WO1999062139A1 - Dual polarisierte mehrbereichsantenne - Google Patents

Dual polarisierte mehrbereichsantenne Download PDF

Info

Publication number
WO1999062139A1
WO1999062139A1 PCT/EP1999/003484 EP9903484W WO9962139A1 WO 1999062139 A1 WO1999062139 A1 WO 1999062139A1 EP 9903484 W EP9903484 W EP 9903484W WO 9962139 A1 WO9962139 A1 WO 9962139A1
Authority
WO
WIPO (PCT)
Prior art keywords
dipole
antenna
dual
antenna device
reflector
Prior art date
Application number
PCT/EP1999/003484
Other languages
English (en)
French (fr)
Inventor
Maximilian GÖTTL
Roland Gabriel
Georg Klinger
Original Assignee
Kathrein Werke Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke Kg filed Critical Kathrein Werke Kg
Priority to BRPI9911595-6B1A priority Critical patent/BR9911595B1/pt
Priority to CA002331681A priority patent/CA2331681C/en
Priority to US09/673,727 priority patent/US6333720B1/en
Priority to EP99953403A priority patent/EP1082782B1/de
Priority to DE59906301T priority patent/DE59906301D1/de
Priority to AU42651/99A priority patent/AU755335B2/en
Priority to NZ506976A priority patent/NZ506976A/xx
Publication of WO1999062139A1 publication Critical patent/WO1999062139A1/de
Priority to HK01108717A priority patent/HK1038280A1/xx

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • H01Q21/10Collinear arrangements of substantially straight elongated conductive units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays

Definitions

  • the invention relates to a dual polarized multi-range antenna according to the preamble of claim 1.
  • Dual polarized multi-range antennas are used to emit (or receive) two linear orthogonally aligned polarizations, which can be aligned, for example, vertically and horizontally. In practice, however, those applications are particularly important in which the polarizations are aligned by + 45 ° and -45 ° to the vertical (or to the horizontal). In the case of dual-polarized multi-range antennas, these are operated in at least two frequency bands, as a rule with two widely spaced center frequencies. The upper center frequency should be at least 1.5 times the lower center frequency.
  • Tennenmodule or antenna arrays namely used for transmission or reception in one and for transmission or reception in the other frequency band range (frequency band).
  • Dual polarized antennas as such are known. They serve for the simultaneous emission or reception of two orthogonal polarizations.
  • Such radiator arrangements can consist, for example, of several elements in the form of dipoles, slots, planar radiating elements or so-called patch radiators, as described, for example, in EP 0 685 900 AI or from the prior publication "Antennas, Part 2, Bibliographical Institute, Mannheim / Vienna / Zurich , 1970, pp. 47 to 50 "are known.
  • dipoles arranged in a cross shape (cross dipoles) or double dipole arrangements which have a square structure in plan view (dipole square) are preferably used.
  • Dual polarized antennas are also known, for example, from WO 98/01923.
  • Dual polarized antennas are also known from the publication "Dual Frequency Patch Antennas", IEEE AP Magazine, page 13 ff. It describes dual-polarized multi-range antennas that use different patch structures but have a number of disadvantages. For example, inadequate decoupling is typical of both polarizations.
  • the versions described only allow a tale / vertical position alignment. For example, it is not possible with simple means to produce a multiple array arrangement with a + 45 ° / -45 ° orientation.
  • antenna forms in turn use two antennas, which are arranged one above the other, for the respective frequency range.
  • a microstrip antenna is known from DE-Al 362 079, which, however, is suitable for radiation in two frequency ranges with only one polarization.
  • This antenna arrangement not only has a low gain, but it also proves to be disadvantageous that the radiation diagrams which can be achieved with such an antenna cannot be used for array antennas.
  • This should therefore be operable at least in two frequency ranges that are preferably far apart.
  • it should preferably have a high decoupling between the two polarizations.
  • the dual-polarized multi-range antenna according to the invention has previously unknown advantages and features. These advantages concern both the decoupling, the bandwidth, the sensitivity and the flexibility of the antenna.
  • the antenna according to the invention is characterized in that it has at least one cross-dipole-shaped radiator module in the manner of a dipole square, which is located in front of a reflector and which can be operated with dual polarization in two orthogonal orientations, which, as a rule, ie preferably an orientation take from + 45 ° and -45 ° to the vertical or horizontal.
  • This radiator module in the form of a dipole square can be operated in a lower frequency range.
  • dipoles are now provided for operation in a second upper frequency band with dual polarization, the further dipoles being arranged within the dipole square.
  • the other dipoles are preferably designed as cross dipoles.
  • the dipole elements are aligned parallel or perpendicular to the dipole elements of the dipole square, ie they also have an orientation of + 45 ° and -45 ° with respect to the vertical or horizontal with an X antenna.
  • the respective mounting of the dipoles of the lower frequency range which simultaneously function as so-called symmetrization, is designed and / or arranged and / or dimensioned such that no resonance in the upper frequency range or at least no relevant one Resonance upper frequency range occurs.
  • the height of the dipoles is arranged no further than one wavelength from the reflector or the reflector plane.
  • Favorable values lie in a range from 1/8 to% of the respective operating wavelength.
  • the antenna according to the invention is above all that it is broadband on the one hand and on the other hand has a high decoupling between the two polarizations. It is characterized in particular by the fact that it is possible with the antenna according to the invention to ensure that the horizontal half-widths of the two radiator modules are identical or nearly identical, both in the lower and in the upper frequency band range, that is to say are essentially the same size.
  • the antenna according to the invention is constructed not only with a dipole square and a cross dipole arranged therein, but rather in the manner of an antenna array with a plurality of such square dipoles, each with further internal dipoles, preferably in the form of cross dipoles .
  • a further radiator module for radiating the upper frequency band between the two dipole squares for transmitting and receiving the lower frequency band.
  • This further radiator module is then preferably not designed as a dipole cross, but also as a dipole square.
  • Figure 1 is a schematic plan view of an embodiment of a dual polarized multi-range antenna according to the invention
  • Figure 2 is a schematic side view parallel to the reflector
  • Figure 3 is a schematic perspective view of the embodiment shown in Figure 1 and Figure 2;
  • Figure 4 a modified embodiment with several assembled to an array
  • FIG. 5 an exemplary embodiment modified from FIG. 4;
  • FIG. 6 a top view of the exemplary embodiment according to FIG. 5;
  • FIG. 7 a side view of the exemplary embodiment according to FIGS. 5 and 6.
  • 1 and 2 show a schematic top view and a side view parallel to a reflector of a dual-polarized multi-range antenna which comprises a first radiator module 1 for a first frequency range and a second radiator module 3 for a second frequency range.
  • the two radiator modules 1, 3 are arranged in front of a reflector 5 which is almost square in the exemplary embodiment shown.
  • the reflector is conductive.
  • a feed network can be located on the rear of the reflector, via which the first and also the second radiator module are electrically connected separately.
  • the first radiator module 1 consists of several dipoles la, namely in the exemplary embodiment shown four dipoles la, which are arranged in the manner of a dipole square.
  • the dipoles 1 a are held mechanically by a so-called symmetry 7 with respect to the reflector or a circuit board located behind them, and are electrically contacted, that is to say fed, via the feed network mentioned.
  • the reflector plate itself has a reflector edge 6, which in the exemplary embodiment shown rises vertically from the plane of the reflector plate 15 at a certain height, as a result of which the radiation diagram can be influenced in an advantageous manner. 2
  • the length of the dipole elements of the first radiator module is coordinated so that a lower frequency range corresponding electromagnetic waves can be sent or received.
  • the orthogonal alignment of the dipole elements creates a dual-polarized antenna in a known manner.
  • the dipoles 1 a are oriented at an angle of + 45 ° and -45 ° with respect to the vertical (or equally with respect to the horizontal), specifically with the formation of an antenna, also referred to as X-polarized for short.
  • the second radiator module 3 is now located within the first radiator module 1 formed in the manner of a dipole square.
  • this second radiator module 3 is not formed as a dipole square, but in the form of a cross dipole.
  • the two orthogonally positioned dipoles 3a are also mechanically supported and electrically fed again via the symmetrization 9 assigned to them with respect to the reflector or a circuit board located behind it.
  • This second radiator module 3 is operated in an upper frequency range, the upper center frequency being approximately twice the lower center frequency of the first radiator module 1 in the exemplary embodiment shown.
  • horizontal half-value widths in both frequency ranges of approximately 60 ° can be generated and, at the same time, high decoupling values with regard to the different + 45 ° polarizations can be achieved.
  • a comparable arrangement is also conceivable, not with an X-shaped orientation, but with an extension direction vertical / horizontal, in which the one dipole elements la or 3a are horizontal and the orthogonal dipole elements are aligned vertically.
  • both the first and the second radiator modules 1, 3 are arranged at a distance in front of the reflector 5, to be precise at a different distance.
  • the height of the dipoles above the reflector should not be more than the operating wavelength of the associated operating frequency, preferably not more than half the associated operating wavelength. However, the distance is preferably more than 1/16, in particular more than 1/8, of the associated operating wavelength.
  • the antenna thus formed has such outstanding characteristic properties.
  • a similar radiation pattern, which is not to be expected per se, results for the two radiator modules for both frequency ranges can possibly be explained, inter alia, by the fact that the dipole elements 1 a of the first radiator module act as reflectors with respect to the second radiator module 3.
  • FIG. 4 shows an embodiment for higher gain values of the antenna.
  • the dual-polarized multi-range antenna thus formed consists of two antenna arrangements explained with reference to FIGS. 1 to 3, in which the radiator modules are again aligned in the + 45 ° direction to one another and the mounting directions of the two antenna arrangements shown individually in FIG. 1 are arranged one above the other in the vertical direction.
  • the antenna modules can also be assembled into an antenna array in the horizontal mounting direction.
  • several antenna modules can also be cascaded laterally next to and above one another in several rows and columns.
  • Corresponding radiator arrangements for the upper frequency range that is to say with additional second radiator modules 3 ′, are filled in the spaces between the respective first radiator modules 1 for the lower frequency range.
  • two radiator modules 1 and a second radiator module 3 with dipole elements 3b are arranged in front of a reflector plate.
  • the antenna produced in this way has a high vertical gain, with the same horizontal half-value width of approximately 60 ° being achievable for both radiator modules.
  • the radiator modules 3 arranged in the first radiator modules 1 differ from the second radiator module. len 3 'can distinguish, which are arranged in the spaces 15 between the first dipole squares 1.
  • the additional radiator module 3 arranged between two radiator modules 1 in FIG. 4 consists of a cross dipole, ie a cross-shaped dipole arrangement, and in the embodiment according to FIG. 5 a dipole square, ie generally a dipole square-like dipole arrangement 3 "with dipole elements 3b.
  • This fine adjustment and tuning enables an improved adjustment of the half-width of the radiator arrangement for the upper and lower frequency range to be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

Eine verbesserte dual polarisierte Mehrbereichsantenne, mit einem ersten und zweiten Strahlermodul (1, 3) zum Senden bzw. Empfangen eines vom ersten Frequenzband und einem dazu versetzt liegenden zweiten Frequenzband, zeichnet sich durch die folgende Merkmale aus: das für den oberen Frequenzbereich vorgesehene weitere zweite Strahlermodul (3) ist in Draufsicht auf die Antenne innerhalb des Dipolquadrates des ersten Strahlermoduls (1) angeordnet; das zweite Strahlermodul (3) besteht aus Dipolelementen (3a), die orthogonal zueinander ausgerichtet sind; die Dipolelemente (3a) des zweiten Strahlermoduls (3) sind parallel bzw. senkrecht zu den Dipolelementen (1a) des ersten Strahlermoduls (1) in Form eines Dipolquadrates ausgerichtet; und das Verhältnis der Mittenfrequenz des oberen zum unteren Frequenzbandes liegt zwischen 1,5 und 4.

Description

Dual polarisierte Mehrbereichsantenne
Die Erfindung betrifft eine dual polarisierte Mehrbe- reichsantenne nach dem Oberbegriff des Anspruches 1.
Dual polarisierte Mehrbereichsantennen dienen zum Abstrahlen (oder Empfangen) von zwei linearen orthogonal ausgerichteten Polarisationen, welche beispielsweise vertikal und horizontal ausgerichtet sein können. In der Praxis sind aber insbesondere auch solche Einsatzfälle von Bedeutung, in denen die Polarisationen um +45° und -45° zur Vertikalen (bzw. gegenüber der Horizontalen) ausgerichtet sind. Im Falle von dual polarisierten Mehrbereichsantennen werden diese in mindestens zwei Frequenzbändern, in der Regel mit zwei weit auseinanderliegenen Mittenfrequenzen betrieben. Hierbei sollte die obere Mittenfrequenz zumindest das 1,5-fache der unteren Mittenfrequenz betragen.
Bei einem derartig großen Frequenzabstand werden üblicherweise zwei räumlich voneinander getrennt angeordnete An- tennenmodule oder Antennenarrays, nämlich zur Ausstrahlung bzw. zum Empfang in dem einen und zur Ausstrahlung bzw. zum Empfang in dem anderen Frequenzbandbereich (Frequenzband) verwendet .
Dual polarisierte Antennen als solche sind bekannt. Sie dienen zum gleichzeitigen Abstrahlen oder Empfangen von zwei orthogonalen Polarisationen. Dabei können derartige Strahleranordnungen beispielsweise aus mehreren Elementen in Form von Dipolen, Schlitzen, Planarstrahlelementen oder sogenannten Patchstrahlern bestehen, wie sie beispielsweise aus der EP 0 685 900 AI oder aus der Vorveröffentlichung "Antennen, 2. Teil, Bibliographisches Institut, Mannheim/ Wien/Zürich, 1970, S. 47 bis 50" bekannt sind. Bei den Dipolanordnungen werden bevorzugt kreuzförmig angeordnete Dipole (Kreuzdipole) oder Doppeldipolanordnungen, welche in der Draufsicht eine quadratische Struktur aufweisen (Dipolquadrat) verwendet.
Dual polarisierte Antennen sind ferner beispielsweise auch aus der WO 98/01923 bekannt.
Dual polarisierte Antennen sind ebenfalls aus der Veröffentlichung "Dual -Frequency Patch Antennas" , IEEE AP Magazine, Seite 13 ff. bekannt. Darin werden dual polarisierte Mehrbereichsantennen beschrieben, welche verschiedene Patchstrukturen verwenden, jedoch eine Reihe von Nachteilen aufweisen. So ist beispielsweise eine unzureichende Entkopplung für beide Polarisationen typisch. Die beschriebenen Ausführungen ermöglichen nur eine horizon- tale/vertikale Positionsausrichtung. Es ist mit einfachen Mitteln beispielsweise nicht möglich, eine Mehrfach-Array- Anordnung mit einer +45°/-45° -Ausrichtung zu erzeugen.
Weitere bekannt gewordene Antennenformen nutzen wiederum zwei übereinander getrennt angeordnete Antennen für den jeweiligen Frequenzbereich.
Schließlich ist beispielsweise eine Microstrip-Antenne aus der DE-Al 362 079 bekannt, die zur Ausstrahlung in zwei Frequenzbereichen allerdings mit nur einer Polarisation geeignet ist. Diese Antennenanordnung weist nicht nur einen niedrigen Gewinn auf, sondern es erweist sich ferner als nachteilig, daß die mit einer derartigen Antenne er- zielbaren Strahlungsdiagramme nicht für Arrayantennen einsetzbar sind.
Demgegenüber ist es Aufgabe der vorliegenden Erfindung eine dual polarisierte, insbesondere eine sogenannte X- polarisierte Mehrbereichsantenne zu schaffen, die die oben genannten Nachteile vermeidet. Diese soll also zumindest in zwei vorzugsweise weit auseinanderliegenden Frequenzbereichen betreibbar sein. Zudem soll sie bevorzugt eine hohe Entkopplung zwischen beiden Polarisationen besitzen.
Die Aufgabe wird erfindungsgemäß entsprechend den im Anspruch 1 bzw. 2 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben. Die erfindungsgemäße dual polarisierte Mehrbereichsantenne weist bisher ungeahnte Vorteile und Merkmale auf. Diese Vorteile betreffen sowohl die Entkopplung, die Bandbreite, die Empfindlichkeit als auch die Flexibilität der Antenne. Die erfindungsgemäße Antenne zeichnet sich dadurch aus, daß sie zumindest ein kreuzdipolförmiges Strahlermodul nach Art eines Dipolquadrates aufweist, welches sich vor einem Reflektor befindet und welches mit dualer Polarisation in zwei orthogonal zueinander stehenden Ausrichtungen betrieben werden kann, die in der Regel, d.h. vorzugsweise eine Ausrichtung von +45° und -45° gegenüber der Vertikalen bzw. Horizontalen einnehmen. Dieses Strahlermodul in Form eines Dipolquadrates kann in einem unteren Frequenzbereich betrieben werden. Erfindungsgemäß sind aber nun- mehr weitere Dipole zum Betrieb in einem zweiten oberen Frequenzband mit dualer Polarisation vorgesehen, wobei die weiteren Dipole innerhalb des Dipolquadrates angeordnet sind. Zudem sind die weiteren Dipole vorzugsweise als Kreuzdipol ausgebildet. Die Dipolelemente sind dabei par- allel bzw. senkrecht zu den Dipolelementen des Dipolquadrates ausgerichtet, weisen also bei einer X-Antenne ebenfalls eine Ausrichtung von +45° und -45° gegenüber der Vertikalen bzw. Horizontalen auf.
In einer Weiterbildung der Erfindung ist vorgesehen, daß die jeweilige Halterung der Dipole des unteren Frequenzbereiches, welche gleichzeitig als sogenannte Symmetrie- rung arbeiten, so gestaltet und/oder angeordnet und/oder dimensioniert ist, daß dadurch keine Resonanz im oberen Frequenzbereich oder zumindest keine relevante Resonanz irr. oberen Frequenzbereich auftritt.
Es hat sich ferner als günstig erwiesen, wenn die Höhe der Dipole entsprechend der ihnen zugeordneten frequenzabhän- gigen Wellenlänge nicht weiter als eine Wellenlänge von dem Reflektor bzw. der Reflektorebene entfernt angeordnet sind. Günstige Werte liegen in einem Bereich von 1/8 bis % der jeweiligen Betriebs-Wellenlänge.
Überraschend ist bei der erfindungsgemäßen Antenne vor allem, daß sie zum einen breitbandig ist und zum anderen dabei eine hohe Entkopplung zwischen beiden Polarisationen besitzt. Sie zeichnet sich vor allem auch dadurch aus, daß es mit der erfindungsgemäßen Antenne möglich ist zu ge- währleisten, daß die horizontalen Halbwertsbreiten beider Strahlermodule sowohl im unteren als auch im oberen Frequenzbandbereich identisch oder nahezu identisch sind, also im wesentlichen gleich groß sind.
Die erfindungsgemäßen Vorteile lassen sich vor allem auch dann realisieren, wenn die erfindungsgemäße Antenne nicht nur mit einem Dipolquadrat und einem darin angeordneten Kreuzdipol, sondern nach Art eines Antennenarrays mit mehreren derartigen Quadratdipolen mit jeweils weiteren in- nenliegenden Dipolen, vorzugsweise in Form von Kreuzdipolen aufgebaut ist. Insbesondere bei dieser Ausführungsform ist es möglich, zwischen den beiden Dipolquadraten zum Senden und Empfangen des unteren Frequenzbandes jeweils ein weiteres Strahlermodul zur Ausstrahlung des oberen Frequenzbandes vorzusehen. Dieses weitere Strahlermodul ist dann jedoch bevorzugt nicht als Dipolkreuz, sondern ebenfalls als Dipolquadrat ausgebildet .
Die Erfindung wird nachfolgend anhand von Zeichnungen näher erläutert. Dabei zeigen im einzelnen:
Figur 1 : eine schematische Draufsicht auf ein erfindungsgemäßes Ausführungsbeispiel einer dual polarisierten Mehrbereichsantenne;
Figur 2 : eine schematische Seitenansicht parallel zum Reflektor;
Figur 3 : eine schematische perspektivische Darstellung des in Figur 1 und Figur 2 wiedergegebenen Ausführungsbeispieles;
Figur 4 : ein abgewandeltes Ausführungsbeispiel mit mehreren zu einem Array zusammengestellten
Antennenmodul ;
Figur 5 : ein zu Figur 4 abgewandeltes Ausführungs- beispiel ;
Figur 6 : eine Draufsicht auf das Ausführungsbei - spiel gemäß Figur 5; und
Figur 7 : eine Seitenansicht auf das Ausführungsbei- spiel gemäß Figur 5 und 6. In den Figuren 1 und 2 ist in schematischer Draufsicht bzw. Seitenansicht parallel zu einem Reflektor einer dual polarisierten Mehrbereichsantenne wiedergegeben, die ein erstes Strahlermodul 1 für einen ersten Frequenzbereich und ein zweites Strahlermodul 3 für einen zweiten Frequenzbereich umfaßt .
Die beiden Strahlermodule 1, 3 sind vor einem, im gezeigten Ausführungsbeispiel nahezu quadratisch geformten Re- flektor 5 angeordnet. Der Reflektor ist leitend. Auf der Rückseite des Reflektors kann sich ein Speisenetzwerk befinden, worüber das erste wie auch das zweite Strahlermodul getrennt elektrisch angeschlossen sind. Das erste Strahlermodul 1 besteht dabei aus mehreren Dipolen la, nämlich im gezeigten Ausführungsbeispiel aus vier Dipolen la, die nach Art eines Dipolquadrates angeordnet sind. Die Dipole la werden über eine sogenannte Symmetrierung 7 gegenüber dem Reflektor oder einer dahinter befindlichen Platine mechanisch gehalten und über das erwähnte Speise- netzwerk elektrisch kontaktiert, also gespeist.
Das Reflektorblech selbst weist in horizontaler Abstrahl- richtung jeweils einen, im gezeigten Ausführungsbeispiel sich senkrecht von der Ebene des Reflektorbleches 15 in einer gewissen Höhe erhebenden Reflektorrand 6 auf, wodurch das Abstrahlungsdiagramm in vorteilhafter Weise beeinflußt werden kann. 2
Die Länge der Dipolelemente des ersten Strahlermoduls ist so abgestimmt, daß darüber in einem unteren Frequenzbe- reich entsprechende elektromagnetische Wellen gesendet oder empfangen werden können. Durch die orthogonale Ausrichtung der Dipolelemente wird dadurch in bekannter Weise eine dualpolarisierte Antenne geschaffen. Die Ausrichtung der Dipole la erfolgt im Ausführungsbeispiel jeweils in einem Winkel von +45° und -45° gegenüber der Vertikalen (bzw. gleichermaßen gegenüber der Horizontalen) , und zwar unter Bildung einer auch kurz als X-polarisierten bezeichneten Antenne.
Innerhalb des ersten nach Art eines Dipolquadrates gebildeten Strahlermodules 1 befindet sich nunmehr das zweite Strahlermodul 3. Dieses zweite Strahlermodul 3 ist im gezeigten Ausführungsbeispiel nicht als Dipolquadrat, sondern in Form eines Kreuzdipoles gebildet . Die beiden orthogonal aufeinanderstehenden Dipole 3a werden ebenfalls wieder über die ihnen zugeordnete Symmetrierung 9 gegenüber dem Reflektor oder einer dahinter befindlichen Platine mechanisch abgestützt und elektrisch gespeist.
Dieses zweite Strahlermodul 3 wird in einem oberen Frequenzbereich betrieben, wobei im gezeigten Ausführungsbei - spiel die obere Mittenfrequenz etwa das doppelte der u- nteren Mittenfrequenz des ersten Strahlermoduls 1 beträgt. Mittels dieser Anordnung lassen sich horizontale Halbwertsbreiten in beiden Frequenzbereichen von ca. 60° erzeugen und gleichzeitig hohe Entkopplungswerte bezüglich der unterschiedlichen +45° Polarisationen erreichen. Denkbar ist aber ebenfalls eine vergleichbare Anordnung nicht mit einer X-förmigen Ausrichtung, sondern mit einer Aus- richtung vertikal/horizontal, bei der die einen Dipol - elemente la bzw. 3a horizontal und die orthogonalen Dipol - elemente dazu vertikal ausgerichtet sind.
Wie es sich aus der Seitendarstellung gemäß Figur 2 ergibt, ist ersichtlich, daß sowohl das erste wie auch das zweite Strahlermodul 1, 3 in Abstand vor dem Reflektor 5 angeordnet sind, und zwar in unterschiedlichem Abstand. Die Höhe der Dipole über dem Reflektor soll nicht mehr als die Betriebswellenlänge der zugehörigen Betriebsfrequenz betragen, vorzugsweise nicht mehr als der halben zugehörigen Betriebswellenlänge. Bevorzugt beträgt der Abstand aber mehr als 1/16, insbesondere mehr als 1/8 der zugehörigen Betriebswellenlänge.
Das überraschende ist, daß trotz der ineinander verschachtelten Anordnung der Strahlermodule, wobei das erste Strahlermodul aus einem Dipolquadrat besteht und bevorzugt das zweite Strahlermodul 3 aus einem Kreuzdipol, die so gebildete Antenne derart überragende charakteristischen Eigenschaften aufweist. Daß sich für beide Strahlermodule für beide Frequenzbereiche ein ähnliches an sich nicht zu erwartendes Abstrahlungsdiagramm ergibt, läßt sich eventuell unter anderem damit erklären, daß die Dipolelemente la des ersten Strahlermoduls als Reflektoren bezüglich des zweiten Strahlermoduls 3 wirken.
Anhand von Figur 4 ist eine erweitere dualpolarisierte Mehrbereichsantenne gezeigt, die eine Ausführungsform für höhere Gewinnwerte der Antenne wiedergibt. Dazu ist es notwendig, mehrere der anhand der Figuren 1 bis 3 erläuterten Dipolanordnungen entsprechend zu kaska- dieren. Im gezeigten Ausführungsbeispiel besteht die so gebildete dualpolarisierte Mehrbereichsantenne aus zwei anhand der Figuren 1 bis 3 erläuterten Antennenanordnungen, bei denen die Strahlermodule wieder in +45° Richtung zueinander ausgerichtet sind und die Anbaurichtungen der beiden in Figur 1 einzeln wiedergegebenen Antennenanordnungen in Vertikalrichtung übereinander angeordnet sind. Genauso können die Antennenmodule aber auch in horizontaler Anbaurichtung zu einem Antennenarray zusammengebaut werden. Schließlich können auch in mehreren Reihen und Spalten mehrere Antennenmodule seitlich neben- und übereinander kaskadiert werden.
In den dabei entstehenden Zwischenräumen zwischen den jeweils ersten Strahlermodulen 1 für den unteren Frequenzbereich werden entsprechende Strahleranordnungen für den oberen Frequenzbereich, also mit zusätzlichen zweiten Strahlermodulen 3' aufgefüllt. Mit anderen Worten sind in dem gezeigten Ausführungsbeispiel zwei Strahlermodule 1 und ein zweites Strahlermodul 3 mit Dipolelementen 3b vor einem Reflektorblech angeordnet. Die dadurch erzeugte Antenne weist einen hohen vertikalen Gewinn auf, wobei für beide Strahlermodule die gleiche horizontale Halbwertsbreite von ca. 60° erzielbar ist.
Schließlich ist anhand des Ausführungsbeispieles von Figur
5 gezeigt, daß die in den ersten Strahlermodulen 1 an- geordneten Strahlermodule 3 sich vom zweiten Strahlermodu- len 3 ' unterscheiden können, die in den Zwischenräumen 15 zwischen den ersten Dipolquadraten 1 angeordnet sind. Denn wie aus den Figuren 4 und 5 zu ersehen ist, besteht das zwischen zwei Strahlermodulen 1 angeordnete zusätzliche Strahlermodul 3 in Figur 4 aus einem Kreuzdipol, d.h. einer kreuzförmigen Dipolanordnung, und bei der Ausführungsform gemäß Figur 5 aus einem Dipolquadrat, d.h. allgemein einer dipolquadratähnlichen Dipolanordnung 3" mit Dipolelementen 3b. Durch diese Feinanpassung und Abstim- ung kann eine verbesserte Angleichung der Halbwärtsbreite der Strahleranordnung für den oberen und unteren Frequenzbereich erzielt werden.

Claims

Ansprüche ;
1. Dualpolarisierte Mehrbereichsantenne, mit zumindest einem Strahlermodul (1) , mit orthogonal zueinander stehen- den Dipolen (la) zur Abstrahlung bzw. zum Empfang elektromagnetischer Wellen mit zwei linearen orthogonalen Polarisationen, wobei die Dipolelemente (la) nach Art eines Dipolquadrates gebildet sind, welches sich vor einem Reflektor (5) befindet, wobei die Dipolelemente (la) vor- zugsweise in einer Ausrichtung +45° gegenüber der Vertikalen ausgerichtet sind sowie einem weiteren Strahlermodul (3) zum Senden bzw. Empfangen eines vom ersten Frequenz- bandbereich getrennten weiteren Frequenzbandbereiches, gekennzeichnet durch die folgenden weiteren Merkmale - das für den oberen Frequenzbereich vorgesehene weitere zweite Strahlermodul (3) ist in Draufsicht auf die Antenne innerhalb des Dipolquadrates des ersten Strahlermoduls (1) angeordnet, - das zweite Strahlermodul (3) besteht aus Dipolelementen (3a) , die orthogonal zueinander ausgerichtet sind, - die Dipolelemente (3a) des zweiten Strahlermoduls (3) sind parallel bzw. senkrecht zu den Dipolelementen (la) des ersten Strahlermoduls (1) in Form eines Dipolquadrates ausgerichtet, und - das Verhältnis der Mittenfrequenz des oberen zum unteren Frequenzbandes liegt zwischen 1,5 und 4.
2. Dualpolarisierte Mehrbereichsantenne zur Abstrahlung und/oder zum Empfang elektromagnetischer Wellen mit zwei linearen orthogonalen Polarisationen in zwei Frequenzbandbereichen, mit folgenden Merkmalen
- mit einer ersten Antenneneinrichtung (1) in Form eines Dipolquadrates, welches orthogonal zueinanderstehende Dipole (la) umfaßt, - mit einer zweiten Antenneneinrichtung (3), welche orthogonal zueinanderstehende Dipole (3a) umfaßt, die innerhalb der ersten, nach Art eines Dipolquadrates gebildeten Antenneneinrichtung (1) konzentrisch zu dieser angeordnet ist, und - die erste und zweite Antenneneinrichtung (1, 3) sind vor einem Reflektor (5) angeordnet, gekennzeichnet durch die folgenden weiteren Merkmale
- die zweite Antenneneinrichtung (13) besteht aus einem Kreuzdipol (3) , - die Dipole (3a) des Kreuzdipols (3) sind parallel bzw. senkrecht zu den Dipolen (la) der ersten Antenneneinrichtung (1) ausgerichtet, und
- das Verhältnis der Mittenfrequenz des oberen und unteren Frequenzbandes liegt zwischen 1,5 und 4.
3. Dualpolarisierte Antenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Höhe oder der Maximalabstand der Dipolelemente (la, 3a) über dem Reflektor (5) kleiner ist als die dem jeweiligen Dipolelement (la, 3a) zugeord- nete Betriebswellenlänge, vorzugsweise kleiner ist als die halbe Betriebswellenlänge.
4. Dualpolarisierte Antenne nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß der minimale Abstand der Dipolelemente (la, 3a) über dem Reflektor (5) gleich oder größer 1/16 der zugehörigen Betriebswellenlänge, vorzugsweise größer als 1/8 der zugehörigen Betriebswellenlänge ist .
5. Dualpolarisierte Antenne nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Halterungen (9) der Dipolelemente (la) des für den unteren Frequenzbereich vorgesehenen Antenneneinrichtung (1) so dimensioniert und/oder geformt und/oder geneigt ausgerichtet sind, daß sie zum oberen Frequenzbereich resonanzfrei arbeiten.
6. Dualpolarisierte Antenne nach Anspruch 5, dadurch gekennzeichnet, daß die Halterung der Dipolelemente (la) der ersten Antenneneinrichtung (1) durch die Symmetrierung der zugehörigen Dipolelemente (la) gebildet ist.
7. Dualpolarisierte Antenne nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Antenne so aufgebaut ist, daß die Dipolelemente (la, 3a) zu einer senkrecht zum Reflektor (5) stehenden und durch die Ecken des Dipolqua- drates der ersten Antenneneinrichtung (1) gelegten Ebene symmetrisch zu liegen kommen.
8. Dualpolarisierte Antenne nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß mehrere Antenneneinrichtungen (1) mit im Inneren angeordneter zweiten Antenneneinrichtung (3) in Anbaurichtung, vorzugsweise in vertikaler Anbaurichtung übereinander vor einem Reflektor (5) angeordnet sind,
9. Dualpolarisierte Antenne nach Anspruch 8, dadurch gekennzeichnet, daß in den Zwischenräumen (15) zwischen zwei benachbarten ersten Antenneneinrichtungen (1) eine weitere zweite Antenneneinrichtung (3 ' , 3") vorgesehen ist.
10. Dualpolarisierte Antenne nach Anspruch 9, dadurch gekennzeichnet, daß die in den Zwischenräumen (15) sitzende weitere zweite Antenneneinrichtung (3 ' ) aus einem Kreuzdipol besteht .
11. Dualpolarisierte Antenne nach Anspruch 9, dadurch gekennzeichnet, daß die in den Zwischenräumen (15) angeordnete zweite Antenneneinrichtung (3") in Form eines Dipolquadrates ausgebildet ist.
PCT/EP1999/003484 1998-05-27 1999-05-20 Dual polarisierte mehrbereichsantenne WO1999062139A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BRPI9911595-6B1A BR9911595B1 (pt) 1998-05-27 1999-05-20 antena de faixa méltipla de polarizaÇço dual
CA002331681A CA2331681C (en) 1998-05-27 1999-05-20 Dual polarised multi-range antenna
US09/673,727 US6333720B1 (en) 1998-05-27 1999-05-20 Dual polarized multi-range antenna
EP99953403A EP1082782B1 (de) 1998-05-27 1999-05-20 Dual polarisierte mehrbereichsantenne
DE59906301T DE59906301D1 (de) 1998-05-27 1999-05-20 Dual polarisierte mehrbereichsantenne
AU42651/99A AU755335B2 (en) 1998-05-27 1999-05-20 Dual polarised multi-range antenna
NZ506976A NZ506976A (en) 1998-05-27 1999-05-20 Dual polarised multi-range antenna
HK01108717A HK1038280A1 (en) 1998-05-27 2001-12-12 Dual polarised multi-range antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823749.9 1998-05-27
DE19823749A DE19823749C2 (de) 1998-05-27 1998-05-27 Dualpolarisierte Mehrbereichsantenne

Publications (1)

Publication Number Publication Date
WO1999062139A1 true WO1999062139A1 (de) 1999-12-02

Family

ID=7869117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/003484 WO1999062139A1 (de) 1998-05-27 1999-05-20 Dual polarisierte mehrbereichsantenne

Country Status (12)

Country Link
US (1) US6333720B1 (de)
EP (1) EP1082782B1 (de)
KR (1) KR100466960B1 (de)
CN (1) CN1270409C (de)
AU (1) AU755335B2 (de)
BR (1) BR9911595B1 (de)
CA (1) CA2331681C (de)
DE (2) DE19823749C2 (de)
ES (1) ES2203196T3 (de)
HK (1) HK1038280A1 (de)
NZ (1) NZ506976A (de)
WO (1) WO1999062139A1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023669A1 (en) * 2000-09-12 2002-03-21 Andrew Corporation A dual polarised antenna
EP1246298A1 (de) * 2001-03-29 2002-10-02 Alcatel Kommunikationsmultibandantenne
US6930650B2 (en) 2002-01-31 2005-08-16 Kathrein-Werke Kg Dual-polarized radiating assembly
US6985123B2 (en) 2001-10-11 2006-01-10 Kathrein-Werke Kg Dual-polarization antenna array
WO2007126831A2 (en) 2006-03-30 2007-11-08 Powerwave Technologies, Inc. Broadband dual polarized base station antenna
CN100373691C (zh) * 2000-03-16 2008-03-05 凯特莱恩工厂股份公司 双极化偶极天线阵
US7405710B2 (en) 2002-03-26 2008-07-29 Andrew Corporation Multiband dual polarized adjustable beamtilt base station antenna
DE102007060083A1 (de) 2007-12-13 2009-06-18 Kathrein-Werke Kg Mehrspalten-Multiband-Antennen-Array
US7629939B2 (en) 2006-03-30 2009-12-08 Powerwave Technologies, Inc. Broadband dual polarized base station antenna
DE102012023938A1 (de) * 2012-12-06 2014-06-12 Kathrein-Werke Kg Dualpolarisierte, omnidirektionale Antenne
US8896493B2 (en) 1999-10-26 2014-11-25 Fractus, S.A. Interlaced multiband antenna arrays
US8941541B2 (en) 1999-09-20 2015-01-27 Fractus, S.A. Multilevel antennae
US9373884B2 (en) 2012-12-07 2016-06-21 Kathrein-Werke Kg Dual-polarised, omnidirectional antenna
CN105706297A (zh) * 2013-11-05 2016-06-22 株式会社Kmw 多频带多极化无线通信天线

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356242B1 (en) * 2000-01-27 2002-03-12 George Ploussios Crossed bent monopole doublets
DE10034911A1 (de) * 2000-07-18 2002-02-07 Kathrein Werke Kg Antenne für Mehrfrequenzbetrieb
DE10064129B4 (de) * 2000-12-21 2006-04-20 Kathrein-Werke Kg Antenne, insbesondere Mobilfunkantenne
US6618016B1 (en) * 2001-02-21 2003-09-09 Bae Systems Aerospace Inc. Eight-element anti-jam aircraft GPS antennas
KR100454103B1 (ko) * 2002-01-30 2004-10-26 주식회사 선우커뮤니케이션 광대역 특성을 갖는 비대칭 평판형 다이폴 안테나 및 이를이용한 다이폴 안테나 어레이 구조
US7173572B2 (en) * 2002-02-28 2007-02-06 Andrew Corporation Dual band, dual pole, 90 degree azimuth BW, variable downtilt antenna
KR20030081626A (ko) * 2002-04-12 2003-10-22 주식회사 감마누 전기적 빔틸트 조절을 위한 위상 변위기 및 그를 이용한이중대역 기지국 안테나
FR2841391B3 (fr) * 2002-06-25 2004-09-24 Jacquelot Technologies Dispositif rayonnant bi-bande a double polarisation
KR100595893B1 (ko) * 2002-11-13 2006-07-03 주식회사 엘지텔레콤 안테나 복사패턴의 폭과 이득 및 틸트의 가변을 위한트리폴 안테나 시스템과 이를 이용한 트리폴 안테나시스템의 제어방법
WO2004055938A2 (en) * 2002-12-13 2004-07-01 Andrew Corporation Improvements relating to dipole antennas and coaxial to microstrip transitions
US7358922B2 (en) * 2002-12-13 2008-04-15 Commscope, Inc. Of North Carolina Directed dipole antenna
US7283101B2 (en) * 2003-06-26 2007-10-16 Andrew Corporation Antenna element, feed probe; dielectric spacer, antenna and method of communicating with a plurality of devices
US6822618B2 (en) * 2003-03-17 2004-11-23 Andrew Corporation Folded dipole antenna, coaxial to microstrip transition, and retaining element
EP1434300B1 (de) * 2002-12-23 2007-04-18 HUBER & SUHNER AG Breitband-Antenne mit einem 3-dimensionalen Gussteil
DE10316786A1 (de) 2003-04-11 2004-11-18 Kathrein-Werke Kg Reflektor, insbesondere für eine Mobilfunk-Antenne
DE10316788B3 (de) 2003-04-11 2004-10-21 Kathrein-Werke Kg Verbindungseinrichtung zum Anschluss zumindest zweier versetzt zueinander angeordneter Strahlereinrichtungen einer Antennenanordnung
DE10316787A1 (de) 2003-04-11 2004-11-11 Kathrein-Werke Kg Reflektor, insbesondere für eine Mobilfunk-Antenne
KR100598736B1 (ko) * 2003-04-30 2006-07-10 주식회사 엘지텔레콤 소형 트리폴 안테나
US6940465B2 (en) 2003-05-08 2005-09-06 Kathrein-Werke Kg Dual-polarized dipole antenna element
CN100461530C (zh) * 2003-08-27 2009-02-11 广州埃信科技有限公司 双极化天线
JP2005135354A (ja) * 2003-10-08 2005-05-26 Toshiba Tec Corp 無線タグ読取り装置及びこの装置に使用する無線タグモジュール並びに無線タグ付き物品及びこの物品を収納する収納箱
DE10359623A1 (de) * 2003-12-18 2005-07-21 Kathrein-Werke Kg Mobilfunk-Antennenanordnung für eine Basisstation
DE10359622A1 (de) * 2003-12-18 2005-07-21 Kathrein-Werke Kg Antenne mit zumindest einem Dipol oder einer dipolähnlichen Strahleranordnung
US7027004B2 (en) 2003-12-18 2006-04-11 Kathrein-Werke Kg Omnidirectional broadband antenna
US7132995B2 (en) 2003-12-18 2006-11-07 Kathrein-Werke Kg Antenna having at least one dipole or an antenna element arrangement similar to a dipole
US7015871B2 (en) 2003-12-18 2006-03-21 Kathrein-Werke Kg Mobile radio antenna arrangement for a base station
DE102004025904B4 (de) 2004-05-27 2007-04-05 Kathrein-Werke Kg Antenne
JP2008507163A (ja) * 2004-06-04 2008-03-06 アンドルー、コーパレイシャン 指向性ダイポール・アンテナ
US7868843B2 (en) 2004-08-31 2011-01-11 Fractus, S.A. Slim multi-band antenna array for cellular base stations
US7148848B2 (en) * 2004-10-27 2006-12-12 General Motors Corporation Dual band, bent monopole antenna
US7079083B2 (en) 2004-11-30 2006-07-18 Kathrein-Werke Kg Antenna, in particular a mobile radio antenna
DE102004057774B4 (de) * 2004-11-30 2006-07-20 Kathrein-Werke Kg Antenne, insbesondere Mobilfunkantenne
US7639198B2 (en) * 2005-06-02 2009-12-29 Andrew Llc Dipole antenna array having dipole arms tilted at an acute angle
US7358924B2 (en) * 2005-10-07 2008-04-15 Kathrein-Werke Kg Feed network, and/or antenna having at least one antenna element and a feed network
WO2007042938A2 (en) * 2005-10-14 2007-04-19 Fractus, Sa Slim triple band antenna array for cellular base stations
SE529885C2 (sv) * 2006-05-22 2007-12-18 Powerwave Technologies Sweden Dubbelbandsantennarrangemang
KR100883408B1 (ko) * 2006-09-11 2009-03-03 주식회사 케이엠더블유 이동통신 기지국용 이중대역 이중편파 안테나
CN101154769B (zh) * 2006-09-29 2011-07-06 东莞骅国电子有限公司 双极化天线组
KR100856785B1 (ko) 2006-10-13 2008-09-05 (주)에이스안테나 광대역 고이득 이중편파 다이폴 안테나
CN101425626B (zh) 2007-10-30 2013-10-16 京信通信系统(中国)有限公司 宽频带环状双极化辐射单元及线阵天线
KR100983613B1 (ko) * 2008-08-11 2010-09-24 주식회사 에이스테크놀로지 디커플링 소자를 가지는 안테나
WO2010018896A1 (en) * 2008-08-11 2010-02-18 Ace Antenna Corp. Antenna having a decoupling element
EP2346114B1 (de) * 2008-09-22 2016-01-27 KMW Inc. Zweifrequenz-/polarisationsantenne für eine mobilkommunikations-basisstation
DE102009019557A1 (de) 2009-04-30 2010-11-11 Kathrein-Werke Kg Verfahren zum Betrieb einer phasengesteuerten Gruppenantenne sowie einer Phasenschieber-Baugruppe und eine zugehörige phasengesteuerte Gruppenantenne
EP2343777B1 (de) 2009-05-26 2015-10-07 Huawei Technologies Co., Ltd. Antennenvorrichtung
KR101125180B1 (ko) * 2009-11-17 2012-03-19 주식회사 케이엠더블유 서로 다른 평면에 배치되는 방사소자들의 설치 방법 및 이를 이용한 안테나
FR2957194B1 (fr) * 2010-03-04 2012-03-02 Tdf Structure antennaire a dipoles
KR101104371B1 (ko) * 2010-06-08 2012-01-16 에스케이 텔레콤주식회사 옴니 안테나
EP2589110A1 (de) * 2010-07-01 2013-05-08 Nokia Siemens Networks Oy Antennenanordnung
CN101916910A (zh) * 2010-07-08 2010-12-15 华为技术有限公司 基站天线单元及基站天线
CN102013560B (zh) 2010-09-25 2013-07-24 广东通宇通讯股份有限公司 一种宽带高性能双极化辐射单元及天线
US8570233B2 (en) 2010-09-29 2013-10-29 Laird Technologies, Inc. Antenna assemblies
KR101137285B1 (ko) 2010-10-28 2012-04-20 위월드 주식회사 초소형 광대역 송수신 안테나 피더
CN102117961B (zh) 2011-03-17 2012-01-25 广东通宇通讯股份有限公司 宽频双极化定向辐射单元及天线
CN103503231B (zh) 2011-05-02 2015-06-10 康普技术有限责任公司 三极子天线元件与天线阵列
US8674895B2 (en) 2011-05-03 2014-03-18 Andrew Llc Multiband antenna
CN102299398B (zh) * 2011-05-20 2013-12-25 广东通宇通讯股份有限公司 一种双频双极化天线
EP2804260B1 (de) * 2012-01-13 2018-03-21 Comba Telecom System (China) Ltd. Steuerungssystem für antennenanlage und gemeinsame mehrfrequenz-antennenanlage
WO2013140408A1 (en) 2012-03-19 2013-09-26 Galtronics Corporation Ltd. Multiple-input multiple-output antenna and broadband dipole radiating element therefore
CN102723577B (zh) * 2012-05-18 2014-08-13 京信通信系统(中国)有限公司 宽频带环状双极化辐射单元及阵列天线
US9000991B2 (en) 2012-11-27 2015-04-07 Laird Technologies, Inc. Antenna assemblies including dipole elements and Vivaldi elements
CN102969575A (zh) 2012-11-30 2013-03-13 京信通信系统(中国)有限公司 多频阵列天线
CN103219596B (zh) * 2013-04-03 2016-05-18 深圳市华一通信技术有限公司 双极化吸顶天线
WO2014174510A1 (en) * 2013-04-22 2014-10-30 Galtronics Corporation Ltd. Multiband antenna and slotted ground plane therefore
KR102001519B1 (ko) 2013-05-14 2019-07-18 주식회사 케이엠더블유 좁은 빔폭을 갖는 무선 통신 안테나
US20140378075A1 (en) * 2013-06-20 2014-12-25 Qualcomm Incorporated Multi-frequency range processing for rf front end
JP5735591B2 (ja) * 2013-08-02 2015-06-17 日本電業工作株式会社 アンテナ及びセクタアンテナ
US9780457B2 (en) 2013-09-09 2017-10-03 Commscope Technologies Llc Multi-beam antenna with modular luneburg lens and method of lens manufacture
US9444151B2 (en) 2014-01-10 2016-09-13 Commscope Technologies Llc Enhanced phase shifter circuit to reduce RF cables
WO2016078475A1 (zh) 2014-11-18 2016-05-26 李梓萌 小型化双极化基站天线
DE102014014434A1 (de) 2014-09-29 2016-03-31 Kathrein-Werke Kg Multiband-Strahlersystem
CN105990649A (zh) * 2015-02-13 2016-10-05 摩比天线技术(深圳)有限公司 小型化超宽频双极化辐射单元
DE102015005468A1 (de) * 2015-04-29 2016-11-03 Kathrein-Werke Kg Antenne
DE102015011426A1 (de) 2015-09-01 2017-03-02 Kathrein-Werke Kg Dual-polarisierte Antenne
KR101703741B1 (ko) 2015-09-11 2017-02-07 주식회사 케이엠더블유 다중편파 방사소자 및 이를 구비한 안테나
KR101652284B1 (ko) 2015-12-01 2016-08-30 주식회사 감마누 복사 소자 및 그를 이용한 기지국 안테나
KR101644445B1 (ko) 2015-12-10 2016-08-01 주식회사 감마누 기지국 안테나
CN205319307U (zh) 2015-12-16 2016-06-15 华为技术有限公司 平面阵列天线及通信设备
US11128055B2 (en) * 2016-06-14 2021-09-21 Communication Components Antenna Inc. Dual dipole omnidirectional antenna
KR101709318B1 (ko) 2016-06-23 2017-02-23 주식회사 감마누 복사 소자 및 그를 이용한 기지국 안테나
EP3280006A1 (de) 2016-08-03 2018-02-07 Li, Zimeng Doppelt polarisierte antenne
CN107069197A (zh) * 2017-01-11 2017-08-18 上海安费诺永亿通讯电子有限公司 一种十六分之一波长超低剖面双极化振子单元及基站天线
CN109149131B (zh) 2017-06-15 2021-12-24 康普技术有限责任公司 偶极天线和相关的多频带天线
CN109863645B (zh) 2017-07-07 2021-11-23 康普技术有限责任公司 超宽带宽低频带辐射元件
WO2019025006A1 (en) 2017-08-04 2019-02-07 Huawei Technologies Co., Ltd. MULTIBAND ANTENNA
CN107946774B (zh) * 2017-08-18 2018-11-13 西安肖氏天线科技有限公司 基于人工介质圆柱透镜全向多波束天线
CN107968253B (zh) * 2017-12-21 2023-11-24 京信通信技术(广州)有限公司 Mimo天线系统、天线阵列及其低频辐射单元
TWM579391U (zh) * 2019-01-21 2019-06-11 和碩聯合科技股份有限公司 電子裝置及其天線結構
US11217894B2 (en) * 2019-05-30 2022-01-04 Cyntec Co., Ltd. Antenna structure
CN110233343A (zh) * 2019-07-02 2019-09-13 京信通信技术(广州)有限公司 双频双极化天线及辐射单元
US11289824B2 (en) * 2019-08-30 2022-03-29 Samsung Electronics Co., Ltd. Dual-band and dual-polarized mm-wave array antennas with improved side lobe level (SLL) for 5G terminals
KR102258794B1 (ko) * 2019-12-13 2021-05-28 동우 화인켐 주식회사 안테나 소자 및 이를 포함하는 디스플레이 장치
CN116195133A (zh) * 2020-09-22 2023-05-30 华为技术有限公司 双极化半连续偶极子天线设备、天线阵列和天线架构
CN114069215B (zh) * 2021-11-23 2022-06-21 广东博纬通信科技有限公司 一种双同频双极化辐射单元及天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431764A2 (de) * 1989-12-04 1991-06-12 Trimble Navigation Antenne mit gekrümmten Dipolelementen
WO1997022159A1 (en) * 1995-12-14 1997-06-19 Electromagnetic Sciences, Inc. Dual polarized array antenna with central polarization control
WO1998036472A1 (en) * 1997-02-14 1998-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Dual-polarized antenna
WO1998037592A1 (en) * 1997-02-24 1998-08-27 Telefonaktiebolaget Lm Ericsson (Publ) Base station antenna arrangement
WO1998048480A1 (en) * 1997-04-23 1998-10-29 Ball Aerospace & Technologies Corp. Antenna system
WO1999017403A1 (en) * 1997-09-26 1999-04-08 Raytheon Company Dual polarized microstrip patch antenna array for pcs base stations

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1011010B (de) * 1955-10-03 1957-06-27 Rohde & Schwarz Simultan-Strahler, insbesondere fuer ultrakurze elektrische Wellen
US3124802A (en) * 1961-06-28 1964-03-10 Plural mast-mounted antennas selectively deenergizable
US3475758A (en) * 1966-05-16 1969-10-28 Giuseppe De Vito Wide band radiating system embodying disc-type dipoles
US4434425A (en) * 1982-02-02 1984-02-28 Gte Products Corporation Multiple ring dipole array
US5121127A (en) * 1988-09-30 1992-06-09 Sony Corporation Microstrip antenna
US5173715A (en) * 1989-12-04 1992-12-22 Trimble Navigation Antenna with curved dipole elements
DE4302905C1 (de) * 1993-02-02 1994-03-17 Kathrein Werke Kg Richtantenne, insbesondere Dipolantenne
CA2128738C (en) * 1993-09-10 1998-12-15 George D. Yarsunas Circularly polarized microcell antenna
GB9410994D0 (en) * 1994-06-01 1994-07-20 Alan Dick & Company Limited Antennae
US5629713A (en) * 1995-05-17 1997-05-13 Allen Telecom Group, Inc. Horizontally polarized antenna array having extended E-plane beam width and method for accomplishing beam width extension
DE19627015C2 (de) * 1996-07-04 2000-07-13 Kathrein Werke Kg Antennenfeld
SE508513C2 (sv) * 1997-02-14 1998-10-12 Ericsson Telefon Ab L M Mikrostripantenn samt gruppantenn

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0431764A2 (de) * 1989-12-04 1991-06-12 Trimble Navigation Antenne mit gekrümmten Dipolelementen
WO1997022159A1 (en) * 1995-12-14 1997-06-19 Electromagnetic Sciences, Inc. Dual polarized array antenna with central polarization control
WO1998036472A1 (en) * 1997-02-14 1998-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Dual-polarized antenna
WO1998037592A1 (en) * 1997-02-24 1998-08-27 Telefonaktiebolaget Lm Ericsson (Publ) Base station antenna arrangement
WO1998048480A1 (en) * 1997-04-23 1998-10-29 Ball Aerospace & Technologies Corp. Antenna system
WO1999017403A1 (en) * 1997-09-26 1999-04-08 Raytheon Company Dual polarized microstrip patch antenna array for pcs base stations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BECKMAN C ET AL: "ANTENNA SYSTEMS FOR POLARIZATION DIVERSITY", MICROWAVE JOURNAL, vol. 40, no. 5, 1 May 1997 (1997-05-01), pages 330, 332, 334, XP000737308, ISSN: 0192-6225 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9000985B2 (en) 1999-09-20 2015-04-07 Fractus, S.A. Multilevel antennae
US9054421B2 (en) 1999-09-20 2015-06-09 Fractus, S.A. Multilevel antennae
US8941541B2 (en) 1999-09-20 2015-01-27 Fractus, S.A. Multilevel antennae
US9240632B2 (en) 1999-09-20 2016-01-19 Fractus, S.A. Multilevel antennae
US8976069B2 (en) 1999-09-20 2015-03-10 Fractus, S.A. Multilevel antennae
US9362617B2 (en) 1999-09-20 2016-06-07 Fractus, S.A. Multilevel antennae
US9761934B2 (en) 1999-09-20 2017-09-12 Fractus, S.A. Multilevel antennae
US10056682B2 (en) 1999-09-20 2018-08-21 Fractus, S.A. Multilevel antennae
US9905940B2 (en) 1999-10-26 2018-02-27 Fractus, S.A. Interlaced multiband antenna arrays
US8896493B2 (en) 1999-10-26 2014-11-25 Fractus, S.A. Interlaced multiband antenna arrays
CN100373691C (zh) * 2000-03-16 2008-03-05 凯特莱恩工厂股份公司 双极化偶极天线阵
WO2002023669A1 (en) * 2000-09-12 2002-03-21 Andrew Corporation A dual polarised antenna
EP1246298A1 (de) * 2001-03-29 2002-10-02 Alcatel Kommunikationsmultibandantenne
US6646611B2 (en) 2001-03-29 2003-11-11 Alcatel Multiband telecommunication antenna
FR2823017A1 (fr) * 2001-03-29 2002-10-04 Cit Alcatel Antenne multibande de telecommunications
US6985123B2 (en) 2001-10-11 2006-01-10 Kathrein-Werke Kg Dual-polarization antenna array
US6930650B2 (en) 2002-01-31 2005-08-16 Kathrein-Werke Kg Dual-polarized radiating assembly
US7405710B2 (en) 2002-03-26 2008-07-29 Andrew Corporation Multiband dual polarized adjustable beamtilt base station antenna
WO2007126831A2 (en) 2006-03-30 2007-11-08 Powerwave Technologies, Inc. Broadband dual polarized base station antenna
US7629939B2 (en) 2006-03-30 2009-12-08 Powerwave Technologies, Inc. Broadband dual polarized base station antenna
EP2005522A4 (de) * 2006-03-30 2009-06-03 Powerwave Technologies Inc Duale polarisierte breitband-basisstationsantenne
EP2005522A2 (de) * 2006-03-30 2008-12-24 Powerwave Technologies, Inc. Duale polarisierte breitband-basisstationsantenne
DE102007060083A1 (de) 2007-12-13 2009-06-18 Kathrein-Werke Kg Mehrspalten-Multiband-Antennen-Array
DE102012023938A1 (de) * 2012-12-06 2014-06-12 Kathrein-Werke Kg Dualpolarisierte, omnidirektionale Antenne
US9373884B2 (en) 2012-12-07 2016-06-21 Kathrein-Werke Kg Dual-polarised, omnidirectional antenna
CN105706297A (zh) * 2013-11-05 2016-06-22 株式会社Kmw 多频带多极化无线通信天线
CN105706297B (zh) * 2013-11-05 2020-01-21 株式会社Kmw 多频带多极化无线通信天线

Also Published As

Publication number Publication date
ES2203196T3 (es) 2004-04-01
HK1038280A1 (en) 2002-03-08
KR20010042252A (ko) 2001-05-25
DE19823749A1 (de) 1999-12-09
CA2331681C (en) 2003-04-15
EP1082782A1 (de) 2001-03-14
AU4265199A (en) 1999-12-13
KR100466960B1 (ko) 2005-01-24
US6333720B1 (en) 2001-12-25
CA2331681A1 (en) 1999-12-02
DE19823749C2 (de) 2002-07-11
DE59906301D1 (de) 2003-08-21
CN1303528A (zh) 2001-07-11
NZ506976A (en) 2002-08-28
EP1082782B1 (de) 2003-07-16
CN1270409C (zh) 2006-08-16
BR9911595B1 (pt) 2013-07-16
BR9911595A (pt) 2001-02-13
AU755335B2 (en) 2002-12-12

Similar Documents

Publication Publication Date Title
EP1082782B1 (de) Dual polarisierte mehrbereichsantenne
EP0916169B1 (de) Antennenanordnung
EP1082781B1 (de) Antennenarray mit mehreren vertikal übereinander angeordneten primärstrahler-modulen
DE19627015C2 (de) Antennenfeld
DE10256960B3 (de) Zweidimensionales Antennen-Array
DE69901026T2 (de) Doppelbandantenne
EP1470615B1 (de) Dualpolarisierte strahleranordnung
DE19829714B4 (de) Antenne mit dualer Polarisation
EP1749331B1 (de) Mobilfunkantenne mit strahlformungselement
DE68925992T2 (de) Dualpolarisierte, in gedruckter Schaltungstechnik ausgeführte Antenne, deren Elemente, mit gedruckten Gitterschaltungselementen darin einbegriffen, mit den Speiseleitungen kapazitiv gekoppelt sind
DE68910677T2 (de) Mikrostreifenantenne.
EP2929589B1 (de) Dualpolarisierte, omnidirektionale antenne
EP1344277A1 (de) Antenne, insbesondere mobilfunkantenne
DE102013012305A1 (de) Breitband-Antennenarray
DE102007060083A1 (de) Mehrspalten-Multiband-Antennen-Array
EP1525642B1 (de) Zweidimensionales antennen-array
WO2016050336A1 (de) Multiband-strahlersystem
DE202004008770U1 (de) Dualpolarisierte Antenne
EP2514027B1 (de) Dualpolarisierte gruppenantenne, insbesondere mobilfunkantenne
DE2314210A1 (de) Antennen-anordnung mit einzelantennenelementen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99806591.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN KR NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 42651/99

Country of ref document: AU

Ref document number: 1999953403

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 506976

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1020007010785

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09673727

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2331681

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1999953403

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007010785

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 42651/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1999953403

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007010785

Country of ref document: KR