causing a problem. This complicates the processing for providing the ejection holes because the processing involves rotation of the processing plate.
以上、 説明したとおり、 従来の加工板に対する加工には、 以下の問題点があった。 つまり、 1枚の加工板に対して、 異なる向きの噴出孔が必要である場合、 加工板を 回して、 加工位置を変える工程が必要になり、 噴出孔を空けるための作業が複雑に なるという課題が発生する。  As described above, conventional processing of a processed plate has the following problems. In other words, if one machined plate needs ejection holes in different directions, a process of turning the machined plate and changing the machining position is required, which complicates the work of opening the ejection holes. Challenges arise.
本発明は、 移送ユニットや制御ユニットの基台に使用される搬送板に、 簡単に噴 出孔を設けることを可能にする浮上搬送装置用の気体噴出構造および浮上搬送装 置用の噴出孔形成方法を提供することを目的とする。 発明の開示  The present invention provides a gas ejection structure for a levitation transfer device and an ejection hole formation for a levitation transfer device, which enable a discharge plate to be easily provided on a transfer plate used for a base of a transfer unit or a control unit. The aim is to provide a method. Disclosure of the invention
本発明の浮上搬送装置用の気体噴出構造は、 搬送面から噴出する気体で板状基体 を浮上させる搬送板と、 この搬送板に具備されていると共に前記搬送面から噴出さ れる気体を供給する供給系とを備えた浮上搬送装置用の気体噴出構造にぉレヽて、 前 記気体を嘖出する位置で前記搬送面に空けられると共に、 前記供給系から気体の供 給を受ける受け穴と、 前記受け穴に嵌合する形状であり、 前記受け穴に挿入されて いると共に、 前記受け穴に供給された気体を噴出する噴出孔が空けられた係合体と を設けたことを特徴とする。 また、 本発明の浮上搬送装置用の噴出孔形成方法は、 搬送面から噴出する気体で 板状基体を浮上させる搬送板と、 この搬送板に具備されていると共に前記搬送面か ら噴出される気体を供給する供給系とを備える浮上搬送装置用の噴出孔形成方法 において、 前記搬送面から前記供給系に至るまでの間に、 カゝつ、 前記気体を噴出す る位置で、 前記搬送面に受け穴を空け、 気体を噴出する噴出孔が空けられていると 共に、 前記受け穴に嵌合する形状をしている係合体を、 前記搬送面の前記受け穴に 挿入することを特徴とする。 A gas ejection structure for a levitation transport device according to the present invention includes a transport plate that floats a plate-like substrate with gas ejected from a transport surface, and a gas that is provided on the transport plate and supplies the gas ejected from the transport surface. A gas discharge structure for a levitation transfer device including a supply system, a receiving hole that is provided on the transfer surface at a position where the gas is discharged, and receives supply of gas from the supply system; And an engaging body inserted into the receiving hole and having an ejection hole for ejecting the gas supplied to the receiving hole. Further, the ejection hole forming method for a floating conveyance device according to the present invention includes: a conveyance plate for floating a plate-like substrate with gas jetted from a conveyance surface; and a conveyance plate provided on the conveyance plate and jetted from the conveyance surface. And a supply system for supplying a gas. The method for forming an ejection hole for a levitation transfer device, comprising: a supply surface for supplying a gas; A receiving hole is formed in the receiving surface, and an ejection hole for ejecting gas is formed in the receiving hole, and an engaging body having a shape to be fitted in the receiving hole is inserted into the receiving hole of the transport surface. I do.
本発明によれば、 噴出孔が空けられた係合体を、 搬送板に空けられた受け穴に挿 入する。 搬送板から噴出される気体の噴出方向が異なるように配列されているとき、 係合体の噴出方向が、 配列された噴出方向に合うように、 係合体が受け穴に挿入さ れればよいので、 搬送板の搬送面に噴出孔を形成することが簡単になる。 図面の簡単な説明  According to the present invention, the engagement body having the ejection hole is inserted into the receiving hole formed in the transport plate. When the ejection directions of the gas ejected from the carrier plate are arranged so as to be different from each other, the engagement bodies may be inserted into the receiving holes so that the ejection directions of the engagement bodies match the arranged ejection directions. It becomes easy to form the ejection holes on the transfer surface of the transfer plate. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施の形態 1に係わる浮上搬送装置用の気体噴出構造を示す平面図であ る。  FIG. 1 is a plan view showing a gas ejection structure for a levitation transfer device according to the first embodiment.
図 2は、 図 1の部分的な拡大を示す拡大図である。  FIG. 2 is an enlarged view showing a partial enlargement of FIG.
図 3は、 搬送面に設定された加工位置を示す平面図である。  FIG. 3 is a plan view showing a processing position set on the transfer surface.
図 4は、 図 2の I— I断面を示す断面図である。  FIG. 4 is a cross-sectional view showing a II section of FIG.
図 5は、 図 1の I I一 I I断面を示す断面図である。  FIG. 5 is a cross-sectional view showing a II-II section of FIG.
図 6は、 係合体を作るためのチップを示す正面図である。  FIG. 6 is a front view showing a chip for making an engagement body.
図 7は、 係合体に対する噴出孔の形成の様子を示す断面図である。  FIG. 7 is a cross-sectional view showing a state in which the ejection holes are formed in the engagement body.
図 8は、 係合体の取り付けの様子を示す断面図である。  FIG. 8 is a cross-sectional view showing how the engagement body is attached.
図 9は、 搬送板を示す断面図である。  FIG. 9 is a cross-sectional view showing the transfer plate.
図 1 0は、 実施の形態 2に係わる浮上搬送装置用の気体噴出構造を示す拡大図で ある。  FIG. 10 is an enlarged view showing a gas ejection structure for a levitation transfer device according to the second embodiment.
図 1 1は、 図 1 0の I I I一 I I I断面を示す断面図である。  FIG. 11 is a cross-sectional view showing a cross section taken along the line III-III of FIG. 10.
図 1 2は、 実施の形態 3に係わる加工板を示す平面図である。  FIG. 12 is a plan view showing a processed plate according to the third embodiment.
図 1 3は、 実施の形態 3に係わる係合体を示す平面図である。  FIG. 13 is a plan view showing an engagement body according to the third embodiment.
図 1 4は、 実施の形態 4に係わる浮上搬送装置用の気体噴出構造を示す平面図で ある。 FIG. 14 is a plan view showing a gas ejection structure for a levitation transfer device according to Embodiment 4. is there.
