WO1999045080A1 - Agent moussant sensiblement anhydre et procede de production de celui-ci - Google Patents

Agent moussant sensiblement anhydre et procede de production de celui-ci Download PDF

Info

Publication number
WO1999045080A1
WO1999045080A1 PCT/JP1998/003094 JP9803094W WO9945080A1 WO 1999045080 A1 WO1999045080 A1 WO 1999045080A1 JP 9803094 W JP9803094 W JP 9803094W WO 9945080 A1 WO9945080 A1 WO 9945080A1
Authority
WO
WIPO (PCT)
Prior art keywords
agent
foaming agent
surface treatment
foaming
blowing
Prior art date
Application number
PCT/JP1998/003094
Other languages
English (en)
French (fr)
Inventor
Tsukasa Maekawa
Nobuyuki Ueda
Sadafumi Shono
Yoshifumi Tachi
Shigeru Sumitomo
Original Assignee
Otsuka Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP05057198A external-priority patent/JP3567304B2/ja
Priority claimed from JP05050498A external-priority patent/JP3799801B2/ja
Priority claimed from JP11682298A external-priority patent/JP3390828B2/ja
Priority to AU81281/98A priority Critical patent/AU745468B2/en
Priority to IL13519398A priority patent/IL135193A0/xx
Priority to US09/509,085 priority patent/US6355698B1/en
Priority to HU0004805A priority patent/HU226848B1/hu
Priority to KR1020007003458A priority patent/KR100545464B1/ko
Application filed by Otsuka Chemical Co., Ltd. filed Critical Otsuka Chemical Co., Ltd.
Priority to CA002304561A priority patent/CA2304561C/en
Priority to BRPI9814813-3A priority patent/BRPI9814813B1/pt
Priority to DE69841242T priority patent/DE69841242D1/de
Priority to AT98931038T priority patent/ATE445683T1/de
Priority to EP98931038A priority patent/EP1061110B1/en
Priority to EA200000345A priority patent/EA002426B1/ru
Publication of WO1999045080A1 publication Critical patent/WO1999045080A1/ja
Priority to IL135193A priority patent/IL135193A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143

