WO1999049322A1 - Sensoranordnung zur erfassung von bewegungen - Google Patents

Sensoranordnung zur erfassung von bewegungen Download PDF

Info

Publication number
WO1999049322A1
WO1999049322A1 PCT/EP1999/001752 EP9901752W WO9949322A1 WO 1999049322 A1 WO1999049322 A1 WO 1999049322A1 EP 9901752 W EP9901752 W EP 9901752W WO 9949322 A1 WO9949322 A1 WO 9949322A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sensor
arrangement according
sensor arrangement
additional information
Prior art date
Application number
PCT/EP1999/001752
Other languages
English (en)
French (fr)
Inventor
Peter Lohberg
Heinz Loreck
Wolfgang Fey
Michael Zydek
Original Assignee
Continental Teves Ag & Co. Ohg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves Ag & Co. Ohg filed Critical Continental Teves Ag & Co. Ohg
Priority to EP99915641A priority Critical patent/EP1064559A1/de
Priority to JP2000538241A priority patent/JP2002507751A/ja
Priority to US09/646,692 priority patent/US6542847B1/en
Publication of WO1999049322A1 publication Critical patent/WO1999049322A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/489Digital circuits therefor

Definitions

  • the invention relates to a sensor arrangement for detecting movements, in which a sensor signal is generated in an active sensor by an encoder acted upon by the movement, and which has a first device with which the sensor signal together with at least one piece of additional information can be transmitted to an evaluation device Output signal is implemented.
  • Sensor arrangements of this type are known, for example, from WO 98/09173 and are used in particular for detecting the turning behavior of a vehicle wheel (wheel speed sensors) in slip-controlled brakes or anti-lock braking systems.
  • the rotary movement is carried out by a pulse generator present in the encoder (for example a magnetic pole wheel or a steel gear wheel) and detected by an active sensor, the transducer of which, for. B. is a Hall element or a magnetoresistive bridge (AMR bridge), the / which responds specifically to modulations of the flux density or the field strength by the pulse generator.
  • a pulse generator present in the encoder (for example a magnetic pole wheel or a steel gear wheel) and detected by an active sensor, the transducer of which, for. B. is a Hall element or a magnetoresistive bridge (AMR bridge), the / which responds specifically to modulations of the flux density or the field strength by the pulse generator.
  • AMR bridge magnetoresistive bridge
  • the signal voltage generated in this way is converted with the aid of an amplifier / trigger circuit into a binary sensor signal with two constant amplitude values, the edge changes of which are evaluated to determine the speed of movement. Since the signal voltage depends on the size of the air gap between the sensor and the encoder, it must be ensured that the air gap does not exceed a certain limit air gap.
  • the sensor signal present at the sensor output leaves none due to the internal amplifier / trigger circuit
  • the invention is therefore based on the object of providing a sensor arrangement of the type mentioned at the outset in which the size of the air gap between the active sensor and an encoder and in particular impermissible changes in the air gap can be detected in order to provide a corresponding status signal in good time before a possible exposure of the sensor signal generate or take other precautions.
  • this solution enables a relatively simple evaluation and determination or control of the size of the air gap. This can be done after installing the sensor arrangement and in the course of regular maintenance. - 3 -
  • the first device then preferably generates a pulse signal in which the sensor signal is coded with first current pulses and the additional information is coded with second current pulses, a first current level being provided for the first current pulses and a second current level being provided for the second current pulses.
  • the first current level is approximately twice as large as the second current level relative to a common reference level.
  • the first device preferably comprises a signal processing device with which further additional information in the form of status signals or numerical values can be transmitted, which contain, for example, information about a direction of rotation, temperatures, etc.
  • FIG. 1 is a block diagram of a sensor arrangement according to the invention
  • Fig. 2 shows a course of a pulse signal at the output of the sensor arrangement and Fig. 3 shows the pulse signal in detail.
  • the sensor arrangement comprises an active sensor 1, in which a sensor signal is generated by an encoder E, which is acted upon by a movement and which is transmitted to a first device 2, 3, 4, 5 together with several additional - 4 -
  • the encoder E contains a pulse generator which executes the movement to be measured, which is generally a rotary movement.
  • the pulse generator has, for example, a steel gearwheel or a permanent magnetic structure, the movement of which generates a corresponding signal voltage in a sensor M (Hall element or magnetoresistive bridge) present in the sensor.
  • This signal voltage is converted in a known manner with a sensor-internal amplifier / trigger circuit (not shown) into a sensor signal 60 (FIG. 2) with two constant amplitude values.
  • the active sensor 1 contains a second device la, with which the signal voltage dependent on the air gap d between the active sensor 1 and the encoder E is measured, and a third device 1b, which is used to measure a sensor temperature.
  • the outputs of the sensor 1 are connected to the inputs of a signal processing device 2. Furthermore, a shift register 3 is provided, the inputs of which are applied to the outputs of the signal processing device 2.
  • the measured signal voltage is transmitted to the signal processing device 2 as an analog value.
  • the analog signal is digitized by 3-bit coding and converted into a bit sequence 40 (bits 5 to 7).
  • the measured signal voltage is compared in the signal processing device with a minimum value and, in the case in which the signal voltage is smaller than the minimum value, a first 1-bit status signal (bit 0) is generated.
  • the signal processing device 2 further preferably comprises a direction of rotation detection, with which a second 1-bit status signal (bit 4) for identifying the direction of rotation, that is to say a rotation of the encoder in a reference direction or opposite thereto, is generated.
  • bit 4 a second 1-bit status signal
  • a third 1-bit status signal (bit 3) can also be derived from the detected direction of rotation, which indicates the validity of the direction of rotation.
  • a fourth status signal (bit 2) can be generated from the temperature measured with the third device 1b, which indicates whether the temperature of the sensor arrangement is in a permissible range.
  • bit 1 Another bit signal (bit 1) is reserved for additional information, while bit 8 is a parity bit. - 6th
  • bit-coded signals are transmitted as additional information by the signal processing device 2 in parallel into the shift register 3 and temporarily stored there.
  • the state generator 4 controls the current source 5 in such a way that a pulse signal is present at its output 5c, which contains both the movement information (first current pulses Ig) and the additional information (second current pulses IM), which in the form of a signal in FIGS and 3 shown data protocol are transmitted.
  • the different current levels can be generated by switching between different individual current sources 5a, 5b or in some other way.
  • the state generator 4 Upon receipt of the sensor signal 60, the state generator 4 controls the current source 5 in such a way that a first current pulse of the height Ig with the same duration 10 is always generated at its output 5c.
  • the first current pulse is used to encode one of the edges 61, 62 of the sensor signal 60, the frequency of which is higher, the greater the speed of rotation or movement of the pulse generator in the encoder E. - 7 -
  • Each first current pulse is followed by a first pause interval of constant length 20, during which the current level is reduced to the reference level II.
  • a first bit sequence 30 comprises the current pulses (bits) 0 to n and is used for coding status signals according to the 1-out-of-n code, so that each individual bit can be assigned separate status information.
  • this first bit sequence 30 comprises bits 0 to 4 with the following assignment:
  • Bit 0 is a status signal to indicate that an admissible air gap limit value has been exceeded, which is derived from the measurement of the signal voltage at the sensor and the resulting air gap field strength between the sensor and the encoder of the encoder.
  • the permissible air gap limit value is considered to be exceeded when the sensor la (magnetoresistive bridge or Hall element) of the active sensor 1 generates a signal voltage which is below twice the hysteresis of the above-mentioned, downstream trigger circuit. Bit 1 is reserved for additional applications.
  • Bit 2 represents a status signal for identifying the exceeding of a wheel speed-independent limit value of an additional measured variable, such as a temperature, which is measured with the third device 1b.
  • Bit 3 is a status signal to confirm the validity of the direction of rotation of the pulse generator indicated by bit 4.
  • bit 4 is a status signal for the direction of rotation of the pulse generator compared to a specified reference direction of rotation.
  • a immediately following second bit sequence 40 is used in its entirety to encode numerical values, so that the bits (n + 1) to (p-1) can be used to transmit the measured values of analog signal quantities which result from the (magnetic) interface between the Encoder E and the active sensor 1 can be obtained.
  • the length of the second bit sequence 40 is arbitrary. Overall, it can preferably be used to transmit a single analog value. On the other hand, a combination of analog values can also be transmitted simultaneously, with each analog value being assigned a defined number of bits and their position in the second bit sequence 40. The different analog values can also be combined with different codes. - 9 -
  • the second bit sequence 40 comprises three bits 5 to 7, which are used for 3-bit coding of a numerical value representing the air gap field strength, which is detected by the transducer la of the active sensor, the bits 5, 6, 7 increasing value (LSB-MSB).
  • This numerical value represents in particular the signal voltage at the sensor la of the sensor.
  • a single parity bit p follows the second bit sequence 40.
  • a second pause interval with a duration of 50 and a current level of level II (cf. FIG. 2).
  • the duration depends on the speed of movement of the pulse generator and extends until a new first current pulse I H occurs , whereupon the pulse signal is transmitted again.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Es wird eine Sensoranordnung zur Erfassung von Bewegungen beschrieben, bei der durch einen von der Bewegung beaufschlagten Encoder (E) in einem aktiven Sensor (1) ein Sensorsignal erzeugt wird, und die eine erste Einrichtung (2, 3, 4, 5) aufweist, mit der das Sensorsignal zusammen mit mindestens einer Zusatzinformation in ein zu einer Auswerteeinrichtung übertragbares Ausgangssignal umgesetzt wird, und die sich insbesondere dadurch auszeichnet, dass eine zweite Einrichtung (1a) vorgesehen ist, mit der eine von einem Luftspalt (d) zwischen dem aktiven Sensor (1) und dem Encoder (E) abhängige Signalspannung erfaßt und der ersten Einrichtung (2, 3, 4, 5) zur Übertragung als Zusatzinformation zugeführt wird.