図 1 5は、 実施の形態 5に係わる浮上搬送装置用の気体噴出構造を示す断面図で ある。  FIG. 15 is a cross-sectional view showing a gas ejection structure for a levitation transfer device according to the fifth embodiment.
図 1 6は、 実施の形態 6に係わる浮上搬送装置用の気体噴出構造を示す断面図で ある。  FIG. 16 is a cross-sectional view showing a gas ejection structure for a levitation transfer device according to Embodiment 6.
図 1 7は、 従来の板状基体搬送システムを示す平面図である。  FIG. 17 is a plan view showing a conventional plate-shaped substrate transfer system.
図 1 8は、 従来の移送ュニットを示す斜視図である。  FIG. 18 is a perspective view showing a conventional transfer unit.
図 1 9は、 図 1 8の I V— I V断面図である。  FIG. 19 is a cross-sectional view taken along the line IV-IV of FIG.
図 20は、 図 1 8の V— V断面図である。  FIG. 20 is a sectional view taken along line VV of FIG.
図 21は、 従来の移送ュニットによる噴出方向を示す説明図である。  FIG. 21 is an explanatory view showing a jetting direction by a conventional transfer unit.
図 22は、 従来の制御ュニットを示す斜視図である。  FIG. 22 is a perspective view showing a conventional control unit.
図 23は、 従来の移送ュニットによる噴出方向を示す説明図である。  FIG. 23 is an explanatory diagram showing a jetting direction by a conventional transfer unit.
図 24は、 従来の移送ュニットの構造を示す断面図である。  FIG. 24 is a cross-sectional view showing the structure of a conventional transfer unit.
図 25は、 従来の移送ュニットの加工板に対する加工の様子を示す断面図である。 図 26は、 従来の移送ュニットの加工板に対する加工の様子を示す断面図である。 図 27は、 従来の移送ュニットの加工板の底面を示す底面図である。  FIG. 25 is a cross-sectional view showing a state of processing of a conventional transfer unit on a processing plate. FIG. 26 is a cross-sectional view showing a state of processing of a conventional transfer unit on a processing plate. FIG. 27 is a bottom view showing the bottom surface of the processing plate of the conventional transfer unit.
(符号の説明)  (Explanation of code)
1, 7, 9, 1 1 受け穴、  1, 7, 9, 1 1 receiving hole,
2, 8 , 10, 1 2 係合体、  2, 8, 10, 1 2 engagement body,
2 A, 3 1, 1 33 表面、  2 A, 3 1, 1 33 surface,
2B, 1 1 3, 1 1 5, 2 14〜 218, 25 1〜 253 噴出孔、  2B, 1 1 3, 1 1 5, 2 14 ~ 218, 25 1 ~ 253
2 C, 23, 32, 1 31 裏面、  2 C, 23, 32, 1 31 Back,
2D 気体室、  2D gas chamber,
3, 35, 1 35, 1 36 溝、  3, 35, 1 35, 1 36 grooves,
4 突出部、  4 protrusion,
5, 6 合わせ印、  5, 6 alignment mark,
9 A, 1 0B 段差部、  9 A, 10 B Step,
20, 1 30 加工板、  20, 1 30 Processing plate,
2 OA 破線部分、 21, 1 12, 212 搬送面、 2 OA broken line part, 21, 1 12, 212 Transfer surface,
22 加工位置、  22 machining position,
30 チップ、  30 chips,
33, 132 穴、  33, 132 holes,
34 , 134 孔、  34, 134 holes,
34 A ドリル、  34 A drill,
40 封止板、  40 sealing plate,
100 移送ユニット、  100 transport units,
1 10, 210 基台、  1 10, 210 bases,
1 10 A 搬送板、  1 10 A transport plate,
1 1 1, 21 1 供給系、  1 1 1, 21 1 Supply system,
1 12A 中心、  1 12A center,
1 13 A, 115 A, 214A〜218A, 251A〜253A 噴出方向、 1 13 A, 115 A, 214A to 218A, 251A to 253A Ejection direction,
1 14, 116 気体室、 1 14, 116 gas chamber,
120, 220 囲い材、  120, 220 enclosure,
140 封止板、  140 sealing plate,
200 制御ユニット、  200 control units,
213 吸引孔、  213 suction holes,
221〜226 設定ライン、  221-226 setting line,
300 ガラス板、  300 glass plates,
310 移動方向、  310 travel direction,
31 1 転換方向、  31 1 Turn direction,
401 矢印、  401 arrow,
a 1 長さ、  a 1 length,
a 2, a 3 直径。 発明を実施するための最良の形態  a 2, a 3 diameter. BEST MODE FOR CARRYING OUT THE INVENTION
[実施の形態 1 ]  [Embodiment 1]
以下、 図 1〜図 9を参照して、 本発明の実施の形態 1について詳細に述べる。 図 1は、 実施の形態 1に係わる浮上搬送装置用の気体噴出構造を示す平面図である。 図 2は、 図 1の部分的な拡大を示す拡大図である。 図 3は、 搬送面に設定されたカロ ェ位置を示す平面図である。 図 4は、 図 2の I— I断面を示す断面図である。 図 5 は、 図 1の I I— I I断面を示す断面図である。 図 6は、 係合体を作るためのチッ プを示す正面図である。 図 7は、 係合体に対する噴出孔の形成の様子を示す断面図 である。 図 8は、 係合体の取り付けの様子を示す断面図である。 図 9は、 搬送板を 示す断面図である。 Hereinafter, the first embodiment of the present invention will be described in detail with reference to FIGS. Figure 1 is a plan view showing a gas ejection structure for a levitation transfer device according to Embodiment 1. FIG. FIG. 2 is an enlarged view showing a partial enlargement of FIG. FIG. 3 is a plan view showing the Karoe position set on the transport surface. FIG. 4 is a cross-sectional view showing a II section of FIG. FIG. 5 is a cross-sectional view showing a II-II cross section of FIG. FIG. 6 is a front view showing a chip for making an engagement body. FIG. 7 is a cross-sectional view showing a state of formation of the ejection holes with respect to the engagement body. FIG. 8 is a cross-sectional view showing how the engagement body is attached. FIG. 9 is a cross-sectional view showing the transfer plate.
実施の形態 1に係る浮上搬送装置用の気体噴出構造は、 図 1 7に示す浮上搬送シ ステムの中の移送ュニット 1 0 0では、 噴出孔 1 1 3 , 1 1 5および気体室 1 1 4 , 1 1 6の仕組みであり、 制御ュニット 2 0 0では、 噴出孔 2 1 4〜 2 1 8 , 2 5 1 〜2 5 3およびこれらの噴出孔に通じる気体室の仕,組みである。  The gas ejection structure for the levitation transfer device according to the first embodiment has a structure in which the transfer unit 100 in the levitation transfer system shown in FIG. 17 includes the ejection holes 1 13, 1 15 and the gas chamber 1 1 4. In the control unit 200, the mechanism is a combination of the orifices 2 14 to 2 18 and 25 1 to 25 3 and the gas chambers communicating with these orifices.
