JP4544634B2 - Substrate support device - Google Patents

Substrate support device Download PDF

Info

Publication number
JP4544634B2
JP4544634B2 JP2006154117A JP2006154117A JP4544634B2 JP 4544634 B2 JP4544634 B2 JP 4544634B2 JP 2006154117 A JP2006154117 A JP 2006154117A JP 2006154117 A JP2006154117 A JP 2006154117A JP 4544634 B2 JP4544634 B2 JP 4544634B2
Authority
JP
Japan
Prior art keywords
substrate
substrate support
pin
support apparatus
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006154117A
Other languages
Japanese (ja)
Other versions
JP2006261698A (en
Inventor
勝彦 宮
一樹 梶野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2006154117A priority Critical patent/JP4544634B2/en
Publication of JP2006261698A publication Critical patent/JP2006261698A/en
Application granted granted Critical
Publication of JP4544634B2 publication Critical patent/JP4544634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明はベルヌーイ効果を利用して基板を支持する技術に関する。   The present invention relates to a technique for supporting a substrate using the Bernoulli effect.

半導体基板(以下、「基板」という。)を回転させながら処理を行う基板処理装置において、支持体上のスリット状の開口(以下、「スリット」という。)から基板に向けてガスを噴出し、ベルヌーイ効果を利用して基板を支持する手法が知られている。ベルヌーイ効果を利用して基板を支持する場合、基板の周縁部に均一にベルヌーイ効果を生じさせることが重要となり、スリットは基板の周縁部に沿って設けられるとともにスリット幅には高い精度が要求される。また、スリットから噴出されるガスの消費量を削減するためにはスリット幅を小さくする必要があり、スリット形成にはさらに高い精度が必要とされる。   In a substrate processing apparatus that performs processing while rotating a semiconductor substrate (hereinafter referred to as “substrate”), gas is ejected from a slit-like opening (hereinafter referred to as “slit”) on a support toward the substrate, A technique for supporting a substrate using the Bernoulli effect is known. When supporting the substrate using the Bernoulli effect, it is important to generate the Bernoulli effect uniformly at the peripheral edge of the substrate, and the slit is provided along the peripheral edge of the substrate and the slit width is required to have high accuracy. The Moreover, in order to reduce the consumption of the gas ejected from a slit, it is necessary to make a slit width small, and a higher precision is required for slit formation.

そこで、従来の支持体では、環状のスリットの外側の部材と内側の部材とを精度よく組み合わせることにより、スリットを形成している。   Therefore, in the conventional support, the slit is formed by accurately combining the outer member and the inner member of the annular slit.

ところで、基板の処理に用いられる処理液に対する耐腐食性を考慮した場合、支持体は樹脂系の材料にて形成されることが好ましい。しかしながら、樹脂系の材料で支持体の各部材を形成した場合、各部材に対して高い形状精度を得ることが困難となり、微小で精度のよいスリット幅を得るには精密な調整機構や高い調整技術が必要となる。   By the way, when the corrosion resistance with respect to the processing liquid used for the processing of the substrate is taken into consideration, the support is preferably formed of a resin-based material. However, when each member of the support is formed of a resin-based material, it is difficult to obtain high shape accuracy for each member, and a precise adjustment mechanism and high adjustment are required to obtain a fine and accurate slit width. Technology is required.

特に、近年の基板の大型化に伴い、高い精度でスリット幅を調整するにはコストがかかるとともに技術的にも困難になりつつある。   In particular, with the recent increase in size of substrates, it is costly and technically difficult to adjust the slit width with high accuracy.

本発明は、ベルヌーイ効果にて支持される基板を容易に回転させることを目的としており、容易に作製することができる支持体にてベルヌーイ効果を利用した基板の適切な支持を実現することも目的としている。   The present invention aims to easily rotate a substrate supported by the Bernoulli effect, and also to realize appropriate support of the substrate using the Bernoulli effect by a support that can be easily manufactured. It is said.

請求項1に記載の発明は、基板を支持する基板支持装置であって、基板に対向する支持面に形成された複数の穴からガスを噴出することによりベルヌーイ効果を利用して前記基板を支持する基板支持体と、前記基板支持体に支持された前記基板のノッチ内に位置するピンと、前記基板を前記基板支持体により支持した状態にて、前記ピンを前記支持面に平行な面内にて前記基板の周方向に回転させて前記基板と周方向に当接させることにより、前記基板を回転させる回転手段とを備える。 The invention according to claim 1 is a substrate support apparatus for supporting a substrate, and supports the substrate by utilizing a Bernoulli effect by ejecting gas from a plurality of holes formed in a support surface facing the substrate. A substrate support, a pin positioned in the notch of the substrate supported by the substrate support, and the pin in a plane parallel to the support surface in a state where the substrate is supported by the substrate support. And rotating means for rotating the substrate by rotating it in the circumferential direction of the substrate and bringing it into contact with the substrate in the circumferential direction.

請求項2に記載の発明は、請求項1に記載の基板支持装置であって、前記ピンが、前記基板支持体に対向する回転ベース上に配置される。   A second aspect of the present invention is the substrate support apparatus according to the first aspect, wherein the pin is disposed on a rotation base facing the substrate support.

請求項3に記載の発明は、請求項1または2に記載の基板支持装置であって、前記ピンが、前記支持面に垂直な棒状である。   A third aspect of the present invention is the substrate support apparatus according to the first or second aspect, wherein the pin is in the shape of a bar perpendicular to the support surface.

請求項4に記載の発明は、請求項1ないし3のいずれかに記載の基板支持装置であって、前記複数の穴が、30mm以下の間隔で環状に形成される。   A fourth aspect of the present invention is the substrate support apparatus according to any one of the first to third aspects, wherein the plurality of holes are annularly formed at intervals of 30 mm or less.

請求項5に記載の発明は、請求項4に記載の基板支持装置であって、前記複数の穴が、支持される基板の周縁部に沿って形成される。   A fifth aspect of the present invention is the substrate support apparatus according to the fourth aspect, wherein the plurality of holes are formed along a peripheral edge portion of the substrate to be supported.