Description

Sensoranordnung zur Erfassung von Bewegungen
Die Erfindung betrifft eine Sensoranordnung zur Erfassung von Bewegungen, bei der durch einen von der Bewegung beaufschlagten Encoder in einem aktiven Sensor ein Sensorsignal erzeugt wird, und die eine erste Einrichtung aufweist, mit der das Sensorsignal zusammen mit mindestens einer Zusatzinformation in ein zu einer Auswerteeinrichtung übertragbares Ausgangssignal umgesetzt wird.
Sensoranordnungen dieser Art sind zum Beispiel aus der WO 98/09173 bekannt und finden insbesondere zur Erfassung des Drehverhaltens eines Fahrzeugrades (Raddrehzahlsensoren) bei schlupfgeregelten Bremsen bzw. Antiblockiersystemen Anwendung. Die Drehbewegung wird dabei von einem in dem Encoder vorhandenen Impulsgeber (zum Beispiel einem magnetischen Polrad oder einem Stahlzahnrad) ausgeführt und von einem aktiven Sensor erfaßt, dessen Meßwertaufnehmer z. B. ein Hallelement oder eine magnetoresistive Brücke (AMR- Brücke) ist, das/die effektspezifisch auf Modulationen der Flußdichte bzw. der Feldstärke durch den Impulsgeber synchron anspricht. In dem aktiven Sensor wird die dadurch erzeugte Signalspannung mit Hilfe einer Verstärker- /Triggerschaltung in ein binäres Sensorsignal mit zwei konstanten Amplitudenwerten umgesetzt, deren Flankenwechsel zur Ermittlung der Bewegungsgeschwindigkeit ausgewertet werden. Da die Signalspannung von der Größe des Luftspaltes zwischen dem Sensor und dem Encoder abhängig ist, muß gewährleistet sein, daß der Luftspalt einen bestimmten Grenz- luftspalt nicht übersteigt.
Das an dem Sensorausgang anliegende Sensorsignal läßt aufgrund der internen Verstärker-/Triggerschaltung keinen
BKÄUNGS QPIE - 2 -
Rückschluß auf die tatsächliche Größe des Luftspaltes zu. Es ist also nicht auszuschließen, daß Fehler oder Aussetzer auftreten, wenn aufgrund ungünstiger Zustände der Sensoranordnung (zu großer Einbauluftspalt, starke Temperaturschwankungen, Vibrationen) der Luftspalt den Grenzluftspalt zumindest vorübergehend übersteigt und die Signalspannung die interne Triggerschwelle unterschreitet.
Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Sensoranordnung der eingangs genannten Art zu schaffen, bei der die Größe des Luftspaltes zwischen dem aktiven Sensor und einem Encoder und insbesondere unzulässige Änderungen des Luftspaltes erfaßbar sind, um rechtzeitig vor einem möglichen Aussetzen des Sensorsignals ein entsprechendes Statussignal erzeugen oder andere Vorkehrungen vornehmen zu können.
Gelöst wird diese Aufgabe gemäß Anspruch 1 bei einer eingangs genannten Sensoranordnung dadurch, daß eine zweite Einrichtung vorgesehen ist, mit der eine von einem Luftspalt zwischen dem aktiven Sensor und dem Encoder abhängige Signalspannung erfaßt und der ersten Einrichtung zur Übertragung als Zusatzinformation zugeführt wird.
Diese Lösung ermöglicht insbesondere im Zusammenhang mit der Umsetzung des binären Sensorsignals mittels der ersten Einrichtung in ein Pulssignal eine relativ einfache Auswertung und Bestimmung oder Kontrolle der Größe des Luftspaltes. Dies kann nach einem Einbau der Sensoranordnung und im Zuge regelmäßiger Wartungen erfolgen. - 3 -
Die Unteransprüche haben vorteilhafte Weiterbildungen der Erfindung zum Inhalt.
Danach erzeugt die erste Einrichtung vorzugsweise ein Pulssignal, bei dem das Sensorsignal mit ersten Stromimpulsen und die Zusatzinformation mit zweiten Stromimpulsen codiert ist, wobei für die ersten Stromimpulse ein erster und für die zweiten Stromimpulse ein zweiter Strompegel vorgesehen ist. Der erste Strompegel ist dabei relativ zu einem gemeinsamen Bezugspegel etwa doppelt so groß wie der zweite Strompegel.
Weiterhin umfaßt die erste Einrichtung vorzugsweise eine Signalverarbeitungeinrichtung, mit der weitere Zusatzinformationen in Form von Statussignalen oder Zahlenwerten übertragen werden können, die zum Beispiel Angaben über eine Drehrichtung, über Temperaturen usw. enthalten.
Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung einer bevorzugten Ausführungsform anhand der Zeichnung. Es zeigt:
Fig. 1 ein Blockschaltbild einer erfindungsgemäßen Sensoranordnung,
Fig. 2 einen Verlauf eines Pulssignals am Ausgang der Sensoranordnung und Fig. 3 das Pulssignal im Detail.
Die Sensoranordnung umfaßt gemäß Figur 1 einen aktiven Sensor 1, in dem durch einen von einer Bewegung beaufschlagten Encoder E ein Sensorsignal erzeugt wird, das mit einer ersten Einrichtung 2, 3, 4, 5 zusammen mit mehreren Zusatzin- - 4 -
formationen in ein zu einer Auswerteeinrichtung (nicht dargestellt) übertragbares Ausgangssignal 5c umgesetzt wird.
Der Encoder E beinhaltet einen Impulsgeber, der die zu messende Bewegung, die im allgemeinen eine Drehbewegung ist, ausführt. Wie eingangs bereits erläutert wurde, weist der Impulsgeber zum Beispiel ein Stahlzahnrad oder eine permanentmagnetische Struktur auf, durch deren Bewegung in einem in dem Sensor vorhandenen Meßwertaufnehmer M (Hallelement bzw. magnetoresistive Brücke) eine entsprechende Signalspannung erzeugt wird. Diese Signalspannung wird in bekannter Weise mit einer sensorinternen Verstärker- /Triggerschaltung (nicht dargestellt) in ein Sensorsignal 60 (Figur 2) mit zwei konstanten Amplitudenwerten umgewandelt.
Zur Erfassung von Zusatzinformationen beinhaltet der aktive Sensor 1 eine zweite Einrichtung la, mit der die von dem Luftspalt d zwischen dem aktiven Sensor 1 und dem Encoder E abhängige Signalspannung gemessen wird, sowie eine dritte Einrichtung lb, die zur Messung einer Sensortemperatur dient.
Die Ausgänge des Sensors 1 sind mit den Eingängen einer Signalverarbeitungeinrichtung 2 verbunden. Weiterhin ist ein Schieberegister 3 vorgesehen, dessen Eingänge an den Ausgängen der Signalverarbeitungeinrichtung 2 anliegen. Ein Zustandsgenerator 4, der sowohl mit der Signalverarbeitungeinrichtung 2, als auch mit dem Schieberegister 3 verbunden ist, beaufschlagt eine nachgeschaltete Stromquelle 5, an deren Ausgang 5c das zu übertragende Pulssignal anliegt. - 5 -
Die gemessene Signalspannung, deren Größe von der Größe des momentanen Luftspaltes d zu dem Encoder abhängig ist, wird als analoger Wert zu der Signalverarbeitungeinrichtung 2 übertragen. Dort wird das analoge Signal durch 3-Bit- Codierung digitalisiert und in eine Bitsequenz 40 (Bits 5 bis 7) umgesetzt.
Weiterhin wird die gemessene Signalspannung in der Signalverarbeitungeinrichtung mit einem Minimalwert verglichen und in dem Fall, in dem die Signalspannung kleiner ist, als der Minimalwert, ein erstes 1-Bit-Statussignal (Bit 0) erzeugt.
Die Signalverarbeitungseinrichtung 2 umfaßt ferner vorzugsweise eine Drehrichtungserkennung, mit der ein zweites 1- Bit-Statussignal (Bit 4) für die Kennzeichnung der Drehrichtung, das heißt eine Drehung des Encoders in einer Bezugsrichtung oder entgegengesetzt dazu, erzeugt wird.
Aus der erkannten Drehrichtung kann auch ein drittes 1-Bit- Statussignal (Bit 3) abgeleitet werden, das die Gültigkeit der Drehrichtung anzeigt.
Schließlich kann aus der mit der dritten Einrichtung lb gemessenen Temperatur ein viertes Statussignal (Bit 2) erzeugt wird, das anzeigt, ob die Temperatur der Sensoranordnung in einem zulässigen Bereich liegt.
Ein weiteres Bitsignal (Bit 1) ist für weitere Zusatzinformationen reserviert, während Bit 8 ein Parity-Bit ist. - 6
Diese Bit-codierten Signale werden als Zusatzinformationen durch die Signalverarbeitungseinrichtung 2 parallel in das Schieberegister 3 übertragen und dort zwischengespeichert. Das durch den aktiven Sensor 1 erfaßte Signalspannung, die in bekannter Weise in ein binäres periodisches Sensorsignal 60 mit zwei konstanten .Amplitudenwerten umgesetzt wird, wird direkt dem Zustandsgenerator 4 zugeführt.
Der Zustandsgenerators 4 steuert die Stromquelle 5 in der Weise an, daß an deren Ausgang 5c ein Pulssignal anliegt, das sowohl die Bewegungsinformationen (erste Stromimpulse Ig), als auch die Zusatzinformationen (zweite Stromimpulse IM) enthält, die in Form eines in den Figuren 2 und 3 dargestellten Datenprotokolls übertragen werden.
Zur Unterscheidung der verschiedenen Bitsignale werden diese vorzugsweise mit drei verschiedenen Strompegeln II, 1^, IJJ erzeugt, deren Nennwerte in folgendem Verhältnis zueinander stehen: iM = 2 x IL; IH = 4 x IL. Die unterschiedlichen Strompegel können dabei durch Umschalten zwischen verschiedenen einzelnen Stromquellen 5a, 5b oder auf andere Weise erzeugt werden.
Mit dem Empfang des Sensorsignals 60 steuert der Zustandsgenerator 4 die Stromquelle 5 in der Weise an, daß an deren Ausgang 5c ein erster Stromimpuls der Höhe Ig mit stets gleicher Dauer 10 erzeugt wird. Der erste Stromimpuls dient zur Codierung jeweils einer der Flanken 61, 62 des Sensorsignals 60, wobei deren Frequenz um so höher ist, je größer die Dreh- bzw. Bewegungsgeschwindigkeit des Impulsgebers in dem Encoder E ist. - 7 -
An jeden ersten Stromimpuls schließt sich ein erstes Pausenintervall der konstanten Länge 20 an, während dem der Strompegel auf den Bezugspegel II abgesenkt ist.
Im Anschluß daran werden die in dem Schieberegister 3 gespeicherten Bit-codierten Signale (Zusatzinformationen) seriell ausgelesen und in den Zustandsgenerator 4 übertragen. Dieser erzeugt dann am Ausgang 5c der Stromquelle 5 die zweiten Stromimpulse I^, die verschiedene Bitsequenzen bilden. Eine erste Bitsequenz 30 umfaßt die Stromimpulse (Bits) 0 bis n und dient zur Codierung von Statussignalen nach dem 1-aus-n-Code, so daß jedem einzelnen Bit eine separate Statusinformation zugeordnet werden kann.
Bei dem in Figur 3 dargestellten Beispiel umfaßt diese erste Bitsequenz 30 die Bits 0 bis 4 mit folgender Zuordnung:
Bit 0 ist ein Statussignal zur Kennzeichnung des Überschreitens eines zulässigen Luftspaltgrenzwertes, das aus der Messung der Signalspannung an dem Meßwertaufnehmer und der sich daraus ergebenden Luftspaltfeldstärke zwischen diesem und dem Impulsgeber des Encoders abgeleitet wird. Für die bevorzugte Anwendung der hier beschriebenen Sensoranordnung zur Erfassung von Raddrehzahlen gilt der zulässige Luftspaltgrenzwert als überschritten, wenn der Meßwertaufnehmer la (magnetoresistive Brücke oder Hallelement) des aktiven Sensors 1 eine Signalspannung erzeugt, die das zweifache der Hysterese der oben erwähnten, nachgeschalteten Triggerschaltung unterschreitet. Bit 1 ist für zusätzliche Anwendungen reserviert.
Bit 2 stellt ein Statussignal zur Kennzeichnung des Überschreitens eines Raddrehzahl-unabhängigen Grenzwertes einer zusätzlichen Meßgröße wie zum Beispiel einer Temperatur dar, die mit der dritten Einrichtung lb gemessen wird.
Bit 3 ist ein Statussignal zur Bestätigung der Gültigkeit der durch Bit 4 ausgewiesenen Drehrichtung des Impulsgebers .
Bit 4 ist schließlich ein Statussignal für die Drehrichtung des Impulsgebers gegenüber einer festgelegten Bezugsdrehrichtung.
Eine sich unmittelbar daran anschließende zweite Bitsequenz 40 dient in ihrer Gesamtheit zur Codierung von Zahlenwerten, so daß mit den Bits (n+1) bis (p-1) die Meßwerte analoger Signalgrößen übertragen werden können, die aus der (magnetischen) Schnittstelle zwischen dem Impulsgeber des Encoders E und dem aktiven Sensor 1 gewonnen werden.
Grundsätzlich gilt, daß die Länge der zweiten Bitsequenz 40 beliebig ist. Sie kann insgesamt vorzugsweise zur Übertragung eines einzelnen Analogwertes genutzt werden. Andererseits kann auch eine Kombination von Analogwerten gleichzeitig übertragen werden, wobei jedem Analogwert eine definierte Anzahl von Bits und deren Position in der zweiten Bitsequenz 40 zugeordnet ist. Die verschiedenen Analogwerte können auch mit unterschiedlichen Codierungen kombiniert werden. - 9 -
Bei der bevorzugten Anwendung umfaßt die zweite Bitsequenz 40 drei Bits 5 bis 7, die zur 3-Bit-Codierung eines die Luftspaltfeldstärke darstellenden Zahlenwertes dienen, die durch den Meßwertaufnehmer la des aktiven Sensors erfaßt wird, wobei die Bits 5, 6, 7 aufsteigende Wertigkeit (LSB- MSB) aufweisen. Dieser Zahlenwert stellt insbesondere die Signalspannung an dem Meßwertaufnehmer la des Sensors dar.
An die zweite Bitsequenz 40 schließt sich ein einzelnes Pa- rity-Bit p an.
Anschließend folgt ein zweites Pausenintervall mit der Dauer 50 und einem Strompegel der Höhe II (vgl. Figur 2). Die Dauer ist von der Bewegungsgeschwindigkeit des Impulsgebers abhängig und erstreckt sich bis zum Auftreten eines neuen ersten Stromimpulses IH, woraufhin das Pulssignal erneut übertragen wird.

Claims

- 10 -
Patentansprüche
1. Sensoranordnung zur Erfassung von Bewegungen, bei der durch einen von der Bewegung beaufschlagten Encoder in einem aktiven Sensor ein Sensorsignal erzeugt wird, und die eine erste Einrichtung aufweist, mit der das Sensorsignal zusammen mit mindestens einer Zusatzinformation in ein zu einer Auswerteeinrichtung übertragbares Ausgangssignal umgesetzt wird, dadurch gekennzeichnet, daß eine zweite Einrichtung (la) vorgesehen ist, mit der eine von einem Luftspalt (d) zwischen dem aktiven Sensor (1) und dem Encoder (E) abhängige Signalspannung erfaßt und der ersten Einrichtung (2, 3, 4, 5) zur Übertragung als Zusatzinformation zugeführt wird.
2. Sensoranordnung nach Anspruch 1, dadurch gekennzeichnet, daß das von der ersten Einrichtung (2, 3, 4, 5) erzeugte Ausgangssignal ein Pulssignal ist, bei dem das Sensorsignal mit ersten Stromimpulsen und die Zusatzinformation mit zweiten Stromimpulsen codiert ist.
3. Sensoranordnung nach Anspruch 2, dadurch gekennzeichnet, daß zur Erzeugung der ersten und zweiten Stromimpulse ein erster bzw. ein zweiter Strompegel (Ig, IM) mit einem gemeinsamen Bezugspegel (Ij vorgesehen ist, wobei der erste Strompegel (Ig) etwa doppelt so hoch ist wie der zweite Strompegel (IM)- - 1 1 -
Sensoranordnung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß eine dritte Einrichtung (lb) zur Erfassung mindestens einer weitere Zusatzinformation wie eines Temperatursignals vorgesehen ist, das der ersten Einrichtung (2, 3, 4, 5) zugeführt wird.
Sensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die mindestens eine Zusatzinformation durch die erste Einrichtung (2, 3, 4, 5) in Form einer ersten und zweiten Bitsequenz (30, 40) zu einer Auswerteeinrichtung übertragbar ist, wobei die erste Bitsequenz (30) Statussignale und die zweite Bitsequenz (40) codierte Zahlenwerte beinhaltet.
Sensoranordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zweite Einrichtung (la) eine an einen Meßwertaufnehmer (M) des aktiven Sensors (1) angeschlossene Spannungs-Meßeinrichtung ist.
Sensoranordnung nach einem der Ansprüche 2 bis 6,dadurch gekennzeichnet, daß die erste Einrichtung eine an den aktiven Sensor (1) angeschlossene Signalverarbeitungseinrichtung (2) zum Umsetzen des Sensorsignals und der mindestens einen Zusatzinformation in Bitsequenzen, ein Schieberegister (3) zum Zwischenspeichern der Bitsequenzen und einen daran angeschlossenen Zustandsgenerator (4) zum Beaufschlagen einer - 12 -
Stromquelle (5) zur Erzeugung des zu übertragenden Pulssignals aufweist.
8. Sensoranordnung nach Anspruch 7, dadurch gekennzeichnet, daß die Signalverarbeitungseinrichtung einen Komparator zum Vergleich der Signalspannung mit einem Minimalwert und zur Erzeugung eines ersten Statussignals bei Unterschreiten des Minimalwertes aufweist.
9. Sensoranordnung nach Anspruch 7 , dadurch gekennzeichnet, daß die Signalverarbeitungseinrichtung eine Drehrichtungserkennung zur Erzeugung eines zweiten Statussignals aufweist, das eine Drehrichtung des Encoders anzeigt.
10. Sensoranordnung nach Anspruch 7, dadurch gekennzeichnet, daß die Signalverarbeitungseinrichtung eine Einheit zur Erkennung der Gültigkeit der Drehrichtung und zur Erzeugung eines dritten Statussignals aufweist, das die Gültigkeit der Drehrichtung anzeigt.
PCT/EP1999/001752 1998-03-20 1999-03-17 Sensoranordnung zur erfassung von bewegungen WO1999049322A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99915641A EP1064559A1 (de) 1998-03-20 1999-03-17 Sensoranordnung zur erfassung von bewegungen
JP2000538241A JP2002507751A (ja) 1998-03-20 1999-03-17 運動検出用センサ装置
US09/646,692 US6542847B1 (en) 1998-03-20 1999-03-17 Sensor system for detecting movements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19812139.3 1998-03-20
DE19812139 1998-03-20

Publications (1)

Publication Number Publication Date
WO1999049322A1 true WO1999049322A1 (de) 1999-09-30

Family

ID=7861586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/001752 WO1999049322A1 (de) 1998-03-20 1999-03-17 Sensoranordnung zur erfassung von bewegungen

Country Status (5)

Country Link
US (1) US6542847B1 (de)
EP (1) EP1064559A1 (de)
JP (1) JP2002507751A (de)
DE (1) DE19911774B4 (de)
WO (1) WO1999049322A1 (de)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042133A1 (de) * 2000-11-22 2002-05-30 Continental Teves Ag & Co. Ohg Aktiver magnetsensor für elektronische bremssysteme
WO2002090999A1 (de) * 2001-05-10 2002-11-14 Continental Teves Ag & Co. Ohg Raddrehzahlsensoranordnung mit übertragung von zusatzinformationen
EP1241067A3 (de) * 2001-03-13 2003-09-17 Ntn Corporation Radsupport mit Lageranordnung
WO2003087845A2 (de) * 2002-04-18 2003-10-23 Continental Teves Ag & Co. Ohg Verfahren und vorrichtung zur erfassung von ortsverschiebungen und drehbewegungen
WO2004010089A1 (en) * 2002-07-23 2004-01-29 Services Petroliers Schlumberger Compact device for measuring the speed and the direction of rotation of an object
WO2009087504A1 (en) * 2008-01-04 2009-07-16 Nxp B.V. Sensor device
EP2006650A3 (de) * 2007-06-21 2010-08-11 Robert Bosch Gmbh Magnetempfindliche Sensoranordnung
WO2012000718A1 (de) * 2010-07-02 2012-01-05 Schaeffler Technologies Gmbh & Co. Kg Verfahren und anordnung zur übertragung von sensorsignalen
US8624588B2 (en) 2008-07-31 2014-01-07 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation as a ferromagnetic object
US8754640B2 (en) 2012-06-18 2014-06-17 Allegro Microsystems, Llc Magnetic field sensors and related techniques that can provide self-test information in a formatted output signal
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10495700B2 (en) 2016-01-29 2019-12-03 Allegro Microsystems, Llc Method and system for providing information about a target object in a formatted output signal
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10495485B2 (en) 2016-05-17 2019-12-03 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10656170B2 (en) 2018-05-17 2020-05-19 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010689A1 (de) * 2000-08-02 2002-02-07 Continental Teves Ag & Co. Ohg Aktiver magnetfeldsensor, dessen verwendung, verfahren und vorrichtung
DE10050392A1 (de) * 2000-10-12 2002-04-18 Heidenhain Gmbh Dr Johannes Positionsmesseinrichtung und Verfahren zum Betrieb einer Positionsmesseinrichtung
DE10137835A1 (de) * 2001-08-02 2003-02-20 Siedle Horst Gmbh & Co Kg Schnittstelle zum seriellen Übertragen von digitalen Daten
DE102008046957A1 (de) 2007-10-20 2009-04-23 Continental Teves Ag & Co. Ohg Modular aufgebautes elektronisches Kraftfahrzeugregelungssystem
US8122159B2 (en) 2009-01-16 2012-02-21 Allegro Microsystems, Inc. Determining addresses of electrical components arranged in a daisy chain
DE102009015711A1 (de) * 2009-03-31 2010-10-07 Baumer Innotec Ag Überwachung einer Mikrogeneratorsschaltung einer Drehgebervorrichtung
DE102010022892A1 (de) * 2010-06-07 2011-12-08 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Erfassung einer Lagerverkippung eines Wälzlagers und Wälzlager hierzu
US9222990B2 (en) 2012-06-18 2015-12-29 Allegro Microsystems, Llc Magnetic field sensors and related techniques that can communicate at least one of three or more potential categories in which one or more characteristic values of a proximity signal responsive to a proximity of a sensed object are categorized
DE102013000205A1 (de) 2013-01-08 2014-07-10 Wabco Gmbh Steuergerät zur Steuerung einer Bremsanlage eines Fahrzeugs, Drehzahlsensoranordnung, Bremsanlage und Fahrzeug damit sowie damit durchführbares Verfahren zur Drehzahlsensierung
US9973835B2 (en) * 2013-01-28 2018-05-15 Infineon Technologies Ag Signal generator, a decoder, a method for generating a transmit signal and a method for determining speed data
US10026306B2 (en) * 2013-01-28 2018-07-17 Infineon Technologies Ag Signal generator, decoder, method for generating a transmit signal and method for determining speed data
US9076272B2 (en) * 2013-05-28 2015-07-07 Infineon Technologies Ag Wheel speed sensor and interface systems and methods
EP2999943B1 (de) 2013-06-20 2022-04-06 Allegro MicroSystems, LLC System und verfahren zur bereitstellung einer für einen signaturbereich in einem ziel und eine drehrichtung repräsentativen signalcodierung
DE102014202473A1 (de) * 2014-02-11 2015-08-13 Continental Teves Ag & Co. Ohg Fehlerübermittlung im Zweipegel-Drehzahlsensor
US10106134B2 (en) * 2013-09-06 2018-10-23 Continental Teves Ag & Co. Ohg Error transmission in two-level rotational speed sensor
US9787495B2 (en) 2014-02-18 2017-10-10 Allegro Microsystems, Llc Signaling between master and slave components using a shared communication node of the master component
US9634715B2 (en) 2014-02-18 2017-04-25 Allegro Microsystems, Llc Signaling between master and slave components using a shared communication node of the master component
US9172565B2 (en) 2014-02-18 2015-10-27 Allegro Microsystems, Llc Signaling between master and slave components using a shared communication node of the master component
US9851416B2 (en) 2014-07-22 2017-12-26 Allegro Microsystems, Llc Systems and methods for magnetic field sensors with self-test
US10156461B2 (en) 2014-10-31 2018-12-18 Allegro Microsystems, Llc Methods and apparatus for error detection in a magnetic field sensor
US10481218B2 (en) 2016-09-08 2019-11-19 Allegro Microsystems, Llc Providing information about a target object in a formatted output signal
US10216559B2 (en) 2016-11-14 2019-02-26 Allegro Microsystems, Llc Diagnostic fault communication
CN108122401B (zh) * 2016-11-29 2021-10-15 英飞凌科技股份有限公司 信号发生器、解码器、用于生成传输信号的方法以及用于确定速度数据的方法
CN107031538B (zh) * 2016-12-19 2019-12-31 安徽江淮汽车集团股份有限公司 一种车辆行驶方向识别方法及系统
CN106595465B (zh) * 2016-12-19 2019-12-17 安徽江淮汽车集团股份有限公司 一种检测轮速传感器气隙的方法及系统
DE102016125183B4 (de) 2016-12-21 2022-01-27 Infineon Technologies Ag Vorrichtungen zum Codieren und Decodieren von Radgeschwindigkeitssensorsignalen und Verfahren zum Kommunizieren von codierten Radgeschwindigkeitssensorsignalen
US10677615B2 (en) 2017-07-06 2020-06-09 Infineon Technologies Ag Pulse width modulation with two or more different threshold levels
US10571301B2 (en) 2017-07-20 2020-02-25 Allegro Microsystems, Llc Frequency of an output signal of a magnetic field sensor to detect speed and direction of angular rotation of a rotating magnetic structure or a fault
US10436606B2 (en) 2017-07-20 2019-10-08 Allegro Microsystems, Llc Magnetic field sensor to detect speed and direction of angular rotation of a rotating magnetic structure
US10473486B2 (en) 2017-07-20 2019-11-12 Allegro Microsystems, Llc Duty cycle of an output signal of a magnetic field sensor to detect speed and direction of angular rotation of a rotating magnetic structure or a fault
US10480957B2 (en) 2017-07-20 2019-11-19 Allegro Microsystems, Llc Magnetic field sensor to detect direction of angular rotation of a rotating magnetic structure, speed of the rotating magnetic structure or fault
US10598514B2 (en) 2017-07-20 2020-03-24 Allegro Microsystems, Llc Magnetic field sensor to detect speed of angular rotation of a rotating magnetic structure, direction of the rotating magnetic structure or fault
IT201700114459A1 (it) * 2017-10-11 2019-04-11 Ognibene Power Spa Trasduttore, dispositivo comprendente detto trasduttore e apparato comprendente detto dispositivo
US10747708B2 (en) 2018-03-08 2020-08-18 Allegro Microsystems, Llc Communication system between electronic devices
US10725122B2 (en) 2018-07-20 2020-07-28 Allegro Microsystems, Llc Ratiometric sensor output topology and methods
US11686597B2 (en) 2019-06-07 2023-06-27 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for magnetic field sensors
DE102019119446A1 (de) * 2019-07-18 2021-01-21 WABCO Global GmbH Rotationssensor und Verfahren zur Erzeugung von Diagnoseinformationen für einen Rotationssensor sowie Fahrzeug
DE102019119445A1 (de) * 2019-07-18 2021-01-21 Wabco Europe Bvba Vorrichtung und Verfahren zur Drehzahlmessung
DE102019119620A1 (de) 2019-07-19 2021-01-21 WABCO Global GmbH Rotationssensor sowie Fahrzeug
US11942831B2 (en) 2020-01-15 2024-03-26 Allegro Microsystems, Llc Three-phase BLDC motor driver/controller having diagnostic signal processing
US11194004B2 (en) 2020-02-12 2021-12-07 Allegro Microsystems, Llc Diagnostic circuits and methods for sensor test circuits
US11029370B1 (en) 2020-05-22 2021-06-08 Allegro Microsystems, Llc Sensor output control methods and apparatus
US11368533B2 (en) 2020-11-19 2022-06-21 Allegro Microsystems, Llc Signaling between master and one or more slave components to share absolute and incremental data
US12107710B2 (en) 2020-11-19 2024-10-01 Allegro Microsystems, Llc Sensor signaling of absolute and incremental data
US11885645B2 (en) 2021-06-17 2024-01-30 Allegro Microsystems, Llc Supply voltage configurable sensor
US11848682B2 (en) 2022-01-11 2023-12-19 Allegro Microsystems, Llc Diagnostic circuits and methods for analog-to-digital converters
DE102022101930A1 (de) 2022-01-27 2023-07-27 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Ansteuerschaltung für einen aktiven Drehzahlsensor
US20230400477A1 (en) 2022-05-18 2023-12-14 Allegro Microsystems, Llc High resolution sensing protocol
DE102022113709A1 (de) 2022-05-31 2023-11-30 Zf Cv Systems Europe Bv Drehmesseinrichtung, Drehmesssystem, Fahrzeug und Verfahren zur Drehmessung
US12104900B2 (en) 2022-09-29 2024-10-01 Allegro Microsystems, Llc Sensor with estimated real-time parameter data

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0569924A1 (de) * 1992-05-15 1993-11-18 KNORR-BREMSE SYSTEME FÜR NUTZFAHRZEUGE GmbH Verfahren und Vorrichtung zur Überwachung eines Sensors
DE4434977A1 (de) * 1994-09-30 1996-04-04 Teves Gmbh Alfred Aktiver Bewegungssensor
DE19621902A1 (de) * 1996-05-31 1997-12-04 Bosch Gmbh Robert System zur Überlagerung von Informationen
DE19634715A1 (de) * 1996-08-28 1998-03-05 Teves Gmbh Alfred Anordnung zur Erfassung des Drehverhaltens eines Rades

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19618867A1 (de) * 1995-08-26 1997-02-27 Bosch Gmbh Robert System zur Veränderung eines Drehzahlsignals
DE19650935A1 (de) 1996-12-07 1998-06-10 Teves Gmbh Alfred Verfahren und Schaltungsanordnung zur Übertragung von Drehzahlinformationen und Zusatzdaten
DE19811095B4 (de) 1998-03-16 2010-10-21 Micronas Gmbh Sensoreinrichtung und Verfahren zur Datenübertragung mit einer solchen Sensoreinrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0569924A1 (de) * 1992-05-15 1993-11-18 KNORR-BREMSE SYSTEME FÜR NUTZFAHRZEUGE GmbH Verfahren und Vorrichtung zur Überwachung eines Sensors
DE4434977A1 (de) * 1994-09-30 1996-04-04 Teves Gmbh Alfred Aktiver Bewegungssensor
DE19621902A1 (de) * 1996-05-31 1997-12-04 Bosch Gmbh Robert System zur Überlagerung von Informationen
DE19634715A1 (de) * 1996-08-28 1998-03-05 Teves Gmbh Alfred Anordnung zur Erfassung des Drehverhaltens eines Rades