実施の形態 1では、 図 1および図 2に示すように、 加工板 2 0の搬送面 2 1に、 受け穴 1が空けられている。 なお、 図 2は、 図 1の破線部分 2 O Aの拡大図である。 受け穴 1は、 図 3に示すように、 移送ュニットの加工板 2 0の搬送面 2 1に設定 されている、 移送ユニットの噴出孔の加工位置 2 2に空けられている。 受け穴 1は、 図 4に示すように、 加工板 2 0を貫通する、 直径が a 2の円筒形をした穴であり、 受け穴 1の長さは、 加工板 2 0の板厚 a 1である。 受け穴 1の貫通方向は、 搬送面 2 1に対して直角である。 つまり、 受け穴 1を形成するための加工は、 加工位置 2 2の部分で、 搬送面 2 1に対して直角方向から行われる。  In the first embodiment, as shown in FIG. 1 and FIG. 2, a receiving hole 1 is formed in a transfer surface 21 of a processing plate 20. FIG. 2 is an enlarged view of a broken line portion 2OA in FIG. As shown in FIG. 3, the receiving hole 1 is provided at the processing position 22 of the ejection hole of the transfer unit, which is set on the transfer surface 21 of the processing plate 20 of the transfer unit. As shown in FIG. 4, the receiving hole 1 is a cylindrical hole having a diameter of a 2 that penetrates the processing plate 20. The length of the receiving hole 1 is the thickness a 1 of the processing plate 20. It is. The penetration direction of the receiving hole 1 is perpendicular to the transfer surface 21. That is, the processing for forming the receiving hole 1 is performed at a processing position 22 from a direction perpendicular to the transport surface 21.
係合体 2は、 受け穴 1に嵌合する、 直径が a 2である円筒形状をしたものである。 図 5に示すように、 係合体 2の表面 2 Aには、 噴出孔 2 Bが空けられ、 裏面 2 Cに は、 噴出孔 2 Bと連結されている気体室 2 Dが空けられている。  The engagement body 2 has a cylindrical shape with a diameter of a2, which fits into the receiving hole 1. As shown in FIG. 5, an ejection hole 2B is formed on the front surface 2A of the engagement body 2, and a gas chamber 2D connected to the ejection hole 2B is formed on the back surface 2C.
係合体 2は、 次のようにして作られる。 つまり、 図 6に示すように、 直径が a 2 であり、 表面 3 1から裏面 3 2までの長さが a 1である丸棒状のチップ3 0が用意 された。 このチップ 3 0に対して、 裏面 3 2側から直径数 mm程度の穴 3 3が、 ド リルを用いて空けられた。 穴 3 3を空けるための加工は、 裏面 3 2に対して直角方 向から行われた。 この穴 3 3力 係合体 2の気体室 2 Dになる。 The engagement body 2 is made as follows. That is, as shown in FIG. 6, a round bar-shaped chip 30 having a diameter a 2 and a length a 1 from the front surface 31 to the back surface 32 was prepared. A hole 33 having a diameter of about several mm was formed in the chip 30 from the rear surface 32 using a drill. The processing for making the holes 33 was performed at right angles to the back surface 32. This hole 3 3 becomes the gas chamber 2D of the force engaging body 2.
この後、 図 7に示すように、 直径が 0 . 3 mm程度の孔 3 4が設けられた。 この 孔 3 4は、 ドリル 3 4 Aを用いて、 表面 3 1から穴 3 3に達するまで空けられた。 孔 3 4が、 係合体 2の噴出孔 2 Bである。 そして、 ドリル 3 4 Aの進行方向と逆方 向 (矢印 4 0 1で示される方向) 、 噴出孔 2 Bの噴出方向である。 孔 3 4を空け るための加工は、 治具によってチップ 3 0を挟んで加工機にセットし、 この後、 カロ 工機に装着されたドリルによって行われた。 この結果、 孔 3 4が表面 3 1に対して 傾斜している場合でも、 チップ 3 0が治具によって傾斜されて保持されたので、 カロ ェ機による、 直角方向からの加工が可能になった。 Thereafter, as shown in FIG. 7, a hole 34 having a diameter of about 0.3 mm was provided. The hole 34 was drilled from the surface 31 to the hole 33 using a drill 34A. The hole 34 is the ejection hole 2B of the engagement body 2. The direction opposite to the traveling direction of the drill 34A (the direction indicated by the arrow 401) is the direction of ejection of the ejection hole 2B. The processing for forming the hole 34 was performed by setting the chip 30 with a jig so as to sandwich the chip 30 in the processing machine, and thereafter, using a drill attached to the caro machine. As a result, even when the hole 34 is inclined with respect to the surface 31, since the tip 30 is held by being inclined by the jig, it is possible to perform machining from a right angle direction by the Kalo machine. .
加工板 2 0に対する受け穴 1の加工が終了し、 また、 多数の係合体 2が準備され ると、 図 8に示すように、 矢印 4 0 1で示される噴出方向を所定方向にして、 加工 板 2 0の裏面 2 3力 ら、 係合体 2を受け穴 1に打ち込んで、 係合体 2を挿入した。 これによつて、 図 1に示される加工板 2 0が作られた。 この後、 図 9に示すように、 加工板 2 0に対して、 同じ方向に気体を吹き出す係合体 2の噴出孔 2 Bを連結する ために、 溝 3 5が通気溝部として設けられ、 この後、 加工板 2 0の裏面 2 3が封止 板 4 0で張り合わされた。 こうして、 移送ュニット用の搬送板 5 0が作られた。 実施の形態 1によって、 加工板 2 0とは別に作られた係合体 2が、 加工板 2 0の 受け穴 1に打ち込まれて、 噴出孔 2 Bが形成される。 この結果、 移送ユニットや制 御ュニットのように、 向きが異なる噴出孔が 1枚の搬送板 5 0に形成される場合で も、 搬送板 5 0の向きを変えながら、 孔を空ける作業が不要になり、 噴出孔 2 Bを 極めて容易に行うことができる。 また、 これによつて、 搬送板 5 0に対する加工時 間を短縮することができる。  When the machining of the receiving hole 1 with respect to the processing plate 20 is completed and a large number of engaging bodies 2 are prepared, the ejection direction indicated by the arrow 401 is set to a predetermined direction as shown in FIG. The engaging body 2 was driven into the receiving hole 1 from the back surface 23 of the plate 20, and the engaging body 2 was inserted. As a result, a processed plate 20 shown in FIG. 1 was produced. Thereafter, as shown in FIG. 9, a groove 35 is provided as a ventilation groove to connect the ejection hole 2B of the engagement body 2 that blows out gas in the same direction to the processing plate 20. The back surface 23 of the processed plate 20 was adhered to the sealing plate 40. Thus, a transport plate 50 for the transfer unit was produced. According to the first embodiment, engaging body 2 formed separately from work plate 20 is driven into receiving hole 1 of work plate 20 to form ejection hole 2B. As a result, even when the ejection holes with different directions are formed in one carrier plate 50 like a transfer unit or a control unit, it is not necessary to open the holes while changing the direction of the carrier plate 50. Thus, the ejection hole 2B can be extremely easily formed. In addition, this makes it possible to reduce the processing time for the transport plate 50.