請求項6に記載の発明は、請求項4または5に記載の基板支持装置であって、前記複数の穴が、30個以上形成される。   The invention according to claim 6 is the substrate support apparatus according to claim 4 or 5, wherein 30 or more of the plurality of holes are formed.

請求項7に記載の発明は、請求項4ないし6のいずれかに記載の基板支持装置であって、前記複数の穴のそれぞれが、穴の形成方向に垂直な断面において最大幅が2mm以下とされる。   A seventh aspect of the present invention is the substrate support apparatus according to any one of the fourth to sixth aspects, wherein each of the plurality of holes has a maximum width of 2 mm or less in a cross section perpendicular to the hole forming direction. Is done.

本発明によれば、基板を容易に回転することができる。   According to the present invention, the substrate can be easily rotated.

図1は本発明の一の実施の形態に係る基板処理装置1の主要構成を示す断面図である。基板処理装置1は基板9を主面に平行な面内にて回転させつつ化学薬品、有機溶剤等の薬液や純水(以下、「処理液」という。)を供給することにより基板9の表面に処理を行う装置である。基板処理装置1では、基板9の下面に対してベベルエッチングを含む様々な処理を行うことが可能であり、さらに、基板9の上面に対しても処理を行うことが可能とされている。   FIG. 1 is a sectional view showing a main configuration of a substrate processing apparatus 1 according to an embodiment of the present invention. The substrate processing apparatus 1 supplies a chemical solution such as a chemical or an organic solvent or pure water (hereinafter referred to as a “treatment solution”) while rotating the substrate 9 in a plane parallel to the main surface, thereby providing a surface of the substrate 9. It is a device that performs processing. In the substrate processing apparatus 1, various processes including bevel etching can be performed on the lower surface of the substrate 9, and further, the process can be performed on the upper surface of the substrate 9.

図1は基板処理装置1が基板9の下面に処理を行う様子を示している。基板9の下面は基板9を回転させる回転ベース11と対向し、基板9の上面は遮蔽部12に対向する。基板9は遮蔽部12が退避した状態で回転ベース11に移載され、その後、遮蔽部12が基板9に近接するように移動して遮蔽部12から窒素ガス(以下、「ガス」という。)が噴出される。基板9はガスの流れにより生じるベルヌーイ効果により遮蔽部12に非常に近接した状態で支持される。すなわち、遮蔽部12は基板9を上方から支持する支持体となっている。   FIG. 1 shows how the substrate processing apparatus 1 performs processing on the lower surface of the substrate 9. The lower surface of the substrate 9 faces the rotation base 11 that rotates the substrate 9, and the upper surface of the substrate 9 faces the shielding part 12. The substrate 9 is transferred to the rotating base 11 with the shielding portion 12 retracted, and then the shielding portion 12 moves so as to be close to the substrate 9 and nitrogen gas (hereinafter referred to as “gas”) from the shielding portion 12. Is ejected. The substrate 9 is supported in a state of being very close to the shielding portion 12 by the Bernoulli effect generated by the gas flow. That is, the shielding part 12 is a support that supports the substrate 9 from above.

回転ベース11はモータ21の回転軸211に接続され、遮蔽部12もモータ22の回転軸221に接続される。モータ21の回転軸211は中空となっており、回転軸211内には処理液供給部31から供給される処理液の流路となる供給管311が配置される。供給管311からの処理液は基板9の下面に向けて吐出される。モータ22の回転軸221も中空となっており、回転軸221内には処理液供給部32からの処理液の流路となる供給管321が配置される。基板9の上面の処理の際には供給管321から処理液が基板9の上面に向けて吐出される。   The rotation base 11 is connected to the rotation shaft 211 of the motor 21, and the shielding portion 12 is also connected to the rotation shaft 221 of the motor 22. The rotating shaft 211 of the motor 21 is hollow, and a supply pipe 311 serving as a flow path for the processing liquid supplied from the processing liquid supply unit 31 is disposed in the rotating shaft 211. The processing liquid from the supply pipe 311 is discharged toward the lower surface of the substrate 9. The rotating shaft 221 of the motor 22 is also hollow, and a supply pipe 321 serving as a flow path for the processing liquid from the processing liquid supply unit 32 is disposed in the rotating shaft 221. When processing the upper surface of the substrate 9, the processing liquid is discharged from the supply pipe 321 toward the upper surface of the substrate 9.

回転ベース11は、基板9の下面に対向する板状の回転台111上に複数のピン112が基板9の外周に沿って配置された構造となっている。各ピン112の上部は遮蔽面121aに垂直な棒状となってり、ピン112は基板9の外縁と当接して基板9の水平面内の移動範囲を拘束する部材としての役割を果たす。遮蔽部12は、基板9の上面に対向する遮蔽面121aを有する遮蔽部材121、および、遮蔽部材121の上部を覆う蓋部材122により構成される。遮蔽部材121は皿状となっており、蓋部材122が嵌め合わされることにより遮蔽部12の内部に空間12aが形成される。   The rotary base 11 has a structure in which a plurality of pins 112 are arranged along the outer periphery of the substrate 9 on a plate-like rotary table 111 facing the lower surface of the substrate 9. The upper portion of each pin 112 has a bar shape perpendicular to the shielding surface 121a, and the pin 112 abuts on the outer edge of the substrate 9 and serves as a member that restricts the movement range of the substrate 9 in the horizontal plane. The shielding unit 12 includes a shielding member 121 having a shielding surface 121 a that faces the upper surface of the substrate 9, and a lid member 122 that covers the top of the shielding member 121. The shielding member 121 has a dish shape, and a space 12a is formed inside the shielding portion 12 by fitting the lid member 122 together.

遮蔽部材121の下部には、空間12aから遮蔽面121aに向かって伸びる複数の穴である噴出口121bが形成されており、空間12aに供給されるガスが噴出口121bから基板9に向けて勢いよく噴出される。すなわち、空間12aは噴出口121bにガスを導く流路の一部となっている。   A lower part of the shielding member 121 is formed with a jet port 121b that is a plurality of holes extending from the space 12a toward the shielding surface 121a, and the gas supplied to the space 12a vigorously moves toward the substrate 9 from the jet port 121b. Well ejected. That is, the space 12a is a part of a flow path that guides gas to the ejection port 121b.