Definitions

  • the present invention relates to a substantially anhydrous blowing agent and a method for producing the same.
  • Blowing agents such as azodicarbonamide have been widely used as blowing agents for thermoplastic resins such as vinyl chloride resin, polyolefin resin (polyethylene resin, polypropylene resin, etc.), ethylene vinyl alcohol resin, and rubber.
  • thermoplastic resins such as vinyl chloride resin, polyolefin resin (polyethylene resin, polypropylene resin, etc.), ethylene vinyl alcohol resin, and rubber.
  • foaming agents that are used are usually finely powdered compounds that agglomerate and solidify over time and under load, deteriorating the fluidity during the resin addition process, clogging the hopper, and dispersing in the resin. There is a problem that the property is deteriorated. In recent years, as the quality of foamed resins has been improved and labor has been saved, the improvement of their solidification properties has been further demanded.
  • silica A method in which inorganic powder particles such as a metal salt are added to a foaming agent as an anti-solidification agent.
  • the effect of preventing solidification is somewhat recognized, but the effect is maintained only for about several months.
  • the effect is reduced when the foaming agent becomes fine particles, the addition of more inorganic powder particles is required, but the addition of a large amount of inorganic powder particles causes coarsening of the bubbles during foaming. This is not preferable for applications requiring fine cells.
  • the method (2) requires a long time for drying, so that the production capacity is significantly reduced, the production cost is increased, and it is not possible to cope with continuous production.
  • Japanese Unexamined Patent Publication (Kokai) No. 4-3200432 discloses that azodicarbonamide is dissolved in a solvent.
  • a method has been proposed to improve the fluidity and dispersibility in resin by adding a silane-based coupling agent. However, this method could not sufficiently prevent solidification.
  • Japanese Patent Application Laid-Open No. 8-295872 proposes a method of improving the fluidity and dispersibility in resin by adding an aluminum-based coupling agent dissolved in a solvent to a chemical foaming agent. Have been. However, even with this method, solidification could not be sufficiently prevented.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, by treating the foaming agent with a surface treatment agent having a property of removing moisture from the foaming agent, and by heating as necessary, A substantially anhydrous foaming agent is obtained, the solidification of which is remarkably suppressed, and is extremely useful as a foaming agent having good fluidity and dispersibility in resin even after a long period of time. I found that.
  • the present invention has been completed based on such findings.
  • the present invention relates to a substantially anhydrous blowing agent, particularly to a substantially anhydrous azodicarbonamide crystal.
  • the present invention relates to a substantially anhydrous foaming agent obtained by treating the foaming agent with a surface treating agent having a property of removing water from the foaming agent.
  • the present invention is characterized in that a substantially anhydrous foaming agent is obtained by treating the foaming agent with a surface treating agent having a property of removing moisture from the foaming agent under substantially no solvent.
  • the present invention relates to a method for producing a substantially anhydrous blowing agent.
  • the substantially anhydrous foaming agent of the present invention has remarkably improved solidification property under load and solidification with time, hardly solidifies even when stored for a long period of time, and has good fluidity and resin immediately after production. Is maintained for a long time.
  • the foaming performance of the foaming agent of the present invention is equal to or higher than that of the conventional foaming agent.
  • the provision of the substantially anhydrous foaming agent of the present invention eliminates the concerns of solidifying the product under load and solidifying over time from the production of the foaming agent to the use by the user. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • blowing agent used in the present invention conventionally known blowing agents can be widely used.
  • azodicarbonamide ADCA: decomposition temperature of about 200 ° C.
  • P, P′-oxobisbenzene Sulfonyl hydrazide OB SH: decomposition temperature about 160 ° C
  • dinitropentamethylenetetramine DPT: decomposition temperature about 200 ° C
  • p-toluene sulfonyl hydrazide TSH: decomposition Temperature of about 110 ° C
  • benzenesulfonyl hydrazide BSH: decomposition temperature of about 95 ° C
  • the present invention can be suitably applied particularly to a foaming agent powder having a decomposition temperature of 100 ° C. or higher. Above all, it has a great advantage in ADCA, where solidification has been a major problem in the past.
  • the blowing agent is preferably in a powder form.
  • the particle size is not particularly limited, it is usually about 1 to 50 ⁇ , preferably about 3 to 30 ⁇ .
  • the particle diameter refers to a median diameter measured using a laser-diffraction type flowmeter.
  • substantially anhydrous means that the water content is less than 0.03% by weight, preferably less than 0.010% by weight.
  • the water content (weight is measured by heating the ADCA crystal to be measured at 110 ° C for 2 hours while passing nitrogen gas containing no water. The amount of water in the nitrogen gas was measured by passing it through a Lewis Tussia I moisture meter (trade name: MKS-1, manufactured by Kyoto Denshi Co., Ltd.), and this water content was expressed as a percentage of the weight of the ADCA crystal. This is what we asked for.
  • the surface treating agent that can be used in the present invention is a surface treating agent having a property of removing water from a foaming agent.
  • a surface treating agent include a compound having a property of chemically reacting with water, and water.
  • a compound having the property of adsorbing or retaining is used.
  • examples of such a surface treatment agent include a cupping agent, an organic acid anhydride, an anhydride of an inorganic compound, and a desiccant.
  • Coupling agents include silane-based coupling agents and aluminum-based couplings. Examples thereof include a coupling agent and a titanate coupling agent.
  • silane-based coupling agent conventionally known ones can be widely used, and methyltrimethoxysilane, y-aminopropyltriethoxysilane, N— (yS-aminoethyl) -17-aminoprovirtrimethoxysilane, Examples thereof include N-phenylaminomethyltrimethoxysilane and vinylmethyljetoxysilane.
  • aluminum-based coupling agent conventionally known ones can be widely used, such as aluminum isopropylate, aluminum ethylate, aluminum tris (ethyl acetate), ethyl acetate aluminum diisopropylate. Etc. can be exemplified.
  • titanate-based coupling agent conventionally known coupling agents can be widely used, and isopropyltriisostearoyl titanate, isopropyltris (dioctylpyrophosphate) titanate, tetraoctylbis (ditridecylphosphate) titanate, bis (dioctylphosphate) Butyl pyrophosphate) oxyacetate titanate and the like.
  • These power ringing agents can be used alone or in combination of two or more.
  • aluminum-based coupling agents are preferable, and aluminum tris (ethyl acetate) is particularly preferable.
  • organic acid anhydride conventionally known ones can be widely used, and examples thereof include phthalic anhydride, succinic anhydride, glutaric anhydride, benzoic anhydride, and trimetic anhydride. These compounds bind to and remove water in the blowing agent by the following mechanism, for example.
  • R represents an organic acid residue.
  • the above-mentioned cupping agent and organic acid anhydride have a property of chemically reacting with water to remove water in the foaming agent, and have a coating on the surface of the foaming agent to prevent water absorption from the outside. For example, it has a property of forming an unreacted coupling agent or the like, and thus can be particularly preferably used.
  • anhydride of an inorganic compound as long as it can combine with water and have water of crystallization,
  • a wide variety of conventionally known ones can be used, and examples thereof include anhydrous magnesium sulfate, anhydrous potassium carbonate, anhydrous sodium carbonate, anhydrous sodium sulfate, anhydrous sodium sulfite, anhydrous magnesium carbonate, and the like.
  • These compounds for example, adsorb water in a blowing agent by a mechanism represented by the following and immobilize this as crystal water.
  • n an integer of 1 or more.
  • desiccant conventionally known ones can be widely used as long as they have a property of removing water, and examples thereof include acid clay, silica gel, magnesium oxide, calcium oxide and the like.
  • the above-mentioned cupping agent, organic acid anhydride, inorganic compound anhydride and drying agent may be used alone or in combination of two or more. Is also good.
  • These surface treatment agents can be treated on the surface of the foaming agent, and preferably heated to efficiently react with or adsorb to the water contained in the foaming agent, thereby reducing the water content in the foaming agent.