また、 受け穴 1に係合体 2を打ち込むので、 搬送板 5 0に対する噴出孔の加エミ スの発生を、 完全に防ぐことができる。  Further, since the engaging body 2 is driven into the receiving hole 1, it is possible to completely prevent generation of emis- sions of the ejection holes with respect to the transport plate 50.
[実施の形態 2 ]  [Embodiment 2]
次に、 図 1 0および図 1 1を参照して、 本発明の実施の形態 2について説明する。 図 1 0は、 実施の形態 2に係わる浮上搬送装置用の気体噴出構造を示す拡大図であ る。 図 1 1は、 図 1 0の I I I— I I I断面を示す断面図である。  Next, a second embodiment of the present invention will be described with reference to FIG. 10 and FIG. FIG. 10 is an enlarged view showing a gas ejection structure for a levitation transfer device according to the second embodiment. FIG. 11 is a sectional view showing a section taken along a line III-III in FIG. 10.
実施の形態 2では、 実施の形態 1に対してガイド部が設けられている。 つまり、 図 1 0および図 1 1に示すように、 気体の噴出方向の、 受け穴 1の側壁に、 溝 3が ガイド用溝部として設けられている。 また、 噴出孔 2 Bが向いている、 係合体 2の 側壁に、 受け穴 1の溝 3と嵌合する突出部 4がガイド用突出部として設けられてい る。 In the second embodiment, a guide portion is provided in the first embodiment. That is, as shown in FIGS. 10 and 11, the groove 3 is provided as a guide groove on the side wall of the receiving hole 1 in the gas ejection direction. In addition, a protrusion 4 that fits with the groove 3 of the receiving hole 1 is provided as a guide protrusion on the side wall of the engagement body 2 where the ejection hole 2B faces. You.
ガイド部は、 溝 3と突出部 4とで構成されている。 突出部 4が溝 3に嵌合するこ とによって、 受け穴 1に対して、 噴出孔 2 Bの噴出方向を簡単に設定することがで さる。  The guide portion includes a groove 3 and a projecting portion 4. By fitting the protruding portion 4 into the groove 3, the ejection direction of the ejection hole 2 B with respect to the receiving hole 1 can be easily set.
[実施の形態 3 ]  [Embodiment 3]
次に、 図 1 2および図 1 3を参照して、 本発明の実施の形態 3について説明する。 図 1 2は、 実施の形態 3に係わる加工板を示す平面図である。 図 1 3は、 実施の形 態 3に係わる係合体を示す平面図である。  Next, a third embodiment of the present invention will be described with reference to FIG. 12 and FIG. FIG. 12 is a plan view showing a processed plate according to the third embodiment. FIG. 13 is a plan view showing an engagement body according to the third embodiment.
実施の形態 3では、 実施の形態 1の受け穴 1および係合体 2に、 実施の形態 2と は別のガイド部が設けられている。 つまり、 図 1 2に示すように、 加工板 2 0の裏 面 2 3には、 合わせ印 5が設けられている。 合わせ印 5は、 印刷等によって、 受け 穴 1の周辺に形成されている。  In the third embodiment, a guide portion different from that of the second embodiment is provided in the receiving hole 1 and the engagement body 2 of the first embodiment. That is, as shown in FIG. 12, the alignment mark 5 is provided on the back surface 23 of the processing plate 20. The alignment mark 5 is formed around the receiving hole 1 by printing or the like.
また、 図 1 3に示すように、 係合体 2の裏面 2 Cには、 合わせ印 6が設けられて いる。 合わせ印 6は、 合わせ印 5と位置合わせをするためのものであり、 噴出孔 2 Bの向きを示している。 合わせ印 6は、 印刷等によって、 裏面 2 Cの外周付近に形 成されている。  Further, as shown in FIG. 13, a matching mark 6 is provided on the back surface 2C of the engagement body 2. The alignment mark 6 is for alignment with the alignment mark 5, and indicates the direction of the ejection hole 2B. The alignment mark 6 is formed near the outer periphery of the back surface 2C by printing or the like.
ガイド部は、 合わせ印 5 , 6によって形成されている。 係合体 2が受け穴 1に打 ち込まれるときに、 係合体 2の合わせ印 6が、 受け穴 1の周辺に設けられた合わせ 印 5と一致するようにする。 これよつて、 受け穴 1に対して噴出孔 2 Bの噴出方向 を簡単に設定することができる。  The guide part is formed by the alignment marks 5 and 6. When the engaging body 2 is driven into the receiving hole 1, the alignment mark 6 of the engaging body 2 is aligned with the alignment mark 5 provided around the receiving hole 1. This makes it possible to easily set the ejection direction of the ejection hole 2B with respect to the receiving hole 1.
[実施の形態 4 ]  [Embodiment 4]
次に、 図 1 4を参照して、 本発明の実施の形態 4について説明する。 図 1 4は、 実施の形態 4に係わる浮上搬送装置用の気体噴出構造を示す平面図である。  Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 14 is a plan view showing a gas ejection structure for a levitation transfer device according to the fourth embodiment.
実施の形態 4では、 実施の形態 1〜実施の形態 3の円形状の受け穴 1の代わりに、 多角形状として例えば 6角形状の受け穴 7が、 加工板 2 0に空けられている。 また、 実施の形態 1〜実施の形態 3の円形状の係合体 2の代わりに、 受け穴 7と嵌合する 形状の、 6角形状の係合体 8が、 受け穴 7に挿入されている。  In the fourth embodiment, instead of the circular receiving hole 1 of the first to third embodiments, for example, a hexagonal receiving hole 7 as a polygon is formed in the processing plate 20. Further, instead of the circular engaging body 2 of the first to third embodiments, a hexagonal engaging body 8 having a shape fitting with the receiving hole 7 is inserted into the receiving hole 7.
