WO2000003490A1 - Mobile telephone system - Google Patents

Mobile telephone system Download PDF

Info

Publication number
WO2000003490A1
WO2000003490A1 PCT/JP1998/003068 JP9803068W WO0003490A1 WO 2000003490 A1 WO2000003490 A1 WO 2000003490A1 JP 9803068 W JP9803068 W JP 9803068W WO 0003490 A1 WO0003490 A1 WO 0003490A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
mobile telephone
telephone device
frequency
radio signal
Prior art date
Application number
PCT/JP1998/003068
Other languages
English (en)
French (fr)
Inventor
Toru Fujioka
Isao Yoshida
Mineo Katsueda
Masatoshi Morikawa
Yoshikuni Matsunaga
Kenji Sekine
Osamu Kagaya
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to US09/674,072 priority Critical patent/US6366788B1/en
Priority to PCT/JP1998/003068 priority patent/WO2000003490A1/ja
Priority to KR1020017000192A priority patent/KR20010053413A/ko
Publication of WO2000003490A1 publication Critical patent/WO2000003490A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • H03F3/604Combinations of several amplifiers using FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/306Indexing scheme relating to amplifiers the loading circuit of an amplifying stage being a parallel resonance circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/309Indexing scheme relating to amplifiers the loading circuit of an amplifying stage being a series resonance circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/39Different band amplifiers are coupled in parallel to broadband the whole amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/429Two or more amplifiers or one amplifier with filters for different frequency bands are coupled in parallel at the input or output

Definitions

  • the present invention relates to a multi-band mobile telephone device capable of transmitting and receiving a plurality of band frequencies, and more particularly to a transmitting unit that amplifies and transmits a dual-band wireless signal and is effective when applied to a mobile telephone device.
  • the GSM Global System for Mobile Co-unicat ions
  • the GSM communication scheme using the 0.9 GHz band frequency
  • the system is similar, for example, by adopting the same modulation scheme GMSK (Gaussian-filtered Minimum Shift Keying) as the GSM communication scheme, and the DCS (Digital Cellular System) using a frequency band near 1.8 GHz
  • GMSK Gausian-filtered Minimum Shift Keying
  • DCS Digital Cellular System
  • GSM and DC S1800 are almost common except for the frequency
  • FIG. 8 shows a schematic configuration of a mobile phone studied prior to the present invention.
  • reference numeral 6 denotes a system control unit (CNTU)
  • 10 denotes a duplexer
  • 9 denotes a dual-band compatible transmitting / receiving antenna
  • 1 denotes a first high-frequency power amplifier module (RF power module)
  • 2 denotes a 2
  • 32 is a broadband amplifier (WAM P)
  • 4 is a radio signal processing circuit (RFS PU)
  • 7 is an operation panel (OP)
  • 8 is a speaker (SP) or microphone (MIC), etc.
  • Handset The communication systems that can be switched and used are the GSM system and the DCS 1800 system.
  • the radio signal processing circuit unit 4 consists of a modulation / demodulation processing unit, transmission / reception IF (intermediate frequency) unit, and frequency conversion unit (up / down converter).
  • the GSN1 system in the 0.9 GHz band is used. It is configured to generate and output the radio signal (f1 or f2) of the 1.8 GHz band DCS 1800 system, whichever is set.
  • These two types of wireless transmission signals f 1 and f 2 are input to the first RF power module 1 and the second RF power module 2, respectively.
  • RF power module 1 is a power amplifier module compatible with the GSM communication system.It has matching circuits MC 1 and MC 2 consisting of RF power MOS FET (T 1) for final-stage amplification, passive elements, etc. It is composed of the inductance element Lc1 for DC choke. At this time, the transistor T 1 sets the gate voltage to the cut-off bias level and the high The output is switched to a predetermined bias level at which efficiency can be achieved.
  • T 1 RF power MOS FET
  • the RF power module 2 is a power amplifier module compatible with the DC S 1800 communication system, and includes a matching circuit MC 3 including a RF module MOSFET (T 2) for final-stage amplification, a passive element, and the like. It consists of an MC 4, an inductance element Lc2 for the DC bias yoke of the drain bias, and the like.
  • the transistor T2 is connected to the GSM / DC S1800 switch on the mobile phone.
  • the gate voltage is switched between a cut-off bias level and a predetermined bias level capable of realizing high efficiency by a second bias control signal 14 output from the system control unit 6, and is output.
  • the RF power module 1 and the RF power module 2 are designed to be matched by matching circuits MC1 to MC4 so as to efficiently amplify the radio signal of each communication method.
  • the bias control signal 13 of the RF power module 1 is set to a predetermined bias level, while the bias control signal 14 of the RF module 2 is set to the cut-off bias level.
  • the bias control signal 14 of the RF module 2 is set to the cut-off bias level.
  • the bias control signal 14 of the RF power module 2 is set to a predetermined bias level, while the bias control signal 13 of the RF power module 1 is set to a cut-off bias level.
  • the RF power module 2 can be selectively operated to amplify the DCS 1800 radio signal f 2 (1.8 GHz band).
  • RF power modules are provided for each of the two communication systems, and they are used properly according to the settings of the communication systems.
  • the RF power modules installed inside are economical and efficient because they are designed to be optimal for each communication method.
  • RF power modules applied to mobile phones are required to satisfy the specifications of high-frequency characteristics determined by each system such as output power, and to be even more efficient and smaller. It is necessary to achieve both high efficiency and high efficiency.
  • a technique for controlling harmonics is well known. For example, one end of a 1Z4 wavelength transmission line disclosed in Japanese Patent Application Laid-Open No. 60-10993 is short-circuited at high frequency, and the other end is amplifying element. There is a configuration in which the desired fundamental wave signal output is obtained from the series resonance circuit by connecting to the series resonance circuit.
  • connection point between the output side of the amplifying element and the 1/4 wavelength transmission line is short-circuited to the fundamental wave and odd-order harmonics, and the product of the current and voltage at the output terminal of the amplifying element is zero.
  • the ideal class F operation mode can be obtained, and the efficiency can be improved.
  • the conventional high-frequency power amplifier circuit described above has a 14-wavelength transmission line 34, one end of which is short-circuited at a high frequency, and the other end of an amplification element 33 and a series resonance circuit 3 5 and the other end of the series resonance circuit 35 is connected to the output terminal 36 to form a power amplifier circuit.
  • the amplifier element 33 operates with a basic signal input, a voltage is distributed on the 14-wavelength transmission line 34.
  • FIG. 9 (b) shows the state of the voltage distribution on the 1Z4 wavelength transmission line 34, which is the voltage distribution obtained for the fundamental and second harmonic signal inputs.
  • I indicates a connection portion between the output terminal of the amplifying element 33 and the short-circuited 14-wavelength transmission line 34
  • indicates a high-frequency short-circuit portion of the 1/4 wavelength transmission line 34.
  • 1 Z 4 Wavelength transmission line 3 4 One end 4 of the transmission line is completely short-circuited at high frequency, so connection I is open-circuited to the fundamental wave and short-circuited to the second harmonic.
  • the voltage distribution is the same for the third and higher harmonics, and at connection portion I, all odd-order harmonics are opened like the fundamental wave, and all even-order harmonics are opened. Is a short circuit like the second harmonic.
  • the above-mentioned RF power module 1 dedicated to the GSM system and the RF power module 2 dedicated to the DCS 1804 method are provided, and the method of selectively using both circuits is advantageous in terms of efficiency.
  • a harmonic control circuit must be provided for each of the dedicated modules of the GSM system and DCS180 system. Since the provision of the circuit increases the circuit scale, the size of the mobile phone is increased.
  • to reduce the size of mobile phones that support dual-band systems use an RF power module that is compatible with both the GSM and DCS 1800 systems, and use a driver amplifier and RF power module with one input and one output for both communication systems.
  • the output power is greatly different between the two communication systems, which lowers the efficiency.
  • the driver amplifier uses a GSM wireless signal f 1 (0.9 GHz band) and a DCS 1800 wireless signal f 2 (1.8 GHz band).
  • GSM wireless signal f 1 0.9 GHz band
  • DCS 1800 wireless signal f 2 1.8 GHz band
  • unnecessary harmonics are also amplified, so that there is a possibility that unnecessary harmonics may be radiated from the antenna via the RF power module.
  • communication quality There is a problem in terms of communication quality.
  • the present invention has been made in order to solve such a problem, and provides a compact, high-efficiency, mobile phone device that suppresses unnecessary signal leakage that is compatible with a dual-band communication system using two frequency bands. It is intended to be. Disclosure of the invention
  • a mobile telephone device has two bands.
  • the system control unit When the respective communication systems of the dual-band communication system that can transmit and receive wavenumbers are switched by the communication system switching switch of the mobile phone, the system control unit outputs the signal in conjunction with the switching switch.
  • the bias control signal is used to selectively switch the bias level of the RF power module and to control the harmonic signal so that the efficiency with respect to the output power according to each communication method is maximized. Things. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a circuit diagram showing one embodiment of a mobile telephone device according to the present invention.
  • FIG. 2 is a characteristic diagram showing gain characteristics of a driver amplifier used in the circuit of FIG.
  • FIG. 3 is a characteristic diagram showing the efficiency of silicon (S i) —MOS FET at the output stage used in the circuit of FIG.
  • FIG. 4 is a main part circuit diagram of the device shown in FIG. 1 during operation of the GSM method.
  • FIG. 5 is a main part circuit diagram of the device shown in FIG. 1 at the time of operation of the DCS 180 system.
  • FIG. 6 is a main part circuit diagram showing another embodiment of the mobile telephone device according to the present invention.
  • FIG. 7 is a diagram showing an example of an arrangement of an RF power amplifier module unit of the device shown in FIG. 6 on a chip.
  • FIG. 8 is a circuit diagram showing a configuration example of a mobile telephone device studied prior to the present invention.
  • FIG. 9 is a circuit configuration diagram showing an example of a conventional power amplifier module. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a circuit diagram of a GSM / DCS1800 dual-band compatible mobile phone showing one embodiment of a mobile phone apparatus according to the present invention.
  • the mobile phone of the present embodiment includes a first RF power module 1, a second RF power module 2, a harmonic control circuit 3, a radio signal processing circuit (RF SPU) 4, a driver amplifier (DA) 5, System control unit (CNTU) consisting of central processing unit (CPU) 6, Operation panel (OP) 7, Handset consisting of speaker (SP) and microphone (MIC) 8, Transceiver antenna 9, Minute It consists of a wave device 10 and so on.
  • the radio signal processing circuit section 4 converts the radio signal f1 of the 0.9 GHz band of the 081 system and the radio signal f of the 1.8 GHz band of the DCS1800 system based on the switching of the GSMZDC S1800 communication system. Generate 2 and output. This output is input to the driver amplifier 5.
  • the driver amplifier 5 is a circuit with almost the same configuration as a conventional power amplifier composed of two stages of Si-MOSFETs, but is matched to two frequencies of GSM and DC S1800 by a matching circuit. And the gain peak is at that frequency.
  • Fig. 2 is a graph showing the frequency characteristics of the gain when the drain bias Vcc of the driver amplifier 5 is set to 3.6V. The peak of the gain is 0.9 GHz band of GSM system and 1.8 GHz of DCS 1800. An alignment method that forms a band is employed. This matching can be realized, for example, by combining an inductance element and a capacitance element and setting an appropriate value so as to obtain high profit.
  • the signals in the two frequency bands are amplified to a high gain by the driver amplifier 5, and then input to the RF power modules 1 and 2.
  • the driver amplifier 5 uses a wideband amplifier having a wideband characteristic so as to include both frequency bands (fl to f2) of the GSM / DC S1800 system in the amplification band. Compared to the case of the device shown in Fig. 8, it has a band-pass filter characteristic. A wireless signal input to the frequency power output transistor can be amplified.
  • the RF power module 1 has a first RF power MOS FET (T 1) as an amplifying element, resistance elements for bias R 1 to R 3, an input side, and an on Z off. It is composed of a first switching FET 11 for switching that performs the matching, and matching circuits MC 1 and MC 2 composed of passive elements with inductance L and capacitance C.
  • T 1 RF power MOS FET
  • the first MOS SFET (T 1) uses the first bias control signal 13 given to the gate from the system control unit 6 via the resistance element R 1 to perform highly efficient amplification of a radio signal in the GSM communication system. It can be set by switching from the achievable predetermined bias level to the cut-off bias level state. In addition, the switching FET 11 can turn on and off the radio signal by applying the bias control signal 13 to the gate via the high resistance R 3.
  • the matching circuits MC I and MC 2 are optimized and designed to amplify the GSM radio signal f 1 with high efficiency.
  • the RF power module 2 includes a second RF power MOSFET (T2) as an amplifying element, resistance elements R4 to R6 for bias, and a second switch for switching on and off which is interposed on the input side. It consists of a switching FET 12 and matching circuits MC 3 and MC 4 composed of passive elements with inductance and capacitance C.
  • T2 second RF power MOSFET
  • the second MOSFET (T 2) uses the second bias control signal 14 given to the gate from the system control unit 6 via the resistance element R 4 to perform highly efficient amplification of the fountainless signal in the DCS 1800 communication system. It can be set to switch from the achievable predetermined bias level to the cut-off bias level. By applying the bias control signal 14 to the gate of the switching FET 12 via the high resistance R 6, the wireless signal can be turned on and off.
  • Matching circuits MC3 and MC4 are optimized and designed to efficiently amplify DCS 1800 radio signal f2.
  • a harmonic control circuit 3 is connected to the end.
  • This harmonic control circuit 3 has two transmission lines ML 1 and ML 2 having a length corresponding to one-eighth wavelength (18) of the GSM radio signal f 1, and has a sufficiently low impedance in the RF band.
  • One end of a transmission line ML2 is connected via a capacitor C3 to the other end of the transmission line ML1 having one end connected to the drain of the transistor T1. Then, the other end of the transmission line ML2 is connected to the drain of the transistor T2.
  • the first harmonic control switching FET 15 is connected to the one end of the transmission line ML2 via the capacitor C1, and the second harmonic control switching FET 16 is transmitted via the capacitor C2.
  • the line ML2 is connected to the other end.
  • the bias control signal 13 is set to the high level, and the bias control signal 14 is set to the cutoff bias level.
  • the RF power module 1 can be set to a bias level that operates with high efficiency, and at the same time, can be operated by performing harmonic control.
  • the RF power module 2 cuts off the signal input to the transistor T 2, and sets the transistor T 2 to the cut-off bias level and turns off the transistor T 2. It becomes an operation state. Therefore, only the GSM radio signal f1 can be amplified.
  • the bias control signal 14 is set to the high level, and the bias control signal 13 is set to the cut-off bias level.
  • the bias level it is possible to set the bias level to operate only the RF power module 2 with high efficiency, and at the same time, to operate with harmonic control.
  • the RF power module 1 turns off the switching FET 11 and becomes non-conductive, so that the signal input to the transistor T 1 is cut off.
  • the transistor T1 is set to the cut-off bias level and becomes inactive. Therefore, only the DCS 1800 wireless signal f2 can be amplified.
  • Fig. 3 shows the characteristics of the additional power? 7 add with respect to the output power Pout for the Si-MO SFET of the final stage chip used in the RF modules 1 and 2.
  • the figure shows the characteristics of both a Si-MOS FET with a large gate width corresponding to the GSM communication method and a Si_MOS FET with a small gate width corresponding to the DCS 1800 communication method. .
  • FIGS. 4 and 5 show transmission lines ML 1 and ML 1 of the harmonic control circuit 3 when the mobile phone of this embodiment is used in the GSM communication method and when the mobile phone is used in the DCS 180 communication method, respectively.
  • FIG. 4 is a main part circuit diagram during operation showing the operation of ML2.
  • Ron and Coff are the on-resistance and off-capacity equivalently representing the on and off states of the first and second switching FETs 11 and 12, respectively.
  • the drain of the transistor T1 is connected to the transmission line ML connected in series. High frequency grounding via 1 and ML2. Since the combined length of the transmission lines ML1 and ML2 corresponds to 14 wavelengths at the GSM radio signal frequency f1, the drain end of the transistor T1 is an even-order harmonic of the GSM fountain signal f1. Set to short for waves and open for odd harmonics. Higher efficiency is achieved by performing such harmonic control.
  • the signal input is cut off by turning off the second switching FET 12 to make it non-conductive.
  • the signal input is cut off by making it non-conductive.
  • the driver amplifier 5 does not make the frequency characteristics wide, and the GSM radio signal f 1 and the DC S 1800 radio signal f 2
  • the design is such that the gain exists only in the two frequency bands, so that unnecessary harmonic signals are less likely to be input to the RF power modules 1 and 2.
  • FIG. 6 is a circuit diagram of a mobile phone showing another embodiment of the mobile telephone device according to the present invention.
  • the mobile phone device has two communication systems, a GSM system and a DCS 1800 system in which the RF power module is integrated into one module. It is a compatible dual band mobile phone.
  • a GSM system and a DCS 1800 system in which the RF power module is integrated into one module. It is a compatible dual band mobile phone.
  • 6 the same components as those of the mobile phone of the embodiment shown in FIG. 1 are denoted by the same reference numerals.
  • reference numeral 17 denotes an Si-MOS FET chip
  • 19 denotes an RF power module amplifying unit, which is made into one module to reduce its size.
  • the mobile phone uses the Piase control signals 13 and 14 output from the system control unit (CNTU) 6 for the GSM communication system with large output power and the DCS 1800 communication system with small output power.
  • CNTU system control unit
  • it is configured to change the operating Si-MOS FET.
  • the configuration of the RF power module amplifier unit 19 in Fig. 6 is changed to power amplification on the same chip as shown in Fig. 7. It has a configuration in which two series having high-frequency power output transistors are arranged.
  • reference numeral 20 denotes a first unit S i -MOS FET, which is one part of a divided high-frequency power output transistor that amplifies a radio signal
  • 21 denotes a second unit S i -MO SF ET
  • 22 is the first switching operation FET (SW1) made on the same chip that performs on-off switching operation in response to communication mode switching
  • 23 is also linked to communication mode switching.
  • the second switching FETs (SW2), 24 and 25, are the first and second DC blocking capacitors, respectively.
  • Meander line inductors 28 and 29 for improving the isolation of the operation FETs 22 and 23 are the first and second connection input pads for inputting the radio signal amplified by the driver amplifier 5 respectively.
  • 13 First bias control signal supplied from the system control unit 6 for performing On'noofu the etching operation for FET 22, similarly 14 Suitsuchi This is a second bias control signal provided from the system control unit 6 for turning on / off the switching FET 23.
  • Reference numeral 30 denotes a voltage dividing the voltage of the first bias control signal 13 by a resistor, and a gate voltage applied to the first unit Si-MOS FET 20 is cut at a predetermined bias level and cut-off for high efficiency.
  • reference numeral 31 denotes a second bias control signal 14 which is divided by a resistor to obtain a second unit S i -MO This is a second gate bias control signal for switching and setting the gate voltage applied to the SFET 21 to be at a predetermined bias level or a cut-off level for high efficiency.
  • the switching operation FET 22 when operating as a GSM mobile phone, the switching operation FET 22 is turned on by the first bias control signal 13 and the gate bias control signal 30 is set to a predetermined bias level.
  • the switching operation FET 23 is turned off by the second bias control signal 14, and the gate bias signal 31 is set to the cutoff level, so that only the first unit S i—MOSFET is used.
  • the GSM radio signal f 1 can be selectively operated to perform power amplification.
  • the second switching control signal 14 When operating as a DCS 1800 type mobile phone, the second switching control signal 14 turns on the re-switching operation FET 23, and sets the gate bias control signal 31 to a predetermined bias level.
  • the second unit S i- The power amplification of the DC S 1800 radio signal f 2 can be performed by selectively operating only the MOS FET.
  • the switching between the GSM method and the DCS 1800 method is performed.
  • the drain current is kept low and the DC component consumption is suppressed. Therefore, in this embodiment, highly efficient amplification is possible even at low output power.
  • the harmonic control circuit 3 causes the drain end of the first unit Si-MOS FET 20 to be short-circuited by its even-order harmonic, And the drain end of the second unit S i -MO SFET 21 is short-circuited at the even harmonic and opened at the odd harmonic when the DC S1800 radio signal is amplified. Is controlled as follows.
  • the bias control signal output from the system control unit according to the frequency switching switch of the mobile telephone device main body is also used in both the GSM DC S1800 type. By doing so, high efficiency and miniaturization can be realized at the same time, and the effect is great.
  • an active element that can handle the RF signal such as a GaAs-MESFET or a bipolar transistor, can be used.
  • the present invention is not limited to the above-described embodiment, and various design changes may be made without departing from the spirit of the present invention. What can be done, of course.
  • GMS K was used as the modulation method, but various digital methods such as ⁇ / 4 shift QP SK (Quadrature Phase Shift Keying) modulation method, QPSK modulation method, and offset QPS ⁇ modulation method were used.
  • the present invention can be applied to various analog modulation methods such as a modulation method, an FM modulation method, and an AM modulation method, and there is no restriction on the frequency.
  • a dual-band mobile phone device capable of transmitting and receiving two band frequencies having two types of communication systems as a wireless communication system

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Transceivers (AREA)

Description

明 細 書 移 動 体 電 話 装 置 技術分野
本発明は、 複数のバンド周波数が送信 ·受信可能な多バンド方式の移動体電話 装置に係わり、 特に、 デュアルバンド方式の無線信号を増幅して送信する送信部 移動体電話装置に適用して有効な技術に関する。 背景技術
現在、 移動通信システムとしてサービスされている欧州のデジタルセルラシス テムにおいて、 0. 9 GH z帯の周波数を用いる G SM (Global System for Mobile Co腿 uni cat ions) 通信方式は、 近い将来加入者がシステム容量をオーバ することが予測されている。 このため、 G SM通信方式と同じ変調方式 GMSK (Gaussian-filtered Minimum Shift Keying) を採用する等で、 システムが類似 している 1. 8 GH z付近の周波数帯を用いる DC S (Digital Cellular System) 1800方式を G S M方式と併用するデュアルバンドシステム対応の移 動体電話装置 (携帯電話) が要求されている。
ここで、 上記 2つのシステム (GSM方式と DC S 1800方式) は、 周波数 以外はほぼ共通のため、 電力増幅器モジュールなどの高周波部分だけをデュアル バンド対応にすることにより、 G SMZDC S 1800共用の携帯電話を構成で きる。
したがって、 デュアルバンド対応の電力増幅器モジュールにするには、 そのモ ジュール内に各通信方式に対応する電力増幅器モジュールの系列を、 それぞれ 2 つ集積し、 各方式を必要に応じて選択的に切り替え使用出来るような構成が考え られる。 図 8に、 本発明に先立って検討した携帯電話の概略構成を示す。 同図において、 参照符号 6はシステム制御部 (CNTU) 、 10は分波器、 9はデュアルバンド 対応型の送受信アンテナ、 1は第 1の高周波電力増幅器モジュール (RFパヮ一 モジュール) 、 2は第 2の RFパワーモジュール、 32は広帯域増幅器 (WAM P) 、 4は無線信号処理回路部 (RFS PU) 、 7は操作パネル (OP) 、 8は スピ一力 (S P) やマイクロホン (MI C) などからなる送受話器である。 また、 切り替えて使用できる通信方式は GSM方式と DC S 1800方式とした。
無線信号処理回路部 4は、 変復調処理部、 送受信 I F (中間周波数) 部、 及び 周波数変換部 (アップ/ダウンコンバータ) などからなり、 送信時においては、 0. 9 GH z帯の G SN1方式と 1. 8 G H z帯の D C S 1800方式のどちらか 設定された方の無線信号 ( f 1又は f 2 ) を生成 ·出力するように構成されてい る。 この 2種類の無線送信信号 f 1, f 2が、 それぞれ第 1の RFパワーモジュ —ル 1と第 2の RFパワーモジュール 2に入力される。
RFパワーモジュール 1は、 G SM通信方式に対応する電力増幅器モジュール であり、 終段増幅用の RFパワー MO S FET (T 1 ) 、 受動素子などからなる 整合回路 MC 1と MC 2、 ドレインバイアスの直流チヨ一ク用ィンダクタンス素 子 Lc 1などにより構成されている。 このとき、 トランジスタ T 1は、 携帯電話 本体の GSMZDC S 1800切替スィツチに連動したシステム制御部 6から出 力される第 1のバイアス制御信号 13により、 ゲ一卜電圧をカツトオフバイアス レベルと、 高効率が実現できる所定のバイァスレベルとに切り替えて出力するよ うに構成されている。
同様に、 RFパワーモジュール 2は、 DC S 1 800通信方式に対応する電力 増幅器モジュールであり、 終段増幅用の RFパヮ一 MO S F ET (T 2 ) 、 受動 素子などからなる整合回路 M C 3と M C 4、 ドレインバイァスの直流チヨーク用 インダクタンス素子 Lc2などにより構成されている。 このとき、 トランジスタ T2は、 携帯電話本体の GSM/DC S 1 800切替スィッチに連動したシステ ム制御部 6から出力される第 2のバイアスコントロール信号 14により、 ゲート 電圧をカツ卜オフバイアスレベルと、 高効率が実現できる所定のバイアスレベル とに切り替えて出力するように構成されている。
そして、 上記 RFパワーモジュール 1と RFパワーモジュール 2は、 それぞれ の通信方式の無線信号を効率よく増幅するように、 整合回路 MC 1〜MC4によ り整合がとられた設計がなされている。
これにより、 GSM方式の携帯電話として動作させる場合は、 RFパワーモジ ユール 1のバイアス制御信号 13を所定のバイアスレベルにする一方、 RFパヮ —モジュール 2のバイアス制御信号 14をカツ卜オフバイアスレベルに設定する ことにより、 RFパワーモジュール 1だけを選択的に動作させて、 GSM無線信 号 f 1 (0. 9 GH z帯) の増幅を行わせることができる。
DC S 1800方式の携帯電話として動作させる場合には、 RFパワーモジュ ール 2のバイアス制御信号 14を所定のバイアスレベルにする一方、 RFパワー モジュール 1のバイアス制御信号 13をカツ卜オフバイアスレベルに設定するこ とにより、 RFパワーモジュール 2だけを選択的に動作させて、 DCS 1 800 無線信号 f 2 ( 1. 8GH z帯) の増幅を行わせることができる。
上記のような構成は、 2つの通信方式に対してそれぞれ専用の RFパワーモジ ユールを内部に設け、 通信方式の設定に応じて使い分けている。 内部に設けられ た RFパワーモジュールは、 それぞれの通信方式に最適と設計されているため、 経済的で、 効率的である。
また、 携帯電話に適用される RFパワーモジュールは、 出力パワー等の各シス テムにより決定される高周波特性の仕様を満足すると共に、 より一層の高効率化 と小型化とが要求されており、 小型化と高効率化の両立を達成する必要がある。 従来から、 送信機用電力増幅器のよリー層の高効率化を図る技術として、 高調 波を制御する技術が良く知られている。 例えば、 特開昭 60 - 1 093 1 0号公 報に開示されている 1Z4波長伝送線路の一端を高周波短絡し、 他端を増幅素子 と直列共振回路に接続して、 希望する基本波信号出力を直列共振回路からとる構 成がある。 この構成により、 増幅素子の出力側と 1 / 4波長伝送線路との接続点 では基本波および奇数次高調波に対しは短絡となり、 増幅素子の出力端子におけ る電流と電圧の積が零となる理想的な F級動作モードを得られると共に効率を高 めることができる。
上記従来例の高周波電力増幅回路は、 図 9 ( a ) に示すように、 一端を高周波 短絡した 1 4波長伝送線路 3 4の他端には増幅素子 3 3の出力側と直列共振回 路 3 5の一端とを接続し、 直列共振回路 3 5の他端を出力端子 3 6に接続して電 力増幅回路を構成する。 ここで、 増幅素子 3 3に基本信号の入力があって動作す ると、 その 1 4波長伝送線路 3 4上には電圧が分布する。 図 9 ( b ) は 1 Z 4 波長伝送線路 3 4上の電圧分布の状態を示したものであり、 基本波、 2倍波の信 号入力に対して得られる電圧分布である。 この図において、 Iは増幅素子 3 3の 出力端子と短絡された 1 4波長伝送線路 3 4の接続部分を示し、 Πは 1 / 4波 長伝送線路 3 4の高周波短絡部分を示している。 1 Z 4波長伝送線路 3 4の一端 Πが完全に高周波短絡されていることから、 接続部分 Iには基本波に対しては開 放、 2倍波に対しては短絡の電圧力給電される。 また、 前記電圧分布は 3次以上 の高調波に関しても同様であり、 接続部分 Iでは、 全ての奇数次高調波に対して は基本波と同様に開放となり、 全ての偶数次高調波に対しては 2倍波と同様に短 絡となる。
しかし、 上記のような高効率化の技術を、 上述した図 8の回路構成に適用する と、 高調波制御用の上記回路を付加した電力増幅器モジュールが 2つ必要となる ため、 回路規模が大きくなる欠点があつた。
また、 上述した G S M方式専用の R Fパワーモジュール 1と D C S 1 8 0 0方 式専用の R Fパワーモジュール 2とを設けておき、 両回路を選択的に使用する方 法は、 効率の点で有利であるが、 より一層の高効率化のためには、 G S M方式と D C S 1 8 0 0方式の各専用モジュールに対して、 それぞれに高調波制御回路を 設けることは回路規模を大きくすることになるので、 携帯電話の大型化を招く。 さらに、 デュアルバンドシステム対応の携帯電話の小型化には、 GSM方式と DC S 1800方式兼用の RFパワーモジュールを使用し、 上記両通信方式に対 してドライバアンプと RFパワーモジュールを 1入力 1出力の 1系列構成にする 方法があるが、 出力パワーが 2つの通信方式で大きく異なるために効率が低下し てしまうという難点がある。
すなわち、 両通信方式に対して 1入力 1出力の 1系列で構成する場合、 GSM 方式の無線信号 f 1 (0. 9 GH z帯) と DC S 1800方式 ( 1. 8GHz帯) の無線信号 f 2の関係が、 2 x f 1 = f 2であるため、 上記従来技術の 1/4波 長伝送線路を利用して G SM方式が高効率となるように高調波制御を行うには、 G SM方式の 2倍波に相当する 1. 8 GHzにおいて、 終段増幅用の RFパワー MO S FETのドレイン端が短絡となる回路を用いることになる。 しかし、 この 周波数し 8 GHzは DC S 1800方式の周波数帯に相当し、 DCS 1 800 方式を選択した場合には、 出力パワーが得られなくなってしまう。
また、 上記 2つの各通信方式専用の RFパワーモジュールを駆動するために、 ドライバアンプに GSM方式の無線信号 f 1 (0. 9GHz帯) とDCS 180 0方式の無線信号 f 2 ( 1. 8 GHz帯) の周波数格差を十分に包含できる広帯 域性を持たせた場合、 不要高調波も増幅されるため、 RFパワーモジュールを介 してアンテナから不要高調波を放射してしまう可能性があリ、 通信品質の点で問 題がある。
本発明はかかる問題点を解決するためになされたものであり、 2つの周波数帯 を併用するデュアルバンド通信方式に対応する小型高効率で不要な信号の漏出を 抑えた移動体電話装置を提供することを目的としている。 発明の開示
上記目的を達成するために、 本発明に係る移動体電話装置は、 2つのバンド周 波数が送信 ·受信可能であるデュアルパンド通信方式の、 それぞれの通信方式を、 移動体電話装置本体の通信方式の切り替えスィツチにより切り替える際に、 この 切り替えスィツチに連動してシステム制御部から出力されるバイアス制御信号に より、 各通信方式に応じた出力パワーに対する効率が最大となるように、 R Fパ ヮー乇ジュールのバイアスレベルを選択的に切リ替えるとともに、 高調波信号を 制御するように構成したものである。 図面の簡単な説明
図 1は、 本発明に係る移動体電話装置の一実施例を示す回路図である。
図 2は、 図 1の回路で使用するドライバアンプの利得特性を示す特性線図であ る。
図 3は、 図 1の回路で使用する出力段のシリコン ( S i ) — M O S F E Tの効 率を示す特性線図である。
図 4は、 図 1.に示した装置の G S M方式の動作時における要部回路図である。 図 5は、 図 1に示した装置の D C S 1 8 0 0方式の動作時における要部回路図 である。
図 6は、 本発明に係る移動体電話装置の別の実施例を示す要部回路図である。 図 7は、 図 6に示した装置の R Fパヮ一増幅器モジュール部のチップ上の配置 例を示す図である。
図 8は、 本発明に先立つて検討した移動体電話装置の構成例を示す回路図であ る。
図 9は、 従来の電力増幅器モジュールの一例を示す回路構成図である。 発明を実施するための最良の形態
次に、 本発明に係る移動体電話装置の実施例につき、 添付図面を参照しながら 以下詳細に説明する。 <実施例 1 >
図 1は、 本発明に係る移動体電話装置の一実施例を示す GSM/DCS 180 0デュアルバンド対応の携帯電話の回路図である。 図 1に示すように、 本実施例 の携帯電話は、 第 1の RFパワーモジュール 1、 第 2の RFパワーモジュール 2、 高調波制御回路 3、 無線信号処理回路部(RF SPU)4、 ドライバアンプ(DA) 5、 中央演算処理装置 (CPU) からなるシステム制御部 (CNTU) 6、 操作 パネル (OP) 7、 スピーカ ( S P) 及びマイクロホン (M I C) 等からなる送 受話器 8、 送受信アンテナ 9、 分波器 1 0、 などにより構成されている。
無線信号処理回路部 4は、 GSMZDC S 1800通信方式の切り替えに基づ いて、 081 方式の0. 9 GHz帯の無線信号 f 1と DC S 1 800方式の 1. 8 GH z帯の無線信号 f 2を生成し、 出力する。 この出力は、 ドライバアンプ 5 に入力される。
ドライバアンプ 5は、 2段の S i— MO S F ETで構成された従来の電力増幅 器とほぼ同様の構成の回路であるが、 整合回路により GSMと DC S 1800の 2つの周波数に対してマツチングがとられ、 利得のピークはその周波数に存在す る。 図 2は、 ドライバアンプ 5のドレインバイアス Vccを 3. 6Vとした場合の 利得の周波数特性を示す図であり、 利得のピークが GSM方式の 0. 9 GHz帯 と DC S 1800の 1. 8 GHz帯となるような整合方法がとられている。 この 整合は、 例えば、 インダクタンス素子とキャパシタンス素子を組み合わせ、 高利 得となるように適当な値に設定することで実現できる。 このドライバアンプ 5に より、 2種類の周波数帯の信号は、 高利得に増幅された後、 RFパワーモジュ一 ル 1と 2に入力される。
このような特性により、 上記ドライバアンプ 5は、 GSM/DC S 1800方 式の両周波数帯域 ( f l〜f 2) を増幅帯域内に包含すべく、 広帯域特性を持た せられた広帯域増幅器を用いる図 8に示した装置の場合に比べ、 バンドバスフィ ルタ特性を有するので、 通信品質の低下を招く高調波の漏出を防いだ状態で、 高 周波電力出力トランジスタに入力される無線信号を増幅することが出来る。
図 1に示したように、 RFパワーモジュール 1は、 増幅素子として第 1の RF パワー MOS FET (T 1 ) と、 バイアス用抵抗素子 R 1〜R3と、 入力側に介 在し、 オン Zオフを行うスィッチ用の第 1のスイッチング FET 1 1と、 インダ クタンス Lおよび容量 Cの受動素子からなる整合回路 MC 1, MC 2などにより 構成されている。
第 1の MO SFET (T 1 ) は、 システム制御部 6から抵抗素子 R 1を介して ゲートに与えられる第 1のバイアス制御信号 1 3により、 GSM通信方式におい て無線信号の高効率な増幅が実現できる所定のバイアスレベルからカツ卜オフバ ィァスレベルの状態へと切り替え設定できる。 また、 スイッチング FET 1 1は、 高抵抗 R 3を介してゲートに上記バイアス制御信号 1 3を与えることにより、 無 線信号のオン Zオフを行える。 ここで、 整合回路 MC I , MC 2は、 GSM無線 信号 f 1を高効率に増幅できるように最適化設計されている。
同様に、 RFパワーモジュール 2は、 増幅素子として第 2の RFパヮ一 MO S FET (T2) と、 バイアス用抵抗素子 R4〜R6と、 入力側に介在し、 オンノ オフを行うスィツチ用の第 2のスィツチング F ET 1 2と、 ィンダクタンスしお よび容量 Cの受動素子からなる整合回路 MC 3, MC 4などにより構成されてい る。
第 2の MOSFET (T 2) は、 システム制御部 6から抵抗素子 R 4を介して ゲートに与えられる第 2のバイアス制御信号 14により、 DCS 1800通信方 式において無泉信号の高効率な増幅が実現できる所定のバイアスレベルからカツ トオフバイアスレベルの状態へと切り替え設定できる。 スイッチング FET 1 2 のゲ一卜に、 高抵抗 R 6を介して上記バイアス制御信号 14を与えることにより、 無線信号のオン Zオフを行える。 整合回路 MC 3, MC4は、 DCS 1800無 線信号 f 2を高効率に増幅できるように最適化設計されている。
また、 第 1の MO SFET (T 1 ) と第 2の MOS FET (T 2 ) のドレイン 端には、 高調波制御回路 3が接続される。
この高調波制御回路 3は、 GSM無線信号 f 1の 8分の 1波長 ( 1 8) に 相当する長さの 2本の伝送線路 ML 1, ML 2と、 RF帯では十分低いインピー ダンスとなっている直流阻止用のキャパシタ C 1, C 2, C 3と、 バイアス制御 信号 1 3, 14によりオン/オフ制御される第 1及び第 2の高調波制御用スイツ チング FET 15, 16などで構成される。 トランジスタ T 1のドレインに一端 が接続された伝送線路 ML 1の他端に、 キャパシタ C 3を介して伝送線路 ML 2 の一端を接続する。 そして、 伝送線路 ML 2の他端はトランジスタ T 2のドレイ ンに接続する。 更に、 第 1の高調波制御用スイッチング FET 1 5がキャパシタ C 1を介して伝送線路 ML 2の前記一端に接続され、 第 2の高調波制御用スイツ チング FET 16がキャパシタ C 2を介して伝送線路 ML 2の前記他端に接続さ れている。
以上のように構成された本実施例の携帯電話を G S M通信方式で使用する場合 は、 バイアス制御信号 13をハイレベルにし、 バイアス制御信号 14をカットォ フバイアスレベルに設定する。 これにより、 RFパワーモジュール 1だけを高効 率に動作するバイアスレベルに設定できると同時に、 高調波制御も行わせて動作 させることができる。 このとき、 RFパワーモジュール 2はスイッチング FET 1 2がオフにされて非導通になるので、 トランジスタ T 2への信号の入力が遮断 されるとともに、 トランジスタ T 2はカツトオフバイアスレベルに設定されて非 動作状態になる。 従って、 GSM無線信号 f 1だけを増幅させることができる。 また、 本実施例の携帯電話を DCS 1 800通信方式で使用する場合は、 バイ ァス制御信号 14をハイレベルにし、 バイアス制御信号 1 3をカツトオフバイァ スレベルに設定する。 これにより、 RFパワーモジュール 2だけを高効率に動作 させるバイアスレベルに設定できると同時に、 高調波制御も行わせて動作させる ことができる。 このとき、 RFパワーモジュール 1は、 スイッチング FET 1 1 がオフにされて非導通になることで、 トランジスタ T 1への信号の入力が遮断さ れるとともに、 トランジスタ T 1はカツトオフバイアスレベルに設定されて非動 作状態になる。 従って、 DC S 1 80 0無線信号 f 2だけを増幅させることがで きる。
図 3は RFモジュール 1, 2で使用される最終段チップの S i —MO S FET について、 出力電力 Poutに対する付加効率 ?7 addの特性を示した図である。 同図 には G SM通信方式に対応するゲート幅が大きい S i — MO S FETと、 DC S 1 80 0通信方式に対応するゲート幅が小さい S i _MO S FETの両者の特性 を示してある。
これより、 ゲート幅をそれぞれの通信方式に合うように大小使い分けることに より、 各通信方式で要求される出力電力 Poutにおいて、 付加効率 7]addが最大と なるポイントがあることがわかる。
図 4と図 5は、 それぞれ本実施例の携帯電話を G SM通信方式で使用する場合 と、 DC S 1 8 0 0通信方式で使用する場合における、 高調波制御回路 3の伝送 線路 ML 1と ML 2の働きを示した動作時における要部回路図である。 これらの 図において、 Ronと Coffは、 第 1および第 2のスイッチング FET 1 1, 1 2 のオン オフ時をそれぞれ等価的に表したオン抵抗とオフ容量である。
GSM通信方式で使用する場合は、 図 4に示すように RFモジュール 1だけが 動作しているため、 G SM方式に適したゲ一卜幅の F ETを選択できる。 バイァ ス制御信号 1 3, 1 4により高調波制御用スイッチング FET 1 5がオフ、 高調 波制御用スィツチング FET 1 6がオンとなるため、 トランジスタ T 1のドレイ ンは、 直列接続された伝送線路 ML 1と ML 2を介して高周波接地される。 この 伝送線路 ML 1と ML 2の合わせた長さは、 G SM無線信号周波数 f 1における 1 4波長に相当するため、 トランジスタ T 1のドレイン端が、 G SM無泉信号 f 1の偶数次高調波に対しては短絡、 奇数次高調波に対しては開放に設定される。 このような高調波制御を行うことにより、 高効率化が図られている。
また、 不要な高調波信号が RFモジュール 2に入力されないように、 バイアス 制御信号 14により、 トランジスタ T 2をカツトオフバイアスレベルに設定する のに加えて、 第 2のスイッチング FET 12をオフにして非導通にすることで信 号の入力を遮断している。
DC S 1800通信方式で使用する場合は、 図 5に示すように RFモジュール 2だけが動作しているため、 DC S 1800方式に適したゲート幅の FETを選 択できる。 バイアス制御信号 13, 14により高調波制御用スイッチング FET 15がオン、 高調波制御用スイッチング FET 16がオフとなるため、 トランジ スタ T l, Τ 2のドレインは、 それぞれ伝送線路 ML 1と ML 2を介して高周波 接地される。 この伝送線路 ML 1と ML 2のそれぞれの長さは、 DCS 1 800 無線信号 f 2における 1Z4波長に相当するため、 トランジスタ T 2のドレイン 端が、 DCS 1800無線信号 f 2の偶数次高調波に対しては短絡、 奇数次高調 波に対しては開放に設定される。 このような高調波制御を行うことにより、 高効 率化が図られている。
また、 不要な高調波信号が RFモジュール 1に入力されないように、 バイアス 制御信号 13により トランジスタ T 1をカツ卜オフバイアスレベルに設定するの に加えて、 第 1のスィツチング FET 1 1をオフにして非導通にすることで信号 の入力を遮断している。
また、 DC S 1800通信方式、 GSM通信方式のどちらの場合も、 前述した ように、 ドライバアンプ 5は、 その周波数特性を広帯域とせずに、 GSM無線信 号 f 1と DC S 1800無線信号 f 2の両周波数帯にのみ利得が存在するように 設計されているため、 不要な高調波信号が RFパワーモジュール 1, 2に入力さ れにくくなっている。
<実施例 2 >
図 6は、 本発明に係る移動体電話装置の別の実施例を示す携帯電話の回路図で あり、 RFパワーモジュールを 1モジュール化した G SM方式と DC S 1 800 方式の 2つの通信方式に対応したデュアルバンド対応の携帯電話である。 なお、 図 6において、 図 1で示した実施例の携帯電話における構成部分と同じ構成要素 には、 同じ参照符号を付してある。 図 6において、 参照符号 17は S i—MOS FETチップ、 1 9は RFパワーモジュール増幅部であり、 1モジュール化され て小型化が図られている。
本実施例の携帯電話は、 システム制御部 (CNTU) 6から出力されるパイァ ス制御信号 1 3, 14により、 出力パワーが大きい G SM通信方式のときと出力 パワーが小さい DC S 1800通信方式のときで、 動作する S i -MO S FET を変えるように構成したものである。 このように構成することにより、 携帯電話 内に各通信方式にそれぞれ対応した 2つの R Fパワーモジュールを設けた構成と せずに、 1系列の 1つの RFパワーモジュールで構成できるため小型である。 例えば、 通信方式に合わせてゲート幅の異なる S i—MO SFETを使い分け るために、 図 6の RFパワーモジュール増幅部 1 9の構成を、 図 7に示したよう に、 同一チップ上にパワー増幅用の高周波電力出力トランジスタを有する系列を 2つ配置した構成とする。
図 7において、 参照符号 20は無線信号をパワー増幅する高周波電力出力トラ ンジスタを分割した 1部分である第 1の単位 S i -MOS FET, 同様に 2 1は 第 2の単位 S i -MO S F ET、 22は通信方式の切り替えに連動してオン ォ フのスィツチング動作をする同一チップ上に作られた第 1のスィツチング動作用 FET ( SW 1 ) 、 同様に 23は通信方式の切り替えに連動してオンノオフのス イツチング動作をする同一チップ上に作られた第 2のスィッチング動作用 F E T (SW2) 、 24及び 25はそれぞれ第 1及び第 2の直流阻止用キャパシタ、 2 6と 27は主にスイッチング動作用 FET 22と 23のアイソレーション向上用 のメアンダインダクタ (Meander line Inductor) 、 28及び 29はそれぞれ、 ドライバアンプ 5で増幅された無線信号を入力するための第 1及び第 2の接続用 入力パッド、 13はスイッチング動作用 FET 22のオンノオフを行うためのシ ステム制御部 6から与えられる第 1のバイアス制御信号、 同様に 14はスィツチ ング動作用 FET 23のオン Zオフを行うためのシステム制御部 6から与えられ る第 2のバイァス制御信号である。
また、 参照符号 30は第 1のバイアス制御信号 1 3の電圧を抵抗により分圧し、 第 1の単位 S i— MO S FET 20にかかるゲート電圧が、 高効率となる所定の バイアスレベルとカツ卜オフレベルのいずれかになるように切り替え設定する第 1のゲートバイアス制御信号であり、 同様に 3 1は第 2のバイアス制御信号 14 の電圧を抵抗により分圧し、 第 2の単位 S i -MO S FET 2 1にかかるゲート 電圧が、 高効率となる所定のバイアスレベルとカツ卜オフレベルのいずれかにな るように切り替え設定する第 2のゲートバイアス制御信号である。
以上は、 全て、 同一チップ上に形成され、 小型化が図られており、 入出力とも に、 パッドを介して接続されている。
このように構成することにより、 GSM方式の携帯電話として動作させる場合 には、 第 1のバイアス制御信号 1 3によりスイッチング動作用 FET 22をオン 状態にし、 ゲートバイアス制御信号 30を所定のバイアスレベルに設定する一方、 第 2のバイアス制御信号 14によりスィツチング動作用 FET 23をオフ状態に し、 ゲートバイアス信号 3 1をカットオフレベルに設定することにより、 第 1の 単位 S i— MO S F ETだけを選択的に動作させて、 GSM無線信号 f 1のパヮ —増幅を行わせることができる。
また、 DC S 1800方式の携帯電話として動作させる場合には、 第 2のパイ ァス制御信号 14によリスイッチング動作用 FET 23をオン状態にし、 ゲート バイアス制御信号 3 1を所定のバイアスレベルに設定する一方、 第 1のバイアス 制御信号 13によリスイッチング動作用 FET 22をオフ状態にし、 ゲートバイ ァス制御信号 30をカツ卜オフバイアスレベルに設定することにより、 第 2の単 位 S i -MO S FETだけを選択的に動作させて、 DC S 1800無線信号 f 2 のパワー増幅を行わせることができる。
このように本実施例では、 GSM方式と DC S 1800方式の切り替えにおい て、 DC S 1 800方式の方にゲ一卜幅の小さいチップを使用するようにしたこ とにより、 ドレイン電流を低く抑え、 DC成分の消費を抑制した設定となる。 従 つて、 本実施例では、 高効率な増幅が低出力パワー時においても可能となる。 そして、 前記実施例と同様に、 高調波制御回路 3により、 GSM無泉信号増幅 時には、 第 1の単位 S i—MO S FET 20のドレイン端が、 その偶数次高調波 で短絡、 奇数次高調波で開放となるように制御され、 DC S 1800無線信号増 幅時には、 第 2の単位 S i -MO SFET 21のドレイン端が、 その偶数次高調 波で短絡、 奇数次高調波で開放となるように制御される。
以上のとおり、 本発明の移動体電話装置によれば、 GSMノ DC S 1800の 両方式においても、 移動体電話装置本体の周波数切替スィツチに応じてシステム 制御部から出力されるバイアス制御信号を利用することにより、 高効率と小型化 とを同時に実現でき、 その効果は大きい。
また、 ドライバアンプと RFパワーモジュールに用いた S i— MOSFETの 代わりに、 G a A s— ME S FE Tやバイポーラトランジスタのような R F信号 が扱える能動素子を用いることもできる。
以上、 本発明に係る移動体電話装置の好適な実施例について説明したが、 本発 明は前記実施例に限定されることなく、 本発明の精神を逸脱しない範囲内におい て種々の設計変更をなし得ることは勿論である。 例えば、 上記実施例では変調方 式として共に GMS Kのものを示したが、 π/4シフ ト QP SK (Quadrature Phase Shift Keying) 変調方式、 Q P S K変調方式、 オフセット Q P S Κ変調方 式等の各種デジタル変調方式及び、 FM変調方式、 AM変調方式等の各種アナ口 グ変調方式においても適用でき、 周波数についても何等制約はない。 産業上の利用可能性
本発明によれば、 無線通信方式として、 2種類の通信方式を有する 2つのバン ド周波数が送信 ·受信可能であるデュアルバンド方式の移動体電話装置において、 移動体電話装置本体の通信方式切替スィツチに連動した制御手段により、 移動体 電話装置に使用される R Fパワーモジュールを制御するように構成したことで、 不要高調波の漏出を防ぎ、 小型かつ高効率な移動体電話装置を得られるという効 果がある。

Claims

請 求 の 範 囲
1 . 周波数の異なる第 1および第 2の無線信号のバンド周波数を送信 ·受信可能 であるデュアルバンド方式の移動体電話装置において、
前記第 1の無線信号と第 2の無線信号とを切り替える前記装置本体に設けられ た周波数切替スィッチと、
前記第 1および第 2の無線信号の両周波数帯域に同調する周波数特性を有する ドライバアンプと、
該ドライバアンプにて増幅された第 1の無線信号を第 1のパワートランジスタ でパワー増幅してアンテナへ出力する第 1の R Fパワーモジュールと、
前記ドライバアンプにて増幅された第 2の無線信号を第 2のパワートランジス タでパワー増幅してアンテナへ出力する第 2の R Fパワーモジュールと、
前記周波数切替スィッチに連動して前記第 1および第 2のパワートランジスタ の動作状態を選択的に切り替える第 1および第 2のバイアス制御信号を出力する 制御部と、
前記第 1および第 2のパワートランジスタの入力側に直列にそれぞれ接続され、 前記第 1および第 2のバイアス制御信号に連動して、 導通 非導通の選択がそれ ぞれ設定される第 1および第 2のスィツチング素子と、
前記第 1および第 2のパワートランジスタのドレイン端が、 前記第 1および第 2のバイアス制御信号に連動して、 前記第 1および第 2の無線信号周波数のそれ ぞれの偶数次高調波に対しては短絡となり、 無線信号周波数のそれぞれの奇数次 高調波に対しては開放となるように設定された前記第 1および第 2の無線信号に 対して共通の高調波制御回路と、 を備えたことを特徴とする移動体電話装置。
2 . 請求の範囲第 1項に記載の移動体通信装置において、
前記第 1および第 2のパワートランジスタが並列接続された複数の単位 M 0 S トランジスタから成り、 第 1のパワートランジスタと第 2のパワートランジスタ とでゲート幅が異なることを特徴とする移動体電話装置。
3 . 請求の範囲第 2項に記載の移動体電話装置において、
前記第 1および第 2の R Fパワーモジュールの代わりに、 前記第 1および第 2 のパワートランジスタと、 前記第 1および第 2のスイッチング素子とを、 一つの R Fパワーモジュールの中に構成したことを特徴とする移動体電話装置。
4 . 請求の範囲第 3項に記載の移動体電話装置において、
前記 R Fパワーモジュールを同一半導体基板上に形成したことを特徴とする移
5 . 請求の範囲第 1項〜第 4項のいずれか 1項に記載の移動体電話装置において、 前記高調波制御回路は、
前記第 1のパヮ一トランジスタのドレイン端と第 2のパワートランジスタのド レイン端との間に設けられた第 1の無線信号の 1 / 8波長に相当する長さの第 1 および第 2の伝送線路と、
該第 1および第 2の伝送線路間に接続された第 1の直流阻止キャパシタと、 第 2の直流阻止キャパシタを介して、 接地と、 前記第 2のパワートランジスタ のドレイン端側に接続された第 2の伝送線路の一端との間に挿入され、 第 1の無 線信号の時に導通する第 1のスィツチング素子と、
第 3の直流阻止キャパシタを介して、 接地と、 前記第第 2の伝送線路の他端と の間に挿入され、 第 2の無線信号の時に導通する第 2のスイッチング素子と、 か らなることを特徴とする移動体電話装置。
6 . 請求の範囲第 1項〜第 5項のいずれか 1項に記載の移動体電話装置において、 前記第 1の無線信号の周波数は、 前記第 2の無線信号の周波数の 1 / 2である ことを特徴とする移動体電話装置。
7 . 請求の範囲第 1項〜第 6項のいずれか 1項に記載の移動体電話装置において、 前記第 1および第 2のスィツチング素子は、 F E Tスィツチから成ることを特 徴とする移動体電話装置。
PCT/JP1998/003068 1998-07-08 1998-07-08 Mobile telephone system WO2000003490A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/674,072 US6366788B1 (en) 1998-07-08 1998-07-08 Mobile telephone system
PCT/JP1998/003068 WO2000003490A1 (en) 1998-07-08 1998-07-08 Mobile telephone system
KR1020017000192A KR20010053413A (ko) 1998-07-08 1998-07-08 이동체 전화 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/003068 WO2000003490A1 (en) 1998-07-08 1998-07-08 Mobile telephone system

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09674072 A-371-Of-International 1998-07-08
US09/674,072 A-371-Of-International US6366788B1 (en) 1998-07-08 1998-07-08 Mobile telephone system
US10/062,529 Continuation US6865399B2 (en) 2000-10-26 2002-02-05 Mobile telephone apparatus

Publications (1)

Publication Number Publication Date
WO2000003490A1 true WO2000003490A1 (en) 2000-01-20

Family

ID=14208571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003068 WO2000003490A1 (en) 1998-07-08 1998-07-08 Mobile telephone system

Country Status (3)

Country Link
US (1) US6366788B1 (ja)
KR (1) KR20010053413A (ja)
WO (1) WO2000003490A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2371932A (en) * 2000-08-28 2002-08-07 Nec Corp Transmission circuit and unnecessary radiant wave suppression method
WO2003023843A1 (fr) * 2001-09-05 2003-03-20 Renesas Thechnology Corp. Dispositif a semi-conducteur, son procede de fabrication et dispositif de communication radio
EP1298789A3 (en) * 2001-09-26 2003-09-17 Nokia Corporation Dual mode voltage controlled oscillator having controllable bias modes and power consumption
US7013123B2 (en) 2000-02-21 2006-03-14 Hitachi, Ltd. Wireless communication system
JP2008154201A (ja) * 2006-07-07 2008-07-03 Murata Mfg Co Ltd 送信装置
JP2010041634A (ja) * 2008-08-08 2010-02-18 Hitachi Metals Ltd 高周波電力増幅器並びにそれを用いた高周波送信モジュール及び送受信モジュール

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6865399B2 (en) * 2000-10-26 2005-03-08 Renesas Technology Corp. Mobile telephone apparatus
US20020102945A1 (en) * 2001-01-30 2002-08-01 Kon-Hee Lee Transmit-receive switching circuit and method of wireless communication system
TW503345B (en) * 2001-03-26 2002-09-21 Mediatec Inc Power controller
US7493094B2 (en) * 2005-01-19 2009-02-17 Micro Mobio Corporation Multi-mode power amplifier module for wireless communication devices
US7071783B2 (en) * 2002-07-19 2006-07-04 Micro Mobio Corporation Temperature-compensated power sensing circuit for power amplifiers
US20040232982A1 (en) * 2002-07-19 2004-11-25 Ikuroh Ichitsubo RF front-end module for wireless communication devices
EP1391986A1 (en) * 2002-08-21 2004-02-25 TDK Corporation Multi-band amplifier
US20040204036A1 (en) * 2002-11-05 2004-10-14 Fodus Communications, Inc. Configurable multi-band RF transceiver with a cascaded frequency conversion scheme
DE10313868B4 (de) * 2003-03-21 2009-11-19 Siemens Ag Katheter zur magnetischen Navigation
US7148751B2 (en) * 2003-04-14 2006-12-12 M/A-Com, Inc. Handset radiofrequency front end module in fine pitch quad flat no lead (FQFP-N) package
JP3892826B2 (ja) * 2003-05-26 2007-03-14 株式会社東芝 電力増幅器及びこれを用いた無線通信装置
US20050205986A1 (en) * 2004-03-18 2005-09-22 Ikuroh Ichitsubo Module with integrated active substrate and passive substrate
US7440729B2 (en) * 2004-04-16 2008-10-21 M/A-Com Eurotec B.V. Apparatus, methods and articles of manufacture for output impedance matching using multi-band signal processing
US7254371B2 (en) * 2004-08-16 2007-08-07 Micro-Mobio, Inc. Multi-port multi-band RF switch
US7389090B1 (en) 2004-10-25 2008-06-17 Micro Mobio, Inc. Diplexer circuit for wireless communication devices
US7262677B2 (en) * 2004-10-25 2007-08-28 Micro-Mobio, Inc. Frequency filtering circuit for wireless communication devices
US7221225B2 (en) 2004-12-03 2007-05-22 Micro-Mobio Dual band power amplifier module for wireless communication devices
US7084702B1 (en) * 2005-01-19 2006-08-01 Micro Mobio Corp. Multi-band power amplifier module for wireless communication devices
US7580687B2 (en) 2005-01-19 2009-08-25 Micro Mobio Corporation System-in-package wireless communication device comprising prepackaged power amplifier
US7769355B2 (en) * 2005-01-19 2010-08-03 Micro Mobio Corporation System-in-package wireless communication device comprising prepackaged power amplifier
US7548111B2 (en) 2005-01-19 2009-06-16 Micro Mobio Corporation Miniature dual band power amplifier with reserved pins
US7119614B2 (en) * 2005-01-19 2006-10-10 Micro-Mobio Multi-band power amplifier module for wireless communications
US20070063982A1 (en) * 2005-09-19 2007-03-22 Tran Bao Q Integrated rendering of sound and image on a display
US7477204B2 (en) * 2005-12-30 2009-01-13 Micro-Mobio, Inc. Printed circuit board based smart antenna
US7477108B2 (en) * 2006-07-14 2009-01-13 Micro Mobio, Inc. Thermally distributed integrated power amplifier module
US20080076969A1 (en) * 2006-08-29 2008-03-27 Ulrich Kraft Methods for modifying control software of electronic medical devices
TW200840137A (en) * 2007-03-16 2008-10-01 Advanced Connectek Inc Switching frequency band apparatus of wideband antenna and method thereof
US7876160B2 (en) * 2008-02-04 2011-01-25 Skyworks Solutions, Inc. Multi-mode high efficiency linear power amplifier
DE102008044845B4 (de) * 2008-08-28 2015-04-09 Epcos Ag Bias-Netzwerk
US8836431B2 (en) * 2010-11-23 2014-09-16 Avago Technologies General Ip (Singapore) Pte. Ltd. High-efficiency power amplifier with multiple power modes
US8634789B2 (en) 2011-11-10 2014-01-21 Skyworks Solutions, Inc. Multi-mode power amplifier
US8441322B1 (en) * 2011-11-30 2013-05-14 Raytheon Company Broadband linearization by elimination of harmonics and intermodulation in amplifiers
US9692392B2 (en) * 2012-09-11 2017-06-27 Qualcomm Incorporated Filters for multi-band wireless device
US10411658B2 (en) * 2016-12-14 2019-09-10 Kabushiki Kaisha Toshiba Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109310A (ja) * 1983-11-18 1985-06-14 Oki Electric Ind Co Ltd 電力増幅回路
JPS61121537A (ja) * 1984-11-16 1986-06-09 Nec Corp 電力制御回路
JPH09205464A (ja) * 1996-01-25 1997-08-05 Hitachi Denshi Ltd ディジタル無線機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454006A (ja) * 1990-06-22 1992-02-21 Fujitsu Ltd 増幅装置
JP3444653B2 (ja) * 1994-06-09 2003-09-08 三菱電機株式会社 電力増幅器
KR0129844B1 (ko) * 1994-12-21 1998-10-01 양승택 아날로그 및 디지털 휴대용 전화기 겸용 전력증폭기
US6091966A (en) * 1997-09-29 2000-07-18 Ericsson, Inc. Dual-band, dual-mode power amplifier
US6298244B1 (en) * 1997-07-03 2001-10-02 Ericsson Inc. Dual-band, dual-mode power amplifier
JP3695938B2 (ja) * 1998-05-28 2005-09-14 アルプス電気株式会社 緩衝増幅回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109310A (ja) * 1983-11-18 1985-06-14 Oki Electric Ind Co Ltd 電力増幅回路
JPS61121537A (ja) * 1984-11-16 1986-06-09 Nec Corp 電力制御回路
JPH09205464A (ja) * 1996-01-25 1997-08-05 Hitachi Denshi Ltd ディジタル無線機

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7379728B2 (en) 2000-02-21 2008-05-27 Hitachi, Ltd. Wireless communication system
KR100721471B1 (ko) * 2000-02-21 2007-05-23 가부시키가이샤 히타치세이사쿠쇼 무선 통신 장치
US9014655B2 (en) 2000-02-21 2015-04-21 Renesas Electronics Corporation Wireless communication system
US8824994B2 (en) 2000-02-21 2014-09-02 Renesas Electronics Corporation Wireless communication system
US8472911B2 (en) 2000-02-21 2013-06-25 Renesas Electronics Corporation Wireless communication system
US7013123B2 (en) 2000-02-21 2006-03-14 Hitachi, Ltd. Wireless communication system
US8204471B2 (en) 2000-02-21 2012-06-19 Renesas Electronics Corporation Wireless communication system
US8036628B2 (en) 2000-02-21 2011-10-11 Renesas Electronics Corporation Wireless communication system
US7783276B2 (en) 2000-02-21 2010-08-24 Renesas Technology Corp. Wireless communication system
US7274923B2 (en) 2000-02-21 2007-09-25 Hitachi, Ltd. Wireless communication system
US9331031B2 (en) 2000-02-21 2016-05-03 Renesas Electronics Corporation Wireless communication system
GB2371932B (en) * 2000-08-28 2003-04-16 Nec Corp Transmission circuit and unnecessary radiant wave suppresson method
US6952566B2 (en) 2000-08-28 2005-10-04 Nec Corporation Transmission circuit and unnecessary radiant wave suppression method
GB2371932A (en) * 2000-08-28 2002-08-07 Nec Corp Transmission circuit and unnecessary radiant wave suppression method
WO2003023843A1 (fr) * 2001-09-05 2003-03-20 Renesas Thechnology Corp. Dispositif a semi-conducteur, son procede de fabrication et dispositif de communication radio
US7453147B2 (en) 2001-09-05 2008-11-18 Renesas Technology Corp. Semiconductor device, its manufacturing method, and radio communication device
US7119004B2 (en) 2001-09-05 2006-10-10 Renesas Technology Corp. Semiconductor device, its manufacturing method, and ratio communication device
US8036619B2 (en) 2001-09-26 2011-10-11 Nokia Corporation Oscillator having controllable bias modes and power consumption
US7151915B2 (en) 2001-09-26 2006-12-19 Nokia Corporation Dual mode voltage controlled oscillator having controllable bias modes and power consumption
EP1298789A3 (en) * 2001-09-26 2003-09-17 Nokia Corporation Dual mode voltage controlled oscillator having controllable bias modes and power consumption
JP2008154201A (ja) * 2006-07-07 2008-07-03 Murata Mfg Co Ltd 送信装置
JP2010041634A (ja) * 2008-08-08 2010-02-18 Hitachi Metals Ltd 高周波電力増幅器並びにそれを用いた高周波送信モジュール及び送受信モジュール

Also Published As

Publication number Publication date
US6366788B1 (en) 2002-04-02
KR20010053413A (ko) 2001-06-25

Similar Documents

Publication Publication Date Title
WO2000003490A1 (en) Mobile telephone system
US6865399B2 (en) Mobile telephone apparatus
WO2000003478A1 (fr) Module amplificateur de puissance haute frequence
KR102618439B1 (ko) 선형의 효율적인 광대역 전력 증폭기들에 관한 시스템들 및 방법들
US7092691B2 (en) Switchless multi-resonant, multi-band power amplifier
JP4202852B2 (ja) 通信用電子部品および送受信切替え用半導体装置
US6489843B1 (en) Power amplifier and communication unit
JP4394498B2 (ja) 高周波回路装置及びそれを用いた移動体通信端末
US6298244B1 (en) Dual-band, dual-mode power amplifier
US8098114B2 (en) Matching circuit
JP5512731B2 (ja) 2段のマイクロ波のe級電力増幅器
KR101594192B1 (ko) 멀티 밴드 전력 증폭기를 위하여 효율적으로 경로를 아이솔레이팅 시킬 수 있는 임피던스 정합 회로
US7928802B2 (en) RF amplification device
WO1997023053A1 (fr) Circuit emetteur-recepteur pour communication radio et dispositif a circuit integre semi-conducteur
KR100322989B1 (ko) 고주파증폭기
WO2000024124A1 (en) Dual-band, dual-mode power amplifier with reduced power loss
US10778211B2 (en) Switching circuit and semiconductor module
JP4106376B2 (ja) スイッチ回路及び集積回路
TW200533096A (en) High-frequency circuit device
WO2001005028A1 (en) A dual-band, dual-mode power amplifier
JP3595769B2 (ja) 半導体装置及び通信装置
US11563410B1 (en) Systems and methods for multi-band power amplifiers
JP2007329669A (ja) 電力増幅装置
KR20110060735A (ko) 고주파 변압기를 이용한 다중 대역 전력증폭기
JP2008104221A (ja) 電力増幅器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09674072

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020017000192

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017000192

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWW Wipo information: withdrawn in national office

Ref document number: 1020017000192

Country of ref document: KR