  • these surface treatment agents are treated substantially without a solvent without being dissolved in a solvent so as not to adversely affect the reaction with moisture or the adsorption of moisture.
  • the capping agent when used in a state of being dissolved or dispersed in a solvent, the reaction between the water present in the blowing agent and the capping agent does not sufficiently proceed, and water remains in the foaming agent. And a substantially anhydrous blowing agent cannot be obtained.
  • the use of water or an organic solvent containing water is unsuitable because it may rather increase the amount of water in the blowing agent.
  • substantially without solvent means that no solvent is used or an organic solvent having a water content of less than 0.1% by weight is used in an amount equal to or less than the weight of the surface treating agent.
  • a solid surface treatment agent it is preferable to use the surface treatment agent in the form of a fine powder or a melt.
  • the amount of the surface treatment agent to be used for the foaming agent is a necessary amount for reacting with the moisture contained in the foaming agent.
  • the foaming agent is usually used for 100 parts by weight. It may be used in an amount of about 0.01 to 10 parts by weight, preferably 0.05 to 0.5 part by weight.
  • heat treatment is preferably performed to promote the reaction between the water in the foaming agent and the surface treatment agent.
  • the heat treatment is particularly referred to as “treatment / heating”.
  • the surface treatment agent is in a solid state at room temperature, it is preferable to heat-treat the surface treatment agent before adding the surface treatment agent to the foaming agent.
  • the solid surface treatment agent is preferably in a state of being heated and melted.
  • the heating temperature is, for example, usually from 30 ° C. to the decomposition temperature of the blowing agent, preferably from 40 ° C. to the decomposition temperature of the blowing agent.
  • a foaming agent having a decomposition temperature of 150 ° C or more such as ADCA, OBSH, and DPT is used, a particularly preferable temperature range is 55 ° C to 100 ° C, and the heating time is further reduced. From the viewpoint of performing mixing more efficiently and minimizing energy costs, it is preferable to set the temperature to about 70 ° C to 90 ° C.
  • the method for adding the surface treatment agent is not particularly limited, but it is preferable to add the surface treatment agent by spraying in a fine droplet state using a pressurizing nozzle or a two-fluid nozzle.
  • the mixing device that can be used for the above mixing is not particularly limited.
  • a screw mixer such as a super mixer, a hensyl mixer, a Nauta mixer, a mixer, a ribbon mixer, etc. Can be exemplified.
  • the substantially anhydrous foaming agent when the substantially anhydrous foaming agent is pulverized during the above mixing, the specific surface area is increased, the hygroscopicity is increased, and the foam having a coating that once prevents moisture absorption from the outside is formed. Even in the case of the agent powder, a cross section having no coating is generated, so that the hygroscopicity is further increased, and the effect of the present invention may be impaired. This point requires special attention when the particle diameter is 10 m or more, which is likely to be accompanied by pulverization.
  • the mixing is performed under the mixing conditions in which the pulverization of the blowing agent is suppressed.
  • mixing conditions under which the pulverization of the foaming agent is suppressed means conditions under which the increase in specific surface area after the treatment is within 20%, preferably within 10% as compared to before the treatment.
  • Mixers suitable for such conditions include, for example, for a blowing agent powder having a particle diameter of about 10 to 30 ⁇ m, a NOWA mixer or a pro-share mixer (with the cutting blades removed), a ribbon type blender. And the like.
  • a blowing agent powder having a particle size of about 3 to 10 m which is relatively difficult to grind
  • a universal mixer or a procedure mixer with a shear blade attached
  • a particle size of 3 to 5 m For a blowing agent powder having a particle size of about 3 to 10 m, which is relatively difficult to grind, use a universal mixer or a procedure mixer (with a shear blade attached) and further grind a particle size of 3 to 5 m.
  • Mixing machines such as a super mixer and a Henschel mixer can be exemplified for the difficult foaming powder, and it is preferable to use the mixer by appropriately adjusting the number of revolutions to obtain the mixing conditions in which the pulverization of the foaming agent is suppressed.
  • the substantially anhydrous foaming agent of the present invention can be obtained by using a small amount of the surface treating agent.
  • the substantially anhydrous foaming agent of the present invention can be suitably used as a foaming agent for various synthetic resins, similarly to a conventional foaming agent.
  • the foaming agent of the present invention can be used as a foaming agent composition containing various additives known in this field, for example, a stabilizer, a pigment, a filler, a foaming inhibitor and the like.
  • a stabilizer include, for example, tribasic lead sulfate, dibasic phosphite, lead stearate, zinc stearate, zinc carbonate, zinc oxide, barium stearate, aluminum stearate, Examples include calcium stearate, dibutyltin maleate, and urea.
  • pigments and fillers include, for example, chrome black, black carbon, titanium dioxide, calcium carbonate, and the like.
  • the foaming inhibitor include maleic acid.
  • the powder of the foaming agent such as ADC A is usually microscopically a porous powder, and water is present on the surface, the pores, and the inside.
  • the aluminum tris (ethyl acetate) When treated with aluminum tris (ethyl acetate), the aluminum tris (ethyl acetate) reacts with the water on the ADC A surface and the pores, and according to the reaction shown in the following equation, aluminum hydroxide It is considered to be decomposed into ethyl acetate and form an aluminum hydroxide film on ADC A surface.
  • Such a reaction takes a long time at a temperature as low as about room temperature, but is accelerated by heating to, for example, about 80 ° C, and is completed promptly.
  • ADC A used in this example was manufactured by Otsuka Chemical Co., Ltd. and had an average particle diameter of 20 am.
  • Example 1 ADC A used in this example was manufactured by Otsuka Chemical Co., Ltd. and had an average particle diameter of 20 am.
  • ADCA 2 5 kg N— — aminomethyl) Aminoprovirtrimethoxysilane (trade name: TSL 8340, manufactured by Toshiba Silicone Corporation) Prepare an aqueous solution by diluting 50 g to 1 kg of water. Using a Super Mixer (product name, manufactured by Kawada Seisakusho Co., Ltd.), mix at 600 rpm at room temperature for 10 minutes, continue mixing under the same conditions for 7.5 minutes, and dry. Thereafter, a blowing agent powder of Comparative Example 1 was obtained.
  • Untreated ADC A was used as the blowing agent powder of Comparative Example 2.
  • Test example 1 For each of the foaming agent powders obtained in the above Examples and Comparative Examples, the water content (residual moisture value) was measured, the solidification test was performed, and the solidification test was actually performed in the following manner. Table 1 shows the crystals.
  • a sample (10 g) was precisely weighed into a flask, and heated at 110 ° C. for 2 hours while passing nitrogen gas containing no water. At this time, the nitrogen gas flowing out of the flask is passed through a Karl Fischer I moisture meter (product name: MKS-11, manufactured by Kyoto Electronics Co., Ltd.) that prevents moisture from the outside air from entering. ) was measured.
  • the water content is a
  • Comparative Example 2 0.0 7 5 5 6. 4 4 1. 6 Comparing the test results of the ADCA crystals of Example 1, Example 2, and Comparative Example 2, the anhydrous ADCA crystals of the present invention are significantly suppressed in solidification as compared with the untreated blowing agent powder. You can see that.
  • Test Example 1 15 parts by weight of each of the ADCA crystals obtained in Example 1, Example 2, Example 3, and Comparative Example 2 (however, the ADCA crystals of Examples 1, 2, and 3 are referred to as Test Example 1). Used after being subjected to the solidification test of low-density polyethylene
  • anhydrous ADCA crystal of the present invention has the same foaming performance as the ADCA crystal immediately after production even after a long period of time under load conditions.
  • the foaming agent of the present invention has remarkably suppressed solidification properties, good fluidity and good dispersibility in a resin even after a long period of time, and the conventional foaming agent, a conventional polyvinyl chloride resin, a polyolefin resin (polyethylene resin, polypropylene resin) Etc.), and are useful in the same fields as foaming agents such as thermoplastic resins such as ethylene vinyl alcohol resin and rubber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Silicon Compounds (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

明 細 書 実質的に無水の発泡剤及びその製造方法 技術分野
本発明は、 実質的に無水の発泡剤及びその製造方法に関する < 背景技術
ァゾジカルボンアミ ドを始めとする発泡剤は、 従来から、 塩化ビニル樹脂、 ポ リオレフィ ン樹脂 (ポリエチレン樹脂、 ポリプロピレン樹脂等) 、 エチレンビニ ルアルコール樹脂、 ゴム等の熱可塑性樹脂等の発泡剤として広く利用されている これらの発泡剤は、 通常、 微粉末状の化合物であり、 経時や荷重によって凝集 固化し、 樹脂への添加工程における流動性が悪化してホッパーを詰まらせたり、 樹脂への分散性が悪化するという問題点を有している。 近年、 発泡樹脂の高品質 化と製造の省力化が図られるに伴い、 その固化性の改良がより一層望まれている 現在、 このような問題を解決するために、 (1)シリカ、 ケィ酸金属塩等の無機 系粉末粒子を固化防止剤として発泡剤に添加する方法、 (2)乾燥方式をバッチ式 にして十分な乾燥時間をとり、 発泡剤に含有される微量の水分を減少させる方法 等が採用されている。
しかしながら、 これらの方法を採用した場合には種々の欠点を生ずる。 即ち、 (1)の方法では、 固化防止効果は幾分認められるが、 その効果の維持は数ケ月程 度に止まる。 また、 発泡剤が微粒子になると効果が少なくなるため、 より多くの 無機系粉末粒子の添加が必要になるが、 無機系粉末粒子の多量添加は発泡時の気 泡の粗大化の原因となるため微細なセルが要求される用途においては好ましくな い。 一方、 (2)の方法では、 乾燥に長時間を要するため、 生産能力が著しく低下 し、 製造コス トが高くなり、 連続生産に対応できない。 また、 結晶内部の水分を 十分に乾燥除去し実質的に無水の発泡剤を得るのは困難であり、 固化防止効果も 限られている。
特開平 4 - 3 2 0 4 3 2号公報には、 ァゾジカルボンアミ ドに、 溶媒に溶解さ せたシラン系カツプリング剤を添加して、 流動性や樹脂への分散性を改善する方 法が提案されている。 しかしながら、 該方法では十分に固化防止を図ることはで きなかった。
また、 特開平 8 - 2 9 5 8 7 2号公報には、 化学発泡剤に、 溶媒に溶解させた アルミニウム系カツプリング剤を添加して、 流動性や樹脂への分散性を改善する 方法が提案されている。 しかしながら、 該方法でも十分に固化防止を図ることは できなかった。
発明の開示
本発明者等は、 上記課題を解決するため鋭意研究した結果、 発泡剤を、 発泡剤 から水分を除去する性質を有する表面処理剤で処理することにより、 また必要に 応じて加熱することにより、 実質的に無水の発泡剤が得られ、 そのものは固化性 が著しく抑制され、 長期間経過後も流動性や樹脂への分散性等が良好な発泡剤と して極めて有用性の高いものであることを見出した。 本発明は、 斯かる知見に基 づき完成されたものである。
即ち、 本発明は、 実質的に無水の発泡剤、 特に実質的に無水のァゾジカルボン アミ ド結晶物に係る。
また、 本発明は、 発泡剤を、 発泡剤から水分を除去する性質を有する表面処理 剤で処理することにより得られる実質的に無水の発泡剤に係る。
また、 本発明は、 発泡剤を、 発泡剤から水分を除去する性質を有する表面処理 剤を用いて実質的に無溶媒下に処理して実質的に無水の発泡剤を得ることを特徴 とする実質的に無水の発泡剤の製造方法に係る。
本発明の実質的に無水の発泡剤は、 特に荷重固化性、 経時固化性が著しく改良 され、 長期間積載保存しても固化することは極めて少なく、 製造直後の良好な流 動性と樹脂への分散性が長期に亘って保持されている。
また、 本発明の発泡剤の発泡性能は、 従来の発泡剤のそれと同等又はそれ以上 である。
従って、 本発明の実質的に無水の発泡剤が提供されたことにより、 発泡剤の製 造からユーザーで使用されるまでの製品の荷重固化及び経時固化の不安が一掃さ れる。 発明を実施するための最良の形態
本発明に用いられる発泡剤としては、 従来公知の発泡剤を広く使用でき、 例え ば、 ァゾジカルボンアミ ド (ADCA :分解温度約 2 0 0 °C) 、 P, P' —ォキ シビスベンゼンスルホニルヒ ドラジ ド (OB SH :分解温度約 1 6 0°C) 、 ジニ トロペンタメチレンテ卜ラ ミ ン (DPT :分解温度約 2 0 0 °C) 、 p— トルエン スルホニルヒ ドラジ ド (TSH :分解温度約 1 1 0°C) 、 ベンゼンスルホニルヒ ドラジド ( B S H:分解温度約 9 5 °C) 等を例示できる。
本発明は、 特に分解温度 1 0 0°C以上の発泡剤粉末につき好適に適用すること ができる。 中でも、 従来固化性が大きな問題となっていた AD C Aにおいてメ リ ッ トの大きいものである。
本発明において、 発泡剤は、 粉末形態であるのが好ましい。 その粒子径は特に 限定されるものではないが、 通常 1~5 0 μπι程度、 好ましくは 3〜3 0 μπι程 度のものがよい。 尚、 本明細書において粒子径とは、 レーザ一回折式流度分布計 を用いて測定したメジアン径をいう。
本発明において 「実質的に無水」 とは、 含水量が 0. 0 3重量%未満、 好まし くは 0. 0 1 0重量%未満であることをいう。 ここで含水量 (重量 は、 測定 すべき ADCA結晶物を、 水分を含まない窒素ガスを通しながら、 1 1 0°C、 2 時間加熱し、 流出する窒素ガスを、 外気からの水分が入り込まないようにした力 —ルフイ ツシャ一水分計 (商品名 : MK S— 1、 京都電子社製) に通して窒素ガ ス中の水分量を測定し、 この水分量を AD C A結晶物の重量に対する百分率とし て求めたものである。
本発明で用いることのできる表面処理剤は、 発泡剤から水分を除去する性質を 有する表面処理剤であり、 斯かる表面処理剤としては水と化学的に反応する性質 を有する化合物や、 水を吸着又は保持する性質を有する化合物が用いられる。 斯 かる表面処理剤としては、 例えばカツプリ ング剤、 有機酸無水物、 無機化合物の 無水物、 乾燥剤等を挙げることができる。
カップリ ング剤としては、 シラン系カップリ ング剤、 アルミニウム系カツプリ ング剤、 チタネ一 卜系カップリング剤等が例示できる。
シラン系カップリ ング剤としては、 従来公知のものを広く使用でき、 メチルト リ メ トキシシラン、 y —ァミ ノプロピルト リエトキシシラン、 N— ( yS—ァミ ノ ェチル) 一 7—ァミ ノプロビルト リメ トキシシラン、 N—フエニルァミ ノメチル 卜リメ トキシシラン、 ビニルメチルジェトキシシラン等を例示できる。
アルミニウム系カップリ ング剤としては、 従来公知のものを広く使用でき、 ァ ルミニゥムイソプロピレー ト、 アルミニウムェチレ一 ト、 アルミニウム 卜 リス ( ェチルァセ トアセテー ト) 、 ェチルァセ トアセテー トアルミニウムジイソプロピ レ一ト等を例示できる。
チタネート系カップリ ング剤としては、 従来公知のものを広く使用でき、 イソ プロピルトリイソステアロイルチタネート、 イソプロビルトリス (ジォクチルパ イロホスフェート) チタネート、 テ卜ラオクチルビス (ジトリデシルホスフアイ ト) チタネート、 ビス (ジォクチルパイロホスフェート) ォキシアセテートチタ ネ一ト等を例示できる。
これらの力ップリ ング剤は、 1種単独で又は 2種以上を混合して用いることが できる。 これらの化合物の中でも、 アルミニウム系カップリ ング剤が好ましく、 アルミニウムト リス (ェチルァセトァセテート) が特に好ましい。
有機酸無水物としては、 従来公知のものを広く使用でき、 例えば無水フタル酸、 無水コハク酸、 無水グルタル酸、 無水安息香酸、 無水トリメッ ト酸等を挙げるこ とができる。 これらの化合物は、 例えば以下のような機構で発泡剤中の水と結合 してこれを除去する。
( R C O ) 2 0 + H 2 0 → 2 R C O O H
〔ここで、 Rは有機酸残基を示す。 〕 前記カツプリ ング剤や有機酸無水物は、 水と化学的に反応して発泡剤中の水分 を除去する性質を有している上、 発泡剤の表面に外側からの吸水を防止する被膜 (例えば、 未反応のカップリ ング剤等) を形成する性質を有しているため、 特に 好ましく用いることができる。
無機化合物の無水物としては、 水と結合して結晶水を持ち得るものである限り 従来公知のものを広く使用でき、 例えば硫酸マグネシウム無水物、 炭酸カリウム 無水物、 炭酸ナトリゥム無水物、 硫酸ナトリゥム無水物、 亜硫酸ナトリゥム無水 物、 炭酸マグネシウム無水物等を挙げることができる。 これらの化合物は、 例え ば以下に代表される機構で発泡剤中の水を吸着し、 これを結晶水として固定化す る。
N a 2 S 04 + n H 2〇 → N a 2 S O n H 20
〔ここで、 nは 1以上の整数を示す。 〕 乾燥剤としては、 水を除去する性質を有しているものである限り従来公知のも のを広く使用でき、 例えば酸性白土、 シリカゲル、 酸化マグネシウム、 酸化カル シゥム等を挙げることができる。
本発明では、 表面処理剤として、 上記カツプリ ング剤、 有機酸無水物、 無機化 合物の無水物及び乾燥剤を 1種単独で使用してもよいし、 2種以上混合して使用 してもよい。
これらの表面処理剤は、 発泡剤表面に処理し、 好ましくは加熱することにより、 発泡剤中に含有される水分と効率的に反応もしくは吸着し、 発泡剤中の水分含量 を低減させることができる。
これらの表面処理剤は、 水分との反応や水分の吸着に悪影響を及ぼさないよう に溶媒に溶解させることなく、 実質的に無溶媒下で処理するのが好ましい。 特に、 カツプリ ング剤を溶媒に溶解乃至分散させた状態で使用した場合には、 発泡剤中 に存在する水分とカツプリ ング剤との反応が十分に進行せず、 発泡剤中に水分が 残存して実質的に無水の発泡剤を得ることができない。 とりわけ水や水分を含有 する有機溶媒を用いることは、 かえって発泡剤中の水分量を増加させてしまうお それがあるため不適当である。
ここで 「実質的に無溶媒下」 とは、 溶媒を全く使用しないか、 水分含有量 0. 1 重量%未満の有機溶媒を表面処理剤と等重量以下で使用することをいう。 その際、 表面処理剤として固体状のものを用いる場合は微粉末状で、 もしくは溶融液化し て用いることが好ましい。
表面処理剤の発泡剤に対する使用量としては、 発泡剤の含有する水分と反応さ せるのに必要な量が目安となる。 具体的には、 発泡剤 1 0 0重量部に対して通常 0 . 0 1 ~ 1 0重量部程度、 好ましくは 0 . 0 5 ~ 0 . 5重量部の割合で使用す ればよい。
本発明においては、 発泡剤を表面処理剤にて処理する際、 又は処理した後に加 熱処理を行い、 発泡剤中の水分と表面処理剤との反応を促進させるのが好ましい。 本明細書では、 発泡剤に表面処理剤を処理する際又は処理した後に加熱処理する ことを特に 「処理 ·加熱」 すると称する。
加熱は、 発泡剤に表面処理剤を添加混合する際に同時に行うのが効率的である。 表面処理剤が常温で固体状にあるものは、 発泡剤に表面処理剤を添加する際に 予め加熱処理しておくのが好ましい。 この加熱処理により、 固体状の表面処理剤 は加熱溶融された状態となることが好ましい。
加熱温度としては、 通常 3 0 °C〜発泡剤の分解温度まで、 好ましくは 4 0 °C〜 発泡剤の分解温度までが例示できる。 発泡剤として A D C A、 O B S H、 D P T 等の分解温度が 1 5 0 °C以上のものを用いる場合の特に好ましい温度範囲として は 5 5 °C~ 1 0 0 °C、 更に加熱時間を少なく してより一層効率的に混合を行い、 エネルギーコス トを最小限にするという観点からは 7 0 °C〜9 0 °C程度とするの がよい。
表面処理剤の添加する方法は特に制限はないが、 加圧ノズル又は二流体ノズル 等を用いて微小液滴状態で噴霧するようにして表面処理剤を添加するのが好まし い。
また、 添加に際しては、 発泡剤を十分に混合しながら行うのが好ましい。
上記混合の際に用いることのできる混合装置としては、 特に制限はないが、 例 えば、 スーパ一ミキサー、 ヘンシヱルミキサー、 ナウタ一ミキサー等のスクリュ —型ミキサー、 プロシヱァミキサー、 リボン型プレンダ等が例示できる。
もっとも上記混合の際に、 実質的に無水となった発泡剤が粉砕されると、 比表 面積が増大して吸湿性が増大するとともに、 一旦外側からの吸湿を防止する被覆 が形成された発泡剤粉末においても被覆を有しない断面を生じるため一層吸湿性 を増大させることとなり、 本発明の効果を損なう虞がある。 この点については、 粉碎を伴い易い粒子径 1 0 m以上において特に留意する必要がある。
そのため、 本発明では、 発泡剤の粉砕の抑制された混合条件下で混合を行うこ とが好ましい。 ここで、 「発泡剤の粉砕の抑制された混合条件下」 とは、 処理後 の比表面積の増加が処理前に比較して 2 0 %以内、 好ましくは 1 0 %以内となる ような条件をいう。 かかる条件に適した混合機としては、 例えば粒子径 1 0〜3 0〃m程度の発泡剤粉末についてはナウ夕一ミキサ一やプロシェアミキサー (せ ん断羽根を取り外して用いる) 、 リボン型プレンダ等の混合機を挙げることがで きる。 また、 粒子径 3〜1 0 m程度の比較的粉砕を伴い難い発泡剤粉末におい てはユニバーサルミキサーやプロシヱアミキサ一 (せん断羽根を取り付けて用い る) を、 粒子径 3 ~ 5 mの更に粉砕を伴い難い発泡粉末においてはスーパーミ キサ—やヘンシェルミキサー等の混合機を例示でき、 それぞれ回転数を適宜調整 して前記発泡剤の粉砕の抑制された混合条件とすることにより用いるのが好まし い。
また、 液状の表面処理剤を用いる場合、 その添加に際しては、 加圧ノズルもし くは二液体ノズル等を用いて表面処理剤を微小液滴状態として発泡剤に噴霧する のが好ましい。 表面処理剤を微小液滴状態として発泡剤に噴霧することにより、 少量の表面処理剤の使用で本発明の実質的に無水の発泡剤を得ることができる。 本発明の実質的に無水の発泡剤は、 従来の発泡剤と同様に、 各種合成樹脂の発 泡剤として好適に使用され得る。
また、 本発明の発泡剤の使用に際しては、 この分野で公知の各種添加剤、 例え ば、 安定剤、 顔料、 充填剤、 発泡抑制剤等を配合した発泡剤組成物として用いる こともできる。 斯かる安定剤としては、 例えば三塩基性硫酸鉛、 二塩基性亜リ ン 酸塩、 ステアリ ン酸鉛、 ステアリ ン酸亜鉛、 炭酸亜鉛、 酸化亜鉛、 ステアリ ン酸 バリ ウム、 ステアリ ン酸アルミニウム、 ステアリ ン酸カルシウム、 ジブチルチン マレ一卜、 尿素等が挙げられる。 また、 顔料 ·充塡材としては、 例えばクロムェ 口一、 力一ボンブラック、 二酸化チタン、 炭酸カルシウム等が挙げられる。 また 発泡抑制剤としては、 例えばマレイン酸等が挙げられる。
以下に、 本発明の理解を更に容易にするため、 発泡剤として A D C Aを、 表面 処理剤としてアルミニウムトリス (ェチルァセトアセテート) を用いて得られる 本発明の発泡剤の作用効果について、 本発明者等の推認するところを説明する。 但し、 この説明により、 本発明の範囲が何ら限定されるものではない。 ADC A等の発泡剤の粉末は、 通常、 微視的には多孔質の粉末であり、 表面、 孔部及び内部に水分が存在している。 そこにアルミニウム 卜リス (ェチルァセト アセテート) を処理すると、 アルミニウム 卜リス (ェチルァセトアセテー ト) は、 ADC A表面及び孔部の水分と反応し、 次式に示すような反応に従って、 水酸化 アルミニウムとェチルァセ 卜ァセテ一 卜に分解され、 ADC A表面に水酸化アル ミニゥム被膜を形成するものと考えられる。 かかる反応は、 室温程度の低い温度 では長時間を要するが、 例えば 8 0°C程度に加熱することにより促進され、 すみ やかに完結する。
C H + 3 H20
Figure imgf000010_0001
A£ (OH)3 + 3 CH3C 0 CH2C 00 C2H, かかる処理により、 粉末表面及び孔部から水分が除去され、 また微量に残留す る内部の水分も生成した水酸化アルミニゥムの被膜に遮られて粉末表面への移動 が抑制されるため、 固化防止が図られるものと考えられる。 また、 未反応のアル ミニゥム系力ップリ ング剤は、 その撥水効果により固化防止に寄与するものと考 えられる。 更に新たに外部からの水分に接した場合は、 徐々に上記反応が起こり、 水分を除去することができるため、 固化予防も可能になると考えられる。 実施例
以下に実施例及び比較例を挙げ、 本発明をより一層明らかにする。 以下、 単に 「 」 とあるのは 「重量%」 を意味する。
本実施例において使用した ADC Aは大塚化学株式会社製、 平均粒子径 2 0 a mのものである。 実施例 1
AD C A 2 5 k gにアルミニウム ト リス (ェチルァセ トアセテー ト) (商品 名: ALCH— TR、 川研フアインケミカル株式会社製) 5 0 gを 90でに加熱 溶解しスプレー噴霧により添加しつつ円錐形リボン型プレンダ (製品名: リボコ —ン E RME - 5 0、 大川原製作所製) を用いて 7 0 r pm、 9 0°Cにて 1 0 分間混合した後、 同条件で更に 7. 5分混合を続けて本発明の発泡剤粉末 (AD CA結晶物) を得た。
実施例 2
ADCA 2 5 k gに N— (^—アミ ノェチル) 一ァーァミ ノプロビルト リ メ トキシシラン (商品名: T S L 8 3 4 0、 東芝シリコ一ン株式会社製) 5 0 gを 9 0°Cにてスプレー噴霧により添加しつつ円錐形リボン型プレンダ (製品名: リ ボコーン E RME— 5 0、 大川原製作所製) を用いて 7 0 r pm、 9 0°Cにて 1 0分間混合した後、 同条件で更に 7. 5分混合を続けて本発明の発泡剤粉末 (
ADCA結晶物) を得た。
実施例 3
ADCA 2 5 k gに無水グルタル酸 5 0 gを 8 0 °Cにてスプレー噴霧により 添加しつつ円錐形リボン型プレンダ (製品名: リボコーン E RME— 5 0、 大 川原製作所製) を用いて 7 0 r pm、 9 0°Cにて 1 0分間混合した後、 同条件で 更に 7. 5分混合を続けて本発明の発泡剤粉末を得た。
比較例 1
ADCA 2 5 k gに N— —アミ ノメチル) 一ァ一アミ ノプロビルト リ メ 卜キシシラン (商品名: T S L 8 3 4 0、 東芝シリ コーン株式会社製) 5 0 gを 水 1 k gに希釈した水溶液を調製しスーパ一ミキサー (製品名、 株式会社川田製 作所製) を用いて 6 0 0 r pm、 室温にて、 1 0分間混合した後、 同条件で更に 7. 5分混合を続けて、 乾燥後、 比較例 1の発泡剤粉末を得た。
比較例 2
未処理の A DC Aを比較例 2の発泡剤粉末とした。 試験例 1 上記の実施例及び比較例で得られた各発泡剤粉末につき、 下記に示す方法で含 水量 (残存水分値) の測定、 堆積固化テス 卜、 実包装固化テス 卜を行った。 結晶 を表 1に示す。
( 1 ) 含水量の測定:
フラスコにサンプル 1 0 gを精秤し、 水分を含まない窒素ガスを通しながら、 1 1 0°C、 2時間加熱した。 この際、 フラスコから流出する窒素ガスを、 外気か らの水分が入り込まないようにしたカールフィ ッシャ一水分計 (商品名: MKS 一 1、 京都電子社製) に通し窒素ガス中の水分量 (g) を測定した。
含水量は、 次式
含水量 (%) = (水分量ノ精抨したサンプル量) X 1 0 0
により算出した。
(2) 堆積固化テスト :
サンプル 4 0 0 gを 2 3 X 1 3 c mのポリ袋に充塡し、 十分脱気した後、 開口 部をヒ一トシールしたものを重ねて、 更にその上から 0. O S k gZcm2 の荷 重を加えた。 1 0日後、 サンプルを取り出し、 1 4メ ッシュの篩にてふるい分け して不通過分の量を測定し、 %に換算して求めた値を堆積固化率とした。
(3) 実包装固化テスト :
サンプル 2 5 k gを製品流通包装である段ボールケースに充塡包装し、 温度 4 0°C、 湿度 8 0 %の条件下に 1ヶ月放置し、 その後、 1 4メッシュの篩にてふる い分けして不通過分の量を測定し、 %に換算して求めた値を実包装固化率とした。 表 1
含 水 量 堆積固化率 実包装固化率
(%) (%) (%)
実施例 1 < 0. 0 0 5 2. 3 1. 3
実施例 2 < 0. 0 0 5 3. 0 2. 5
実施例 3 0. 0 1 0 9. 8 5. 0
比較例 1 0. 0 4 1 5. 2 1 2. 4
比較例 2 0. 0 7 5 5 6. 4 4 1. 6 実施例 1、 実施例 2及び比較例 2の A D C A結晶物についての試験結果を比較 すると、 本発明の無水 A D C A結晶物は、 未処理の発泡剤粉末に比較して顕著に 固化が抑制されていることがわかる。
また実施例 2と比較例 1の発泡剤粉末についての試験結果の比較から、 シラン 系カツプリ ング剤による表面処理でも、 溶媒を使用せず加熱処理を行うことで、 本発明所望の無水 A D C A結晶物が得られ、 固化防止性が大きく向上することが わかる。 試験例 2
実施例 1、 実施例 2、 実施例 3及び比較例 2で得られた A D C A結晶物の各々 1 5重量部 (但し実施例 1、 実施例 2及び実施例 3の A D C A結晶物については 試験例 1の堆積固化テストに供した後のものを使用) に、 低密度ポリエチレン
(メルトインデックス 2 . 0 ) 1 0 0重量部及びジク ミルバ一オキサイ ド 0 . 8 重量部を配合した組成物をロール温度 1 1 0 ~ 1 1 5 °Cで加熱しながら混練し、 厚み 5 m mのシ一トにして取り出した後、 1 2 5でで5分間 1 2 0 k g / c m 2 の圧力をかけ加熱して、 プレスシ一トとした。 次いで、 得られたシ一トを 2 2 0 °Cにセッ トした熱風オーブンを用いて発泡させた。
得られた発泡体は、 実施例 1、 実施例 2、 実施例 3及び比較例 2のいずれの A D C A結晶物を用いたものについても、 セルは均一微細で、 表面平滑性、 分散速 度ともにほぼ同等な良好な発泡体であった。
この結果から、 本発明の無水 A D C A結晶物は荷重条件下における長期間経過 後も、 製造直後の A D C A結晶物と同等の発泡性能を有していることがわかる。 産業上の利用分野
本発明の発泡剤は、 固化性が著しく抑制され、 長期間経過後も流動性や樹脂へ の分散性等が良好であり、 従来の、 塩化ビニル樹脂、 ポリオレフイ ン樹脂 (ポリ エチレン樹脂、 ポリプロピレン樹脂等) 、 エチレンビニルアルコール樹脂、 ゴム 等の熱可塑性樹脂等の発泡剤と同様の分野において有用である。

Claims

請 求 の 範 囲
1 . 実質的に無水の発泡剤。
2 . 発泡剤を、 発泡剤から水分を除去する性質を有する表面処理剤で処理す ることにより得られる実質的に無水の発泡剤。
3 . 表面処理剤が、 カップリ ング剤、 有機酸無水物、 無機化合物の無水物及 び乾燥剤から選ばれる少なく とも 1種である請求の範囲第 2項に記載の発泡剤。
4 . 表面処理剤が、 シラン系カップリ ング剤、 アルミニウム系カップリ ング 剤及びチタネー 卜系カツプリ ング剤から選ばれる少なくとも 1種である請求の範 囲第 3項に記載の発泡剤。
5 . 表面処理剤がアルミニウム系カップリ ング剤であり、 発泡剤の表面が水 酸化アルミニウムで被覆されてなる請求の範囲第 4項に記載の発泡剤。
6 . 発泡剤がァゾジカルボンアミ ド結晶物である請求の範囲第 1 ~ 5項のい ずれか 1項に記載の発泡剤。
7 . 発泡剤を、 発泡剤から水分を除去する性質を有する表面処理剤を用いて 実質的に無溶媒下に処理して実質的に無水の発泡剤を得ることを特徴とする実質 的に無水の発泡剤の製造方法。
8 . 表面処理剤で処理する際又は処理した後に加熱処理を行うことを特徴と する請求の範囲第 7項に記載の製造方法。
9 . 加熱温度が、 3 0 °C〜発泡剤の分解温度までの温度であることを特徴と する請求の範囲第 8項に記載の製造方法。
1 0 . 加熱温度が 5 5 °C〜 1 0 0 °Cである請求の範囲第 9項に記載の製造方法。
1 1 . 表面処理剤が予め加熱されたものである請求の範囲第 8〜 1 0項のいず れか 1項に記載の製造方法。
1 2 . 表面処理剤の発泡剤への処理は、 発泡剤に表面処理剤を噴霧状態で添加 し、 発泡剤の粉砕の抑制された混合条件下で混合することにより行う請求の範囲 第?〜 1 1項のいずれか 1項に記載の製造方法。
1 3 . 発泡剤の粉砕の抑制された混合条件下で使用される混合機がリボン型ブ レンダ又はスク リユー型ミキサーである請求の範囲第 1 2項に記載の製造方法。 1 4 · 発泡剤がァゾジカルボンアミ ド結晶物である請求の範囲第 7〜 1 3項の いずれか 1項に記載の製造方法。
1 5 . 表面処理剤が、 カツプリ ング剤、 有機酸無水物、 無機化合物の無水物及 び乾燥剤から選ばれる少なく とも 1種である請求の範囲第 7〜 1 4項のいずれか 1項に記載の製造方法。
1 6 . 表面処理剤が、 シラン系カップリ ング剤、 アルミニウム系カップリ ング 剤及びチタネート系カップリ ング剤から選ばれる少なく とも 1種である請求の範 囲第 1 5項に記載の製造方法。
1 7 . 表面処理剤がアルミニゥムィソプロピレート、 アルミニゥムェチレー卜、 アルミニウム卜リス (ェチルァセトアセテート) 、 ェチルァセトアセテートアル ミニゥムジィソプロピレ一 卜から選ばれる少なく とも 1種である請求の範囲第 1 6項に記載の製造方法。
PCT/JP1998/003094 1998-03-03 1998-07-10 Agent moussant sensiblement anhydre et procede de production de celui-ci WO1999045080A1 (fr)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AT98931038T ATE445683T1 (de) 1998-03-03 1998-07-10 Verfahren zur reduzierung des wassergehalts in einem schaummitteln
EP98931038A EP1061110B1 (en) 1998-03-03 1998-07-10 Process for reducing the water content of a blowing agent
EA200000345A EA002426B1 (ru) 1998-03-03 1998-07-10 Практически безводное порообразующее вещество и способ его получения
BRPI9814813-3A BRPI9814813B1 (pt) 1998-03-03 1998-07-10 "processo para a produção de pó para expansão com teor de água inferior a 0,03% em peso".
US09/509,085 US6355698B1 (en) 1998-03-03 1998-07-10 Substantially anhydrous foaming agent and process for producing the same
HU0004805A HU226848B1 (en) 1998-03-03 1998-07-10 Process for producing foaming agent - in a powder form -
KR1020007003458A KR100545464B1 (ko) 1998-03-03 1998-07-10 실질적으로 무수인 발포제 분말 및 이의 제조방법
AU81281/98A AU745468B2 (en) 1998-03-03 1998-07-10 Substantially anhydrous foaming agent and process for producing the same
CA002304561A CA2304561C (en) 1998-03-03 1998-07-10 Substantially anhydrous blowing agent and process for producing the same
IL13519398A IL135193A0 (en) 1998-03-03 1998-07-10 Substantially anhydrous foaming agent and process for producing the same
DE69841242T DE69841242D1 (de) 1998-03-03 1998-07-10 Verfahren zur reduzierung des wassergehalts in einem schaummitteln
IL135193A IL135193A (en) 1998-03-03 2000-03-21 Substantially anhydrous foaming agent and process for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP10/50504 1998-03-03
JP05057198A JP3567304B2 (ja) 1998-03-03 1998-03-03 発泡剤の改質方法
JP10/50571 1998-03-03
JP05050498A JP3799801B2 (ja) 1998-03-03 1998-03-03 水酸化アルミニウムで表面被覆された発泡剤及びその製造方法
JP10/116822 1998-04-27
JP11682298A JP3390828B2 (ja) 1998-04-27 1998-04-27 無水アゾジカルボンアミド結晶物及びその製造方法

Publications (1)

Publication Number Publication Date
WO1999045080A1 true WO1999045080A1 (fr) 1999-09-10

Family

ID=27293973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003094 WO1999045080A1 (fr) 1998-03-03 1998-07-10 Agent moussant sensiblement anhydre et procede de production de celui-ci

Country Status (17)

Country Link
US (1) US6355698B1 (ja)
EP (1) EP1061110B1 (ja)
KR (1) KR100545464B1 (ja)
CN (1) CN1193082C (ja)
AT (1) ATE445683T1 (ja)
AU (1) AU745468B2 (ja)
BR (1) BRPI9814813B1 (ja)
CA (1) CA2304561C (ja)
DE (1) DE69841242D1 (ja)
EA (1) EA002426B1 (ja)
ES (1) ES2333491T3 (ja)
HU (1) HU226848B1 (ja)
ID (1) ID24384A (ja)
IL (2) IL135193A0 (ja)
MY (1) MY129168A (ja)
TW (1) TW538079B (ja)
WO (1) WO1999045080A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1289727B1 (en) * 2000-06-06 2005-11-30 Thermaflex International Holding B.V. Process for producing physically foamed polyolefin foams and insulation foams prepared therewith
US7358282B2 (en) * 2003-12-05 2008-04-15 Kimberly-Clark Worldwide, Inc. Low-density, open-cell, soft, flexible, thermoplastic, absorbent foam and method of making foam
US7291382B2 (en) * 2004-09-24 2007-11-06 Kimberly-Clark Worldwide, Inc. Low density flexible resilient absorbent open-cell thermoplastic foam
US8158689B2 (en) * 2005-12-22 2012-04-17 Kimberly-Clark Worldwide, Inc. Hybrid absorbent foam and articles containing it
US20070148433A1 (en) * 2005-12-27 2007-06-28 Mallory Mary F Elastic laminate made with absorbent foam
KR101217865B1 (ko) * 2006-10-17 2013-01-03 주식회사 제이앤드제이 캐미칼 발포제 개질 방법
KR101327439B1 (ko) 2006-10-17 2013-11-08 주식회사 제이앤드제이 캐미칼 금속 실록산계 화합물로 표면 처리된 개질 발포제 및 이를포함하는 고분자 수지 조성물
KR101056699B1 (ko) * 2006-11-22 2011-08-12 (주)엘지하우시스 건축용 경량 세라믹 보드
WO2014152539A1 (en) * 2013-03-14 2014-09-25 Csp Technologies, Inc. Agent for the formation of channels in an entrained polymer, entrained polymer containing such an agent, process for producing such an entrained polymer and product containing the same
US20150197612A1 (en) * 2014-01-13 2015-07-16 Eric Matthew Albee Novel Blowing Agents and Process
CN104307250B (zh) * 2014-10-13 2016-07-13 杭州海虹精细化工有限公司 一种降低发泡剂滤饼含水量的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196240A (ja) * 1982-04-28 1983-11-15 バイエル・アクチエンゲゼルシヤフト 発泡剤組成物
JPS63175040A (ja) * 1986-12-31 1988-07-19 ユニロイヤル ケミカル カンパニー インコーポレーテツド 発泡エラストマー組成物の製造法
JPH04320432A (ja) * 1991-04-19 1992-11-11 Eiwa Kasei Kogyo Kk 発泡剤組成物
JPH06179862A (ja) * 1992-12-14 1994-06-28 Otsuka Chem Co Ltd 化学発泡剤の改質方法
JPH0711234A (ja) * 1993-06-23 1995-01-13 Otsuka Chem Co Ltd 化学発泡剤の改質法
JPH08295872A (ja) * 1995-04-24 1996-11-12 Otsuka Chem Co Ltd 改質された化学発泡剤及び化学発泡剤の改質方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330635A (en) 1980-04-04 1982-05-18 Monsanto Company Foamable polymeric composition
US4293658A (en) 1980-05-12 1981-10-06 Abbott Laboratories Process for rigid foams of improved friability
US4390641A (en) 1981-07-07 1983-06-28 Thermocell Development, Ltd. Flame-retardant benzylic-ether phenolic modified foam and method of preparing same
JPS59225156A (ja) * 1983-06-07 1984-12-18 Nippon Carbide Ind Co Ltd アゾジカルボンアミドの分解温度の調整方法−及び発泡剤組成物
US4518716A (en) 1984-10-26 1985-05-21 Dow Corning Corporation Foamable organosiloxane compositions
US4567212A (en) 1985-04-08 1986-01-28 Dow Corning Corporation Nonslumping, foamable polyorganosiloxane compositions containing organosiloxane graft copolymers
JPH05179862A (ja) * 1991-12-27 1993-07-20 Kojima Press Co Ltd 窓ガラスの開閉機構の制御方法
EP0794795A1 (en) * 1994-03-24 1997-09-17 Boehringer Ingelheim Agrovet A/S Dispensing unit containing a particulate product for the administration of drugs or nutrient preparations to animals and process for the manufacture of the particulate product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196240A (ja) * 1982-04-28 1983-11-15 バイエル・アクチエンゲゼルシヤフト 発泡剤組成物
JPS63175040A (ja) * 1986-12-31 1988-07-19 ユニロイヤル ケミカル カンパニー インコーポレーテツド 発泡エラストマー組成物の製造法
JPH04320432A (ja) * 1991-04-19 1992-11-11 Eiwa Kasei Kogyo Kk 発泡剤組成物
JPH06179862A (ja) * 1992-12-14 1994-06-28 Otsuka Chem Co Ltd 化学発泡剤の改質方法
JPH0711234A (ja) * 1993-06-23 1995-01-13 Otsuka Chem Co Ltd 化学発泡剤の改質法
JPH08295872A (ja) * 1995-04-24 1996-11-12 Otsuka Chem Co Ltd 改質された化学発泡剤及び化学発泡剤の改質方法

Also Published As

Publication number Publication date
BR9814813A (pt) 2000-10-03
AU8128198A (en) 1999-09-20
EP1061110A1 (en) 2000-12-20
CN1193082C (zh) 2005-03-16
HU226848B1 (en) 2009-12-28
EP1061110A4 (en) 2004-05-12
IL135193A0 (en) 2001-05-20
US6355698B1 (en) 2002-03-12
US20020025988A1 (en) 2002-02-28
KR20010024358A (ko) 2001-03-26
EP1061110B1 (en) 2009-10-14
ATE445683T1 (de) 2009-10-15
AU745468B2 (en) 2002-03-21
ES2333491T3 (es) 2010-02-22
EA002426B1 (ru) 2002-04-25
CN1280605A (zh) 2001-01-17
BRPI9814813B1 (pt) 2015-08-25
HUP0004805A3 (en) 2003-07-28
KR100545464B1 (ko) 2006-01-24
EA200000345A1 (ru) 2000-10-30
MY129168A (en) 2007-03-30
ID24384A (id) 2000-07-13
IL135193A (en) 2006-07-05
HUP0004805A2 (hu) 2001-05-28
CA2304561A1 (en) 1999-09-10
CA2304561C (en) 2009-09-29
TW538079B (en) 2003-06-21
DE69841242D1 (de) 2009-11-26

Similar Documents

Publication Publication Date Title
WO1999045080A1 (fr) Agent moussant sensiblement anhydre et procede de production de celui-ci
KR100320117B1 (ko) 발포제분말및이의제조방법
JP3390828B2 (ja) 無水アゾジカルボンアミド結晶物及びその製造方法
JP3012950B2 (ja) 発泡剤組成物
KR100295472B1 (ko) 발포제조성물
JP3799801B2 (ja) 水酸化アルミニウムで表面被覆された発泡剤及びその製造方法
JP3567304B2 (ja) 発泡剤の改質方法
JP3627069B2 (ja) 改質された化学発泡剤及び化学発泡剤の改質方法
JP3136403B2 (ja) 発泡剤粉末及びその製造方法
JP3129705B2 (ja) 粉末の表面処理方法及び実質的に無水の粉末
JP2008101210A (ja) 発泡剤改質方法
JPH0717710A (ja) 安定化された過炭酸ナトリウム粒子およびその製造方法
JP3305112B2 (ja) 安定化された過炭酸ナトリウムの粒子およびその製造方法
JPH0769606A (ja) 安定化された過炭酸ナトリウム粒子およびその製造方法
JP3799815B2 (ja) 発泡剤粉末及びその製造方法
JP2604321B2 (ja) 発泡剤組成物
JP2000169626A (ja) シリコーンゴム用充填材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 135193

Country of ref document: IL

Ref document number: 98810450.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN HU ID IL KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09509085

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2304561

Country of ref document: CA

Ref document number: 2304561

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020007003458

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998931038

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200000345

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 81281/98

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1998931038

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007003458

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 81281/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020007003458

Country of ref document: KR