6角形状の受け穴 7およ 合体 8によって、 ガイド部が形成されている。 この 6角形状のガイド部によって、 噴出孔 2 Bの噴出方向を特定することができる。 [実施の形態 5 ] A guide portion is formed by the hexagonal receiving hole 7 and the combination 8. With the hexagonal guide portion, the ejection direction of the ejection hole 2B can be specified. [Embodiment 5]
次に、 図 1 5を参照して、 本発明の実施の形態 5について説明する。 図 1 5は、 実施の形態 5に係わる浮上搬送装置用の気体噴出構造を示す断面図である。  Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 15 is a cross-sectional view showing a gas ejection structure for a levitation transfer device according to the fifth embodiment.
実施の形態 5では、 係止部が実施の形態 1〜実施の形態 4に設けられている。 つ まり、 直径 a 2の受け穴 9が形成されるときに、 搬送面 2 1近くの受け穴 9に、 段 差部 9 Aが第 1段差部として設けられている。 段差部 9 Aによって、 受け穴 9は、 直径 a 2に比べて小さなものとなっている。 こうして、 段差部 9 Aを持つ受け穴 9 力 S、 加工板 2 0に空けられている。  In the fifth embodiment, the locking portion is provided in the first to fourth embodiments. That is, when the receiving hole 9 having the diameter a2 is formed, the step 9A is provided as the first step in the receiving hole 9 near the transfer surface 21. Due to the step 9A, the receiving hole 9 is smaller than the diameter a2. Thus, a receiving hole 9 having a stepped portion 9 A and a force S are formed in the processed plate 20.
係合体 1 0は、 受け穴 9に嵌合する形状をしている。 つまり、 直径が a 2である 係合体 1 0の、 表面 1 O A近くの部分が、 直径 a 2に比べて狭く形成されている。 こうして、 受け穴 9と同様に、 係合体 1 0に対しても、 段差部 1 0 Bが第 2段差部 として設けられている。  The engagement body 10 has a shape that fits into the receiving hole 9. That is, a portion near the surface 1OA of the engaging body 10 having the diameter a2 is formed to be narrower than the diameter a2. Thus, similarly to the receiving hole 9, the engaging portion 10 is also provided with the stepped portion 10B as the second stepped portion.
実施の形態 5では、 受け穴 9の段差部 9 Aと、 係合体 1 0の段差部 9 Bとによつ て、 係止部が形成されている。 この係止部によって、 係合体 1 0が受け穴 9に打ち 込まれる際に、 係合体 1 0の表面が搬送面 2 1から飛び出ることを防止することが できる。 この結果、 係合体 1 0の表面を加工板 2 0の搬送面 2 1に対して、 簡単に 平らにすることができる。  In the fifth embodiment, the locking portion is formed by the step 9A of the receiving hole 9 and the step 9B of the engaging body 10. With this locking portion, it is possible to prevent the surface of the engaging body 10 from jumping out of the transport surface 21 when the engaging body 10 is driven into the receiving hole 9. As a result, the surface of the engagement body 10 can be easily flattened with respect to the transfer surface 21 of the processing plate 20.
[実施の形態 6 ]  [Embodiment 6]
次に、 本発明の実施の形態 6について説明する。 図 1 6は、 実施の形態 6に係わ る浮上搬送装置用の気体噴出構造を示す断面図である。  Next, a sixth embodiment of the present invention will be described. FIG. 16 is a cross-sectional view showing a gas ejection structure for a levitation transfer device according to the sixth embodiment.
実施の形態 6では、 実施の形態 5と別の係止部が、 実施の形態 1〜実施の形態 4 に設けられている。 つまり、 直径 a 2を最大径とし、 直径 a 3を最小径とする円錐 形状の受け穴 1 1力 加工板 2 0に空けられている。 受け穴 1 1の最大径が加工板 2 0の裏面 2 3に位置し、 最小径が加工板 2 0の搬送面 2 1に位置している。 係合体 1 2は、 受け穴 1 1と嵌合する形状をしている。 つまり、 係合体 1 2は、 直径 a 2を最大径とし、 直径 a 3を最小径とし、 かつ、 長さ a 1を高さとする円錐 である。  In the sixth embodiment, a different locking portion from the fifth embodiment is provided in the first to fourth embodiments. In other words, a cone-shaped receiving hole 11 having a diameter a 2 as the maximum diameter and a diameter a 3 as the minimum diameter is formed in the work plate 20. The maximum diameter of the receiving hole 11 is located on the back surface 23 of the processing plate 20, and the minimum diameter is located on the transfer surface 21 of the processing plate 20. The engagement body 12 has a shape that fits into the receiving hole 11. That is, the engaging body 12 is a cone having the diameter a2 as the maximum diameter, the diameter a3 as the minimum diameter, and the length a1 as the height.
実施の形態 6では、 受け穴 1 1の円錐形状と、 係合体 1 2の円錐とによって、 係 止部が形成されている。 この係止部によって、 実施の形態 5と同じように、 係合体 1 2が受け穴 1 1に打ち込まれる際に、 係合体 1 2の表面が搬送面 2 1から飛び出 ることを防止することができる。 In the sixth embodiment, the engaging portion is formed by the conical shape of the receiving hole 11 and the conical shape of the engaging body 12. By this locking portion, the engaging body is provided in the same manner as in the fifth embodiment. When 12 is driven into receiving hole 11, it is possible to prevent the surface of engagement body 12 from jumping out of transfer surface 21.
以上、 実施の形態 1〜実施の形態 6について説明したが、 本発明は、 これらの実 施の形態に限定されることはない。 例えば、 実施の形態 1〜実施の形態 6では、 カロ ェ板が移送ユニット用のものであつたが、 制御ユニット用の加工板に対しても、 同 様に本発明が適用される。  The first to sixth embodiments have been described above, but the present invention is not limited to these embodiments. For example, in the first to sixth embodiments, the caroe board is for a transfer unit, but the present invention is similarly applied to a work board for a control unit.
また、 噴出孔から噴出する気体として、 高純度乾燥空気、 高純度窒素ガス、 高純 度アルゴンガス、 高純度炭酸ガス等を用いることが可能である。 ウェハを気流搬送 する場合には、 搬送用のガスとして、 不純物濃度が数 p p b以下の高純度窒素ガス を用いるのが最適である。  In addition, high-purity dry air, high-purity nitrogen gas, high-purity argon gas, high-purity carbon dioxide gas, or the like can be used as the gas ejected from the ejection holes. When carrying a wafer by air flow, it is optimal to use a high-purity nitrogen gas having an impurity concentration of several ppb or less as a carrier gas.