遮蔽部12の上部には、空間12aにガスを供給するために流路部材131および供給ポート132が設けられており、供給ポート132にはガス供給部からチューブ133を介してガスが供給される。流路部材131は回転軸221に取り付けられ、供給ポート132は回転軸221の回転とは無関係な固定部位に取り付けられる。供給ポート132は流路部材131の外周を覆う形状をしており、流路部材131と供給ポート132との間には僅かな隙間が設けられる。このような構造により、回転軸221および流路部材131を回転させつつ固定設置される供給ポート132から流路部材131内の流路に向けて絶えずガスを供給することが可能とされる。   A flow path member 131 and a supply port 132 are provided in the upper part of the shielding part 12 in order to supply gas to the space 12a, and gas is supplied to the supply port 132 from the gas supply part via the tube 133. . The flow path member 131 is attached to the rotating shaft 221, and the supply port 132 is attached to a fixed part that is unrelated to the rotation of the rotating shaft 221. The supply port 132 has a shape covering the outer periphery of the flow path member 131, and a slight gap is provided between the flow path member 131 and the supply port 132. With such a structure, it is possible to continuously supply gas from the supply port 132 fixedly installed while rotating the rotating shaft 221 and the flow path member 131 toward the flow path in the flow path member 131.

図2は、遮蔽部材121の下面(すなわち、遮蔽部12の下面)を示す図である。遮蔽部材121の遮蔽面121aには基板9の周縁部に沿って微小な噴出口121bが多数(好ましくは30個以上)形成される。具体的には、穴の形成方向(穴が伸びる方向)に垂直な断面において直径0.3〜1mm程度の円形の噴出口121bが、1〜6mmの範囲内で環状に等間隔で形成される。また、噴出口121bの向きは基板9の外縁に向かって傾斜する方向とされる(図1参照)。好ましくは、遮蔽面121aに対して角度αが20°〜40°の範囲で形成される。これにより、噴出口121bからガスが勢いよく噴出されるとベルヌーイ効果により基板9が遮蔽面121aから0.1mm程度離れた状態で上方から支持される。   FIG. 2 is a diagram illustrating the lower surface of the shielding member 121 (that is, the lower surface of the shielding portion 12). A large number (preferably 30 or more) of fine spouts 121b are formed on the shielding surface 121a of the shielding member 121 along the peripheral edge of the substrate 9. Specifically, circular jet ports 121b having a diameter of about 0.3 to 1 mm in a cross section perpendicular to the hole forming direction (the direction in which the hole extends) are formed annularly at equal intervals within a range of 1 to 6 mm. . Moreover, the direction of the jet nozzle 121b is set to a direction inclined toward the outer edge of the substrate 9 (see FIG. 1). Preferably, the angle α is formed in the range of 20 ° to 40 ° with respect to the shielding surface 121a. Thereby, when gas is ejected vigorously from the ejection port 121b, the substrate 9 is supported from above in a state of being separated from the shielding surface 121a by about 0.1 mm by the Bernoulli effect.

また、微小な噴出口121bが基板9の周縁部に対向して等間隔に多数形成されることから、基板9が大型であってもガスの消費量を抑えつつ基板9の周縁部に均一かつ高速のガスの流れを生じさせることができ、安定して基板9を支持することが実現される。   In addition, since a large number of the fine nozzles 121b are formed at equal intervals so as to face the peripheral edge of the substrate 9, even when the substrate 9 is large, it is uniform on the peripheral edge of the substrate 9 while suppressing gas consumption. A high-speed gas flow can be generated, and the substrate 9 can be stably supported.

遮蔽部材121は処理液に対する耐腐食性を有する樹脂にて一体成型される。好ましくは、PVC(ポリ塩化ビニル)や、硬めのフッ素樹脂としてPCTFE(ポリクロロフルオロエチレン)や、フッ素樹脂より機械強度が高いPEEK(ポリエーテルエーテルケトン)により一体成型される。噴出口121bは一体成型時に形成されてもよく、遮蔽部材121の原型に対してドリルを用いて形成されてもよい。いずれの手法を用いても精度のよい噴出口121bを有する遮蔽部材121を容易に作製することができる。その結果、基板処理装置1の製造コストを削減しつつ、処理性能の向上および安定化を図ることができる。   The shielding member 121 is integrally formed of a resin having corrosion resistance against the processing liquid. Preferably, it is integrally molded with PVC (polyvinyl chloride), PCTFE (polychlorofluoroethylene) as a hard fluororesin, or PEEK (polyetheretherketone) having higher mechanical strength than the fluororesin. The spout 121b may be formed at the time of integral molding, or may be formed using a drill with respect to the prototype of the shielding member 121. Even if any method is used, the shielding member 121 having the jet port 121b with high accuracy can be easily manufactured. As a result, it is possible to improve and stabilize the processing performance while reducing the manufacturing cost of the substrate processing apparatus 1.

図3は、遮蔽部12側からの回転ベース11および基板9の様子を示す図である。回転台111上には3つのピンが取り付けられており、1つのピン112aは基板9のノッチ91内に位置するように配置され、2つのピン112bは基板9の外縁に近接して配置される。以下の説明においてこれらのピンを総称する際に「ピン112」という。   FIG. 3 is a diagram showing the state of the rotary base 11 and the substrate 9 from the shielding part 12 side. Three pins are attached on the turntable 111, one pin 112 a is disposed so as to be located in the notch 91 of the substrate 9, and two pins 112 b are disposed close to the outer edge of the substrate 9. . In the following description, these pins are collectively referred to as “pins 112”.