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042133A1 (de) * 2000-11-22 2002-05-30 Continental Teves Ag & Co. Ohg Aktiver magnetsensor für elektronische bremssysteme
US6879149B2 (en) 2001-03-13 2005-04-12 Ntn Corporation Wheel support bearing assembly
EP1241067A3 (de) * 2001-03-13 2003-09-17 Ntn Corporation Radsupport mit Lageranordnung
WO2002090999A1 (de) * 2001-05-10 2002-11-14 Continental Teves Ag & Co. Ohg Raddrehzahlsensoranordnung mit übertragung von zusatzinformationen
WO2003087845A3 (de) * 2002-04-18 2004-02-19 Continental Teves Ag & Co Ohg Verfahren und vorrichtung zur erfassung von ortsverschiebungen und drehbewegungen
US7170280B2 (en) 2002-04-18 2007-01-30 Continental Teves, Ag And Company Ohg Method and device for the detection of local displacements and rotations
WO2003087845A2 (de) * 2002-04-18 2003-10-23 Continental Teves Ag & Co. Ohg Verfahren und vorrichtung zur erfassung von ortsverschiebungen und drehbewegungen
FR2842913A1 (fr) * 2002-07-23 2004-01-30 Schlumberger Services Petrol Dispositif compact de mesure de vitesse et de sens de rotation d'un objet
NO337833B1 (no) * 2002-07-23 2016-06-27 Schlumberger Technology Bv Kompakt anordning for måling av hastigheten og retningen av rotasonen til et objekt
WO2004010089A1 (en) * 2002-07-23 2004-01-29 Services Petroliers Schlumberger Compact device for measuring the speed and the direction of rotation of an object
CN100378437C (zh) * 2002-07-23 2008-04-02 施蓝姆伯格海外股份有限公司 用于测量对象的速度和旋转方向的小型设备
US7406883B2 (en) 2002-07-23 2008-08-05 Schlumberger Technology Corporation Compact device for measuring the speed and the direction of rotation of an object
EP2006650A3 (de) * 2007-06-21 2010-08-11 Robert Bosch Gmbh Magnetempfindliche Sensoranordnung
WO2009087504A1 (en) * 2008-01-04 2009-07-16 Nxp B.V. Sensor device
US8624588B2 (en) 2008-07-31 2014-01-07 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation as a ferromagnetic object
US8994369B2 (en) 2008-07-31 2015-03-31 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object
US9151771B2 (en) 2008-07-31 2015-10-06 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object
WO2012000718A1 (de) * 2010-07-02 2012-01-05 Schaeffler Technologies Gmbh & Co. Kg Verfahren und anordnung zur übertragung von sensorsignalen
US9008217B2 (en) 2010-07-02 2015-04-14 Schaeffler Technologies AG & Co. KG Method and assembly for transmitting sensor signals
US11680996B2 (en) 2012-05-10 2023-06-20 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having integrated coil
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US8754640B2 (en) 2012-06-18 2014-06-17 Allegro Microsystems, Llc Magnetic field sensors and related techniques that can provide self-test information in a formatted output signal
US10670672B2 (en) 2013-07-19 2020-06-02 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US11313924B2 (en) 2013-07-19 2022-04-26 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US12061246B2 (en) 2013-07-19 2024-08-13 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10254103B2 (en) 2013-07-19 2019-04-09 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10753768B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US11307054B2 (en) 2014-10-31 2022-04-19 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10495700B2 (en) 2016-01-29 2019-12-03 Allegro Microsystems, Llc Method and system for providing information about a target object in a formatted output signal
US10495485B2 (en) 2016-05-17 2019-12-03 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US10837800B2 (en) 2016-06-08 2020-11-17 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US11073573B2 (en) 2017-05-26 2021-07-27 Allegro Microsystems, Llc Packages for coil actuated position sensors
US11320496B2 (en) 2017-05-26 2022-05-03 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10649042B2 (en) 2017-05-26 2020-05-12 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11768256B2 (en) 2017-05-26 2023-09-26 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US11313700B2 (en) 2018-03-01 2022-04-26 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US10656170B2 (en) 2018-05-17 2020-05-19 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US11686599B2 (en) 2018-08-06 2023-06-27 Allegro Microsystems, Llc Magnetic field sensor
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Also Published As

Publication number Publication date
DE19911774A1 (de) 1999-12-02
EP1064559A1 (de) 2001-01-03
JP2002507751A (ja) 2002-03-12
US6542847B1 (en) 2003-04-01
DE19911774B4 (de) 2013-12-24

Similar Documents

Publication Publication Date Title
DE19911774B4 (de) Sensoranordnung zur Erfassung von Bewegungen
EP1081454B1 (de) Induktiver Positionssensor
WO2002018894A1 (de) Verfahren zur bestimmung eines drehwinkels und/oder einer winkeldifferenz aus phasensignalen
EP0944888A2 (de) Verfahren und schaltungsanordnung zur übertragung von drehzahlinformationen und zusatzdaten
DE102006061580A1 (de) Verfahren zur Bestimmung der Drehzahl einer rotierenden Welle
DE2553806C3 (de) Schaltungsanordnung zur digitalen Messung der Periodendauer einer Wechselspannung
DE4434977B4 (de) Aktiver Bewegungssensor
EP0955522A1 (de) Verfahren und Schaltung zur Überprüfung der Weite des Luftspaltes bei einem Drehzahlsensor
EP0461300B1 (de) Verfahren zum Messen einer Länge und elektronische Schieblehre
EP0837801B1 (de) Einrichtung zur erkennung von elektromagnetischen einstreuungen
DE3509763C2 (de)
EP0500562B1 (de) Schaltungsanordnung zur aufbereitung des ausgangssignals eines drehzahlsensors
DE102008057474B4 (de) Meßumformer
WO1996007876A1 (de) Wägevorrichtung
DE19811095B4 (de) Sensoreinrichtung und Verfahren zur Datenübertragung mit einer solchen Sensoreinrichtung
DE2601800C3 (de) Schaltungsanordnung zur Gewinnung einer digitalen Größe, die der Winkelgeschwindigkeit eines Rades entspricht
DE19936582A1 (de) Code mit möglichst unterschiedlichen aufeinanderfolgenden Codeelementen
EP0220547A1 (de) Drehzahlmesswertgeberschaltung
DE4442355B4 (de) Verfahren zur Erfassung und Auswertung von fahrdynamischen Zuständen
EP0817953A1 (de) Vorrichtung zur drehrichtungserkennung und plausibilitätsprüfung bei absoluten winkellagemessgebern mit insbesondere serieller übertragung erfasster lageistwerte
EP1604213B1 (de) Verfahren und vorrichtung zum erfassen einer drehzahl, insbesondere einer raddrehzahl eines kraftfahrzeugs
DE3201293C2 (de) Einrichtung zur Überwachung des Frei- oder Besetztzustandes eines Gleisabschnittes
EP1320480B1 (de) Verfahren zum bestimmen der absoluten winkelstellung des lenkrades eines kraftfahrzeugs
DE3523247C2 (de)
DE2927419C2 (de) Einrichtung zum Erzeugen und Auswerten von modulierten Achslastmeßbrücken-Signalen in Eisenbahnanlagen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999915641

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09646692

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999915641

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999915641

Country of ref document: EP