また、 浮上搬送システムとして、 T F T型液晶ディスプレイ用のガラス板等を気 流搬送するものを例としたが、 本発明は、 ガラス板に限られることなく、 各種板状 基体を搬送するシステムに適用可能である。  In addition, as an example of the levitation transport system, a system that transports a glass plate or the like for a TFT-type liquid crystal display by air flow is used as an example. It is possible.
さらに、 移送ュニットと制御ュニットとに設けられた噴出孔の配列方式としては、 各種のものがあるが、 本発明は、 これら各種の配列方式にも適用が可能である。 産業上の利用可能性  Furthermore, there are various types of arrangement of the ejection holes provided in the transfer unit and the control unit, but the present invention is also applicable to these various arrangements. Industrial applicability
以上、 説明したように、 本発明は、 前記気体を噴出する位置で前記搬送面に空け られると共に、 前記供給系から気体の供給を受ける受け穴と、 前記搬送板の前記受 け穴に嵌合する形状であり、 前記受け穴に挿入されていると共に、 前記受け穴に供 給された気体を噴出する噴出孔が空けられた係合体とを設けた。 また、 本発明は、 前記搬送面から前記供給系に至るまでの間に、 カゝつ、 前記気体を噴出する位置で、 前記搬送面に受け穴を空け、 気体を噴出する噴出孔が空けられていると共に、 前記 受け穴に嵌合する形状をしている係合体を、 前記搬送面の前記受け穴に挿入する。 この結果、 本発明によれば、 噴出孔が空けられた係合体が、 搬送板の受け穴に挿 入されることによって、 噴出孔を搬送板に形成することができる。 これによつて、 搬送板に対する噴出孔の形成を簡単にすることができる。  As described above, according to the present invention, the receiving hole is provided on the transfer surface at a position where the gas is ejected, and the receiving hole receiving the supply of gas from the supply system is fitted to the receiving hole of the transfer plate. And an engaging body which is inserted into the receiving hole and has an ejection hole for ejecting the gas supplied to the receiving hole. In the present invention, a gap may be formed between the transfer surface and the supply system, at a position where the gas is blown out, a receiving hole may be formed in the transfer surface, and a blowout hole for blowing out the gas may be formed. And an engaging body having a shape to be fitted in the receiving hole is inserted into the receiving hole of the transport surface. As a result, according to the present invention, the ejection holes can be formed in the conveyance plate by inserting the engagement body having the ejection holes into the receiving holes of the conveyance plate. This makes it possible to easily form the ejection holes on the transport plate.
本発明では、 前記搬送板は、 表面が前記搬送面である加工板と、 この加工板の裏 面をふさぐ封止板とを備え、 前 ΙΒΑΠェ板には、 この板を貫通するように前記受け穴 14 CT/JP99/04700 がそれぞれ空けられ、 前記係合体が前記受け穴にそれぞれ挿入された加工板に対し て、 同じ向きの噴出孔を連結する通気溝部を設け、 この通気溝部を前記供給系とし た。 また、 本発明は、 表面が搬送面である加工板と、 この加工板の裏面をふさぐ封 止板とで前記搬送板を形成し、 前記加工板を貫通するように受け穴をそれぞれ空け、 前記受け穴に前記係合体をそれぞれ挿入し、 前記噴出孔の向きが前記係合体を連結 するように、 前記加工板の裏面に通気溝部を設け、 前記裏面を前記封止板でふさい で前記通気溝部を供給系とする。 In the present invention, the transport plate includes: a processed plate having a surface as the transport surface; and a sealing plate that covers a back surface of the processed plate. Receiving hole 14 CT / JP99 / 04700 are provided respectively, and a ventilation groove for connecting the ejection hole of the same direction is provided for the processing plate in which the engagement body is inserted into the receiving hole, and the ventilation groove is used as the supply system. Was. In addition, the present invention provides the working plate having a transfer surface as a transfer surface, and a sealing plate closing a back surface of the work plate, forming the transfer plate, and forming receiving holes so as to penetrate the work plate. The engaging body is inserted into the receiving hole, and a ventilation groove is provided on the back surface of the processing plate so that the direction of the ejection hole connects the engaging body, and the back surface is covered with the sealing plate. Is a supply system.
この結果、 本発明によれば、 噴出孔を搬送板に設ける際に、 加工板に受け穴を空 けて、 封止板で裏面をふさぐので、 搬送板の製造を簡単にすることができる。  As a result, according to the present invention, when the ejection holes are provided in the transport plate, the receiving plate is opened in the processing plate, and the back surface is covered with the sealing plate, so that the production of the transport plate can be simplified.
本発明は、 前記受け穴に対する前記係合体の噴出孔の向きを決めるためのガイド 部を、 前記受け穴および前記係合体に設けた。 さらに、 前記ガイド部として、 前記 受け穴の側壁にガイド用溝部を設け、 前記係合体の側壁に、 前記ガイド用溝部に嵌 合する形状のガイド用突出部を設けた。 また、 本発明は、 前記受け穴に対する前記 係合体の噴出孔の向きを決めるためのガイド部を、 前記受け穴および前記係合体に 設ける。 さらに、 前記ガイド部として、 前記受け穴の側壁にガイド用溝部を設け、 前記係合体の側壁に、 前記ガイド用溝部に嵌合する形状のガイド用突出部を設ける。 この結果、 本発明によれば、 噴出孔が噴出する気体の噴出方向がガイド部によつ て示されるので、 気体の噴出方向を簡単に決めることができる。  In the present invention, a guide portion for determining the direction of the ejection hole of the engaging body with respect to the receiving hole is provided in the receiving hole and the engaging body. Further, as the guide portion, a guide groove is provided on a side wall of the receiving hole, and a guide protrusion having a shape to be fitted into the guide groove is provided on a side wall of the engagement body. Further, according to the present invention, a guide portion for determining the direction of the ejection hole of the engaging body with respect to the receiving hole is provided in the receiving hole and the engaging body. Further, as the guide portion, a guide groove is provided on a side wall of the receiving hole, and a guide protrusion having a shape to be fitted into the guide groove is provided on a side wall of the engagement body. As a result, according to the present invention, the ejection direction of the gas ejected from the ejection holes is indicated by the guide portion, so that the ejection direction of the gas can be easily determined.