3つのピン112は、基板9の姿勢を固定するように基板9を強固に保持するのではなく、いずれかのピン112と基板9の外縁との間に隙間が生じるように(いわゆるガタを持たせるように)配置される。すなわち、基板9がピン112の間で僅かに水平方向に移動可能にピン112が配置される。したがって、各ピン112は回転台111に固定されるが、この状態で基板9を3つのピン112の間に挿入可能とされる。   The three pins 112 do not hold the substrate 9 firmly so that the posture of the substrate 9 is fixed, but a gap is formed between any one of the pins 112 and the outer edge of the substrate 9 (so-called looseness is provided). Arranged). That is, the pins 112 are arranged so that the substrate 9 can move slightly between the pins 112 in the horizontal direction. Therefore, although each pin 112 is fixed to the turntable 111, the substrate 9 can be inserted between the three pins 112 in this state.

一方で、ピン112と基板9との間の隙間は基板9の回転を拘束するように設定される。すなわち、ピン112aがノッチ91から外れないように3つのピン112の間隔が設定される。したがって、回転台111と共に3つのピン112が遮蔽面121aに平行な面内にて回転を開始すると、ピン112aがノッチ91と当接するとともに他の2つのピン112bのうちのいずれか一方が基板9の外縁に当接し、基板9が主面に平行な面内にて回転する。このとき、他方のピン112bと基板9との間には隙間が生じる。このように、基板処理装置1ではノッチ91を利用することにより略円形の基板9を強固に保持することなく容易に回転させることができる。   On the other hand, the gap between the pin 112 and the substrate 9 is set so as to restrain the rotation of the substrate 9. That is, the interval between the three pins 112 is set so that the pin 112a does not come off the notch 91. Therefore, when the three pins 112 together with the turntable 111 start to rotate in a plane parallel to the shielding surface 121a, the pin 112a comes into contact with the notch 91 and one of the other two pins 112b is connected to the substrate 9. The substrate 9 rotates in a plane parallel to the main surface. At this time, a gap is generated between the other pin 112 b and the substrate 9. As described above, the substrate processing apparatus 1 can easily rotate the substantially circular substrate 9 by using the notch 91 without firmly holding the substrate 9.

回転台111の回転が減速する際には、基板9と当接していなかったピン112bと基板9とが当接し、基板9と接していたピン112bが基板9から離れる。また、ノッチ91内のピン112aは回転の加速時と減速時とで接触位置が変化する。   When the rotation of the turntable 111 decelerates, the pin 112 b that has not been in contact with the substrate 9 contacts the substrate 9, and the pin 112 b that has been in contact with the substrate 9 moves away from the substrate 9. Further, the contact position of the pin 112a in the notch 91 changes depending on whether the rotation is accelerated or decelerated.

図1に示すように基板9の下面に処理が行われる場合、基板9はガスの噴出によるベルヌーイ効果により遮蔽部12と非接触の状態で支持され、基板9の水平方向の位置はピン112により制限される。そして、モータ21による回転ベース11の回転により遮蔽部12に支持された状態で基板9がピン112に当接して回転する。このとき、回転ベース11側の供給管311から基板9の下面に向けて処理液が吐出されることにより、基板9の下面および側面、さらには、側面から僅かに上面に至る部位に処理が施される。   As shown in FIG. 1, when processing is performed on the lower surface of the substrate 9, the substrate 9 is supported in a non-contact state with the shielding portion 12 by the Bernoulli effect due to gas ejection, and the horizontal position of the substrate 9 is supported by pins 112. Limited. Then, the substrate 9 rotates in contact with the pins 112 while being supported by the shielding portion 12 by the rotation of the rotating base 11 by the motor 21. At this time, the processing liquid is discharged from the supply pipe 311 on the rotating base 11 side toward the lower surface of the substrate 9, whereby processing is performed on the lower surface and side surfaces of the substrate 9, and also on the portion from the side surface to the upper surface slightly. Is done.

基板9はベルヌーイ効果を利用して支持され、かつ、基板9は回転ベース11のピン112に保持されないことから、遮蔽部12の遮蔽面121aと回転台111との平行度に多少の誤差が存在したり遮蔽面121aが多少上下したとしても基板9は遮蔽面121aに沿う状態で回転する。したがって、基板9と遮蔽面121aとが接することはない。また、基板9を回転させるピン112は回転台111に固定されているだけである。   Since the substrate 9 is supported using the Bernoulli effect, and the substrate 9 is not held by the pin 112 of the rotating base 11, there is some error in the parallelism between the shielding surface 121a of the shielding part 12 and the turntable 111. Even if the shielding surface 121a slightly moves up and down, the substrate 9 rotates in a state along the shielding surface 121a. Therefore, the board | substrate 9 and the shielding surface 121a do not contact | connect. Further, the pin 112 for rotating the substrate 9 is only fixed to the turntable 111.

その結果、極めて簡素化された構成により基板9と遮蔽面121aとを0.1mm程度まで安定して近づけることが可能となり、基板9の上面の雰囲気制御(パーティクルの上面側への進入防止を含む。)を適切に行うことができるとともに、基板9から飛散する処理液が基板処理装置1内で跳ね返った後に基板9の上面に付着することが確実に防止される。   As a result, the substrate 9 and the shielding surface 121a can be stably brought close to about 0.1 mm with an extremely simplified configuration, and the atmosphere control of the upper surface of the substrate 9 (including prevention of entry of particles into the upper surface side). .) Can be appropriately performed, and the processing liquid splashed from the substrate 9 can be reliably prevented from adhering to the upper surface of the substrate 9 after splashing in the substrate processing apparatus 1.

なお、基板9が回転する際には、基板9の回転にほぼ合わせるようにして遮蔽部12がモータ22により回転する。これにより、基板9の上面と遮蔽面121aとの間の速度差をなくし、基板9と遮蔽面121aとの間に外気が引き込まれてしまうことが防止される。   When the substrate 9 rotates, the shield 12 is rotated by the motor 22 so as to substantially match the rotation of the substrate 9. This eliminates the speed difference between the upper surface of the substrate 9 and the shielding surface 121a, and prevents outside air from being drawn between the substrate 9 and the shielding surface 121a.

また、基板9の下面に施される処理として洗浄(例えば、ベベルエッチングによる洗浄)が行われる場合には、処理中に基板9と各ピン112とが接したり離れたりするとともに基板9がピン112に対して僅かに上下動することから、基板9と各ピン112との間の洗浄が特別な機構(例えば、ピン112を移動させる機構)を設けることなく行うことが可能となる。すなわち、未洗浄部分が基板9に残存したり、メカニカルなチャックで基板9が搬送される際にチャックを介して後続の基板9が汚染されることが、特別な機構を用いずに防止することが実現される。   Further, when cleaning (for example, cleaning by bevel etching) is performed as a process performed on the lower surface of the substrate 9, the substrate 9 and each pin 112 come into contact with or separate from each other during the process, and the substrate 9 is connected to the pin 112. Therefore, cleaning between the substrate 9 and each pin 112 can be performed without providing a special mechanism (for example, a mechanism for moving the pin 112). That is, it is possible to prevent an uncleaned portion from remaining on the substrate 9 or contaminating the subsequent substrate 9 through the chuck when the substrate 9 is transported by a mechanical chuck without using a special mechanism. Is realized.

さらに、基板処理装置1は既述のように簡素化された構成であることから、基板処理装置1の製造コストの削減およびフットプリントの削減も実現される。   Furthermore, since the substrate processing apparatus 1 has a simplified configuration as described above, the manufacturing cost and footprint of the substrate processing apparatus 1 can be reduced.

図4は基板9の下面に処理が行われた後に上面に処理が行われる際の基板処理装置1の様子を示す断面図である。   FIG. 4 is a cross-sectional view showing the state of the substrate processing apparatus 1 when the upper surface is processed after the lower surface of the substrate 9 is processed.

基板9の上面に処理が行われる際には、まず、図1に示す状態において遮蔽部12へのガスの供給が停止され、基板9が回転台111側へと落下する。図5はピン112の形状を示す図である。ピン112は上部が径の小さい当接部1121となっており、下部が径の大きい支持部1122となっている。すなわち、ピン112はいわゆる2段ピンとされる。   When processing is performed on the upper surface of the substrate 9, first, the supply of gas to the shielding unit 12 is stopped in the state shown in FIG. 1, and the substrate 9 falls to the turntable 111 side. FIG. 5 is a diagram showing the shape of the pin 112. The upper part of the pin 112 is a contact part 1121 having a small diameter, and the lower part is a support part 1122 having a large diameter. That is, the pin 112 is a so-called two-stage pin.

当接部1121は、基板9が遮蔽部12に支持される際に基板9の外縁に当接して基板9を回転させる。一方、支持部1122は、遮蔽部12による基板9の支持が解除されて図5中の二点差線にて示す状態から実線にて示すように基板9が落下すると、基板9を下方から接触して支持する役割を果たす。このように、ピン112を2段ピンとすることにより、下面処理時の基板9の回転および上面処理時の基板9の支持が簡単な構成で実現される。   The contact portion 1121 contacts the outer edge of the substrate 9 and rotates the substrate 9 when the substrate 9 is supported by the shielding portion 12. On the other hand, the support unit 1122 contacts the substrate 9 from below when the support of the substrate 9 by the shielding unit 12 is released and the substrate 9 falls as shown by the solid line from the state shown by the two-dot chain line in FIG. Play a supporting role. Thus, by using the pins 112 as two-stage pins, the rotation of the substrate 9 during the bottom surface processing and the support of the substrate 9 during the top surface processing can be realized with a simple configuration.

基板9がピン112の支持部1122に支持されると、図4に示すように遮蔽部12が基板9から遠ざけられ、遮蔽部12側の供給管321から基板9の上面に向けて処理液が供給される。その後、モータ21が回転することにより基板9が回転ベース11と共に高速で回転し、基板9の表面に処理が施される。   When the substrate 9 is supported by the support portion 1122 of the pin 112, the shielding portion 12 is moved away from the substrate 9 as shown in FIG. 4, and the processing liquid is directed from the supply pipe 321 on the shielding portion 12 side toward the upper surface of the substrate 9. Supplied. Thereafter, when the motor 21 rotates, the substrate 9 rotates at a high speed together with the rotation base 11, and the surface of the substrate 9 is processed.

以上のように、基板処理装置1では回転ベース11に支持部1122を有するピン112が配置され、供給管311から処理液を吐出することが可能であるため、基板9の下面の処理のみならず上面の処理も行うことが実現される。   As described above, in the substrate processing apparatus 1, since the pin 112 having the support portion 1122 is disposed on the rotation base 11 and the processing liquid can be discharged from the supply pipe 311, not only the processing of the lower surface of the substrate 9 is performed. It is also possible to perform processing of the upper surface.

以上、本発明の一の実施の形態に係る基板処理装置1について説明してきたが、本発明は上記実施の形態に限定されるものではなく、様々な変形が可能である。   The substrate processing apparatus 1 according to one embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and various modifications can be made.

上記実施の形態では、基板処理装置1は半導体基板に処理を行うが、処理対象は、液晶ディスプレイやプラズマディスプレイ等のフラットパネルディスプレイ用のガラス基板であってもよい。   In the above embodiment, the substrate processing apparatus 1 processes a semiconductor substrate, but the processing target may be a glass substrate for a flat panel display such as a liquid crystal display or a plasma display.

図6は、ガラス基板のような角形基板の場合の遮蔽部12の構造を示す図であり、図7は回転ベース11の構造を示す図である。図6に示すように、角形の基板9を取り扱う場合、基板9に覆われる領域内にて環状に多数の噴出口121bが遮蔽面121aに形成される。これは、回転ベース11の回転と遮蔽部12の回転とを同期させることができなくても基板9の周縁部全体にベルヌーイ効果を発生させるためである。もちろん、回転ベース11と遮蔽部12との回転を完全に同期させることができる場合には、噴出口121bは基板9の外周に沿って矩形状に配列されることが好ましい。   FIG. 6 is a view showing the structure of the shielding portion 12 in the case of a square substrate such as a glass substrate, and FIG. 7 is a view showing the structure of the rotating base 11. As shown in FIG. 6, when the rectangular substrate 9 is handled, a large number of nozzles 121 b are formed in the shielding surface 121 a in a ring shape in the region covered with the substrate 9. This is because the Bernoulli effect is generated in the entire peripheral edge of the substrate 9 even if the rotation of the rotation base 11 and the rotation of the shielding portion 12 cannot be synchronized. Of course, when the rotations of the rotation base 11 and the shielding portion 12 can be completely synchronized, the ejection ports 121b are preferably arranged in a rectangular shape along the outer periphery of the substrate 9.

一方、図7に示すように回転ベース11の回転台111上には6個のピン112が配置される。これらのピン112は略円形の基板の場合と同様に基板9を強固に保持するのではなく、基板9との間に僅かな隙間が生じるように配置される。これにより、基板9が回転する際には、各ピン112が基板9の外縁に当接したり離れたりすることにより、ピン112と基板9との間においても適切に処理が行われる。   On the other hand, as shown in FIG. 7, six pins 112 are arranged on the turntable 111 of the rotary base 11. These pins 112 do not hold the substrate 9 firmly as in the case of the substantially circular substrate, but are arranged so that a slight gap is formed between the pins 112. As a result, when the substrate 9 rotates, each pin 112 abuts on or away from the outer edge of the substrate 9, so that processing is appropriately performed between the pin 112 and the substrate 9.

図7に示すように、基板9を回転させるためにはいずれかのピン112を周方向(回転方向)に対してほぼ垂直な方向から基板9に当接させる必要はない。複数のピン112の少なくとも一部が基板9と当接し、当接する際に生じる力が周方向の成分を有することにより基板9を回転させることが実現される。すなわち、基板9を非固定状態とし、基板9に当接させる複数の部材のうちの少なくとも一部を基板9の略周方向に当接させることにより、ベルヌーイ効果を利用しつつ基板9を回転させることが実現される。   As shown in FIG. 7, in order to rotate the substrate 9, any pin 112 does not need to be brought into contact with the substrate 9 from a direction substantially perpendicular to the circumferential direction (rotation direction). It is realized that at least a part of the plurality of pins 112 abuts the substrate 9 and that the force generated when the abutment has a circumferential component has the rotation of the substrate 9. That is, the substrate 9 is brought into an unfixed state, and at least a part of the plurality of members that are brought into contact with the substrate 9 is brought into contact with the substrate 9 in the substantially circumferential direction, thereby rotating the substrate 9 while utilizing the Bernoulli effect. Is realized.

上記実施の形態では、ピン112が回転ベース11に設けられるが、ピン112を遮蔽部12に設けることも可能である。この場合、遮蔽部12の回転と基板9の回転とを完全に同期させることが可能となる。   In the embodiment described above, the pin 112 is provided on the rotary base 11, but the pin 112 may be provided on the shielding portion 12. In this case, the rotation of the shielding part 12 and the rotation of the substrate 9 can be completely synchronized.

また、ピン112は加工の容易さおよび構造の簡素化の観点から棒状であることが好ましいが、棒状に限定されるものではなく、任意の形状であってよい。例えば、図8に示すように、平面112dを円形の基板9の外縁に当接させるピン112cが用いられてもよい。なお、図8に示すピン112cは縦断面においてL字状となっており、上面処理の際にはピン112cの下部が基板9を下方から当接して支持する。   The pin 112 is preferably rod-shaped from the viewpoint of ease of processing and simplification of the structure, but is not limited to the rod shape, and may be any shape. For example, as shown in FIG. 8, a pin 112c that makes the flat surface 112d contact the outer edge of the circular substrate 9 may be used. Note that the pin 112c shown in FIG. 8 has an L-shape in the longitudinal section, and the lower portion of the pin 112c abuts and supports the substrate 9 from below when processing the upper surface.

さらに、ピン112の下部が支持部とされる必要はなく、図9に示すように円筒状のピン112eを配置し、基板9を下方から支持する支持部材112fが別途設けられてもよい。   Further, the lower portion of the pin 112 does not need to be a support portion, and a support member 112f for arranging the cylindrical pin 112e and supporting the substrate 9 from below as shown in FIG. 9 may be separately provided.

上記実施の形態では、供給管から処理液を吐出することにより基板9に処理液を付与するが、処理液の供給はどのような手法が利用されてもよい。例えば、スプレー式、スリット式等が利用されてもよい。   In the above embodiment, the processing liquid is applied to the substrate 9 by discharging the processing liquid from the supply pipe, but any method may be used for supplying the processing liquid. For example, a spray type, a slit type, or the like may be used.

上記実施の形態において噴出口121bの直径は0.3〜1mmが好ましいと説明したが、2mm以下であれば8インチ以上の大型の基板9に対しても適切な支持が可能である。噴出口121bはドリルを用いることにより穴の形成方向に垂直な断面において円形となるものが容易に形成できるが、穴の形状は円形に限定されない。例えば、耐腐食性樹脂を用いて金型で一体成形する際に噴出口121bを形成する場合には矩形等であっても容易に形成することができる。この場合であっても穴の形成方向に垂直な断面において最大幅を2mm以下とすることにより、基板9を適切に支持することができる。   In the above-described embodiment, it has been described that the diameter of the ejection port 121b is preferably 0.3 to 1 mm. However, if the diameter is 2 mm or less, it is possible to appropriately support the large substrate 9 of 8 inches or more. The nozzle 121b can be easily formed in a circular shape in a cross section perpendicular to the hole forming direction by using a drill, but the shape of the hole is not limited to a circle. For example, when forming the spout 121b when integrally forming with a mold using a corrosion-resistant resin, even if it is a rectangle or the like, it can be easily formed. Even in this case, the substrate 9 can be appropriately supported by setting the maximum width to 2 mm or less in the cross section perpendicular to the hole forming direction.

上記実施の形態では噴出口121bの間隔は1〜6mmが好ましいと説明したが、実用上は30mm以下という条件が満たされると基板9を適切に支持することができる。また、噴出口121bは等間隔に形成される必要はなく、さらに、円環状に配置されなくても基板9を支持することができる。もちろん、ベルヌーイ効果を基板9の周縁部にて均等に発生するには、噴出口121bが基板9の周縁部に沿って等間隔に形成されることが好ましい。   In the above embodiment, it has been described that the interval between the ejection ports 121b is preferably 1 to 6 mm. However, in practice, the substrate 9 can be appropriately supported when the condition of 30 mm or less is satisfied. Further, the ejection ports 121b do not need to be formed at equal intervals, and can support the substrate 9 even if not arranged in an annular shape. Of course, in order to generate the Bernoulli effect evenly at the peripheral edge of the substrate 9, it is preferable that the ejection ports 121 b are formed at equal intervals along the peripheral edge of the substrate 9.

上記実施の形態では、基板9の周縁部に対向する位置からガスを噴出するようにしているが、ガスは基板9の中心に対向する位置からも噴出されてよい。これにより、大型の基板9の中央部に生じるたわみを制御することができる。   In the above embodiment, the gas is ejected from a position facing the peripheral edge of the substrate 9, but the gas may also be ejected from a position facing the center of the substrate 9. Thereby, the deflection | deviation which arises in the center part of the large sized board | substrate 9 is controllable.

上記実施の形態では、ピン112をガタを持たせつつ基板9に当接させることにより基板9を回転させるが、ベルヌーイ効果にて基板9を支持した後にピン112を移動させて基板9が強固に保持されてもよい。さらには、基板9の支持体である遮蔽部12の構造が回転ベース11に利用されてもよい。   In the above-described embodiment, the substrate 9 is rotated by bringing the pin 112 into contact with the substrate 9 while being loose. However, after the substrate 9 is supported by the Bernoulli effect, the pin 112 is moved to make the substrate 9 firm. It may be held. Furthermore, the structure of the shielding part 12 that is a support of the substrate 9 may be used for the rotary base 11.

図10は回転ベース11Aに多数の噴出口111bが形成される場合の構造を示す断面図である。回転ベース11Aの構造はピン112が配置されるという点を除いて図1における遮蔽部12と同様である。すなわち、チューブ133、供給ポート132および流路部材131を介して回転ベース11A内にガスが導入され、回転ベース11A内の空間から噴出口111bへと導かれる。これにより、基板9が下方からベルヌーイ効果を利用して非接触にて支持することが実現される。図10に示すピン112gはモータ114により偏心した回動を行い、ベルヌーイ効果を利用して基板9が支持された後に、ピン112gを含む複数のピン112により基板9が強固の保持される。もちろん、基板9が下方から支持される場合であっても図1と同様に、基板9を強固に保持することなく回転させることも可能である。   FIG. 10 is a cross-sectional view showing a structure in the case where a large number of jet openings 111b are formed in the rotation base 11A. The structure of the rotation base 11A is the same as that of the shielding part 12 in FIG. 1 except that the pin 112 is disposed. That is, the gas is introduced into the rotation base 11A through the tube 133, the supply port 132, and the flow path member 131, and is guided from the space in the rotation base 11A to the ejection port 111b. Thereby, it is implement | achieved that the board | substrate 9 supports non-contact using the Bernoulli effect from the downward direction. The pin 112g shown in FIG. 10 rotates eccentrically by the motor 114, and after the substrate 9 is supported using the Bernoulli effect, the substrate 9 is firmly held by the plurality of pins 112 including the pins 112g. Of course, even when the substrate 9 is supported from below, it is possible to rotate the substrate 9 without firmly holding it, as in FIG.

さらに、微小な多数の噴出口によるベルヌーイ効果を利用して基板を支持する技術は様々な種類の基板処理装置における他の用途に利用されてもよい。例えば、基板9を回転ベース11まで搬送する搬送機構における支持体として遮蔽部12と同様の構成が利用されてもよい。このように、微小な多数の噴出口を有する支持体は、基板の処理に係る支持体以外の構成と任意の関係で設けられてよい。   Further, the technology for supporting a substrate by utilizing the Bernoulli effect by a large number of small nozzles may be used for other applications in various types of substrate processing apparatuses. For example, the same configuration as the shielding unit 12 may be used as a support in the transport mechanism that transports the substrate 9 to the rotation base 11. As described above, the support body having a large number of minute ejection ports may be provided in any relationship with the configuration other than the support body related to the processing of the substrate.

基板処理装置の主要構成を示す断面図である。It is sectional drawing which shows the main structures of a substrate processing apparatus. 遮蔽部材の下面を示す図である。It is a figure which shows the lower surface of a shielding member. 遮蔽部側からの回転ベースおよび基板の様子を示す図である。It is a figure which shows the mode of the rotation base and board | substrate from the shielding part side. 基板の上面に処理が行われる際の基板処理装置の様子を示す断面図である。It is sectional drawing which shows the mode of the substrate processing apparatus when a process is performed on the upper surface of a board | substrate. ピンを示す図である。It is a figure which shows a pin. 遮蔽部の他の構造を示す図である。It is a figure which shows the other structure of a shielding part. 回転ベースの他の構造を示す図である。It is a figure which shows the other structure of a rotation base. ピンの他の形状を説明するための図である。It is a figure for demonstrating the other shape of a pin. 支持部材を設けた様子を示す図である。It is a figure which shows a mode that the support member was provided. 回転ベースを示す断面図である。It is sectional drawing which shows a rotation base.

符号の説明Explanation of symbols

9 基板
11,11A 回転ベース
12 遮蔽部
21 モータ
91 ノッチ
112,112a,112b,112c,112e ピン
112f 支持部材
121 遮蔽部材
121b 噴出口
121a 遮蔽面
9 Substrate 11, 11A Rotating base 12 Shielding part 21 Motor 91 Notch 112, 112a, 112b, 112c, 112e Pin 112f Support member 121 Shielding member 121b Jet port 121a Shielding surface

Claims (7)

基板を支持する基板支持装置であって、
基板に対向する支持面に形成された複数の穴からガスを噴出することによりベルヌーイ効果を利用して前記基板を支持する基板支持体と、
前記基板支持体に支持された前記基板のノッチ内に位置するピンと、
前記基板を前記基板支持体により支持した状態にて、前記ピンを前記支持面に平行な面内にて前記基板の周方向に回転させて前記基板と周方向に当接させることにより、前記基板を回転させる回転手段と、
を備えることを特徴とする基板支持装置。
A substrate support device for supporting a substrate,
A substrate support that supports the substrate by utilizing a Bernoulli effect by ejecting gas from a plurality of holes formed in a support surface facing the substrate;
A pin located in a notch of the substrate supported by the substrate support;
In a state where the substrate is supported by the substrate support, the pins are rotated in the circumferential direction of the substrate in a plane parallel to the support surface to be brought into contact with the substrate in the circumferential direction. Rotating means for rotating
A substrate support apparatus comprising:
請求項1に記載の基板支持装置であって、
前記ピンが、前記基板支持体に対向する回転ベース上に配置されることを特徴とする基板支持装置。
The substrate support apparatus according to claim 1,
The substrate support apparatus, wherein the pin is disposed on a rotation base facing the substrate support.
請求項1または2に記載の基板支持装置であって、
前記ピンが、前記支持面に垂直な棒状であることを特徴とする基板支持装置。
The substrate support apparatus according to claim 1 or 2,
The substrate support apparatus according to claim 1, wherein the pin has a bar shape perpendicular to the support surface.
請求項1ないし3のいずれかに記載の基板支持装置であって、
前記複数の穴が、30mm以下の間隔で環状に形成されることを特徴とする基板支持装置。
A substrate support apparatus according to any one of claims 1 to 3,
The substrate support apparatus, wherein the plurality of holes are annularly formed at intervals of 30 mm or less.
請求項4に記載の基板支持装置であって、
前記複数の穴が、支持される基板の周縁部に沿って形成されることを特徴とする基板支持装置。
The substrate support apparatus according to claim 4,
The substrate support apparatus, wherein the plurality of holes are formed along a peripheral edge of a substrate to be supported.
請求項4または5に記載の基板支持装置であって、
前記複数の穴が、30個以上形成されることを特徴とする基板支持装置。
The substrate support apparatus according to claim 4 or 5, wherein
A substrate support apparatus, wherein the plurality of holes are formed in 30 or more.
請求項4ないし6のいずれかに記載の基板支持装置であって、
前記複数の穴のそれぞれが、穴の形成方向に垂直な断面において最大幅が2mm以下とされることを特徴とする基板支持装置。
A substrate support apparatus according to any one of claims 4 to 6,
Each of the plurality of holes has a maximum width of 2 mm or less in a cross section perpendicular to the hole forming direction.
JP2006154117A 2006-06-02 2006-06-02 Substrate support device Expired - Fee Related JP4544634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006154117A JP4544634B2 (en) 2006-06-02 2006-06-02 Substrate support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006154117A JP4544634B2 (en) 2006-06-02 2006-06-02 Substrate support device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001245985A Division JP4128344B2 (en) 2001-03-22 2001-08-14 Substrate processing equipment

Publications (2)

Publication Number Publication Date
JP2006261698A JP2006261698A (en) 2006-09-28
JP4544634B2 true JP4544634B2 (en) 2010-09-15

Family

ID=37100507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006154117A Expired - Fee Related JP4544634B2 (en) 2006-06-02 2006-06-02 Substrate support device

Country Status (1)

Country Link
JP (1) JP4544634B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553062B2 (en) * 2011-06-30 2014-07-16 三菱電機株式会社 Positioning device and positioning method
JP7145648B2 (en) * 2018-05-22 2022-10-03 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129587A (en) * 1995-10-31 1997-05-16 Hitachi Ltd Sample holding method, sample turning method and method and apparatus for treatment of fluid on surface of sample
JPH09275064A (en) * 1996-04-03 1997-10-21 Nikon Corp Alignment method/device for substrate
JPH11223521A (en) * 1998-02-04 1999-08-17 Hiroshi Akashi Noncontact suction instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129587A (en) * 1995-10-31 1997-05-16 Hitachi Ltd Sample holding method, sample turning method and method and apparatus for treatment of fluid on surface of sample
JPH09275064A (en) * 1996-04-03 1997-10-21 Nikon Corp Alignment method/device for substrate
JPH11223521A (en) * 1998-02-04 1999-08-17 Hiroshi Akashi Noncontact suction instrument

Also Published As

Publication number Publication date
JP2006261698A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
US6669808B2 (en) Substrate processing apparatus and substrate processing method
US10964556B2 (en) Substrate processing apparatus, substrate processing system, and substrate processing method
JP5470306B2 (en) Two-fluid nozzle, substrate liquid processing apparatus, substrate liquid processing method, and computer-readable recording medium recording a substrate liquid processing program
JP4474438B2 (en) Substrate processing apparatus and method, and jet head used therefor
JP4446875B2 (en) Substrate processing equipment
JP4657090B2 (en) Substrate processing equipment
KR101312333B1 (en) Wet treatment device and wet treatment method
KR102018397B1 (en) Method and device for wet treatment of plate-like articles
JP5954862B2 (en) Substrate processing equipment
JP4128344B2 (en) Substrate processing equipment
JP2010068000A (en) Substrate processing apparatus and method
US20170323809A1 (en) Substrate washing device
JP4544634B2 (en) Substrate support device
JP3846697B2 (en) Substrate processing equipment
WO2006030561A1 (en) Substrate treatment apparatus
JP2008300454A (en) Substrate-treating device and substrate treatment method
KR20180059997A (en) Substrate rotation type injection spray apparatus
JP6491900B2 (en) Substrate processing apparatus and substrate processing method
JP2006060161A (en) Wafer processing apparatus
JP7187268B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP6416652B2 (en) Substrate processing equipment
JP2007335587A (en) Substrate treatment equipment
JP2006120666A (en) Substrate-treating device
JP2012099833A (en) Substrate processing apparatus and substrate processing method
JP2006186117A (en) Substrate holder and substrate rotating processor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4544634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees