WO2000002072A1 - Module optique integre - Google Patents

Module optique integre Download PDF

Info

Publication number
WO2000002072A1
WO2000002072A1 PCT/JP1999/003553 JP9903553W WO0002072A1 WO 2000002072 A1 WO2000002072 A1 WO 2000002072A1 JP 9903553 W JP9903553 W JP 9903553W WO 0002072 A1 WO0002072 A1 WO 0002072A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
optical
output
input
platform
Prior art date
Application number
PCT/JP1999/003553
Other languages
English (en)
French (fr)
Inventor
Tomoaki Kato
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to EP99926879A priority Critical patent/EP1096278A4/en
Priority to US09/720,713 priority patent/US6556735B1/en
Publication of WO2000002072A1 publication Critical patent/WO2000002072A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3502Optical coupling means having switching means involving direct waveguide displacement, e.g. cantilever type waveguide displacement involving waveguide bending, or displacing an interposed waveguide between stationary waveguides
    • G02B6/3508Lateral or transverse displacement of the whole waveguides, e.g. by varying the distance between opposed waveguide ends, or by mutual lateral displacement of opposed waveguide ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12119Bend
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • G02B6/35521x1 switch, e.g. on/off switch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3596With planar waveguide arrangement, i.e. in a substrate, regardless if actuating mechanism is outside the substrate

Definitions

  • the present invention relates to an optical integrated module manufactured using a hybrid optical integrated technology, and more particularly to an optical integrated module having a configuration in which an optical waveguide device is arranged between an input optical waveguide and an output optical waveguide.
  • this high-speed optical gate can have extremely high on / off performance of about 40 dB to 70 dB and can compensate for loss of an optical multiplexer / demultiplexer, and has a high speed of nanosecond (nsec.) Order.
  • Optical gate devices SOAGs
  • SOAs semiconductor optical amplifiers
  • P hotonic ICs PICs
  • PICs optical integrated circuits
  • FIG. 10 is a plan view showing an example of the structure.
  • An optical waveguide device 101 such as S0AG having an optical waveguide 102 connected to each of the optical waveguides 104 and 105 is mounted on the optical waveguide platform 103 having the optical path 105 formed therein. ing.
  • the input signal light 107 input to the input optical waveguide 104 is guided through the input optical waveguide 104 and input to the optical waveguide device 101, After being guided through the optical waveguide 102, it is guided through the output optical waveguide 105, and is output as core signal light 108.
  • the optical waveguide between the input optical waveguide 104 and the optical waveguide 102 of the optical waveguide device 101 or the optical waveguide is formed.
  • a large signal is transmitted to the S0AG itself.
  • Optical gain is required.
  • an oblique end face structure in which the optical waveguide is bent obliquely to this end face near the light input / output end face, or an active layer There is proposed a window structure or the like that cuts off immediately before the end face.
  • the input optical waveguide 114 and the output optical waveguide 115 are inclined at required angles with respect to the incident direction of the input signal light 117 and the output direction of the output signal light 118.
  • at least portions of the optical waveguides 112 provided in the optical waveguide device 111 and connected to the input optical waveguides 114 and the output optical waveguides 115 are inclined at the same angle. Configuration.
  • the signals guided through the input optical waveguides 104 and 114 and incident on the optical waveguide devices 101 and 111 are not shown.
  • Most of the light is a non-guided light component that does not contribute to optical coupling in a relatively large optical waveguide discontinuity between the input optical waveguide and the optical waveguide device.
  • This non-guided light component is recombined in the optical waveguide discontinuity region between the optical waveguide devices 101 and 111 on the light emission side and the output optical waveguides 105 and 115, and this is combined with the optical gate element module.
  • the non-guided light on the light incident side of the optical waveguide devices 101 and 111 The light travels straight as it is and gradually diverges in the form of a beam in the substrate of the optical waveguide devices 101 and 111 and reaches the opposite end face of the optical waveguide device on the opposite side. For this reason, the non-guided light is coupled to the output optical waveguides 105 and 115 existing in the vicinity thereof at a certain ratio. This phenomenon degrades the optical characteristics of the optical integrated module, especially the ON / OFF characteristics of the signal light in the optical gate element module such as SOAG. Such on-Z off causes coherent beat noise of the signal light, and significantly impairs the characteristics of the optical module.
  • Such a problem may occur structurally, especially in the case of an arrayed optical waveguide device, where the exit position of the non-guided light is extremely close to the exit optical waveguide of another channel.
  • FIG. 12 when the oblique end face of the output optical waveguide 125 is formed parallel to the oblique end face of the input optical waveguide 124, in practice, this is a point due to manufacturing reasons. Since most of them are made symmetrically, as a result, the propagation axis of the non-guided light between the input optical waveguide 124 and the optical waveguide device 122 is the same as the output optical waveguide 125. It will match the angle that is most easily combined. This leads to remarkable deterioration of the crosstalk suppression characteristics between channels.
  • An object of the present invention is to provide an optical integrated module capable of eliminating the influence on optical switching performance of non-guided light generated by discontinuity of an optical waveguide which is essentially unavoidable in hybrid optical integration. . Disclosure of the invention
  • the present invention shows an input optical waveguide 134 and an output optical waveguide.
  • An integrated optical module comprising an optical waveguide device 13 1 optically coupled to an input optical waveguide 13 4 and an output optical waveguide 13 5, wherein the input optical waveguide 13 4, the output optical waveguide 13 5,
  • the optical waveguides 13 2 of the optical waveguide device 13 1 optically coupled to the optical waveguides of the optical waveguides 13 2 Each of them is bent toward the same side.
  • a finite gap is formed between the input optical waveguide 13 4 and the optical waveguide device 13 1, and between the output optical waveguide 13 5 and the optical waveguide device 13 1.
  • the input optical waveguide 13 4, the output optical waveguide 13 5, and the optical waveguide device 13 1 are arranged in a positional relationship, and a discontinuous portion of the optical waveguide is formed therebetween, and the input optical waveguide 13 Waveguide 13 4, optical waveguide device 13 1, optical waveguide 13 2 of output waveguide 13, and output optical waveguide 13 5, both of which bend with a gentle curvature such that the emission of guided signal light can be ignored sufficiently
  • the input optical waveguide 13 4, the output optical waveguide 13 5, and the optical waveguide 13 2 are provided near the optical waveguide discontinuity in the longitudinal direction of the optical waveguide platform 13. Diagonal end bent in the same direction with respect to the straight line It is characterized by having a surface structure.
  • the optical waveguides 13 2 at the input and output end faces of the optical waveguide device 13 1 are formed to be bent toward the same side with respect to the straight line in the longitudinal direction of the optical waveguide platform 13.
  • the input optical waveguide 13 4 and the output optical waveguide 13 5 of the optical waveguide platform 13 3 are also formed to bend in the same direction as the bending of the optical waveguide 13 2. Therefore, the direction of the longitudinal axis of the output optical waveguide 13 5 is aligned with the waveguide axis of the non-guided light of the input signal light 13 7 generated between the input optical waveguide 13 4 and the optical waveguide device 13 1.
  • the non-guided light intersects the output optical waveguide 135 at a deep angle that is almost twice the set angle of the oblique optical waveguide. Therefore, the unguided light is output at a deep angle beyond the effective aperture of the output optical waveguide 135. Since the light enters the waveguide 135, the crosstalk component 139 is suppressed from being guided to the output optical waveguide 135. As a result, it is possible to selectively and extremely effectively suppress only the optical coupling efficiency for the non-guided light while keeping the coupling efficiency deterioration for the signal light as small as possible.
  • FIG. 1 is a plan view showing the basic configuration of the optical integrated module of the present invention.
  • FIG. 2 is a plan view of the optical integrated module according to the first embodiment of the present invention.
  • FIG. 3 is a plan view of an optical waveguide device according to the first embodiment.
  • FIG. 4 is a plan view of the optical waveguide platform according to the first embodiment.
  • FIG. 5 is a plan view of the optical integrated module according to the second embodiment of the present invention.
  • FIG. 6 is a plan view of an optical waveguide device according to the second embodiment.
  • FIG. 7 is a plan view of an optical waveguide platform according to the second embodiment.
  • FIG. 8 is a plan view of an optical integrated module according to the third embodiment of the present invention.
  • FIG. 9 is a plan view of an optical waveguide platform according to the third embodiment.
  • FIG. 10 is a plan view of an example of a conventional optical integrated module.
  • FIG. 11 is a plan view of another example of the conventional optical integrated module.
  • FIG. 12 is a plan view of still another example of the conventional optical integrated module. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 2 is a plan view of a first embodiment of the present invention, in which an optical waveguide device 201 having at least a diagonal waveguide end face structure on its light input / output end face is mounted on an optical waveguide platform 210.
  • the optical waveguide The unguided light component generated by the optical waveguide discontinuity created between the input optical waveguide 2 1 1 of the optical waveguide device 2 and the optical input end face of the optical waveguide device 2 0 1 couples to the output optical waveguide 2 1 2 on the opposite side.
  • FIG. 3 is a plan view of the optical waveguide device 201 to be made into an optical module.
  • the optical waveguide device 201 includes a linear optical waveguide region 203 formed on a substrate 202, and the optical waveguide region 203 facing the same side with respect to the longitudinal axis of the optical waveguide region 203.
  • Oblique optical waveguide regions 204 and 205 bent at an angle 01 in a plane horizontal to the substrate 202, the linear optical waveguide region 203 and the oblique optical waveguide region 2
  • the curved optical waveguide regions 206 and 207 are composed of curved optical waveguides that are smoothly connected to the optical waveguides 204 and 205 and have an appropriate curvature such that the influence of radiation is negligible.
  • FIG. 4 shows the optical waveguide platform 210 on which the optical waveguide device 201 is mounted.
  • signal light is input / output coupled to / from the optical waveguide device 201, and an input optical waveguide made of a material different from that of the optical waveguide device 201 is used.
  • Waveguide 2 11 and output optical waveguide 2 12 are formed.
  • the input optical waveguide 2 1 1 and the output optical waveguide 2 1 2 are formed at an angle with respect to the optical waveguide end faces 2 1 3 and 2 1 4 which couple the signal light with the optical waveguide device 2 1.
  • the optical waveguide regions 2 17 and 2 18 are smoothly connected to each other, and the curved optical waveguide regions 2 19 and 2 20 made of curved optical waveguides having appropriate curvatures so that the effects of radiation can be ignored.
  • the angle 02 is equivalent to the equivalent refractive index n 1 of the oblique optical waveguides 204 and 205, the equivalent refractive index n 2 of the oblique optical waveguides 2 15 and 216, and the angle 0 1 Is determined using Snell's law.
  • the linear optical waveguide regions 217 and 218 extend to the end faces 221 and 222 of the optical waveguide platform 210. Further, the optical waveguide device 201 is disposed on the optical waveguide platform 210 with a finite gap between the optical waveguide device 210 and the optical waveguide end faces 2 13 and 2 14.
  • the operation of the optical integrated module of the first embodiment shown in FIGS. 2 to 4 will be described. First, a basic signal light propagation path in the optical integrated module will be described. The signal light incident on the input optical waveguide 2 11 from the end face 2 2 1 is bent from the linear optical waveguide area 2 1 7 through the optical waveguide area 2 1 9 and the oblique optical waveguide area 2 1 5 End face 2 1 3 is reached.
  • the signal light coupled to the optical waveguide device 201 via a finite gap is bent from the oblique optical waveguide region 202, the curved optical waveguide region 206, the linear optical waveguide region 203, and the curved optical waveguide region.
  • the light reaches the oblique optical waveguide region 205 through the waveguide region 207.
  • the output optical waveguide 2 1 similarly to the incident side, passes through the finite air gap from the optical waveguide device 201, the optical waveguide end surface 2 14, the oblique optical waveguide region 2 16, and the bent optical waveguide region.
  • the oblique optical waveguide regions 204 and 207 provided at both ends of the optical waveguide device 201 serve to effectively reduce the effective residual end face reflection at the end faces 208 and 209. Fulfill. This is effective in suppressing the Fabry-Perot resonance of the signal light inside the optical waveguide device 201.
  • Such measures are particularly important when the optical waveguide device itself has a gain, such as a semiconductor optical amplifier.
  • the behavior of the signal light component that could not be completely coupled to the optical waveguide device 201 in the optical waveguide discontinuity between the input optical waveguide 211 and the optical waveguide device 201 will be described.
  • the signal light that could not be completely coupled to the waveguide device 201 passes through the substrate 202 of the optical waveguide device 201 almost in the direction of the longitudinal axis of the oblique optical waveguide region 202.
  • the oblique optical waveguide regions 204 and 205 of the optical waveguide device 201 are on the same side with respect to the longitudinal axis direction of the linear optical waveguide 203. Is bent toward.
  • the amplitude of the non-guided light near the exit-side oblique optical waveguide 212 end face is Significantly attenuates with respect to that of signal light. Furthermore, divergence of non-guided light Since the trajectory greatly deviates from the longitudinal axis direction of the oblique optical waveguide on the emission side, by appropriately designing the structural parameters including the angles ⁇ 1, S 2, etc. The ratio of coupling into the wave path can be several orders of magnitude smaller than that of signal light. Thus, it is possible to provide a structure that selectively and extremely suppresses only the optical coupling efficiency for non-guided light.
  • FIG. 5 is a plan view showing a second embodiment in which the present invention is applied to a hybrid optical integrated module of an array of semiconductor optical amplifiers.
  • the silica-based optical waveguide Si platform has four channel semiconductors. The configuration is such that an optical amplifier array 301 and optical fibers 336 and 337 are mounted.
  • FIG. 6 is a plan view of the four-channel semiconductor optical amplifier array 301, in which the four-channel semiconductor optical amplifiers are arranged at intervals of 250 microns. With structure.
  • Each semiconductor optical amplifier has a p-type bulk active layer with a wavelength composition of 1.55 ⁇ m formed on a (001) n-InP substrate 302. It has a structure embedded in the InP cladding layer.
  • It is a single mode optical waveguide for signal light in the 1.55 m band, and has an optical amplification effect on the signal light by current injection. Further, in order to reduce the polarization dependence on the signal light, the height is 0.3 ⁇ m and the width is 0.3 mm so that the peak ratio of the cross section of the active layer is approximately 1: 1. m is set.
  • the element length is 100 0, of which the active layer is the length of the active layer linear region 304 that is parallel to the [110] direction of the n-InP substrate 302.
  • the active layer has a radius of curvature of 4 mm so that the radiation loss is negligible at both ends and the active layer is gently bent in a plane horizontal to the n-InP substrate 302.
  • 3 0 5 and 3 0 6 are 100 / m, and are smoothly connected to these active layer curved regions 3 0 5 and 3 0 6 and [1 10] of the n-InP substrate 3
  • the oblique optical waveguide regions 307 and 308 inclined by 7 ° in the same direction with respect to the direction are 200 ⁇ m.
  • the oblique optical waveguide regions 307 and 308 extend from the active layer curved regions 305 and 306 to the end faces 309 and 310, respectively, over a length of 150 m and have an active layer thickness of 300 m. 1/3 of original thickness It has spot size conversion areas 311 and 312 which are gradually thinned to.
  • These have all been produced by selective MOVPE growth.
  • low-reflection films 315 and 316 having a reflectance of 0.1% for signal light are formed on both end surfaces of the element.
  • the figure is a plan view of a silica-based optical waveguide platform 320 on which the semiconductor optical amplifier 301 is mounted.
  • the optical waveguide platform 320 has eight quartz-based input optical waveguides 32 2 and an output optical waveguide 32 3 formed on the Si substrate 32 1 by using atmospheric pressure CVD. Eight, four each, are formed bisymmetrically in an array.
  • Each of the input optical waveguides 3 22 and the output optical waveguides 3 2 3 has a structure in which Ge-doped cores each having a cross section of 6 m square are embedded in upper and lower cladding layers having a thickness of 10 / m, respectively.
  • a single mode optical waveguide is provided for the 1.55 im signal light.
  • the input optical waveguides 3 22 and the output optical waveguides 3 2 3 are connected to the optical waveguide end faces 3 2 4 and 3 25, respectively, in order to efficiently couple the signal light into and out of the semiconductor optical amplifier 301.
  • 3 9 and 3 9 have a curved optical waveguide region 3 3 0 and 3 3 1 that are smoothly connected with a radius of curvature of 10 mm so that the effects of radiation are negligible.
  • the semiconductor optical amplifier 301 is self-aligned with high alignment accuracy, and a driving current is independently injected into each channel.
  • the electric wiring pattern 332 and the solder bump pad 3333 are formed strongly by using both the formed WSi layer and the electrode film forming process after the formation of the optical waveguide. Further, in order to mount the semiconductor optical amplifier 301 between the input optical waveguide 32 and the output optical waveguide 32, the Si substrate 32 or the electrode wiring pattern 33 is exposed.
  • Optical element mounting area 3 3 4 spans a length of 1.0 2 mm Is formed.
  • optical fibers for inputting and outputting signal light to and from the input optical waveguide 322 and the output optical waveguide 32, respectively, are passively mounted with high positional accuracy. Therefore, a total of 16 optical fiber guides 338, 339 are formed on the Si substrate 321, 8 on the input side and 8 on the output side, over a length of 1 mm.
  • the optical fiber guides 338 and 3339 are provided with a V-shaped cross section of the Si groove so that the alignment accuracy is not impaired even if a slight misalignment with respect to the Si substrate 321 occurs. It has a structure divided into blocks in the longitudinal axis direction.
  • the two 4-channel semiconductor optical amplifier arrays 301 provided gaps having a width of 10 m between the optical waveguide end faces 3224 and 325. It is mounted axially symmetrically using AuSn solder.
  • a total of 16 single-mode optical fibers 336 and 337 are passively mounted along these 16 optical fiber guides.
  • the optical coupling loss between the input optical waveguide 32 2 and the output optical waveguide 32 3 and the semiconductor optical amplifier array 301 is 4.5 dB.
  • the optical coupling loss between the input optical waveguide 32 2 and the output optical waveguide 32 3 and the single mode optical fibers 33 6 and 33 37 was 0.3 dB.
  • a signal light with a wavelength of 1.55 ⁇ m and power of 0 dBm is input to each of the eight input optical fibers 336, corresponding to each input optical fiber 336
  • a forward current of 20 mA was injected into the channel of the semiconductor optical amplifier
  • the gain of the signal light extracted from the output-side optical fiber 337 corresponding to this was O dB.
  • a signal light gain of 10 dB was obtained for each channel.
  • the signal light was output with 60 dB attenuation.
  • the above signal light was input to a certain channel, and the output signal light from a channel that did not correspond to the signal light was measured. As a result, it was found that the signal light was output with an attenuation of 80 dB or more. These results are sufficient to suppress coherent crosstalk of signal light.
  • a high-speed optical gate that follows this drive current waveform Got work.
  • FIG. 8 shows an arrayed semiconductor optical amplifier 301 mounted on an optical waveguide Si platform 420 formed of an arrayed silica-based optical waveguide, a wavelength multiplexer, and a wavelength demultiplexer according to the present invention.
  • FIG. 11 is a plan view of a third embodiment applied to an optical fiber integrated 8-channel wavelength selector module integrated with hybrid light. Since the semiconductor optical amplifier array 301 is exactly the same as that used in the second embodiment, a detailed description thereof will be omitted.
  • FIG. 9 is a plan view of the silica-based optical waveguide platform 420.
  • the optical waveguide platform 420 is composed of a 1: 8 wavelength demultiplexer 44 0 and an 8: 1 wavelength multiplexer 44 1 on an optical waveguide platform configured similarly to the second embodiment. Is created. These serve to separate the signal light in the wavelength 55 / m band into 8: 1 wavelengths and to multiplex 1: 8 wavelengths.
  • the adjacent wavelength interval of the signal light wavelength-multiplexed / demultiplexed by these is about 0.8 nm (100 GHz in optical frequency), and the wavelength passbands of both are the same.
  • the other structure of the optical waveguide platform 420 is the same as that of the second embodiment, and a detailed description thereof will be omitted. However, since one optical fiber is coupled to each of the wavelength demultiplexer 44 and the wavelength multiplexer 441, only one optical fiber guide 438, 439 is provided. I have.
  • two 4-channel semiconductor optical amplifier arrays 301 are provided in the element mounting area 434 of the optical waveguide platform with a width 1 between the optical waveguide end faces 424 and 425.
  • a 0 ⁇ m gap is provided and axially symmetric using AuSn solder Has been implemented.
  • two single mode optical fibers 436 and 437 are passively mounted along the optical fiber guides 438 and 439.
  • the input side optical fiber 436 has an 8-wavelength signal that matches the passband of the wavelength multiplexer and the wavelength-multiplexer that is different from each other.
  • Wavelength-multiplexed light is input, and a forward current of 30 mA is injected into only one specific channel of the semiconductor optical amplifier channel corresponding to each signal light wavelength. From 433, only the signal light of the wavelength that could pass through this channel was output.
  • the signal light gain at that time was 0 dB.
  • a signal light gain of 5 dB was obtained by injecting a current of 50 mA. When no current was injected into each channel, the signal light was output with an attenuation of 70 dB.
  • the hybrid optical integrated module of the present invention is not limited to the above-described configuration, but may be any optical integrated circuit module having a configuration in which an optical waveguide device is provided between an input optical waveguide and an output waveguide.
  • an optical waveguide device is provided between an input optical waveguide and an output waveguide.
  • the configuration of the input optical waveguide and the output waveguide has the basic configuration of the present invention, it can be applied to various optical integrated modules.
  • the number of channels formed by the optical waveguide is not limited to the configuration of each of the above embodiments.
  • the waveguide device is an electro-absorption type semiconductor optical modulator that realizes a light absorption function by applying a voltage to the signal light propagating therethrough.
  • the optical waveguide device has at least one current injection mechanism or at least one voltage application mechanism.
  • the optical waveguide platform has some kind of electric wiring in addition to the electric wiring constituting the solder bumps.
  • an electric element for driving the optical waveguide device On the optical waveguide platform, there are provided an electric element for driving the optical waveguide device, a terminating resistor, and the like.
  • the input optical waveguide or the output optical waveguide in the optical waveguide platform has a function as an optical isolator that propagates the signal light propagating therethrough only in one direction from the input optical waveguide side to the output optical waveguide side.
  • the input optical waveguide or the output optical waveguide has a function as an optical filter having a periodic structure such as a diffraction grating.
  • the input optical waveguide or the output optical waveguide comprises an optical directional coupler.
  • the input optical waveguide or the output optical waveguide has a mechanism for adjusting the phase of the signal light guided therethrough.
  • the input optical waveguide or the output optical waveguide contains a rare earth element for amplifying the guided signal light.
  • the input optical waveguide or the output optical waveguide includes an arrayed optical waveguide diffraction grating.
  • any one of the input optical waveguide, the output optical waveguide, and the optical waveguide device has a function of detecting, monitoring, or controlling the power and polarization of the signal light guided therethrough. It is equipped with a means for monitoring the temperature of a component formed or mounted on an optical waveguide platform, such as an input optical waveguide, an output optical waveguide, or an optical waveguide device, or a means for controlling the temperature.
  • the present invention provides a method for bending an optical waveguide of an optical waveguide device at a signal light input / output end face, an input optical waveguide formed on an optical waveguide platform, and an output light. Since the bending direction in the waveguide is bent toward the same side with respect to the longitudinal axis direction of the optical waveguide platform, the non-guided light does not go to the output optical waveguide, and thus the outside of the substrate of the optical waveguide device. Therefore, it becomes possible to obtain a hybrid optical integrated module in which deterioration of the on / off ratio due to non-guided light is suppressed as much as possible.
  • an arrayed optical integrated module when configured, a structure can be obtained in which non-guided light is minimized from leaking into other channels and becoming a crosstalk component between channels. Furthermore, since the resonance inside the optical waveguide device is effectively suppressed, the signal light gain inside the optical waveguide device can be increased. In particular, even in the case of an optical waveguide device such as a semiconductor optical amplifier having the signal light gain, the optical waveguide black can be obtained. It is possible to build an optical integrated circuit module by mounting it on a to-form.
  • the hybrid optical integrated module according to the present invention has high on / off characteristics, low inter-channel crosstalk, and high signal light gain, especially in the case of hybrid light integration of an optical waveguide device such as a semiconductor optical amplifier having a signal light gain. At the same time, it provides a means to satisfy, and enables the miniaturization and high performance of optical gate devices and the like used in optical ATM exchanges for lightwave networks.

Description

明細書
光集積モジュール
本発明は、 ハイプリッ ド光集積技術を用いて作られた光集積モジュールに関し、 特に入力光導波路と出力光導波路の間に光導波路デバイスを配置した構成の光集 積モジュールに関する。 従来技術
低速な電話中心のサービスから広帯域ディジタルマルチメディアサ一ビスへと 通信需要が移行するにつれて、 これらの通信サービス全般を効率よく多重化する ための高速かつ高スループッ トの光 A T M交換機、 及びその中枢となる高速かつ 拡張性に優れた光スィッチの開発が望まれている。 中でも、 1入力 1出力の高速 光ゲ—ト素子と光合分波素子とを組み合わせて構成した分配選択型光スィツチは、 制御が容易なことからこうした用途への応用が検討されている。 このような光ス ィッチ網を実現するためには、 スケ一ラビリティを満足するための優れたクロス トーク抑制性能、 高速スイッチング性能、 そして高速化に適したシンプルな制御 方式が求められる。 このため、 この高速光ゲートとしては 4 0 d B〜7 0 d B程 度の極めて高いオン/オフ性能および光合分波器の損失補償が可能で、 かつナノ 秒 (n s e c.) オーダの高速応答が期待できる半導体光増幅器 (S O A ) を用い た光ゲート素子 (S O A G ) が注目を浴びている。 また、 こうした光素子を多数 使用するシステムでは、 これらがシステム全体に占めるコスト、 実装負荷は無視 できない。 このため、 複数の光素子を 1枚の基板にモノリシック集積してある特 定の機能を実現する光集積回路 (P h o t o n i c I C : P I C ) や、 光素子 を駆動するための周辺電子回路素子等を一体化して集積化する光 ·電気集積モジ ユールへの期待も高まっている。 特に、 光導波路プラッ トフオーム上に半導体光 素子を実装したハイプリッ ド光集積モジュールは、 その生産性などの点から、 最 も実用に近い光集積技術として期待されている。
図 1 0はその一例を示す平面構成図であり、 入力光導波路 1 0 4、 出力光導波 路 1 0 5を形成した光導波路ブラッ トフオーム 1 0 3に、 前記各光導波路 1 0 4 , 1 0 5につながる光導波路 1 0 2を有する S 0 A G等の光導波路デバイス 1 0 1 が搭載されている。 このハイプリ ッ ド光集積素子では、 入力光導波路 1 0 4に入 射される入力信号光 1 0 7は、 入力光導波路 1 0 4を導波されて光導波路デバィ ス 1 0 1に入力され、 光導波路 1 0 2を導波された後に出力光導波路 1 0 5を導 波され、 芯信号光 1 0 8として出力される。
こうしたハイプリッ ド光集積技術を応用して前述の S O A Gを搭載した光集積 モジュールを構成する場合、 入力光導波路 1 0 4と光導波路デバイス 1 0 1の光 導波路 1 0 2 との間、 あるいは光導波路 1 0 2と出力光導波路 1 0 5 との間のよ うに、 比較的大きな光導波路不連続での結合損失や光合分波器の分岐損失を補償 するために S 0 A G自身には大きな信号光利得が求められる。 このため、 S O A Gには残留端面反射を極力抑制する工夫が必要となり、 そのために、 光導波路を 光入出射端面の近傍でこの端面に対して斜めに曲げる斜め端面構造や、 またある いは活性層を端面の直前で途切れさせる窓構造などが提案されている。 例えば、 図 1 1では、 入力信号光 1 1 7の入射方向及び出力信号光 1 1 8の出射方向に対 して、 入力光導波路 1 1 4及び出力光導波路 1 1 5を所要の角度で傾斜させ、 か つこれに追従して光導波路デバイス 1 1 1に設けられる光導波路 1 1 2の少なく とも前記入力光導波路 1 1 4、 出力光導波路 1 1 5と連結する部分を同じ角度に 傾斜させた構成がとられている。
しかしながら、 これら図 1 0 , 図 1 1に示したハイブリッ ド光集積モジュール では、 入力光導波路 1 0 4, 1 1 4を導波されて光導波路デバイス 1 0 1 , 1 1 1に入射される信号光は、 入力光導波路と光導波デバイスとの間での比較的大き な光導波路不連続においてその大半が光結合に寄与しない非導波光成分となって しまう。 この非導波光成分は、 光出射側の光導波デバイス 1 0 1, 1 1 1 と出力 光導波路 1 0 5, 1 1 5 との光導波路不連続の領域において再度結合しこれが光 ゲート素子モジュールの信号光に対する総合的なオン/オフ性能を著しく劣化さ せる。 すなわち、 光導波デバイス 1 0 1 , 1 1 1の光入射側での非導波光の大半 はそのまま直進され、 光導波路デバイス 1 0 1 , 1 1 1の基板中をビーム状に徐 々に発散しながら反対側の出射側光導波路端面へと達する。 このため、 その近傍 に存在している出力光導波路 1 0 5 , 1 1 5へと非導波光がある一定の割合で結 合してしまう。 この現象は、 光集積モジュールの光学的特性、 特に S O A G等の 光ゲート素子モジュールにおいて信号光のオン/オフ特性を劣化させる原因とな る。 このようなオン Zオフは信号光の干渉性のビート雑音を招き、 光モジュール の特性を著しく損ねることになる。
このような問題は、 特にアレイ状の光導波路デバイスの場合には、 非導波光の 出射位置が他チヤンネルの出射光導波路に極めて近くなることも構造的に起こり 得る。 例えば、 図 1 2に示すように、 出力光導波路 1 2 5の斜め端面が入力光導 波路 1 2 4の斜め端面に対して平行に形成されている場合、 実際には製造上の都 合から点対称で作られているものがほとんどであるため、 結果として入力光導波 路 1 2 4と光導波路デバイス 1 2 1 との間での非導波光の伝搬軸は出力光導波路 1 2 5に対して一番結合しやすい角度と一致してしまうことになる。 これがチヤ ンネル間クロストーク抑圧特性の著しい劣化を招くことになる。
こういった非導波光の漏れを抑制するためには、 非導波光そのものの発生を抑 制するべく結合損失を向上させる対策がまず必要である。 しかしながら、 ハイブ リッ ド光集積モジュールにおける結合損失をゼロにする事は本質的に不可能であ り、 むしろ非導波光成分を可能な限り結合させないための新たな工夫こそがより 重要となってくる。 しかしながら、 こうした非導波光成分を効果的に取り除くた めの方法として実用に耐えうるものは未だ実現されていないのが実情である。 本発明の目的は、 ハイプリッ ド光集積では本質的に不可避な光導波路不連続で 発生する非導波光が光スィッチング性能に及ぼす影響を解消することを可能にし た光集積モジュールを提供することである。 発明の開示
本発明は、 図 1 にその基本構成を示すように、 入力光導波路 1 3 4と出力光導 波路 1 3 5がそれぞれ形成された光導波路ブラッ トフォーム 1 3 3と、 前記入力 光導波路 1 3 4と出力光導波路 1 3 5の間の前記光導波路ブラッ トフォーム 1 3 1上に搭載され、 かつ前記入力光導波路 1 3 4と出力光導波路 1 3 5に光結合さ れる光導波路デバイス 1 3 1 とを備える光集積モジュールにおいて、 前記入力光 導波路 1 3 4 と出力光導波路 1 3 5、 及びこれらの光導波路に光結合される前記 光導波路デバイス 1 3 1 の光導波路 1 3 2とが、 これらの光結合領域において前 記光導波路ブラッ トフオーム 1 3 3の光導波方向に向けられた直線に対してそれ ぞれ同一側に向けて曲げられていることを特徴としている。 より具体的には、 前 記入力光導波路 1 3 4と前記光導波路デバイス 1 3 1間、 及び前記出力光導波路 1 3 5と前記光導波路デバイス 1 3 1間にはそれぞれある有限の空隙ができる位 置関係に前記入力光導波路 1 3 4、 出力光導波路 1 3 5及び光導波路デバイス 1 3 1が配置されてこれらの間に光導波路の不連続な部分が形成されており、 かつ 前記入力光導波路 1 3 4、 光導波路デバイス 1 3 1の光導波路 1 3 2及び出力光 導波路 1 3 5がいずれも導波する信号光の放射が十分無視できる程度の緩やかな 曲率で曲がっている部分をそれぞれ備え、 かつ前記入力光導波路 1 3 4と出力光 導波路 1 3 5、 及び光導波路 1 3 2のそれぞれが前記光導波路不連続の近傍にお いて前記光導波路プラッ トフオーム 1 3 3の長手方向の直線に対して同一方向に 曲げられている斜め端面構造を備えることを特徴としている。
本発明による光集積モジュールでは、 光導波路デバイス 1 3 1の入出射両端面 の光導波路 1 3 2が光導波路ブラッ トフオーム 1 3 3の長手方向の直線に対して 同じ側に向かって曲がって形成されており、 また光導波路プラッ トフオーム 1 3 3の入力光導波路 1 3 4 と出力光導波路 1 3 5も前記光導波路 1 3 2の曲げに対 して同じ方向に向けて曲がって形成されていることにより、 出力光導波路 1 3 5 の長手軸の方向は、 入力光導波路 1 3 4と光導波デバイス 1 3 1 との間に生じる 入力信号光 1 3 7のうちの非導波光の導波軸には一致せず、 非導波光は出力光導 波路 1 3 5に対して斜め光導波路の設定角のほぼ 2倍という深い角度で交差する。 このため、 非導波光は出力光導波路 1 3 5の有効開口を超える深い角度で出力光 導波路 1 3 5へと入射することになり、 クロストーク成分 1 3 9が出力光導波路 1 3 5に導波することが抑制される。 その結果、 信号光に対する結合効率劣化を 極力小さく抑えたまま、 非導波光に対する光結合効率のみを選択的かつ極めて効 果的に抑制することが可能となる。 図面の簡単な説明
図 1は、 本発明の光集積モジュールの基本構成を示す平面構成図である。 図 2は、 本発明の第 1の実施形態の光集積モジュールの平面構成図である。 図 3は、 第 1の実施形態における光導波路デバイスの平面構成図である。 図 4は、 第 1の実施形態における光導波路プラッ トフオームの平面構成図であ る。
図 5は、 本発明の第 2の実施形態の光集積モジユールの平面構成図である。 図 6は、 第 2の実施形態における光導波路デバイスの平面構成図である。 図 7は、 第 2の実施形態における光導波路プラッ トフオームの平面構成図であ る。
図 8は、 本発明の第 3の実施形態の光集積モジュールの平面構成図である。 図 9は、 第 3の実施形態における光導波路ブラッ トフオームの平面構成図であ 図 1 0は、 従来の光集積モジュールの一例の平面構成図である。
図 1 1は、 従来の光集積モジュールの他の例の平面構成図である。
図 1 2は、 従来の光集積モジュールのさらに他の例の平面構成図である。 発明を実施するための最良の形態
次に、 本発明の実施形態を図面を参照して説明する。 図 2は本発明の第 1の実 施形態の平面構成図であり、 その光入出射端面に少なくとも斜め導波路端面構造 を備える光導波路デバイス 2 0 1を光導波路ブラッ トフオーム 2 1 0上に搭載し たハイプリッ ド光集積モジュールにおいて、 光導波路ブラッ トフオーム 2 1 0上 の入力光導波路 2 1 1 と光導波路デバイス 2 0 1の光入力端面との間にできる光 導波路不連続によって発生した非導波光成分が、 反対側の出力光導波路 2 1 2へ と結合してクロストーク成分となることを抑制するための構成を備えている。 図 3は、 光モジュール化の対象である前記光導波路デバイス 2 0 1の平面構成 図である。 前記光導波路デバイス 2 0 1は、 基板 2 0 2の上に形成された直線状 の光導波領域 2 0 3と、 この光導波路領域 2 0 3の長手軸に対して互いに同じ側 に向けて前記基板 2 0 2に水平な面内である角度 0 1で曲げられている斜め光導 波路領域 2 0 4及び 2 0 5と、 前記直線状の光導波領域 2 0 3と前記斜め光導波 路領域 2 0 4, 2 0 5とを滑らかに接続しかつ放射の影響が無視できる程度に適 当な曲率の曲線光導波路からなる曲がり光導波路領域 2 0 6 , 2 0 7とから成る。 図 4は、 前記該光導波路デバィス 2 0 1を搭載する前記光導波路ブラッ トフォ ーム 2 1 0を示している。 前記光導波路ブラッ トフオーム 2 1 0の上には、 前記 光導波路デバイス 2 0 1に対して信号光を光入出射結合しなおかつ前記光導波路 デバイス 2 0 1 とは異なる材料から作られている入力光導波路 2 1 1及び出力光 導波路 2 1 2が形成されている。 これらの入力光導波路 2 1 1及び該出力光導波 路 2 1 2は、 それぞれ前記光導波路デバイス 2 0 1 と信号光を光入出射結合する 光導波路端面 2 1 3 , 2 1 4に対して角度 0 2だけ傾いている斜め光導波路領域 2 1 5, 2 1 6と、 直線状の光導波路領域 2 1 7, 2 1 8、 及び前記斜め光導波 路領域 2 1 5, 1 6と前記直線状の光導波路領域 2 1 7 , 2 1 8とをそれぞれ 滑らかに接続しかつ放射の影響が無視できる程度に適当な曲率の曲線光導波路か らなる曲がり光導波路領域 2 1 9, 2 2 0とを有する。 なお、 前記角度 0 2は、 前記斜め光導波路 2 0 4 , 2 0 5の等価屈折率 n 1 と、 前記斜め光導波路 2 1 5, 2 1 6の等価屈折率 n 2と、 前記角度 0 1に基づいてスネルの法則を用いて決定 される。 なお、 前記直線状の光導波路領域 2 1 7 , 2 1 8は、 前記光導波路ブラ ッ トフオーム 2 1 0の端面 2 2 1 , 2 2 2まで伸びている。 また、 前記光導波路 デバイス 2 0 1は、 これと前記光導波路端面 2 1 3 , 2 1 4との間に有限の空隙 を設けて前記光導波路プラッ トフオーム 2 1 0の上に配置されている。 次に、 図 2〜4に示した第 1の実施形態の光集積モジュールの動作について説 明する。 まず、 この光集積モジュールにおける基本的な信号光の伝搬経路につい て説明する。 端面 2 2 1から入力光導波路 2 1 1に入射された信号光は、 直線状 の光導波路領域 2 1 7から曲がり光導波路領域 2 1 9と斜め光導波路領域 2 1 5 とを介して光導波路端面 2 1 3に達する。 ここから有限の空隙を介して光導波路 デバイス 2 0 1へと結合した信号光は、 斜め光導波路領域 2 0 2から曲がり光導 波路領域 2 0 6、 直線状の光導波路領域 2 0 3、 曲がり光導波路領域 2 0 7を介 して斜め光導波路領域 2 0 5に達する。 また、 ここから出力光導波路 2 1 2へは、 入射側と同様に有限の空隙を介して光導波路デバイス 2 0 1から光導波路端面 2 1 4、 斜め光導波路領域 2 1 6、 曲がり光導波路領域 2 2 0、 直線状の光導波路 領域 2 1 8を介して端面 2 2 2から出射される。 ここで、 光導波路デバイス 2 0 1の両端に設けられた斜め光導波路領域 2 0 4, 2 0 7は、 端面 2 0 8 , 2 0 9 における実効的な残留端面反射を効果的に低減する役割を果たす。 これは、 光導 波路デバイス 2 0 1内部における信号光のフアブリ 'ベロ一 (F a b r y— P e r o t ) 共振を抑制するうえで効果的である。 こうした対策は、 半導体光増幅器 のように光導波路デバィス自身が利得を持つような場合には特に重要である。 一方、 入力光導波路 2 1 1 と光導波路デバイス 2 0 1 との間の光導波路不連続 においてこの光導波路デバイス 2 0 1へと結合しきれなかった信号光成分の振る 舞いについて説明する。 導波路デバイス 2 0 1へと結合しきれなかった信号光の 大半は、 ほぼ斜め光導波路領域 2 0 2の長手軸の方向に向かって光導波路デバィ ス 2 0 1の基板 2 0 2の中をビーム状に徐々に発散する非導波光として、 反対側 の出射側光導波路端面 2 0 9へと達する。 このとき、 この実施形態の光集積モジ ユールでは、 光導波路デバイス 2 0 1の斜め光導波路領域 2 0 4 , 2 0 5は直線 状の光導波路 2 0 3の長手軸方向に対して共に同じ側に向かって曲げられている。 このため、 非導波光が出射側端面 2 0 9に達する近傍には出射側の斜め光導波 路が無く、 その結果出射側の斜め光光導波路 2 1 2の端面近傍における非導波光 の振幅は信号光のそれに対して著しく減衰する。 さらに、 非導波光の発散して行 く軌跡は出射側の斜め光導波路の長手軸方向からは大きく外れることから、 角度 θ 1 , S 2等を始めとする構造パラメ一タを適当に設計することにより、 この非 導波光が出力光導波路へと結合する割合は信号光のそれに比べて数桁も小さくす ることが可能になる。 このように、 非導波光に対する光結合効率のみを選択的に かつ極めて抑制する構造を提供することが可能になる。
図 5は本発明をアレイ状の半導体光増幅器のハイプリッ ド光集積モジュールに 適用した第 2の実施形態の平面構成図であり、 石英系光導波路 S iプラッ トフォ —ム 3 2 0に 4チヤンネル半導体光増幅器アレイ 3 0 1 と光ファイバ 3 3 6, 3 3 7を搭載した構成とされている。 図 6は前記 4チャンネル半導体光増幅器ァレ ィ 3 0 1の平面構成図であり、 前記半導体光増幅器ァレイ 3 0 1は、 4チャンネ ルの半導体光増幅器が 2 5 0 ミクロン間隔で配置されている構造を持つ。 各半導 体光増幅器は、 ( 0 0 1 ) n - I n P基板 3 0 2上に形成された波長組成 1 . 5 5 〃mのァンドーブー I n G a A s Pバルク活性層を p— I n Pクラッ ド層で埋 め込んだ構造を有する。 1 . 5 5 m帯の信号光に対して単一モード光導波路と なっており、 また電流注入によつて前記信号光に対する光増幅作用を有している。 また、 信号光に対する偏光依存性を低減させるために、 前記活性層の断面のァス ぺク ト比がほぼ 1 : 1になるよう、 高さを 0 . 3〃m、 幅を 0 . 3〃mに設定し ている。
ここで、 素子長は 1 0 0 0 であり、 このうち前記活性層が前記 n— I n P 基板 3 0 2の [ 1 1 0 ] 方向に対して平行な活性層直線領域 3 0 4の長さは 3 5 0 u m , その両端に放射損失が無視できる程度に曲率半径 4 m mで活性層が n - I n P基板 3 0 2に水平な面内で緩やかに曲げられている活性層曲線領域 3 0 5 , 3 0 6が 1 0 0 / m、 さらにこれら該活性層曲線領域 3 0 5 , 3 0 6に滑らかに 接続しかつ該 n— I n P基板 3 0 2の [ 1 1 0 ] 方向に対して同じ方向に 7 ° だ け傾いた斜め光導波路領域 3 0 7, 3 0 8が 2 0 0〃mである。 なお、 この斜め 光導波路領域 3 0 7 , 3 0 8は、 前記活性層曲線領域 3 0 5 , 3 0 6から端面 3 0 9, 3 1 0に向かって長さ 1 5 0 mにわたり活性層厚をもとの厚さの 1 / 3 にまで徐々に薄く したスポッ トサイズ変換領域 3 1 1 , 3 1 2を有する。 また信 号光の入出射端面 3 0 9, 3 1 0から素子内部に向かって 25 mにわたり活性 層を設けない窓領域 3 1 3, 3 1 4を有する。 これらは、 すべて選択 MOVPE 成長によって作製されている。 また、 素子の両端面には信号光に対する反射率が 0. 1 %の低反射膜 3 1 5, 3 1 6が形成されている。
図了は前記半導体光増幅器 3 0 1を搭載する石英系光導波路プラッ トフオーム 3 2 0の平面構成図である。 前記光導波路プラッ トフオーム 3 2 0には、 S i基 板 3 2 1上に常圧 CVDを用いて成膜された石英系の入力光導波路 3 2 2が 8本 および出力光導波路 3 2 3が 8本、 それぞれ各 4本ずつアレイ状に 2軸対称に形 成されている。 これら入力光導波路 3 2 2および出力光導波路 3 2 3は、 G e ド 一ビングされた断面が 6 m角のコアをそれぞれ厚さ 1 0 /mの上下クラッ ド層 で埋め込んだ構造を有し、 1. 5 5 imの信号光に対して単一モード光導波路と なっている。 前記入力光導波路 3 2 2及び出力光導波路 3 2 3は、 それぞれ前記 半導体光増幅器 3 0 1に対して信号光を効率よく入出射光結合させるため、 光導 波路端面 3 2 4, 3 25に対して約 1 5° だけ S i基板 3 2 1に平行な面内で曲 げられた斜め光導波路領域 3 2 6, 3 2 7と、 直線状の光導波路領域 3 2 8, 3
2 9と、 前記斜め光導波路領域 3 2 6, 3 2 7と直線状の光導波路領域 3 2 8,
3 2 9とをそれぞれ滑らかに接続しかつ放射の影響が無視できる程度に曲率半径 1 0 mmで緩やかに曲げられている曲がり光導波路領域 3 3 0, 3 3 1 とを有す
' o
また、 前記 S i基板 3 2 1上には、 上記の半導体光増幅器 3 0 1を高い位置合 わせ精度でセルファライン実装しかつ各チヤンネルに独立に駆動電流を注入する ため、 予めスパッ夕リング成膜された WS i層および光導波路形成後の電極成膜 プロセスを併用して、 電気配線パターン 3 3 2とはんだバンプパッ ド 3 3 3と力く 形成されている。 また、 前記入力光導波路 3 2 2と出力光導波路 3 2 3との間に 上記の半導体光増幅器 3 0 1を実装するため、 S i基板 3 2 1ないしは電極配線 パターン 3 3 2が露出している光素子搭載領域 3 3 4が長さ 1. 0 2 mmにわた つて形成されている。 また入力光導波路 3 2 2と出力光導波路 3 2 3とがこの光 素子搭載領域 3 3 4に面する S i基板 3 2 1 に垂直な光導波路端面 3 2 4, 3 2 5は、 ダイシングブレードで切削することにより形成されている。
さらに、 前記光導波路プラッ トフオーム 3 2 0の両端にはこれら入力光導波路 3 2 2および出力光導波路 3 2 3のそれぞれに信号光を入出射させるための光フ アイバを高い位置精度でパッシブ実装するため、 S i基板 3 2 1上に入力側 8個、 出力側に 8個、 合計 1 6個の光ファイバガイ ド 3 3 8 , 3 3 9が長さ 1 m mにわ たって形成されている。 この光ファイバガイ ド 3 3 8 , 3 3 9は、 S i基板 3 2 1に対するわずかな方位ずれが生じても位置合わせ精度を損なわないよう、 断面 が V字型の S i溝を光ファイバの長手軸方向にプロック状に分割した構造を有す る。
そして、 前記素子搭載領域 3 3 4に、 2つの前記した 4チャンネル半導体光増 幅器ァレイ 3 0 1が前記光導波路端面 3 2 4 , 3 2 5との間に幅 1 0 mの空隙 を設けて A u S nはんだを用いて軸対称に実装されている。 また、 これら合計 1 6個の光ファイバガイ ドに沿って、 合計 1 6本の単一モード光ファイバ 3 3 6 , 3 3 7がパッシブ実装されている。
この半導体光増幅器のハイプリッ ド光集積モジュールでは、 入力光導波路 3 2 2および出力光導波路 3 2 3と半導体光増幅器アレイ 3 0 1 との間における光結 合損失は共に 4 . 5 d B、 同様に入力光導波路 3 2 2および出力光導波路 3 2 3 と単一モード光ファイバ 3 3 6, 3 3 7との光結合損失は共に 0 . 3 d Bであつ た。 モジュール温度 2 5 °Cにおいて、 8本の入力光ファイバ 3 3 6それぞれに波 長 1 . 5 5 〃m、 パワー 0 d B mの信号光を入力し、 それぞれの入力光ファイバ 3 3 6に対応する半導体光増幅器のチャンネルに 2 0 m Aの順方向電流を注入し たところ、 これに対応する出力側の光ファイバ 3 3 7から取り出された信号光の 利得が O d Bとなった。 また、 4 0 m Aの電流注入により、 1 0 d Bの信号光利 得が各チャンネルについて得られた。 また、 各チャンネルともに電流非注入時に は信号光が 6 0 d Bの減衰を受けて出力された。 注入電流範囲が 0〜4 0 m Aの 場合、 出力信号光のオンオフ比として了 0 d Bが各チヤンネルに いて得られた。 また、 あるチャンネルに上記の信号光を入力し、 これと対応しないチャンネルか らの出力信号光を測定したところ、 8 0 d B以上の減衰を受けて出力されている ことがわかった。 これらの結果は、 信号光の干渉性クロストークを抑圧するうえ で十分な値である。 さらに、 半導体光増幅器アレイ 3 0 1の各チャンネルを振幅 0〜4 O m A . 立ち上がり 立ち下がり時間が各 1 n s e cの駆動電流で高速駆 動したところ、 この駆動電流波形に追従する高速な光ゲート動作を得た。
図 8は、 本発明をアレイ状の石英系光導波路と波長合波器と波長分波器とを形 成した光導波路 S iプラッ トフオーム 4 2 0上にアレイ状の半導体光増幅器 3 0 1をハイプリッ ド光集積した光ファイバ集積 8チヤンネル波長セレクタモジュ一 ルに適用した第 3の実施形態の平面構成図である。 前記半導体光増幅器アレイ 3 0 1は、 前記第 2の実施形態で使用したものとまったく同一のものであるので、 その詳細な説明は省略する。
図 9は前記石英系光導波路プラッ トフオーム 4 2 0の平面構成図である。 該光 導波路プラッ トフオーム 4 2 0は、 第 2の実施形態と同様に構成された光導波路 ブラッ トフォーム上に 1 : 8波長分波器 4 4 0と 8 : 1波長合波器 4 4 1 とを作 り込んだものである。 これらは、 波長 5 5 / m帯の信号光をそれぞれ 8 : 1 波長分離および 1 : 8波長多重する役割をはたす。 なお、 これらによって波長合 分波される信号光の隣接波長間隔は約 0 . 8 n m (光周波数で 1 0 0 G H z ) で あり、 両者の波長通過域は一致している。 なお、 前記光導波路プラッ トフオーム 4 2 0のこれら以外の構造は第 2の実施形態と同一であるため、 その詳細な説明 は省略する。 ただし、 前記波長分波器 4 4 0及び波長合波器 4 4 1 に結合される 光フアイバはそれぞれ 1本であるので、 光フアイバガイ ド 4 3 8, 4 3 9は各 1 つだけ設けられている。
そして、 前記したように、 前記光導波路プラッ トフォームの素子搭載領域 4 3 4に、 2つの 4チャンネル半導体光増幅器ァレイ 3 0 1が前記光導波路端面 4 2 4 , 4 2 5との間に幅 1 0〃mの空隙を設けて A u S nはんだを用いて軸対称に 実装されている。 また、 光ファイバガイ ド 4 3 8 , 4 3 9に沿って、 2本の単一 モード光フアイバ 4 3 6 , 4 3 7がパッシブ実装されている。
この光フアイバ集積 8チャンネル波長セレクタモジュールでは、 モジュール温 度 2 5 °Cにおいて、 入力側の光ファイバ 4 3 6に波長合波器と波長合波器の通過 帯域に一致しかつそれぞれ異なる 8波信号光を波長多重して入力し、 それぞれの 信号光波長に対応する半導体光増幅器のチヤンネルのうち特定の 1つのチャンネ ルにのみ 3 0 m Aの順方向電流を注入したところ、 出力側の光ファイバ 4 3 7か らはこのチヤンネルを通過することができた波長の信号光のみが出力された。 ま たその時の信号光利得は 0 d Bであった。 また、 5 0 m Aの電流注入により、 5 d Bの信号光利得が得られた。 また、 各チャンネルともに電流非注入時には信号 光が 7 0 d Bの減衰を受けて出力された。 注入電流範囲が 0〜5 O m Aの場合、 出力信号光のオンオフ比として 7 5 d Bが各波長チャンネルについて得られた。 また、 それぞれ異なる 8波信号光を波長多重して入力し、 同様に特定の 1つのチ ヤンネルにのみ 3 0 m Aの順方向電流を注入したところ、 これと対応しない波長 チヤンネルの信号光が 8 0 d B以上の減衰を受けて出力されていることがわかつ た。 これらの結果は、 信号光の干渉性クロストークを抑圧するうえで十分な値で ある。 また、 それぞれ異なる 8波信号光を波長多重して入力し、 同様に特定の 1 つのチヤンネルにのみ振幅 0〜4 O m A . 立ち上がり Z立ち下がり時間が各 1 n s e cの駆動電流で高速駆動したところ、 この駆動電流波形に追従して対応する 1波長のみを高速に選択する波長セレクタとして動作した。
なお、 本発明のハイプリッ ド光集積モジュールは、 前記した構成に限られるも のではなく、 入力光導波路と出力導波路との間に光導波デバイスを配設する構成 を備える光集積回路モジュールであれば、 前記入力光導波路と出力導波路の構成 が本発明の基本構成を備えるものであれば、 種々の光集積モジュールに適用する ことが可能である。 また、 光導波路で構成されるチャンネル数も前記した各実施 形態の構成に限られるものでないことは言うまでもない。
また、 本発明においては、 次のような実施形態も可能である。 すなわち、 光導 波路デバイスがここを伝搬する信号光に対して電圧印加によって光吸収機能を実 現する電界吸収型半導体光変調器である。 また、 光導波路デバイスが電流注入機 構ないしは電圧印加機構を少なく とも 1つ以上備える。
また、 光導波路プラッ トフオームは、 はんだバンプを構成する電気配線以外に も何らかの電気配線を備えている。 光導波路プラッ トフオーム上には光導波路デ バイスの駆動等を目的とした電気素子や終端抵抗等を備えている。 光導波路ブラ ッ トフオーム上の入力光導波路および出力光導波路に対して光ファイバを介して 信号光を光結合させさらにこの光ファイバをこの光導波路ブラッ トフオームに対 して脱着させるためのレセプ夕クル機構を合わせ備える。
さらに、 光導波路ブラッ トフオームにおける入力光導波路あるいは出力光導波 路はこれらを伝搬する信号光を入力光導波路側から出力光導波路側に向かつて一 方向にのみ伝搬させる光アイソレー夕としての機能を備える。 入力光導波路ある いは出力光導波路は回折格子等の周期構造から成る光フィルタとしての機能を備 える。 入力光導波路あるいは出力光導波路は光方向性結合器を備える。 入力光導 波路あるいは出力光導波路はここを導波する信号光の位相調節を行うための機構 を備える。 入力光導波路又は出力光導波路には、 導波する信号光を増幅するため の希土類元素が含まれている。 入力光導波路あるいは出力光導波路がアレイ光導 波路回折格子を備える。
さらに、 入力光導波路と出力光導波路と光導波路デバイスのいずれかはこれら を導波する信号光のパワーや偏光を検出や監視あるいは制御する等の機能を備え る。 入力光導波路や出力光導波路や光導波路デバイス等、 光導波路プラッ トフォ —ム上に形成ないしは実装されているものの温度を監視する手段あるいは温度調 節をする手段を備える。 産業上の利用可能性
以上説明したように本発明は、 光導波デバイスの光導波路の信号光入出射端面 での曲げ方向と、 光導波路ブラッ トフオームに形成された入力光導波路と出力光 導波路での曲げ方向が、 いずれも光導波路プラッ トフオームの長手軸方向に対し て同じ側に向けて曲げられているため、 非導波光が出力光導波路に向かわず、 光 導波路デバイスの基板外部に向かって放射されてしまうことになり、 これにより 非導波光によるオンオフ比劣化を極力抑えたハイプリッ ド光集積モジュールを得 ることが可能となる。 また、 同時に、 アレイ状の光集積モジュールを構成した場 合に、 非導波光が他チヤンネルへと漏れ込んでチヤンネル間クロストーク成分と なることを極力抑える構造を得ることができる。 さらに、 光導波路デバイス内部 での共振が効果的に抑制されるため、 光導波路デバイス内部の信号光利得を大き くでき、 特に信号光利得を有する半導体光増幅器のような光導波路デバイスでも 光導波路ブラッ トフオーム上に搭載して光集積回路モジュールを構築することが 可能となる。 したがって、 本発明によるハイブリッ ド光集積モジュールは、 特に 信号光利得を有する半導体光増幅器のような光導波路デバイスのハイプリッ ド光 集積化に際して、 高オンノオフ特性、 低チャンネル間クロストーク、 高い信号光 利得を同時に満足する手段を提供し、 光波ネッ トワーク向け光 A T M交換機等に 用いる光ゲート素子等の小型化、 高性能化などを実現可能にするものである。

Claims

請求の範囲
1 . 入力光導波路と出力光導波路がそれぞれ形成された光導波路プラッ トフ オームと、 前記入力光導波路と出力光導波路の間の前記光導波路プラッ トフォー ム上に搭載され、 かつ前記入力光導波路と出力光導波路に光結合される光導波路 デバイスとを備える光集積モジュールにおいて、 前記入力光導波路と出力光導波 路、 及びこれらの光導波路に光結合される前記光導波路デバイスの光導波路とが、 これらの光結合領域において前記光導波路ブラッ トフォームの光導波方向に向け られた直線に対してそれぞれ同一側に曲げ形成されていることを特徴とする光集 積モジュール。
2 . 入力光導波路と出力光導波路がそれぞれ長辺方向に向けて形成された長 方形をした光導波路ブラッ トフオームと、 前記入力光導波路と出力光導波路の間 の前記光導波路プラッ トフオーム上に搭載され、 かつ前記入力光導波路と出力光 導波路に光結合される光導波路デバイスとを備える光集積モジュールにおいて、 前記入力光導波路と前記光導波路デバイス間、 及び前記出力光導波路と前記光導 波路デバイス間にはそれぞれある有限の空隙ができる位置関係に前記入力光導波 路、 出力光導波路及び光導波路デバイスが配置されてこれらの間に光導波路の不 連続な部分が形成されており、 かつ前記入力光導波路、 光導波路デバイス及び出 力光導波路がいずれも導波する信号光の放射が十分無視できる程度の緩やかな曲 率で曲がっている部分をそれぞれ備え、 かつ前記入力光導波路と出力光導波路、 及びこれらの光導波路に光結合される前記光導波路デバイスの光導波路のそれぞ れが前記光導波路不連続の近傍において前記光導波路ブラッ トフオームの長手方 向の直線に対して同一方向に曲げられている斜め端面構造を備えることを特徴と する光集積モジュール。
3 . 前記光導波路デバイスは光入出射端面のうち少なく とも一方に低反射膜 を備えることを特徴とする請求項 2に記載の光集積モジュ一ル。
4 . 前記光導波路デバイスはスポッ トサイズ変換機構を備えることを特徴と する請求項 2記載の光集積モジユール。
5 . 前記光導波路デバイスは光入出射端面近傍に窓端面構造を備えることを 特徴とする請求項 2に記載の光集積モジユ ール。
6 . 前記光導波路デバイスは、 導波する信号光に対して電流注入による光増 幅機能と電流非注入時の光吸収機能とを実現する半導体光増幅器であることを特 徴とする請求項 2に記載の光集積モジュール。
7 . 前記有限の空隙の部分が誘電体物質で満たされていることを特徴とする 請求項 2に記載の光集積モジユ ール。
8 . 入力光導波路と出力光導波路がそれぞれ長辺方向に向けて形成された長 方形をした光導波路プラッ トフオームと、 前記入力光導波路と出力光導波路の間 の前記光導波路プラッ トフオーム上に搭載され、 かつ前記入力光導波路と出力光 導波路に光結合される光導波路デバイスとを備える光集積モジュールにおいて、 前記入力光導波路と前記光導波路デバイス間、 及び前記出力光導波路と前記光導 波路デバイス間にはそれぞれある有限の空隙ができる位置関係に前記入力光導波 路、 出力光導波路及び光導波路デバイスが配置されてこれらの間に光導波路の不 連続な部分が形成されており、 前記入力光導波路、 光導波路デバイス及び出力光 導波路がいずれも導波する信号光の放射が十分無視できる程度の緩やかな曲率で 曲がっている部分をそれぞれ備え、 前記入力光導波路と出力光導波路、 及びこれ らの光導波路に光結合される前記光導波路デバイスの光導波路のそれぞれが前記 光導波路不連続の近傍において前記光導波路ブラッ トフォームの長手方向の直線 に対して同一方向に曲げられている斜め端面構造を備え、 かつ前記光導波路ブラ ッ トフォームは光フアイバを入力光導波路および出力光導波路に対して信号光を 光結合させるための光ファイバ位置合わせガイ ドを備えていることを特徴とする 光集積モジュール。
9 . 入力光導波路と出力光導波路がそれぞれ長辺方向に向けて形成された長 方形をした光導波路プラッ トフオームと、 前記入力光導波路と出力光導波路の間 の前記光導波路プラッ トフオーム上に搭載され、 かつ前記入力光導波路と出力光 導波路に光結合される光導波路デバイスとを備える光集積モジュールにおいて、 前記入力光導波路と前記光導波路デバイス間、 及び前記出力光導波路と前記光導 波路デバイス間にはそれぞれある有限の空隙ができる位置関係に前記入力光導波 路、 出力光導波路及び光導波路デバイスが配置されてこれらの間に光導波路の不 連続な部分が形成されており、 前記入力光導波路、 光導波路デバイス及び出力光 導波路がいずれも導波する信号光の放射が十分無視できる程度の緩やかな曲率で 曲がっている部分をそれぞれ備え、 前記入力光導波路と出力光導波路、 及びこれ らの光導波路に光結合される前記光導波路デバイスの光導波路のそれぞれが前記 光導波路不連続の近傍において前記光導波路ブラッ トフオームの長手方向の直線 に対して同一方向に曲げられている斜め端面構造を備え、 前記光導波路プラッ ト フォームは光ファイバを入力光導波路および出力光導波路に対して信号光を光結 合させるための光ファイバ位置合わせガイドを備え、 前記光導波路デバイスは同 一基板上に複数アレイ状に形成され、 さらに前記入力光導波路及び出力光導波路 は同一の光導波路ブラッ トフォーム上に前記光導波路デバイスの光導波路に対応 してアレイ状に形成されていることを特徴とする光集積モジュール。
1 0 . 前記入力光導波路、 出力光導波路及び光導波路デバイスは伝搬する信 号光に対して偏光無依存の特性を有することを特徴とする請求項 9に記載の光集 積モジュール。
1 1 . 前記入力光導波路及び出力光導波路は、 同一のガラス基板又は同一の シリコン基板に形成された石英系光導波路又はポリマ光導波路、 或いは同一のシ リコン基板に形成されたシリコン 'ゲルマニウム光導波路であることを特徴とす る請求項 9に記載の光集積モジュール。
1 2 . 前記入力光導波路は光分波器を備え、 前記出力光導波路は光合波器を 備えることを特徴とする請求項 9に記載の光集積モジュール。
1 3 . 入力光導波路と出力光導波路がそれぞれ長辺方向に向けて形成された 長方形をした光導波路プラッ トフオームと、 前記入力光導波路と出力光導波路の 間の前記光導波路プラッ トフオーム上に搭載され、 かつ前記入力光導波路と出力 光導波路に光結合される光導波路デバイスとを備える光集積モジュールにおいて、 前記入力光導波路と前記光導波路デバイス間、 及び前記出力光導波路と前記光 導波路デバイス間にはそれぞれある有限の空隙ができる位置関係に前記入力光導 波路、 出力光導波路及び光導波路デバイスが配置されてこれらの間に光導波路の 不連続な部分が形成されており、 前記入力光導波路、 光導波路デバイス及び出力 光導波路がいずれも導波する信号光の放射が十分無視できる程度の緩やかな曲率 で曲がっている部分をそれぞれ備え、 前記入力光導波路と出力光導波路、 及びこ れらの光導波路に光結合される前記光導波路デバイスの光導波路のそれぞれが前 記光導波路不連続の近傍において前記光導波路ブラッ トフオームの長手方向の直 線に対して同一方向に曲げられている斜め端面構造を備え、 前記光導波路ブラッ トフォームは光ファイバを入力光導波路および出力光導波路に対して信号光を光 結合させるための光ファイバ位置合わせガイ ドを備え、 さらに前記入力光導波路 及び出力光導波路は、 同一のガラス基板又は同一のシリコン基板に形成された石 英系光導波路又はポリマ光導波路、 或いは同一のシリコン基板に形成されたシリ コン · ゲルマニウム光導波路であることを特徴とする光集積モジュール。
1 4 . 入力光導波路と出力光導波路がそれぞれ長辺方向に向けて形成された 長方形をした光導波路ブラッ トフオームと、 前記入力光導波路と出力光導波路の 間の前記光導波路プラッ トフオーム上に搭載され、 かつ前記入力光導波路と出力 光導波路に光結合される光導波路デバイスとを備える光集積モジュールにおいて、 前記入力光導波路と前記光導波路デバイス間、 及び前記出力光導波路と前記光導 波路デバイス間にはそれぞれある有限の空隙ができる位置関係に前記入力光導波 路、 出力光導波路及び光導波路デバイスが配置されてこれらの間に光導波路の不 連続な部分が形成されており、 前記入力光導波路、 光導波路デバイス及び出力光 導波路がいずれも導波する信号光の放射が十分無視できる程度の緩やかな曲率で 曲がっている部分をそれぞれ備え、 前記入力光導波路と出力光導波路、 及びこれ らの光導波路に光結合される前記光導波路デバイスの光導波路のそれぞれが前記 光導波路不連続の近傍において前記光導波路ブラッ トフオームの長手方向の直線 に対して同一方向に曲げられている斜め端面構造を備え、 前記光導波路プラッ ト フォームは光ファイバを入力光導波路および出力光導波路に対して信号光を光結 合させるための光ファイバ位置合わせガイ ドを備え、 前記光導波路デバイスは同 一基板上に複数アレイ状に形成され、 さらに前記入力光導波路及び出力光導波路 は同一の光導波路ブラッ トフオーム上に前記光導波路デバィスの光導波路に対応 してアレイ状に形成され、 前記入力光導波路、 出力光導波路及び光導波路デバィ スは伝搬する信号光に対して偏光無依存の特性を有することを特徴とする光集積 モジュール。
1 5 . 前記入力光導波路及び出力光導波路は、 同一のガラス基板又は同一の シリコン基板に形成された石英系光導波路又はポリマ光導波路、 或いは同一のシ リコン基板に形成されたシリコン 'ゲルマニウム光導波路であることを特徴とす る請求項 1 0に記載の光集積モジュール。
1 6 . 前記入力光導波路は光分波器を備え、 前記出力光導波路は光合波器を 備えることを特徴とする請求項 1 0に記載の光集積モジュール。
PCT/JP1999/003553 1998-07-03 1999-07-01 Module optique integre WO2000002072A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99926879A EP1096278A4 (en) 1998-07-03 1999-07-01 INTEGRATED OPTICAL MODULE
US09/720,713 US6556735B1 (en) 1998-07-03 1999-07-01 Optical integrated module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18837498A JP3479220B2 (ja) 1998-07-03 1998-07-03 光集積モジュール
JP10/188374 1998-07-03

Publications (1)

Publication Number Publication Date
WO2000002072A1 true WO2000002072A1 (fr) 2000-01-13

Family

ID=16222511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003553 WO2000002072A1 (fr) 1998-07-03 1999-07-01 Module optique integre

Country Status (4)

Country Link
US (1) US6556735B1 (ja)
EP (1) EP1096278A4 (ja)
JP (1) JP3479220B2 (ja)
WO (1) WO2000002072A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681714B1 (ko) 2003-03-31 2007-02-15 니폰덴신뎅와 가부시키가이샤 광반도체 소자
US20050063431A1 (en) * 2003-09-19 2005-03-24 Gallup Kendra J. Integrated optics and electronics
TWI237136B (en) * 2003-12-26 2005-08-01 Ind Tech Res Inst Power polarization beam combiner and its application in fiber-communication
KR100913366B1 (ko) * 2007-07-18 2009-08-20 성균관대학교산학협력단 SPR(Surface PlasomonResonance)현상을 이용한 광 바이오 센서
WO2010104956A1 (en) 2009-03-10 2010-09-16 Lockheed Martin Corporation Optical leaky integrate-and-fire neuron
JP5180341B2 (ja) 2011-04-19 2013-04-10 日本電信電話株式会社 光部品
JPWO2013115179A1 (ja) 2012-01-30 2015-05-11 古河電気工業株式会社 半導体光素子、集積型半導体光素子および半導体光素子モジュール
WO2014156959A1 (ja) * 2013-03-25 2014-10-02 技術研究組合光電子融合基盤技術研究所 端面光結合型シリコン光集積回路
JP2016106238A (ja) * 2013-03-25 2016-06-16 技術研究組合光電子融合基盤技術研究所 光結合構造及び光モジュール
US9645311B2 (en) 2013-05-21 2017-05-09 International Business Machines Corporation Optical component with angled-facet waveguide
US20160142142A1 (en) * 2014-03-10 2016-05-19 Alcatel-Lucent Usa Inc. Spatial-Mode Multiplexing Optical Signal Streams Onto A Multimode Optical Fiber
JP6807561B2 (ja) * 2014-05-09 2021-01-13 国立大学法人福井大学 合波器、この合波器を用いた画像投影装置及び画像投影システム
US10408999B2 (en) 2014-05-09 2019-09-10 National University Corporation University Of Fukui Multiplexer
CN103994783B (zh) * 2014-05-23 2016-07-06 华中科技大学 一种基于集成光波导耦合器的波长解调装置
JP2020533632A (ja) * 2017-09-08 2020-11-19 テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ 単一側面で結合を行うフォトニックチップのハイブリッド集積化
US11194092B2 (en) * 2018-11-21 2021-12-07 Skorpios Technologies, Inc. Etched facet in a multi quantum well structure
JP7208498B2 (ja) * 2019-02-04 2023-01-19 日本電信電話株式会社 インタポーザ回路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103805A (ja) * 1989-09-19 1991-04-30 Fujitsu Ltd 光導波路とファイバの接続方法
JPH04264406A (ja) * 1990-10-25 1992-09-21 Siemens Ag 集積導波路を備えるデバイス
JPH0527130A (ja) * 1990-12-07 1993-02-05 Nippon Telegr & Teleph Corp <Ntt> 光導波路デバイス
JPH05175611A (ja) * 1991-12-25 1993-07-13 Toshiba Corp 半導体光増幅器
JPH0933868A (ja) * 1995-07-19 1997-02-07 Nippon Telegr & Teleph Corp <Ntt> 光素子
JPH10332966A (ja) * 1997-06-03 1998-12-18 Nippon Telegr & Teleph Corp <Ntt> 光デバイス
JPH1146044A (ja) * 1997-07-28 1999-02-16 Nec Corp 半導体光増幅素子
JPH11191656A (ja) * 1996-12-26 1999-07-13 Nec Corp 光半導体素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515460A (en) * 1994-12-22 1996-05-07 At&T Corp. Tunable silicon based optical router
EP0851548B1 (en) 1996-12-26 2001-04-11 Nec Corporation Semiconductor optical amplifier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103805A (ja) * 1989-09-19 1991-04-30 Fujitsu Ltd 光導波路とファイバの接続方法
JPH04264406A (ja) * 1990-10-25 1992-09-21 Siemens Ag 集積導波路を備えるデバイス
JPH0527130A (ja) * 1990-12-07 1993-02-05 Nippon Telegr & Teleph Corp <Ntt> 光導波路デバイス
JPH05175611A (ja) * 1991-12-25 1993-07-13 Toshiba Corp 半導体光増幅器
JPH0933868A (ja) * 1995-07-19 1997-02-07 Nippon Telegr & Teleph Corp <Ntt> 光素子
JPH11191656A (ja) * 1996-12-26 1999-07-13 Nec Corp 光半導体素子
JPH10332966A (ja) * 1997-06-03 1998-12-18 Nippon Telegr & Teleph Corp <Ntt> 光デバイス
JPH1146044A (ja) * 1997-07-28 1999-02-16 Nec Corp 半導体光増幅素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SASAKI J, ET AL.: "HYBRID INTEGRATED 4X4 MATRIX OPTICAL SWITCH", IEICE TECHNICAL REPORT, DENSHI JOUHOU TSUUSHIN GAKKAI, JP, 1 June 1998 (1998-06-01), JP, pages 43 - 48, XP002926129, ISSN: 0913-5685 *
See also references of EP1096278A4 *
YAMADA Y, ET AL.: "HYBRID-INTEGRATED 4 X 4 OPTICAL GATE MATRIX SWITCH USING SILICA-BASED OPTICAL WAVEGUIDES AND LD ARRAY CHIPS", JOURNAL OF LIGHTWAVE TECHNOLOGY., IEEE SERVICE CENTER, NEW YORK, NY., US, vol. 10, no. 03, 1 March 1992 (1992-03-01), US, pages 383 - 390, XP002926130, ISSN: 0733-8724, DOI: 10.1109/50.124502 *

Also Published As

Publication number Publication date
JP2000019345A (ja) 2000-01-21
EP1096278A4 (en) 2005-06-29
JP3479220B2 (ja) 2003-12-15
EP1096278A1 (en) 2001-05-02
US6556735B1 (en) 2003-04-29

Similar Documents

Publication Publication Date Title
Himeno et al. Silica-based planar lightwave circuits
JP3479220B2 (ja) 光集積モジュール
US6356692B1 (en) Optical module, transmitter, receiver, optical switch, optical communication unit, add-and-drop multiplexing unit, and method for manufacturing the optical module
US8649639B2 (en) Method and system for waveguide mode filters
EP1436648B1 (en) An integrated optical circuit having an integrated arrayed waveguide grating (awg) and at least one integrated optical amplifier
US8050525B2 (en) Method and system for grating taps for monitoring a DWDM transmitter array integrated on a PLC platform
US8503843B2 (en) Hybrid integrated optical module
US5745616A (en) Waveguide grating router and method of making same having relatively small dimensions
US7548669B2 (en) Optical gate array device
WO2005057253A2 (en) Planar waveguide optical isolator in thin silicon-on-isolator (soi) structure
EP1560047B1 (en) Monolithically integrated polarization splitter
JPH1048458A (ja) 光結合器
US20050185893A1 (en) Method and apparatus for tapering an optical waveguide
JPH08234244A (ja) チューニング可能なシリコン・ベースの光ルータ
JP3902892B2 (ja) 光モジュール
US6778736B2 (en) Dynamic variable optical attenuator and variable optical tap
JPH0255304A (ja) 光集積回路
CN113589429B (zh) 一种基于辅助波导的阵列波导光栅
JP2965011B2 (ja) 半導体光素子及びその製造方法
Kato et al. Hybrid Integrated 4< cd0215f. gif> 4 Optical Matrix Switch Module on Silica Based Planar Waveguide Platform
WO2003096501A1 (fr) Amplificateur optique
JPH10268149A (ja) 光導波路デバイス
JP3381784B2 (ja) 光半導体素子、該光半導体素子を用いた光通信モジュール、および光半導体素子の製造方法
KITAGAWA et al. Hybrid integration technologies using planar lightwave circuits and developed components
JP2001085799A (ja) 光送受信デバイス

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09720713

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999926879

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999926879

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999926879

Country of ref document: EP