本発明は、 前記受け穴に挿入された前記係合体を係止するための係止部を、 前記 受け穴および前記係合体に設けた。 さらに、 前記係止部として、 前記受け穴の側壁 に第 1段差部を設け、 この第 1段差部と嵌合する第 2段差部を前記係合体に設けた。 また、 本発明は、 前記受け穴に挿入された前記係合体を係止するための係止部を、 前記受け穴および前記係合体に設ける。 さらに、 前記係止部として、 前記受け穴の 側壁に第 1段差部を設け、 この第 1段差部と嵌合する第 2段差部を前記係合体に設 ける。  In the present invention, a locking portion for locking the engaging body inserted into the receiving hole is provided in the receiving hole and the engaging body. Further, a first step portion is provided on a side wall of the receiving hole as the locking portion, and a second step portion fitted with the first step portion is provided on the engagement body. Further, according to the present invention, a locking portion for locking the engaging body inserted into the receiving hole is provided in the receiving hole and the engaging body. Further, a first step portion is provided on a side wall of the receiving hole as the locking portion, and a second step portion fitted with the first step portion is provided in the engagement body.
この結果、 本発明によれば、 係合体は、 受け穴に挿入される際に、 係止部で止め られるので、 搬送面から突き出ることを防ぐことができる。  As a result, according to the present invention, when the engaging body is inserted into the receiving hole, the engaging body is stopped by the locking portion, so that the engaging body can be prevented from protruding from the transport surface.

Claims

請求の範囲 The scope of the claims
1 . 搬送面から噴出する気体で板状基体を浮上させる搬送板と、 この搬送板に具 備されていると共に前記搬送面から噴出される気体を供給する供給系とを備えた 浮上搬送装置用の気体噴出構造において、 1. For a levitation transfer device that includes a transfer plate that floats a plate-like substrate with gas ejected from a transfer surface, and a supply system that is provided on the transfer plate and that supplies gas ejected from the transfer surface. In the gas ejection structure of
前記気体を噴出する位置で前記搬送面に空けられると共に、 前記供給系から気体の 供給を受ける受け穴と、 A receiving hole that is provided on the transfer surface at a position where the gas is ejected, and that receives supply of gas from the supply system;
前記受け穴に嵌合する形状であり、 前記受け穴に挿入されていると共に、 前記受 け穴に供給された気体を噴出する噴出孔が空けられた係合体とを設けたことを特 徴とする浮上搬送装置用の気体噴出構造。  An engaging body inserted into the receiving hole and having an ejection hole for ejecting the gas supplied to the receiving hole. Gas ejecting structure for floating carrier equipment.
2 . 前記搬送板は、 表面が前記搬送面である加工板と、 この加工板の裏面をふさ ぐ封止板とを備え、 前記加工板には、 この板を貫通するように前記受け穴がそれぞ れ空けられ、 前記係合体が前記受け穴にそれぞれ挿入された加工板に対して、 同じ 向きの噴出孔を連結する通気溝部を設け、 この通気溝部を前記供給系としたことを 特徴とする請求項 1に記載の浮上搬送装置用の気体噴出構造。  2. The transfer plate includes a processed plate having a front surface serving as the transfer surface, and a sealing plate that covers a back surface of the processed plate, and the receiving hole is formed in the processed plate so as to penetrate the plate. A ventilation groove is provided for connecting the ejection holes in the same direction to the processing plate which is respectively opened and the engagement body is inserted into the receiving hole, and the ventilation groove is used as the supply system. The gas ejection structure for a levitation transfer device according to claim 1.
3 . 前記受け穴に対する前記係合体の噴出孔の向きを決めるためのガイド部を、 前記受け穴および廳5係合体に設けたことを特徴とする請求項 1または 2に記載 の浮上搬送装置用の気体噴出構造。  3. The floating transfer device according to claim 1 or 2, wherein a guide portion for determining the direction of the ejection hole of the engagement body with respect to the receiving hole is provided in the receiving hole and the engagement member. Gas ejection structure.
4 . 前記ガイド部として、 前記受け穴の側壁にガイド用溝部を設け、 前記係合体 の側壁に、 前記ガイド用溝部に嵌合する形状のガイド用突出部を設けたことを特徴 とする請求項 3に記載の浮上搬送装置用の気体噴出構造。  4. The guide portion, wherein a guide groove is provided on a side wall of the receiving hole, and a guide protrusion having a shape fitted into the guide groove is provided on a side wall of the engagement body. 4. The gas ejection structure for a levitation transfer device according to 3.
5 . 前記受け穴に挿入された前記係合体を係止するための係止部を、 前記受け穴 および前記係合体に設けたことを特徴とする請求項 1乃至 4に記載の浮上搬送装 置用の気体噴出構造。  5. The floating conveyance device according to claim 1, wherein a locking portion for locking the engaging body inserted into the receiving hole is provided in the receiving hole and the engaging body. Gas ejection structure.
6 . 前記係止部として、 前記受け穴の側壁に第 1段差部を設け、 この第 1段差部 と嵌合する第 2段差部を前記係合体に設けたことを特徴とする請求項 5に記載の 浮上搬送装置用の気体噴出構造。  6. The engaging portion according to claim 5, wherein a first step portion is provided on a side wall of the receiving hole, and a second step portion that fits with the first step portion is provided on the engagement body. A gas ejection structure for a levitation transfer device as described in the above.
7 . 搬送面から噴出する気体で板状基体を浮上させる搬送板と、 この搬送板に具 備されていると共に前記搬送面から噴出される気体を供給する供給系とを備える 浮上搬送装置用の噴出孔形成方法において、 7. A transport plate that floats the plate-like substrate with the gas ejected from the transport surface, and a supply system that is provided on the transport plate and supplies the gas ejected from the transport surface In a method for forming a jet hole for a floating conveyance device,
前記搬送面から前記供給系に至るまでの間に、 カゝつ、 前記気体を噴出する位置で、 前記搬送面に受け穴を空け、  In a position from the transfer surface to the supply system, at a position where the gas is ejected, a receiving hole is formed in the transfer surface,
気体を噴出する噴出孔が空けられていると共に、 前記受け穴に嵌合する形状をし ている係合体を、 前記搬送面の前記受け穴に挿入することを特徴とする浮上搬送装 置用の噴出孔形成方法。  An ejection hole for ejecting gas is formed, and an engaging body having a shape to be fitted in the receiving hole is inserted into the receiving hole of the conveying surface. Spout hole forming method.
8 . 表面が搬送面である加工板と、 この加工板の裏面をふさぐ封止板とで前記搬 送板を形成し、  8. The transport plate is formed by a processed plate whose front surface is a transport surface, and a sealing plate that covers the back surface of the processed plate;
前記加工板を貫通するように受け穴をそれぞれ空け、  Drill a receiving hole so as to penetrate the processing plate,
前記受け穴に前記係合体をそれぞれ挿入し、  Each of the engagement bodies is inserted into the receiving hole,
前記噴出孔の向きが前記係合体を連結するように、 前記加工板の裏面に通気溝部 を設け、  A vent groove is provided on the back surface of the processing plate so that the direction of the ejection hole connects the engagement body,
前記裏面を前記封止板でふさレヽで前記通気溝部を供給系とすることを特徴とす る請求項 7に記載の浮上搬送装置用の噴出孔形成方法。  8. The method of claim 7, wherein the back surface is covered with the sealing plate, and the ventilation groove is used as a supply system.
9 . 前記受け穴に対する前記係合体の噴出孔の向きを決めるためのガイド部を、 前記受け穴および前記係合体に設けることを特徴とする請求項 7または 8に記載 の浮上搬送装置用の噴出孔形成方法。 9. The ejection for a levitation transfer device according to claim 7, wherein a guide portion for determining the direction of the ejection hole of the engagement body with respect to the reception hole is provided in the reception hole and the engagement body. Hole forming method.
1 0 . 前記ガイド部として、 前記受け穴の側壁にガイド用溝部を設け、  10. As the guide portion, a guide groove portion is provided on a side wall of the receiving hole,
前記係合体の側壁に、 前記ガイド用溝部に嵌合する形状のガイド用突出部を設け ることを特徴とする請求項 9に記載の浮上搬送装置用の噴出孔形成方法。  10. The ejection hole forming method for a floating conveyance device according to claim 9, wherein a guide protrusion having a shape fitted into the guide groove is provided on a side wall of the engagement body.
1 1 . 前記受け穴に挿入された前記係合体を係止するための係止部を、 前記受け 穴および前記係合体に設けることを特徴とする請求項 7乃至 1 0に記載の浮上搬 送装置用の噴出孔形成方法。  11. The floating transport according to claim 7, wherein a locking portion for locking the engaging body inserted into the receiving hole is provided in the receiving hole and the engaging body. Spout hole forming method for equipment.
1 2 . 前記係止部として、 前記受け穴の側壁に第 1段差部を設け、 この第 1段差 部と嵌合する第 2段差部を前記係合体に設けることを特徴とする請求項 1 1に記 載の浮上搬送装置用の噴出孔形成方法。  12. The engaging portion, wherein a first step portion is provided on a side wall of the receiving hole, and a second step portion fitted with the first step portion is provided on the engagement body. The method for forming a jet hole for a levitation transfer device described in (1).
PCT/JP1999/004700 1998-08-31 1999-08-31 Gas jetting structure for float transport devices and method of forming jet holes WO2000012417A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/244644 1998-08-31
JP24464498A JP2000072250A (en) 1998-08-31 1998-08-31 Gas blow-out structure for floatation carrying device and blow-out hole forming method

Publications (1)

Publication Number Publication Date
WO2000012417A1 true WO2000012417A1 (en) 2000-03-09

Family

ID=17121822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004700 WO2000012417A1 (en) 1998-08-31 1999-08-31 Gas jetting structure for float transport devices and method of forming jet holes

Country Status (3)

Country Link
JP (1) JP2000072250A (en)
TW (1) TW418427B (en)
WO (1) WO2000012417A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498724B2 (en) * 2003-11-25 2010-07-07 株式会社渡辺商行 Levitation conveyance unit and levitation conveyance processing method for a conveyed object using the levitation conveyance unit
JP4498725B2 (en) * 2003-11-25 2010-07-07 株式会社渡辺商行 Levitation transfer device
JP5879680B2 (en) * 2010-11-05 2016-03-08 株式会社Ihi Non-contact type electrostatic chuck
CN111232650B (en) * 2020-01-13 2020-09-01 江苏科技大学 Reconfigurable modular air flotation conveying device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948081A (en) * 1972-02-10 1974-05-09
US4299518A (en) * 1980-03-03 1981-11-10 Texas Instruments Incorporated Manufacturing work station
JPS6313925U (en) * 1986-07-11 1988-01-29
JPS63225028A (en) * 1987-03-16 1988-09-20 Hitachi Ltd Conveying device
WO1993009046A1 (en) * 1991-11-08 1993-05-13 Zmaj Petrovic Device for tranferring objects by means of an air flow

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948081A (en) * 1972-02-10 1974-05-09
US4299518A (en) * 1980-03-03 1981-11-10 Texas Instruments Incorporated Manufacturing work station
JPS6313925U (en) * 1986-07-11 1988-01-29
JPS63225028A (en) * 1987-03-16 1988-09-20 Hitachi Ltd Conveying device
WO1993009046A1 (en) * 1991-11-08 1993-05-13 Zmaj Petrovic Device for tranferring objects by means of an air flow

Also Published As

Publication number Publication date
TW418427B (en) 2001-01-11
JP2000072250A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
JP4493742B2 (en) Gas ejection structure for levitation conveyor
JP2001010724A (en) Floating carrier device
JP2006008347A (en) Floatation transport device and floatation transporting method
WO2000012417A1 (en) Gas jetting structure for float transport devices and method of forming jet holes
US6528425B1 (en) Method and apparatus for processing substrate surface with striped ridge patterns
JP3718014B2 (en) Plate-shaped material transfer device and non-contact transfer line
JP4128344B2 (en) Substrate processing equipment
JPH11268830A (en) Air flow conveying cell
JP3882819B2 (en) Airflow alignment cap feeder
KR20100018613A (en) Levitation device and levitation transportation device
US20220169043A1 (en) Recording device
JPH0427856Y2 (en)
JP2006327715A (en) Work carrying device
JP2002270564A (en) Apparatus and method for cleaning substrate
JPH07205918A (en) Chip part loading apparatus
JP2007238288A (en) Work conveying device
JP3933123B2 (en) Air transfer device
JP4544634B2 (en) Substrate support device
JPH069052A (en) Work transport device
JP2007059438A (en) Substrate-treating device and substrate treatment method
KR102624573B1 (en) Apparatus for treating substrate and inkjet apparatus
JP3846470B2 (en) Conveyor and posture control device
JP2006315849A (en) Double-line air flow conveyance device
JPS6274829A (en) Transport of part mounted onto circuitboard
US20230207337A1 (en) Nozzle and substrate processing apparatus including the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR