WO1999043803A1 - Gene codant pour la proteine antigenique hm1.24 et son promoteur - Google Patents

Gene codant pour la proteine antigenique hm1.24 et son promoteur Download PDF

Info

Publication number
WO1999043803A1
WO1999043803A1 PCT/JP1999/000884 JP9900884W WO9943803A1 WO 1999043803 A1 WO1999043803 A1 WO 1999043803A1 JP 9900884 W JP9900884 W JP 9900884W WO 9943803 A1 WO9943803 A1 WO 9943803A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
promoter
gene
cells
seq
Prior art date
Application number
PCT/JP1999/000884
Other languages
English (en)
French (fr)
Other versions
WO1999043803A9 (fr
Inventor
Toshihiko Ohtomo
Masayuki Tsuchiya
Yasuo Koishihara
Masaaki Kosaka
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to DE69929876T priority Critical patent/DE69929876T2/de
Priority to US09/622,166 priority patent/US6613546B1/en
Priority to EP99906488A priority patent/EP1065269B1/en
Priority to AU26402/99A priority patent/AU2640299A/en
Publication of WO1999043803A1 publication Critical patent/WO1999043803A1/ja
Publication of WO1999043803A9 publication Critical patent/WO1999043803A9/ja
Priority to US10/423,007 priority patent/US6908750B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3061Blood cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a genomic DNA encoding the HM1.24 antigen protein, a promoter of a gene of the HM1.24 antigen protein, and use thereof.
  • a mouse anti-HM1.24 monoclonal antibody was generated using the human myeloma cell line KPC-32 as an immunogen (Goto T. et al., Blood 84: 1922-1930, 1994).
  • the HM1.24 antigen recognized by this antibody is a membrane protein with a molecular weight of 29-33 kDa that is highly expressed on the surface of myeloma cells. Furthermore, in normal cells, expression was confirmed in immunoglobulin-producing B cells (plasma cells, lymphoplasmacitoide cells), and almost no expression was observed in other cells and tissues (Goto T. Et al.). However, the HM24 antigen has not been revealed other than its expression distribution and molecular weight.
  • HM 1.24 Antigen is the same molecule as BST2, a surface antigen expressed on bone marrow of myeloma patients and on bone marrow cells isolated from bone marrow and synovium of rheumatoid arthritis patients It became clear.
  • BST 2 is said to have the ability to support pre-B cell proliferation, and is used in the pathology of rheumatoid arthritis. It is speculated that they may be involved, but other physiological functions have not been clearly demonstrated (Ishikawa J. et al., Genomics 26: 527-534, 1995).
  • a useful animal-derived gene product is produced by genetic engineering, using a microbial host such as Escherichia coli, Bacillus subtilis, or yeast, the gene is not expressed, and the gene product protein does not have the correct three-dimensional structure. It is often the case that the protein has no activity due to post-translational modification not being performed correctly.
  • animal cells are often used as a host, and in this case, selection of a promoter has a large effect on expression efficiency.
  • promoters for animal cells that have been frequently used include the SV40 promoter, the site megalovirus promoter, and the actin promoter.
  • the present invention provides a genomic DNA encoding the HM1.24 antigen protein.
  • the present invention also provides a method for producing the HM1.24 antigen protein using animal cells using the above-mentioned genomic DNA.
  • Another object of the present invention is to provide a DNA having a strong promoter activity and a use thereof as a promoter for animal cells.
  • the present invention encodes an HM1.24 antigen protein containing four exon regions encoding the amino acid sequence shown in SEQ ID NO: 2.
  • Genome DN as described above As an example of A, the present invention provides a genomic DNA having 4 exoxons and 3 introns encoding the amino acid sequence shown in SEQ ID NO: 2.
  • the present invention also provides a genomic DNA splicing variant as described above. Specific examples include a splicing variant lacking exon 2 and a splicing variant lacking exons 2 and 3.
  • the present invention also provides a method for producing an HM1.24 antigen protein, which comprises culturing an animal cell transformed by an expression vector containing the genomic DNA. I do.
  • the present invention further provides a promoter sequence DNA having a base sequence of the 5'-non-coding region shown in SEQ ID NO: 4, or a DNA fragment of the sequence having promoter activity in animal cells.
  • the present invention also provides a DNA that hybridizes with the above-described DNA or a fragment thereof under a stringent condition and has a promoter activity in animal cells.
  • the DNA having the promoter activity is preferably derived from animal cells, particularly mammalian cells.
  • the present invention also relates to a nucleotide sequence of the 5′-noncoding region shown in SEQ ID NO: 4, wherein the nucleotide sequence is modified by deletion or addition of one or more bases and / or substitution by another base, and Provided is a DNA having promoter activity in animal cells.
  • the present invention also provides a recombinant DNA obtained by operably linking the DNA having the above promoter activity and useful genetics.
  • the useful gene include a nucleic acid selected from the group consisting of a nucleic acid encoding a useful protein, an antisense DNA, an antisense RNA, a nucleic acid encoding a decoy, and a ribozyme.
  • the present invention also provides a vector comprising the above recombinant DNA. I do. This vector is a plasmid vector or a virus vector.
  • the present invention also provides an animal cell into which the above-mentioned recombinant DNA has been introduced.
  • the present invention also provides an animal cell transformed with the above vector.
  • the present invention also provides an animal having the above animal cell.
  • the present invention also provides a method for expressing a useful gene, comprising culturing the above-described animal cell into which the recombinant DNA has been introduced.
  • the present invention is also characterized in that an animal cell transformed with an expression vector comprising a nucleic acid encoding a useful protein operably linked to the DNA having the promoter activity is cultured. And a method for producing a useful protein.
  • FIG. 1 is a diagram showing the nucleotide sequence of cDNA encoding the HM1.24 antigen protein and the corresponding amino acid sequence.
  • the underline indicates the N-type sugar chain binding motif.
  • FIG. 2 is a diagram showing the nucleotide sequence of cDNA encoding the HM1.24 antigen protein and the corresponding amino acid sequence.
  • FIG. 3 is a schematic diagram of the clone P3.19 isolated using the Panning method and the five clones (IS1 to IS5) isolated by the immunoscreening method.
  • FIG. 4 is a diagram showing the results of flow cytometry analysis using an anti-HM1.24 antibody (A; CHOZNE0, B; CH0 / HM).
  • the histogram of the anti-HM1.24 antibody is shown by the solid line, and the histogram of the isotype matched control antibody (UPC10) is shown by the wavy line.
  • the horizontal axis indicates the fluorescence intensity and the vertical axis indicates the number of cells.
  • Figure 5 shows the results of detection of the expression of HM1.24 antigen in various cell lines and HM1.24-expressing CH0 cells by immunoprecipitation using anti-HM1.24 antibody and Western blotting. This is a drawing substitute photo shown. After immunoprecipitation using Sepharose 4B (lanes 1 to 6) or unconjugated Sepharose 4B (lanes 7 and 8) conjugated with anti-HM1.24 antibody, anti-HM ⁇ stan 'plotting was performed using the 1.24 antibody to detect the HM1.24 antigen (displayed on the right :). (*; Anti-HM1.24 antibody heavy chain)
  • FIG. 6 is a diagram showing a restriction map of a 5′-untranslated region including a promoter region of the HM1.24 antigen protein gene.
  • FIG. 7 is a view showing the nucleotide sequence of the 5′-untranslated region including the promoter region of the HM1.24 antigen protein gene. Various transcription factor binding motifs are underlined.
  • FIG. 8 shows the nucleotide sequence of the 5′-untranslated region including the promoter region of the HM1.24 antigen protein gene.
  • the binding motifs for various transcription factors are underlined, the TATA-like sequence is boxed, the transcription start point is indicated by an arrow, and the region encoding the seven amino acids at the N-terminus of the protein is indicated by an asterisk. Indicated by the one-letter code for amino acids.
  • a of FIG. 9 shows the position of the primer corresponding to the genome encoding the HM1.24 antigen protein, and B shows the nucleotide sequence of each primer.
  • FIG. 10 is a diagram showing a restriction map of genomic DNA encoding the HM1.24 antigen protein, and the corresponding positions of exons and introns.
  • Figure 11 shows the nucleotide sequence of the genomic DNA encoding the HM1.24 antigen protein and the corresponding amino acid sequence (upstream). .
  • the arrow indicates the transcription start site, and the underline indicates the N-type sugar chain binding motif.
  • FIG. 12 is a diagram showing the genomic DNA base sequence encoding the HM1.24 antigen protein and the corresponding amino acid sequence (downstream). The double underline indicates the polyA addition signal.
  • FIG. 13 is a diagram showing the nucleotide sequence of the splicing variant of the human HM1.24 antigen protein and the corresponding amino acid sequence.
  • the underlined portion indicates a portion where the human HM1.24 antigen protein differs from the amino acid sequence.
  • FIG. 14 is a diagram showing a base sequence of genomic DNA of HM1.24 antigen protein. Genomes with & ⁇ 8 at position 17-8, 8 ⁇ & at position 26, t ⁇ c at position 323, and one of 9 a's near position 360 Also existed. * Indicates a transcription start site. In addition, there was a genome in which 19 bp at positions 93 to 111 were repeated in tandem. ⁇ indicates the position of the sense primer.
  • FIG. 15 shows the nucleotide sequence of the genomic DNA of the HM1.24 antigen protein and the corresponding amino acid sequence. There were also genomes in which 8 base pairs at positions 55 1 to 55 8 were deleted. — Indicates the position of the antisense primer.
  • FIG. 16 is a diagram showing the nucleotide sequence of the genomic DNA (intron site) of the HM1.24 antigen protein. ⁇ indicates the position of the sense primer.
  • FIG. 17 shows the nucleotide sequence of the genomic DNA of the HM1.24 antigen protein and the corresponding amino acid sequence.
  • indicates a sense primer and indicates an antisense primer.
  • FIG. 18 shows the base sequence of genomic DNA of the HM1.24 antigen protein and the corresponding amino acid sequence. 2 3 1 5 c near 5 Some genomics were missing three of them. — Indicates the position of the antisense primer.
  • human HM1.24 antigen genome DNA and the genomic gene containing the promoter region can be easily amplified by the PCR method using an appropriate primer. That is, human HM1.24 antigen genomic DNA is designed by designing a sense primer that hybridizes to the 5 'end of the genomic DNA sequence shown in SEQ ID NO: 2 and an antisense primer to hybridize to the 3' end of the genomic DNA sequence according to the standard method.
  • amplification can be carried out by performing a PCR reaction using a polymerase such as AmpliTaq (PerkinElner) or LA-Taq (Takara Shuzo).
  • the PCR product can be inserted directly into a cleaning vector, for example, pCRII (Invitrogen) or pGEM-T (Promega).
  • a restriction enzyme recognition site into the sense primer and the antisense primer, it can be inserted into a desired vector.
  • Genomic DNA containing the promoter region of human HM1.24 antigen can also be amplified by the same method. That is, a sense primer that hybridizes to the 5 ′ end and an antisense primer that hybridizes to the 3 ′ end of the sequence shown in SEQ ID NO: 4 are designed, human genomic DNA is converted to ⁇ , and amplified by PCR. Thus, a desired DNA fragment can be obtained.
  • the genomic DNA encoding the HM1.24 antigen protein of the present invention is composed of four exons and three introns connecting them, as shown in FIG.
  • the specific nucleotide sequence and amino acid sequence deduced from the exon region are shown in Figs. 11 and 12 (SEQ ID NO: 2). It is. That is, exon 1 encodes amino acid Met at position 1 to amino acid Va1 at position 95, and exon 2 encodes amino acid M at position 96. et al. are encoded up to the amino acid Glu at position 117, and exon 3 is the amino acid at amino acid Glu at position 118. O acid A rg, and exon 4 encodes amino acid A rg at position 139, and amino acid G ln at position 180 o
  • the present invention also provides a splicing variant of the genomic DNA encoding the HM1.24 antigen protein.
  • a splicing variant is one in which at least one, or one to three, of exons 1 to 4 has been removed, for example, exon 2 or 3 or both. The son has been removed.
  • the present invention also relates to HM1 having a DNA base sequence in which the codon corresponding to each amino acid of exon is shifted as a result of deletion of the base sequence inside exon by splicing. It provides a splicing variant of genomic DNA encoding 24 antigen proteins.
  • This splicing variant has a different reading frame of amino acid sequence, and thus has a different amino acid sequence from the HM1.24 antigen protein encoded by exons 1-4. Noic acid sequence.
  • a splicing variant is a splicing variant having the nucleotide sequence shown in SEQ ID NO: 17 and an amino acid sequence.
  • the genomic DNA encoding the HM1.24 antigen protein of the present invention is obtained by first cloning cDNA encoding the HM1.24 antigen protein, and then cloning the cDNA.
  • the primers are used to design primers, and the resulting DNA is used to perform amplification using the genomic DNA library as a type II by PCR.
  • c Click DNA To perform the roning, animal cells expressing the HM1.24 antigen, for example, KPMM2 cells, are cultured, total RNA is extracted from the cultured cells according to a conventional method, and mRNA is then concentrated.
  • cDNA is synthesized by a conventional method based on the above mRNA, fractionated using a low-melting point agarose gel, and a cDNA having a size of 0.7 kbp or more is used as an expression vector pCOSl. Or ⁇ ⁇ ⁇ .
  • Library A for direct screening by direct expression cloning, ie, panning, and library B for immunoscre ening. was prepared.
  • the expression plasmid that constitutes library A was introduced into COS-17 cells by electroporation, and the cells were cultured to remove adherent cells. 24 antibody was contacted with the coated panning plate, and cells expressing HMl.24 were attached to the plate. Next, plasmid DNA was extracted from the cells attached to the plate, proliferated in E. coli, and used for the next panning. By repeating this panning operation three times, a clone expressing an antigen reactive with the anti-HM1.24 antibody was selected, and one of the clones was named clone P3.19.
  • clone P3.19 contained an open reading frame consisting of 1,012 bp and encoding 180 amino acids.
  • the nucleotide sequence of the cDNA insert in this clone P3.19 and the corresponding amino acid sequence are shown in FIG. 1 and SEQ ID NO: 1.
  • only the amino acid sequence is shown in SEQ ID NO: 3.
  • the phage constituting library B was cultured together with E. coli NM522 on an agar plate, and After transferring the product to a dinitrocellulose filter, the filter was contacted with an anti-HM1.24 antibody solution, and the anti-HM1.2 bound to the filter via binding to the expression product. Four antibodies were detected with labeled anti-mouse immunoglobulin (Ig) serum.
  • Ig immunoglobulin
  • the cDNA sequence is divided into four parts, and a primer pair for amplifying each part is designed as shown in FIG. 9B.
  • PCR is performed on the genomic DNA library prepared according to a conventional method using the primers of each pair described above, and the resulting DNA is joined to obtain a full-length genomic DNA.
  • FIGS. 11 and 12 The results are shown in FIGS. 11 and 12, and SEQ ID NO: 2.
  • the genomic DNA encoding the HM1.24 antigen protein has four exons and three introns connecting them. These relationships are schematically shown in FIG. FIG. 10 also shows a restriction map of the genomic DNA.
  • the present invention also provides a method for culturing HM1.2, comprising culturing an animal cell transformed by an expression vector containing the genomic DNA.
  • a method for producing an antigen protein As the animal cells used in this method, for example, various animal cells described below regarding the use of the promoter of the present invention can be used, and cultured cells of humans, mammals other than humans, insects and the like can be used. I like it. For example, HeLa and the like are used as human cultured cells, and CHO, COS, myeloma, BHK, Vero, and the like are used as cultured cells of mammals other than human, and insect culture is used. The cells include silkworm cultured cells. As a vector for introducing a DNA encoding the HM1.24 antigen protein of the present invention into these animal cells, for example, a phage vector, for example, M13 is used.
  • the culture of animal cells for producing the HM1.24 antigen protein can be carried out according to a conventional method, and the isolation and purification of the HM1.24 antigen protein from the culture can be carried out according to a conventional method. It can be carried out.
  • Hypridoma HM1.24 which produces a mouse anti-HM1.24 monoclonal antibody that specifically recognizes the HM1.24 antigen protein, was purchased from the Institute of Biotechnology, National Institute of Advanced Industrial Science and Technology (Ibaraki, Japan). It has been deposited internationally under the Budapest Treaty as FE RM BP—5233 in September 1, 1995 at Tsukuba City Higashi 1-3-1-3).
  • promoter 1 as used herein is located 20 to 30 base pairs upstream from the transcription start point (+1) and has a function of initiating transcription from an accurate position to the RNA polymerase.
  • promoter one activity refers to a gene product of a useful gene in or outside a host when a useful gene is ligated in a state capable of being expressed downstream of the promoter and introduced into a host (animal cell). Has the ability and function to produce In general, a gene encoding a protein that can be easily quantified (reporter gene) is ligated downstream of the promoter in an expressible state, introduced into a host, and the expression level of these proteins is measured. The presence / absence and strength of one are expressed as promoter activity.
  • a useful gene When a useful gene is ligated in such a manner that it can be expressed downstream of the promoter and introduced into the host, if the expression of the gene product of the useful gene is confirmed inside or outside the host, the promoter is transferred to the introduced host. Promoter will have one activity.
  • animal cell used herein includes human-derived cells, but is not particularly limited as long as the promoter of the present invention has one promoter activity in the animal cell.
  • mammals other than humans eg, mice, rats, rabbits, goats, butters, horses, horses, dogs, monkeys, chimpanzees, etc.
  • birds eg, birds, turkeys, Pezra, ducks, ducks, etc.
  • reptiles eg, snakes, dinosaurs, turtles, etc.
  • amphibians eg, power elephants, salamanders, imimos, etc.
  • fishes eg, horse mackerel, mackerel, sea bass, Thailand, grouper, Puri, tuna, salmon, trout, carp, eel, penguin, flounder, shark, ray, sturgeon, etc.
  • “useful gene” includes a nucleic acid encoding a protein that can be expressed in animal cells, antisense DNA or antisense RNA of a gene derived from animal cells, and a binding protein of a transcription factor derived from animal cells. Of coding sites for genes or transcription factors that encode Nucleic acids encoding decoys having rows or similar sequences, and ribozymes that cleave mRNAs derived from animal cells.
  • nucleic acid encoding a protein that can be expressed in animal cells examples include those derived from animals, but this is not limited in the present invention.
  • Genes derived from microorganisms such as fungi, yeasts, actinomycetes, filamentous fungi, ascomycetes, and basidiomycetes, and those derived from organisms such as plants and insects are also included in the useful gene referred to in this specification.
  • decoy-encoding nucleic acid refers to a gene encoding a transcription factor binding protein derived from an animal cell or a DNA having a sequence of a binding site of a transcription factor or a similar sequence.
  • Decoy refers to a substance that suppresses the action of transcription factors when introduced into cells.
  • ribozyme refers to one that cleaves mRNA of a specific protein, and one that inhibits the translation of these specific proteins.
  • Ribozymes can be designed from gene sequences that code for specific proteins.
  • a hammerhead ribozyme is the FEBS Letter, Vol. 2 2 8 — 2 3 0
  • the method described in (1988) can be used. In addition, it cleaves the mRNA of a specific protein, regardless of the type of ribozyme, such as a hairpin ribozyme or delta ribozyme, as well as a hammerhead ribozyme. Anything that interferes is included in the ribozym referred to herein.
  • the expression of the useful gene can be enhanced. That is, a recombinant DNA obtained by ligating a DNA having a promoter activity of the present invention and a useful gene in an expressible state.
  • Useful genes are expressed in animal cells introduced through a vector or without a vector.
  • a vector a plasmid vector or a virus vector is preferably used. If a vector is not used, the DNA fragment can be introduced using the method described in the literature.
  • Animal cells having such a recombinant DNA fragment of the present invention and animals having such animal cells are also included in the scope of the present invention.
  • useful genes whose expression can be enhanced by the present invention include, as described above, DNA encoding protein, polynucleotide encoding antisense DNA, antisense RNA, and decoy as described above. Examples include a nucleotide, a nucleotide sequence that functions as a decoy, and ribozyme.
  • the present invention also discloses a method for producing a target protein and a method for expressing a useful gene using a DNA fragment having a promoter activity of the present invention.
  • a nucleic acid encoding a protein is operably linked to the downstream of a DNA having the promoter activity of the present invention, and the resulting animal cell containing the recombinant DNA is cultured.
  • a method for producing the protein, wherein the protein is collected from the culture is also included in the scope of the present invention.
  • a method for expressing a useful gene by ligating a useful gene downstream of the DNA having one promoter activity of the present invention so that the useful gene can be expressed, introducing the resulting recombinant DNA into animal cells, and culturing the animal.
  • a method for expressing a useful gene by an animal cell by transforming the animal cell with a vector containing the recombinant DNA and culturing the animal cell is also included in the scope of the present invention.
  • the DNA having one promoter activity of the present invention is represented by SEQ ID NO: 4.
  • 5′ DNA having a nucleotide sequence shown in the non-terminal non-coding region or a fragment thereof which maintains the activity of the promoter.
  • 5'—Non-coding region means the nucleotide sequence up to position 240 of SEQ ID NO: 4. It is known that a size of 5 bases or more is necessary to exert one promoter activity in animal cells. Accordingly, the DNA fragment of the present invention having the promoter overnight activity has a size of at least 5 bases or more, preferably has a size of 30 bases or more, and more preferably has a size of 200 bases or more. It has a size equal to or larger than a base.
  • the present invention also includes a DNA having the nucleotide sequence shown in SEQ ID NO: 4 and a DNA capable of hybridizing under stringent conditions and having a promoter activity.
  • the hybridizing DNA is of natural origin and is, for example, a genomic DNA library, eg, a mammal, eg, a human, mouse, rat, sal, etc.
  • the stringent conditions include, for example, low stringent conditions.
  • Low stringent conditions include, for example, washing conditions provided by 42 ° C., 5 ⁇ SSC, 0.1% sodium dodecyl sulfate, and 50% formamide. More preferably, high stringency conditions are included.
  • High stringent conditions include, for example, washing conditions provided by 60 ° C., 0.1 ⁇ SSC, 0.1% sodium dodecyl sulfate.
  • the present invention also relates to the promoter of the nucleotide sequence of SEQ ID NO: 4, which is modified by deletion or addition of one or more nucleotides and / or substitution with another nucleotide, and maintains the activity of the promoter. DNA fragments.
  • the degree of modification is in the range of 70% homology to the nucleotide sequence shown in SEQ ID NO: 4, preferably 80% or more, and more preferably 90% or more.
  • homology means not two or more complementary
  • identity of the residue represented by the base sequence or ⁇ Mi acid sequence indicates the degree of (Gene Cloning 2 nd edition, TA Brown, Cha pman and Hall, 1990). That is, 90% homology means that 90 or more of 100 residues are identical in two or more sequences.
  • DNA having the nucleotide sequence shown in SEQ ID NO: 4 was obtained by combining a primer API (5′-GTAATACGACTCACTATAGGGC-3 ′) (SEQ ID NO: 5) for adapter 1 and cDNA clone P 3 cloned by the Panning method.
  • a primer API (5′-GTAATACGACTCACTATAGGGC-3 ′) (SEQ ID NO: 5) for adapter 1 and cDNA clone P 3 cloned by the Panning method.
  • HM 1 primer (sequence: 5′—AT C CCC GTC TTC CAT GGG CAC TCT GCA-3 ′) (SEQ ID NO: 6) corresponding to base number: 47 to 72 of 19
  • the human genomic DNA library was subjected to PCR amplification using type I, and the PCR amplification product was used as type II, followed by AP2 primer (sequence: ACTATAGGGC ACGCGTGGT) (SEQ ID NO: 7) and clone P3.
  • Nested PCR was performed using the HM2 primer (sequence: 5'-AT A GTC ATA CGA ACT AGA TGC CAT CCA G-3 ') (SEQ ID NO: 8) corresponding to 19 bases 19 to 40; Subcloning into the cloning vector pCR II (Invitrogen). As a result of sequencing, DNA having the nucleotide sequence shown in SEQ ID NO: 4 was obtained.
  • a DNA fragment having a promoter can be obtained, for example, as follows.
  • a method of chemically synthesizing by the method of polymerization, a method of preparing using a polymerase chain reaction method, or the like can be used.
  • a primer is appropriately prepared from the DNA sequence of SEQ ID NO: 4 and the desired primer is prepared by a polymerase chain reaction. Can be easily prepared.
  • the promoter of the present invention can also be obtained from a gene derived from another cell.
  • the following method can be applied.
  • a chromosomal DNA obtained from a gene source of another cell is connected to a plasmid phage vector and introduced into a host according to a conventional method to prepare a library.
  • the library is cultured on a plate, and the grown colonies or plaques are transferred to a nitrocellulose or nylon membrane, and the DNA is fixed to the membrane by a denaturation treatment.
  • This membrane is kept warm in a solution containing a probe (probe is a DNA fragment described in SEQ ID NO: 4 in the sequence listing, or a part thereof) labeled in advance with 32 P, etc. Form a hybrid with the probe.
  • a probe is a DNA fragment described in SEQ ID NO: 4 in the sequence listing, or a part thereof
  • the DNA-immobilized membrane is placed in a solution containing 6XSSC, 1% sodium dodecyl sulfate (SDS :), 100 / gZml salmon sperm DNA, and 5X Denhardt at 65 ° C. Hybridize with probe for 0 hours. After hybridization, the non-specific adsorption is washed away, and clones that have hybridized with the probe are identified by autoradiography or the like. This operation is repeated until the number of hybridized clones becomes one. Among the clones obtained in this way, DNA encoding the desired promoter is inserted.o
  • the above-mentioned promoter modified by deletion, addition and Z or substitution of a base can be produced by a well-known method such as site-directed mutagenesis and PCR method.
  • the nucleotide sequence of the obtained gene is determined, for example, as follows, and it is confirmed whether the obtained gene is the target promoter.
  • the determination of the nucleotide sequence is performed in the case of clones obtained by hybridization. If the transformant is Escherichia coli, culture it in a test tube or the like, and extract the plasmid according to a standard method. This is cut with a restriction enzyme to remove the inserted fragment,
  • the base sequence can be determined by basically the same steps.
  • the basic procedures from culturing to nucleotide sequencing are described in, for example, Molecular Cloning A Laboratory Manual, 2nd edition, T. Mania-Taste (T. Maniatis), Chapter 1, pages 90-104, Cold Spring Harbor Laboratories — Inc., published in 1989 o
  • Whether or not the obtained gene is the target promoter can be estimated from the homology of the determined base sequence by comparing it with the promoter of the present invention. If the obtained gene does not contain all of the promoter, a synthetic DNA primer is prepared based on the obtained gene, and the missing region is expanded by PCR, or a fragment of the obtained gene is obtained. By screening a DNA library or cDNA library as a probe, the nucleotide sequence of the entire coding region of the promoter that hybridizes to the promoter of the present invention can be determined. can do.
  • the method for expressing a useful gene of the present invention comprises the steps of: introducing a DNA fragment obtained by ligating a useful gene so that it can be expressed downstream of the thus obtained promoter of the present invention into an animal cell; It is characterized by culturing.
  • the DNA ligase or homopolymer method is used. it can.
  • a poly-G chain is added to the 3 'end of a vector linearized with a restriction enzyme using terminal dexoxyribonucleotidyltransferase and dGTP.
  • a poly-C chain is added to the 3 'end of the DNA, and the poly-G and poly-C chains are annealed and introduced into Escherichia coli, for example, by the calcium chloride method. Academia Sciences of the USA, Vol. 75, pp. 3727 (19778)].
  • useful useful genes include interleukin 1-21 gene, interferon ⁇ , ⁇ , ⁇ gene, tumor necrosis factor gene, colony stimulating factor gene, and Powers include, but are not limited to, lithopoietin gene, transforming growth factor gene, immunoglobulin gene, tissue plasminogen activator gene, perokinase gene, western firefly luciferase gene and the like.
  • superoxide dismutase for example, superoxide dismutase, humor and nef mouth factor, insulin, canolecithinin, somatostatin, sec
  • genes include retin, grosphormon, endorphin, viral proteins, amylase, lipase, and alcoholoxidase.
  • the DNA fragment obtained by linking the DNA fragment of the present invention and a useful gene obtained as described above can be inserted into an appropriate vector for animal cells to obtain a plasmid for gene expression.
  • vectors include ⁇ (Nucleic Acids Research, vol. 10, p. 6715 (1992)), cos 202 (di The EMBO Journal, vol. 6, p. 355 (p. 198 7)], p 912 203 (B) [Science, vol. 228, pp. 810 Pp. (1985)], BC MGSNeo [Journal of Experimental Medicine], Vol. 172, pp. 969 (1990)] And the like.
  • the obtained plasmid for gene expression was prepared by the calcium phosphate method [Molecular and Cellular Biology, Vol. 7, pp. 275-45 (199). 8 7)], electroporation [Proceding of National Academy of Sciences of the USA, Vol. 81, pp. 711 6-1 (1994)], DEAE —Dextran method [Methods in Nucleic Acids Research, pp. 283, Column, et al., CRC Press, 1991 Published], the ribosome method (BioTechniques, Vol. 6, p. 62, p. 1989 (1989)) and the like.
  • Such host cells include COS cells, HeLa cells, CHO cells, BHK-21 cells and the like. Apply the resulting transformed cells to By culturing in a suitable medium, the desired useful gene product can be efficiently produced.
  • the human myeloma cell lines RPMI 8226 and U266 were cultured in RPMI164 medium (GIBC0-BRL) supplemented with 10% fetal serum (FBS).
  • the myeloma cell line KP MM 2 Japanese Unexamined Patent Application Publication No. 7-236365 was cultured in RPMI164 medium supplemented with 20% fetal bovine serum.
  • the pC0S1 expression vector is HEF-PMh-g1 (W092-19759). ), The gene contained by digestion with EcoRI and SmaI was deleted, and EcoRI-Notl-BamHI Adapter (Takara Shuzo) was ligated.
  • the cells are washed with a phosphate buffer (PBS), PBS containing 5 mM EDTA is added, the cells are detached, and the cells are added with 5% FBS, 0.02% NaNa in PBS containing 1 to 2 ⁇ 1 0 cell suspension 6 cell sZ ml was adjusted. 3 Then cells were 2 hours Kiyoshi ⁇ on anti HM 1.
  • 2 4 panning plates for antibody co was one tee ring (described later), including plates and 5% FBS, 0. 0 2% N a N 3 Washed gently three times with ml of PBS. After washing, the cells bound on the plate were positively added using a solution of Hirt (Hitt J., Mol. Biol. 26: 365-369, 1983) (0.6% SDS, 10 mM EDTA). Mid DNA was recovered. The recovered plasmid DNA was amplified in E. coli and used for the next panning.
  • PBS phosphate buffer
  • Hirt Hirt J., Mol
  • the Panning plate was prepared as follows. Add 3 ml of the anti-HM1.24 antibody solution (10 ⁇ 3 1111 5 0111 ⁇ 1 Tris — HC1, pH 9.5) to a 60 mm dish (Fa1 con), and add room temperature. After washing for 2 hours with 0.15 MNaCl, wash three times. 3 ml of PBS supplemented with 5% FBS, 1 mM EDTA and 0.02% NaN 3 was added, and the cells were blocked at room temperature for 2 hours to perform blocking. After removing the blocking solution, the panning plates were stored at -20 ° C until use.
  • Library B was subjected to immunoscreening using an anti-HM1.24 antibody. That is, 1. layered onto 5 X 1 0 5 independent click off Ajiraibura Li one E. coli NM 5 2 2 including loans (Pharmacia Biotech) are both on agar, 3.5 hour incubation at 4 2 ° C did. After the culture, a nitrocellulose filter (Schleicher & Schuell) pretreated with 1 OmM IPTG was overlaid on the plate, and further cultured at 37 ° C for 3 hours.
  • F i ter was washed with 0.05% (v / v) Tween—20 added TBS (20 mM Tris—HCl, pH 7.4, 150 mM NaCI), TBS supplemented with 1% (w / v) BSA was added, and the mixture was incubated at room temperature for 1 hour to perform blocking.
  • the anti-HM1.24 antibody solution (10 ⁇ gZml King buffer), and incubated at room temperature for 1 hour. After washing, dilute 50,000-fold diluted alkaline phosphatase-conjugated anti-mouse Ig antiserum (picoBlue Immunoscreening kit; Stratagene). In addition, they were incubated at room temperature for 1 hour. Spots that reacted with the antibody contained 0.3 mg Zml double-mouthed blue tetrazolium, 0.15 mg / ml 5-bromo-41-chloro-3-indolinylphosphonate color solutions - were developed by (1 0 0 m T ris. HC l, pH9 5, 1 0 0 mM N a C 5 m M g C 1 2).
  • P3.19 Five positive clones were isolated by immunoscreening, all of which matched the partial sequence of P3.19 ( Figure 3). As a result of a homologous search, P3.19 was found to have the nucleotide sequence of BST-2 (Ishikawa J. et al., Genomics, 26; 527-534, 1995) expressed in bone marrow or synovial membrane cells. It turned out to be the same. The same molecule was obtained by two screening methods, strongly suggesting that the membrane protein encoded by P3.19 is an HM1.24 antigen molecule
  • a plasmid encoding a DNA encoding a human protein having the same sequence as that of the human HM1.24 antigen protein was inserted between the XbaI cleavage sites of pUC vector.
  • Escherichia coli containing pRS38—pUC19 was named Escherichia coli DH5a (pRS38-pUC19), and was founded on October 5, 1993 Deposited with the Technical Research Institute (1-3 1-3, Higashi, Tsukuba, Ibaraki Prefecture) under the Budapest Treaty as the deposit number FE RM BP—4 434
  • P3.19 was derived to confirm that the protein encoded by P3.19 does indeed bind to the anti-HM1.24 antibody.
  • the transfected CH 0 transformed cell line was established. That is, after introducing the P3.19 clone into CH0 cells by the electroporation method, the clone was cultured in the presence of 500 ⁇ g Zml of G418 (GIBC0—BRL), and HM 1. 24 antigen expressing CH0 cell line was obtained.
  • UPC10 was used as a negative control antibody.
  • the cell lysis buffer method 50 mM sodium folate, 150 mM NaCl, 0.5% sodium deoxycholate, 1% Ultrasonic crushing was performed in Nonidet P_40, 0.1 mg / ml phenylmethyl sulfonyl fluoride, and the protease inhibitor cactenyl [Boehringer Mannheim]) to obtain a solubilized fraction.
  • the solubilized fraction was added to Sepharose 4B beads conjugated with anti-HM1.24 antibody. After centrifugation, the precipitate was separated by SDS-PAGE (12% ge 1) and transferred to a PVDF membrane. PVDF membrane has anti-HM 1. After reacting with 24 antibodies and subsequently with POD-anti-mouse IgG, detection was performed using an ECL kit (Amersham).
  • P3.19 encodes a protein with an estimated molecular weight of 19.8 kDa consisting of 180 amino acids, and has two N-type sugar chain binding motifs (Fig. 1). . Therefore, it was considered that the presence of those with different molecular weights observed by immunoprecipitation was due to differences in N-glycan modification. In fact, immunoprecipitates have been found to bind to several lectins.
  • a mouse anti-HM1.24 monoclonal antibody-producing hybridoma was prepared according to the method described in Goto, T. et al., Blood (1994) 84, 1992-1930.
  • the antibody in the hybridoma culture supernatant was screened by a Cell ELISA using KPC-32 (Posner, R. et al., J. Immunol. Methods (1982) 48, 23). 5 ⁇ 10 4 KPC-32 were suspended in 50 ml of PBS, dispensed into a 96-well plate (U-bottom type, manufactured by Corning, Iwaki) and air-dried at 37 ° C. overnight. After blocking with PBS containing 1 ⁇ B serum albumin (BSA), the hybridoma culture supernatant was added, and the mixture was incubated at 4 ° C for 2 hours.
  • KPC-32 Posner, R. et al., J. Immunol. Methods (1982) 48, 23. 5 ⁇ 10 4 KPC-32 were suspended in 50 ml of PBS, dispensed into a 96-well plate (U-bottom type, manufactured by Corning, Iwaki) and air-dried at 37 ° C
  • the reaction was stopped with 2N sulfuric acid, and the absorbance at 492 nm was measured using an ELISA reader (manufactured by Bio-Rad).
  • the positive hybridoma culture supernatant was adsorbed to human serum in advance, and the reactivity to other cell lines was screened by ELISA. Positive hybridomas were selected and their reactivity to various cells was examined by flow cytometry.
  • the finally selected hybridoma clones were cloned twice and injected into the abdominal cavity of BALB / C mice treated with pristane to obtain ascites.
  • the monoclonal antibody was purified from mouse ascites by precipitation with ammonium sulfate and protein A affinity chromatography (Amure PA, Ampure PA). Purified antibody, Quick Tag FI FITC labeling was performed by using a TC binding kit (manufactured by Behringer Mannheim).
  • the monoclonal antibodies produced by 30 hybridomas reacted with KPC-32 and RPMI 8226. After cloning, the reactivity of the culture supernatant of these hybridomas with other cell lines or peripheral blood mononuclear cells was examined.
  • HM1.24 the hybrid clone that was most useful for flow cytometric analysis and had CDC activity against RPMI 8226 was selected and named HM1.24.
  • the anti-HM1.24 antibody had a subclass of IgG2a.
  • Hypri-Doma HM1.24 which produces anti-HM1.24 antibodies, was provided to the Institute of Biotechnology, Industrial Technology Institute (Tsukuba-Higashi 1-3-1, Ibaraki Prefecture) by FERM BP on September 14, 1995. -Deposited internationally as 5233 under the Budapest Treaty.
  • HM1.24 antigen is strongly expressed in all myeloma cells analyzed to date, and it is thought that the expression of the HM1.24 antigen may be deeply involved in the physiological characteristics of multiple myeloma. Can be Therefore, elucidation of the regulation mechanism of HM1.24 antigen expression is an important issue, and the structure of the promoter region gene was clarified.
  • the promoter region of the HM1.24 antigen gene was isolated using PromoterFinder DNA Walking kit (Clontech). Two PCR primers from the 5'-end nucleotide sequence of clone P3.19 isolated by Panning PTP / 84 lymer; HM 1 (5'-ATC CCC GTC TTC CAT GGG CAC TCT GCA-3 ') (SEQ ID NO: 6) and HM 2 (5'-ATA GTC ATA CGA AG T AGA TGC CAT CCA G- 3 ′) (SEQ ID NO: 8) was designed. The first PCR was performed using the primers AP1 (attached to the kit) and HM1 primer for the adapter according to the instructions attached to the kit.
  • the PCR product was subsequently used with the primers AP2 (attached to the kit) and HM2. Was subjected to nested PCR. After purification of the final PCR product, it was subcloned into the pCRII cleaning vector (Invitrogen).
  • the promoter one region gene was simply isolated by the PCR method. That is, PCR products of about 2.0 kb, 0.7 kb and 0.3 kb were specifically amplified from Eco RV, Pvu II and Dral libraries (PromoterFinder Kit; Clontech), respectively. Was done. The cleavage pattern by the restriction enzyme clearly revealed that they were derived from the same genomic DNA (FIG. 6). Next, as a result of determining their nucleotide sequences, the gene sequence from the 5′-end of the cDNA to 1959 bp upstream was determined (FIGS. 7 and 8) (SEQ ID NO: 4).
  • transcription regulatory elements such as AP-2, Spl, NF-IL6, NF-cB, STAT3 or ISGF3 existed. This suggests that expression may be regulated by stimulation of inflammatory cytokines such as IL-6 or IFN- ⁇ .
  • IL_6 acts as a growth factor for myeloma cells
  • NF-IL6 and STA-3 which are transcription factors that act downstream of IL-6, inhibit HM in myeloma cells. It was strongly suggested that it might be involved in the regulation of 1.24 antigen expression (Figs. 7 and 8).
  • the transcription start point is estimated from the base sequence of the PCR product amplified using CapSwitch oligonucleotide (CapFnder Kit; Clontech). 27 A TA TA box-like sequence (TAATAAA) was found at position 7 ( Figures 7 and 8).
  • HM1.24 antigen genomic DNA was obtained from the human DNA library (PromoterFinder DNA walking kit; Clontech) or from the human genomic DNA prepared from peripheral blood (Clontech) using the PCR primers shown in Fig. 9. Amplified with one. After purifying the PCR product, it was subcloned into the pCRII vector, and the nucleotide sequence was determined.
  • the genomic DNA encoding the HM1.24 antigen is divided into four fragments, and the human genomic DNA library prepared from human placenta (Promoter Finder Kit; Clontech) or human It was amplified from human genomic DNA prepared from peripheral blood (Fig. 9). After confirming their nucleotide sequences, they were compared with the nucleotide sequence of the HM1.24 antigen cDNA, and as a result, the HM1.24 antigen gene was composed of four exons, and had an 85 bp, 18 There were three intros of 3 bp and 3 07 bp ( Figure 10).
  • exon 1 contained all two N-glycan binding sites and three cysteine residues in the extracellular region of the HM1.24 antigen (Fig. 11 and Fig. 11).
  • Figure 12 (SEQ ID NO: 2).
  • Example 3 Confirmation of HM1.24 antigen splicing variant To confirm whether a splicing variant exists in HM1.24 antigen, the human myeloma cell line KPMM The HM1.24 antigen cDNA was amplified by PCR using the cDNA prepared in Step 2 as type I. Sense primer BS used for PCR T / JP 0884
  • T2-N (SEQ ID NO: 17; ATG GCA TCT ACT TCG TAT GAC) is P3 isolated this time.
  • Antisense primer S 3 (SEQ ID NO: 18; AAC CGT GTT GCC CCA TGA) corresponds to bases 6 4 1 to 6 of P 3.19 corresponding to bases 10 to 30 of 19 (SEQ ID NO: 1). 5 8 is supported.
  • the product amplified by PCR was subcloned into the cloning vector Peri II (Invitrogen), and the plasmid DNA was recovered from the independent clones.As a result, about 65 bp and about 550 bp were obtained. Two types of inserts of different sizes were recognized. As a result of base sequence determination, the insert of about 65 bp showed the same sequence as P3.19, but the insert of about 550 bp showed the sequence of P3.19. Deletion of a portion corresponding to bases 294 to 422 was observed (SEQ ID NO: 19). The sites where the deletion was observed corresponded to human HM1.24 genomic DNA exons 2 and 3, indicating the presence of variants due to differences in splicing.
  • the nucleotide sequence was determined by the PCR-direct sequencing method. Five ' The promoter region uses primers 6 S (TCCATAGTCCCCTCGGTGG) (SEQ ID NO: 22) and BST 2 B (ATAGTCATACGAAGTAGATGCCATCCAG) (SEQ ID NO: 23), and PCR (94) using ampl iTaq Awake polymerase (Perkin-Blmer, Chiba) 1 minute at 55 ° C, 1 minute at 55 ° C, and 30 minutes at 72 ° C for 1 minute).
  • the HM coding region uses the primers HMP2K (AAAGGTACCAGCTGTCTTTCTGTCTGTC) (SEQ ID NO: 24) and BST 2 — R4 (GTGCTCTCCCCGCTAACC) (SEQ ID NO: 25), and LA Taq DNA Polymerase (Takara Shuzo, Otsu) ).
  • the reaction solution was designated as type III, and Ex Taq DNA polymerase was further prepared using primers 8S (GGACGTTTCCTATGCTAA) (SEQ ID NO: 26) and BST2-RI (AAAGCGGCCGCTCATCACTGCAGCAGAG CGCTGAG) (SEQ ID NO: 27). PCR was performed with Rase (Takara Shuzo).
  • HM coding region was 8 S, HM I NT IF (AGGGGAACTCACCAGACC) (SEQ ID NO: 28), HM EX 2 F (ATGGCCCTAATGGCTTCC) (SEQ ID NO: 29), HMEX 3 F (CATT AAACCATAAGCTTCAGG) (SEQ ID NO: 30), HM EX
  • the reaction was carried out using BigDye Terminator Cycle Sequencing Kit (Perkin-Elmer) using 2R (CCCTCAAG CTCCTCCACT) (SEQ ID NO: 31) or BST2—R1 as a primer.
  • the nucleotide sequence was determined using ABI377 DNA Sequencer (Perkin-Elmer). The frequency of the 8 base pair deletion near 20 base pairs upstream of the start codon of the HM1.24 gene was detected by PCR. That is, using primers 8 S and BST 2 — R 3 (GACGGATCCTAAAGCTTACAGCGC TTATC) (SEQ ID NO: 32), ampliTaq DNA polymerase (Perkin-Elmer) was used to perform PCR (94 ° C for 1 minute, 5 ° C). 5 ° C for 1 minute and 72 ° C for 1 minute for 30 cycles). The reaction solution was run on a 4% agarose gel. Electrophoresis was performed, and detection was performed by ethidium umide staining.
  • Nucleotide sequences of the 5 'promoter region of the HM1.24 gene were determined for healthy subjects and patient samples. The results are shown in FIGS. 14 to 18 (SEQ ID NO: 33). Specimens with base substitutions at 1887, 2662 and 323 in Fig. 14 and deletions at around 360 in Fig. 14 and around 555 in Fig. 15 were underlined. In addition, there were samples that could not be read between 3666 and 558. Assuming that the sequence described in FIG. 14 to FIG. 18 (SEQ ID NO: 33) is A type and the mutation type having the above base substitution / deletion is B type, there is a gap between 3666 to 558.
  • the nucleotide sequences of the AA type cell line (U266, HS-sut1tan) and two BB type healthy subjects were determined for the genomic gene region. As a result, it was found that in the B-type sequence, c was deleted at three bases around 2315 of intron 3, but no mutation was found in the code region.
  • a genomic gene of the HM1.24 antigen highly expressed in all myeloma cells could be obtained.
  • a genomic gene encoding the HM1.24 antigen is useful for analyzing the HM1.24 antigen. Also, since the HM1.4 antigen is strongly expressed, its promoter region is considered to have strong promoter activity, and is useful for the expression of useful genes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Hematology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

明 細 書
HM 1. 2 4抗原タ ンパク質をコー ドするゲノ ム遺伝子及びそのプ ロモ一タ一
発明の分野
本発明は、 H M 1. 2 4抗原タ ンパク質をコ一 ドするゲノ ミ ッ ク D N A、 並びに HM 1. 2 4抗原タ ンパク質の遺伝子のプロモータ —及びその利用に関する。 背景技術
マウス抗 HM 1. 2 4 モノ ク ローナル抗体はヒ ト ミ エローマ細胞 株 K P C— 3 2を免疫原と して作製された (Goto T. ら、 Blood 84 : 1922-1930, 1994 ) 。 本抗体が認識する HM 1. 2 4抗原は骨髄 腫細胞表面に高発現する分子量 2 9 — 3 3 kDa の膜タ ンパクである 。 さ らに、 正常細胞においてはィムノ グロブリ ン産生 B細胞 (plas ma cell, lymphoplasmaci toide cell ) で発現が確認され、 それ以 外の細胞、 組織においてはほとんどその発現は認められていない ( Goto T. ら同上) 。 しかしながら、 HMし 2 4抗原はその発現分 布および分子量以外には明らかになつていない。
本発明においては、 HM 1. 2 4抗原をコ一ドするゲノム D N A をクローニングし、 その塩基配列及びそれから推定されるア ミ ノ酸 配列を決定し、 さ らにホモロ ジ一検索の結果、 HM 1. 2 4抗原は 骨髄腫患者の骨髄ならびに リ ゥマチ関節炎患者の骨髄および滑膜よ り単離されたス ト 口一マ細胞に発現している表面抗原である B S T 2 と同一の分子であることが明らかとなつた。 B S T 2は p r e— B細胞増殖支持能を有するとされており、 リ ウマチ関節炎の病態に 関与している可能性が推察されているが、 それ以外の生理的な機能 については明ら力、になっていない ( Ishikawa J. ら、 Genomics 26 : 527 - 534, 1995 ) 。
動物由来の有用遺伝子産物を遺伝子工学的に製造する場合、 大腸 菌、 枯草菌、 酵母等の微生物宿主を用いると遺伝子が発現しなかつ たり、 遺伝子産物である蛋白が正しい立体構造をと らない、 翻訳後 修飾が正しく なされない等の理由で活性を持たなかったりすること がしばしば起こる。 その問題の解決のために動物細胞が宿主と して 用いられることが多く、 この場合プロモーターの選択が発現効率に 大きな影響を与える。 従来、 頻繁に用いられてきた動物細胞用プロ モーターと しては、 S V 4 0プロモータ一、 サイ トメ ガロウィルス プロモーター、 ァクチンプロモータ一等がある。
発明の開示
上記のごとき技術の現状に鑑み、 本発明は、 HM 1. 2 4抗原タ ンパク質をコー ドするゲノム D N Aを提供する。
本発明はまた、 上記ゲノ ム D N Aを利用 しての、 動物細胞を用い た HM 1. 2 4抗原タ ンパク質の製造方法を提供する。
動物細胞を宿主と して有用遺伝子産物を大量に生産する場合、 従 来用いられてきた動物細胞用プ口モーターは転写活性の点で必ずし も満足のいく ものではなく、 更に強力なプロモーターの開発が待ち 望まれている。 従って、 本発明の他の目的は、 動物細胞用のプロモ —ターと して強力なプロモータ一活性を有する D N A及びその用途 を提供することにある。
上記の課題を解決するため、 本発明は配列番号 : 2 に示すア ミ ノ 酸配列をコー ドする 4個のェク ソ ン領域を含む HM 1. 2 4抗原タ ンパク質をコ一 ドするゲノム D N Aを提供する。 前記のゲノム D N Aの例と して、 本発明は配列番号 : 2 に示すア ミ ノ酸配列をコー ド する 4個のェク ソ ンと 3個のィ ン トロ ンを有するゲノム D N Aを提 供する。
本発明はまた、 前記のゲノム D N Aのスプライ シ ングバリアン ト を提供する。 この具体例と しては、 ェク ソ ン 2を欠く スプライ シン グバリ アン ト、 ェク ソン 2及び 3 を欠く スプライ ンングバリアン ト などが挙げられる。
本発明はまた、 前記のゲノ ミ ッ ク D N Aを含んで成る発現べクタ —により形質転換された動物細胞を培養することを特徴とする、 H M l . 2 4抗原タ ンパク質の製造方法を提供する。
本発明はさ らに、 配列番号 : 4 に示す 5 ' —非コー ド領域の塩基 配列を有するプロモーター配列 D N A、 又は動物細胞においてプロ モーター活性を有する該配列の D N A断片を提供する。
本発明はまた、 上記の D N A又はその断片と、 ス ト リ ンジヱ ン ト な条件下でハイブリダィズし、 且つ動物細胞においてプロモータ一 活性を有する D N Aを提供する。 前記プロモーター活性を有する D N Aは好ま しく は動物細胞、 特に哺乳動物細胞に由来する。
本発明はまた、 配列番号 : 4 に示す 5 ' —非コー ド領域の塩基配 列において、 1 〜複数個の塩基の欠失、 付加及び 又は他の塩基に よる置換により修飾されており、 且つ動物細胞においてプロモータ 一活性を有する D N Aを提供する。
本発明はまた、 上記のプロモーター活性を有する D N Aと有用な 遺伝とを作用可能に連結してなる組換え D N Aを提供する。 前記有 用な遺伝子と して、 例えば、 有用タ ンパク質をコー ドする核酸、 ァ ンチセンス D N A、 アンチセンス R N A、 デコイをコー ドする核酸 、 及びリボザィムから成る群から選択される核酸が挙げられる。 本発明はまた、 上記の組換え D N Aを含んで成るべクターを提供 する。 このベク ターはプラス ミ ドベク ター又はウィルスベク ターで ある。
本発明はまた、 上記の組換え D N Aが導入された動物細胞を提供 する。
本発明はまた、 上記のベクターにより形質転換された動物細胞を 提供する。
本発明はまた、 上記の動物細胞を有する動物を提供する。
本発明はまた、 前記の組換え D N Aを導入した動物細胞を培養す ることを特徴とする、 有用遺伝子の発現方法を提供する。
本発明はまた、 前記のプロモータ一活性を有する D N Aに作用可 能に連結された有用タ ンパク質をコー ドする核酸を含んで成る発現 ベクタ一により形質転換された動物細胞を培養することを特徴とす る、 有用蛋白質の製造方法を提供する。 図面の簡単な説明
図 1 は、 HM 1. 2 4抗原タンパク質をコー ドする c D N Aの塩 基配列及び対応するァ ミ ノ酸配列を示す図である。 下線部は N型糖 鎖結合モチーフを示す。
図 2は、 HM 1. 2 4抗原タ ンパク質をコー ドする c D N Aの塩 基配列及び対応するァ ミ ノ酸配列を示す図である。
図 3 は、 P a n n i n g法を用いて単離したクローン P 3. 1 9 及び免疫スク リ 一ニング法により単離された 5つのクローン ( I S 1〜 I S 5 ) の模式図である。
図 4 は、 抗 HM 1. 2 4抗体 ( A ; C H OZN E 0, B ; C H 0 /HM) を用いたフローサイ トメ ト リー解析の結果を示す図である 。 抗 HM 1. 2 4抗体のヒス トグラムは実線で、 ァイ ソタイプのー 致したコ ン ト ロール抗体 (U P C 1 0 ) のヒス ト グラムは波線で示 す。 なお、 横軸は蛍光強を、 縦軸は細胞数を示す。
図 5 は、 各種細胞株および HM 1. 2 4発現 C H 0細胞における HM 1. 2 4抗原の発現を抗 HM 1. 2 4抗体を用いた免疫沈降 ' ウェスタ ンブロ ッテイ ング法により検出した結果を示す図面代用写 真である。 抗 HM 1. 2 4抗体結合セフ ァ ロース 4 B (レー ン 1〜 6 ) または非結合セフ ァ ロ一ス 4 B (レー ン 7及び 8 ) を用いて免 疫沈降を行った後、 抗 HM 1. 2 4抗体を用いてゥエスタン ' プロ ッティ ングを行い、 HM 1. 2 4抗原の検出を行つた (右側に表示 :) 。 (* ; 抗 HM 1. 2 4抗体 H鎖)
図 6 は、 HM 1. 2 4抗原タ ンパク質遺伝子のプロモーター領域 を含む 5 ' —非翻訳領域の制限酵素地図を示す図である。
図 7 は、 HM 1. 2 4抗原タ ンパク質遺伝子のプロモータ一領域 を含む 5 ' -非翻訳領域の塩基配列を示す図である。 各種転写因子 結合モチーフを下線で示す。
図 8 は、 HM 1. 2 4抗原タ ンパク質遺伝子のプロモーター領域 を含む 5 ' —非翻訳領域の塩基配列を示す図である。 各種転写因子 結合モチーフを下線で示し、 T A T A様配列を囲み線で示し、 転写 開始点を矢印で示し、 そしてタ ンパク質の N—末端の 7個のア ミ ノ 酸をコー ドする領域をァ ミ ノ酸の 1文字標記により示す。
図 9の Aは、 HM 1. 2 4抗原タンパク質をコー ドするゲノムに 対応するプライマーの位置を示し、 Bは各プライマ一の塩基配列を 示す。
図 1 0は、 HM 1. 2 4抗原タ ンパク質をコー ドするゲノ ム D N Aの制限酵素地図、 及び対応するェク ソ ン及びイ ン ト ロ ンの位置を 示す図である。
図 1 1 は、 HM 1. 2 4抗原タ ンパク質をコー ドするゲノ ム D N Aの塩基配列及び対応するア ミ ノ酸配列 (上流側) を示す図である 。 矢印は転写開始点を示し、 そ して下線は N型糖鎖結合モチーフを 示す。
図 1 2 は、 HM 1 . 2 4抗原タ ンパク質をコー ドするゲノ ム D N A塩基配列及び対応するア ミ ノ酸配列 (下流側) を示す図である。 2重下線は p o l y A付加シグナルを示す。
図 1 3 は、 ヒ ト HM 1 . 2 4抗原タンパク質のスプライ シ ングバ リ アン トの塩基配列及び対応するァ ミ ノ酸配列を示す図である。 下 線部はヒ ト HM 1 . 2 4抗原タ ンパク質とァ ミ ノ酸配列が異なる部 分を示す。
図 1 4 は、 HM 1 . 2 4抗原タンパク質のゲノム D N Aの塩基配 列を示す図である。 1 7 8位の &→ 8、 2 6 2位の 8→ &、 3 2 3 位の t→ c、 3 6 0位付近の 9個の aの内の 1 個の欠失を有するゲ ノ ムも存在した。 *は転写開始部位を示す。 また、 9 3位〜 1 1 1 位の 1 9 bpがタンデムに反復するゲノムも存在した。 →はセンスプ ラィマーの位置を示す。
図 1 5 は、 HM 1 . 2 4抗原タ ンパク質のゲノ ム D N Aの塩基配 列及び対応するァ ミ ノ酸配列を示す。 5 5 1位〜 5 5 8位の 8塩基 対が欠失したゲノムも存在した。 —はアンチセンスプライマーの位 置を示す。
図 1 6 は、 HM 1 . 2 4抗原タ ンパク質のゲノ ム D N A (イ ン ト ロ ン部位) の塩基配列を示す図である。 →はセンスプライマーの位 置を示す。
図 1 7 は、 HM 1 . 2 4抗原タ ンパク質のゲノ ム D N Aの塩基配 列及び対応するァ ミ ノ酸配列を示す。 →はセンスプライマーを示し 、 はアンチセンスプライマーを示す。
図 1 8 は、 HM 1 . 2 4抗原タ ンパク質のゲノ ム D N Aの塩基配 列及び対応するア ミ ノ酸配列を示す。 2 3 1 5位付近の 5個の cの 内 3個が欠失したゲノ ムも存在した。 —はア ンチセンスプライマー の位置を示す。 発明の実施の形態
ヒ ト HM 1. 2 4抗原ゲノム D N Aおよびプロモーター領域を含 むゲノ ム遺伝子は適当なプライマ一を用い、 P C R法により容易に 増幅することができる。 すなわち、 ヒ ト HM 1. 2 4抗原ゲノム D N Aは配列番号 2に示すゲノム D N A配列の 5 ' 端にハイブリダィ ズするセンスプライマ一と 3 ' 端にハイブリ ダイズするアンチセン スプライマ一をデザイ ンし、 定法に従い調製したヒ トゲノム D NA を铸型と して用い、 Ampl iTaq (PerkinElner), LA-Taq (宝酒造) 等 のポ リ メ ラーゼを用い P C R反応を行う ことにより増幅できる。 P C R産物は直接クロ一ニングべクタ一、 例えば p C R II ( Invi trog en) あるいは p G E M— T (Promega ) に挿入することができる。
また、 センスプライマー及びア ンチセンスプライマ一に制限酵素 認識部位を挿入するこ とにより、 所望のべクターに挿入することが できる。
また、 ヒ ト HM 1. 2 4抗原のプロモーター領域を含むゲノム D N Aも同様の方法により増幅することができる。 すなわち、 配列番 号 4に示す配列の 5 ' 端にハイブリ ダィズするセ ンスプライマー及 び 3 ' 端にハイブリ ダィズするア ンチセンスプライマーをデザィ ン し、 ヒ トゲノム D N Aを铸型にし、 P C R法により増幅することに より所望の D N A断片を得ることができる。
本発明の、 HM 1. 2 4抗原タ ンパク質をコー ドするゲノ ム D N Aは図 1 0 に示すごと く 4個のェク ソ ンとそれらを連結する 3個の イ ン トロンから成り、 その具体的な塩基配列及びェク ソン領域の推 定されるア ミ ノ酸配列は図 1 1及び 1 2 (配列番号 : 2 ) に示す通 りである。 すなわち、 ェク ソン 1 は 1位のア ミ ノ酸 M e tから 9 5 位のア ミ ノ酸 V a 1 までをコー ドしており、 ェク ソン 2は 9 6位の ア ミ ノ酸 M e tカヽら 1 1 7位のア ミ ノ酸 G l uまでをコー ドしてお り、 ェク ソ ン 3 は 1 1 8位のア ミ ノ酸 G l uカヽら 1 3 8位のア ミ ノ 酸 A r gまでをコー ドしており、 そしてェク ソ ン 4 は 1 3 9位のァ ミ ノ酸 A r g力、ら 1 8 0位のアミ ノ酸 G l nまでをコー ドしている o
本発明はまた、 HM 1. 2 4抗原タ ンパク質をコー ドするゲノ ム D N Aのスプライ シングバリ ア ン トを提供する。 スプライ シングバ リアン トは、 ェク ソン 1〜4の内の少なく と も 1個、 すなわち 1〜 3個が除去されたものであり、 例えばェク ソ ン 2 も しく は 3、 又は これら両ェク ソ ンが除去されたものである。
本発明はまた、 ェク ソ ンの内部の塩基配列がスプライ シングによ り削除された結果、 ェクソンの各々のァ ミ ノ酸に対応するコ ドンが ずれた D N Aの塩基配列を有する HM 1. 2 4抗原タンパク質をコ 一ドするゲノム D NAのスプライ シ ングバリ アン トを提供する。
このスプライ シングバリ アン トは、 異なるア ミ ノ酸配列のリ ーデ ィ ングフ レームを有するため、 ェク ソ ン 1〜 4 にコー ドされる HM 1. 2 4抗原タ ンパク質とは異なるア ミ ノ酸配列を有する。 このよ うなスプライ シ ングバリ ア ン トの一つの例と して配列番号 : 1 7 に 示される塩基配列及びア ミ ノ酸配列を有するスプライ シングバリア ン 卜が挙げられる。
本発明の H M l . 2 4抗原タ ンパク質をコ一 ドするゲノム D N A は、 まず、 HM 1. 2 4抗原タ ンパク質をコー ドする c D N Aをク ローニングし、 次にこの c D NAを用いてプライマーォリ ゴヌ ク レ ォチ ドを設計し、 これを用いて P C R法によりゲノ ム D N Aライブ ラ リーを铸型と して増幅を行う ことにより得られる。 c D N Aをク ローニングするには、 HM 1. 2 4抗原を発現している動物細胞、 例えば K P MM 2細胞を培養し、 培養細胞から常法に従って全 RN Aを抽出し、 次に mR NAを濃縮する。
本発明においては、 上記 mR NAに基いて、 常法により c D NA を合成し、 低融点ァガロースゲルを用いて分画し、 0. 7 kbp 以上 のサイズを有する c D NAを発現ベクター p C O S l又は λ Ε χ。 e 1 1 ベクターに揷入して直接発現ク ローニング (dirert expresi on cloning) すなわちパンニング (panning ) によるスク リ 一ニン グに用いるライブラ リ ー A、 及び免疫スク リーニング ( immunoscre ening ) 用ライブラ リ ー Bを作製した。
P a n n i n g法によるスク リ ーニングのため、 ライブラ リ 一 A を構成する発現プラス ミ ドをエレク トロポレーシヨ ンにより C O S 一 7細胞に導入し、 これを培養し、 付着細胞を剥がした後、 抗 HM 1. 2 4抗体をコー ト した p a n n i n gプレー トと接触させ、 H M l . 2 4を発現している細胞をプレー トに付着せしめた。 次に、 プレー トに付着した細胞からプラス ミ ド D NAを抽出し、 大腸菌内 で増殖し、 次の p a n n i n gに使用 した。 この p a n n i n g操 作を 3回反復するこ とによ り、 抗 HM 1. 2 4抗体と反応する抗原 を発現するクローンを選択し、 その 1 つをク ローン P 3. 1 9 と命 名した。
ク ローン P 3. 1 9 は、 1 , 0 1 2 bpから成り 1 8 0個のア ミ ノ 酸をコ一 ドするオープンリ 一ディ ングフ レームを含むことが、 配列 決定により明らかとなった。 このク ロー ン P 3. 1 9中の c D NA イ ンサー トの塩基配列及び対応するァ ミ ノ酸配列を図 1及び配列番 号 : 1 に示す。 また、 ァ ミ ノ酸配列のみを配列番号 : 3 に示す。 他方、 免疫スク リ ーニングのため、 ライブラ リー Bを構成するフ ァージを大腸菌 NM 5 2 2 と共に寒天プレー ト上で培養し、 発現生 成物を二 トロセルロースフイ ノレターに移した後、 このフ ィ ルターを 抗 HM 1 . 2 4抗体溶液と接触せしめ、 発現生成物との結合を介し てフ ィ ルターに結合した抗 HM 1 . 2 4抗体を、 標識した抗マウス ィムノ グロブリ ン ( I g ) 血清により検出した。
これにより 5個の陽性ク ローン I S— 1 〜 I S— 5 を得た。 これ らの c D N Aイ ンサー 卜の塩基配列を決定し、 前記 P 3. 1 9 の c D N Aイ ンサー トの塩基配列と比較したところ、 図 3 に示すごと く 、 クロー ン I S— 1 〜 I S— 5 中の c D N Aはいずれも P 3. 1 9 の c D N Aの一部分であって P 3. 1 9の 5 ' —末端側が欠けてい ることが明らかになった。
次に、 P 3. 1 9 を C H O細胞に導入して形質転換した後、 抗 H M l . 2 4抗体を用いてフ口一サイ トメ ト リ一を行った結果、 図 4 に示す通り、 HM 1 . 2 4抗原が発現していることが確認された。 また、 図 4 に示す通り、 P 3. 1 9が HM 1 . 2 4抗原をコー ドし ていることは、 免疫沈降にあっても確認された。
次に、 図 9の Aに示すごと く 、 c D N A配列を 4個に分割し、 各 部分を増幅するためのプライマー対を図 9 の Bに示すごと く設計す る。 次に、 常法に従って作製したゲノ ム D N Aライブラ リ ーを、 前 記の各対のプライマ一を用いて P C R増幅し、 それを継ぎ合わせる ことにより、 全長のゲノム D N Aが得られる。
その結果を、 図 1 1 及び図 1 2、 並びに配列番号 : 2 に示す。 こ れらから明らかな通り、 HM 1 . 2 4抗原タンパク質をコ一 ドする ゲノム D NAは 4個のェク ソ ン及びそれらを連結する 3個のイ ン ト ロ ンを有する。 これらの関係を模式的に図 1 0 に示す。 図 1 0 はさ らに、 ゲノム D N Aの制限酵素地図をも示す。
本発明はまた、 上記のゲノ ム D N Aを揷入した発現べクターによ り形質転換された動物細胞を培養することを特徴とする HM 1 . 2 4抗原タ ンパク質の製造方法に関する。 この方法において使用する 動物細胞と しては、 例えば、 本発明のプロモーターの使用に関して 後記する種々の動物の細胞を使用することができ、 ヒ ト、 ヒ ト以外 の哺乳類、 昆虫等の培養細胞が好ま しい。 例えば、 ヒ 卜の培養細胞 と して、 H e L a等が用いられ、 ヒ ト以外の哺乳類の培養細胞と し て C H O、 C O S、 ミエローマ、 B HK、 V e r o等が挙げられ、 昆虫の培養細胞と してカイ コの培養細胞等が挙げられる。 これらの 動物細胞に本発明の HM 1. 2 4抗原タ ンパク質をコー ドする D N Aを導入するためのベクターと しては、 例えばフ ァージベクター、 例えば M 1 3等が使用される。
HM 1. 2 4抗原タ ンパク質を生産するための動物細胞の培養は 、 常法に従って行う ことができ、 また培養物からの HM 1. 2 4抗 原タ ンパク質の単離精製中常法に従って行う ことができる。
なお、 HM 1. 2 4抗原夕ンパク質を特異的に認識するマウス抗 HM 1. 2 4モノ クローナル抗体を産生するハイプリ ドーマ HM 1 . 2 4は、 工業技術院生命工学工業技術研究所 (茨城県つく ば市東 1丁目 1番 3号) に、 平成 7年 9月 1 4 曰に F E RM B P— 5 2 3 3 と してブダペス ト条約に基づき国際寄託されている。
次に、 本発明のプロモータ一及びその使用について記載する。 本明細書で言う 「プロモータ一」 とは、 転写開始点 (+ 1 ) から 2 0〜 3 0塩基対上流にあつて、 正確な位置から R N Aポリ メ ラ一 ゼに転写を開始させる機能を担っている T A T Aボッ クスまたは T A T Aボッ クス類似の領域が含まれるが、 必ずしもこれらの領域の 前後に限定されるものではなく、 この領域以外に、 発現調整のため に R N Aポリ メ ラーゼ以外のタンパク質が会合するために必要な領 域を含んでいてもよい。 また本明細書中で 「プロモーター領域」 と 記載する場合があるが、 これは本明細書で言うプロモータ一を含む 領域のことを示す。
本明細書で言う 「プロモータ一活性」 とは、 プロモータ一の下流 に発現可能な状態で有用遺伝子を連結し、 宿主 (動物細胞) に導入 した際、 宿主内または宿主外において有用遺伝子の遺伝子産物を生 産する能力および機能を有することを示す。 一般的に、 プロモータ —の下流に、 定量が容易に行えるタンパク質をコー ドする遺伝子 ( レポーター遺伝子) を発現可能な状態で連結させ、 宿主に導入し、 これらタンパク質の発現量を測定することでプロモータ一の有無や 強弱をプロモーターの活性と して表す。 このようにプロモーターの 下流に発現可能な状態で有用遺伝子を連結し、 宿主に導入した際、 宿主内または宿主外において有用遺伝子の遺伝子産物の発現が確認 された場合、 そのプロモーターは導入した宿主においてプロモータ 一活性を有することになる。
本明細書で言う 「動物細胞」 と してはヒ ト由来の細胞が挙げられ るが、 本発明のプロモーターがその動物細胞内においてプロモータ 一活性を有する ものであれば特に限定されるものではない。 例えば 、 ヒ ト以外の哺乳類 (例えば、 マウス、 ラ ッ ト、 ゥサギ、 ャギ、 ブ タ、 ゥシ、 ゥマ、 ィヌ、 サル、 チンパンジー等) 、 鳥類 (例えば、 ニヮ ト リ、 七面鳥、 ゥズラ、 ァヒル、 カモ等) 、 爬虫類 (例えば、 へビ、 ヮニ、 カメ等) 、 両生類 (例えば、 力エル、 サンショ ウゥォ 、 ィモリ等) 、 魚類 (例えば、 アジ、 サバ、 スズキ、 タイ、 ハタ、 プリ、 マグロ、 サケ、 マス、 コィ、 ァュ、 ゥナギ、 ヒラメ、 サメ、 エイ、 チョウザメ等) が挙げられる。
本明細書で言う 「有用遺伝子」 には、 動物細胞において発現可能 なタンパク質をコー ドする核酸、 動物細胞由来の遺伝子のアンチセ ンス D N A又はアンチセンス R N A、 動物細胞由来の転写因子の結 合タ ンパク質をコー ドする遺伝子あるいは転写因子の結合部位の配 列または類似の配列を持つデコィをコ一 ドする核酸、 動物細胞由来 の m R N Aを切断する リ ボザィムが挙げられる。
動物細胞において発現可能なタ ンパク質をコ一 ドする核酸と して は動物由来のものが挙げられるが、 本発明においてこれは限定され るものではなく、 動物細胞において発現可能であれば、 細菌類、 酵 母類、 放線菌類、 糸状菌類、 子囊菌類、 担子菌類等の微生物由来の もの、 あるいは植物、 昆虫等の生物由来のものも本明細書で言う有 用遺伝子に含まれる。
本明細書で言う 「デコイをコー ドする核酸」 とは、 動物細胞由来 の転写因子の結合タンパク質をコー ドする遺伝子あるいは転写因子 の結合部位の配列または類似の配列を持つ D N Aを示し、 これらを
「おとり」 と して細胞内に導入することで転写因子の作用を抑制す る ものを言う。 本明細書で言う 「リ ボザィム」 とは、 特定のタンパ ク質の m R N Aを切断するものをいい、 これら特定のタンパク質の 翻訳を阻害するものを言う。
リ ボザィムは特定のタンパク質をコ一 ドする遺伝子配列より設計 可能であり、 例えば、 ハンマーへッ ド型リ ボザィムと しては、 フエ ブス レター (FEBS Le t t er ) 、 第 2 2 8巻、 第 2 2 8 — 2 3 0頁
( 1 9 8 8 ) に記載の方法が用いることができる。 また、 ハンマー へッ ド型リ ボザィムだけでなく 、 ヘアピン型リ ボザィム、 デルタ型 リボザィムなどのリ ボザィムの種類に関わらず、 特定のタンパク質 の m R N Aを切断するもので、 これら特定のタンパク質の翻訳を阻 害するものであれば本明細書で言う リ ボザィムに含まれる。
本発明のプロモータ一活性を有する D N A断片の下流に有用遺伝 子を発現可能な状態で連結することにより、 有用遺伝子の発現を増 強することができる。 即ち、 本発明のプロモーター活性を有する D N Aと有用遺伝子とを発現可能な状態で連結してなる組換え D N A がべクタ一を介してまたはベクターを用いずに導入された動物細胞 において、 有用遺伝子が発現する。 ベクタ一と しては、 プラス ミ ド ベクタ一またはウィルスベクターが好ま しく使用される。 ベクター を使用 しない場合には、 D NA断片を文献記載の方法で導入できる
[Virology, 52, 456 (1973), Molecular and Cellular Biology, 7, 2745 (1987), Journal of the National Cancer Institute, 41 , 351 (1968), E BO Journal, 1, 841 (1982) 〕 。
本発明のこのような組換え D N A断片を持つ動物細胞およびこの ような動物細胞を持つ動物も本発明の範囲に含まれる。 本発明によ り発現を増強することができる有用遺伝子と しては、 前記のように 例えばタ ンパク質をコー ドする D N A、 アンチセンス D NA、 アン チセンス R NA、 デコイをコー ドするポリ ヌ ク レオチ ド、 デコイと して機能するヌ ク レオチ ド配列、 リ ボザィムなどが挙げられる。 ま た、 本発明は目的のタンパク質を生産する方法、 本発明のプロモー ター活性を有する D N A断片を使用する有用遺伝子の発現方法を開 示している。
即ち、 本発明のプロモーター活性を有する D N Aの下流にタ ンパ ク質をコ一 ドする核酸を発現可能に連結し、 得られる組換え D NA を含有するべクターで形質転換された動物細胞を培養し、 培養物か ら該タンパク質を採取するタンパク質の製造方法も本発明の範囲に 含まれる。 同様に、 本発明のプロモータ一活性を有する D N Aの下 流に有用遺伝子を発現可能に連結し、 得られる組換え D N Aを動物 細胞に導入し、 培養することによる有用遺伝子の発現方法、 あるい は該組換え D N Aを含有するべクターで動物細胞を形質転換し、 そ の動物細胞を培養することによる動物細胞による有用遺伝子の発現 方法も本発明の範囲に含まれる。
本発明のプロモータ一活性を有する D N Aは、 配列番号 : 4に示 す 5 ' —末端非コー ド領域に示す塩基配列を有する D N A又は、 プ 口モータ一活性を維持しているその断片である。 5 ' —非コー ド領 域とは配列番号 : 4の 2 0 4 0位までの塩基配列を意味する。 動物 細胞においてプロモータ一活性を発揮するためには、 5塩基以上の サイズが必要であることが知られている。 従って、 本発明のプロモ 一夕一活性を有する D N Aの断片は少なく とも 5塩基以上のサイズ を有し、 好ま しく は 3 0塩基以上のサイズを有し、 さ らに好ま しく は 2 0 0 0塩基以上のサイズを有する。
本発明はまた、 配列番号 : 4 に示す塩基配列を有する D N Aとス ト リ ンジヱ ン ト条件下でハイブリ ダイズすることができ且つプロモ —ター活性を有する D N Aを含む。 ハイブリ ダィズする D N Aは天 然由来であり、 例えば哺乳類、 例えば、 ヒ ト、 マウス、 ラ ッ ト、 サ ル等の、 例えばゲノム D N Aライブラ リ 一である。 ス ト リ ンジェン ト条件下とは、 例えば低ス ト リ ンジユン トな条件が挙げられる。 低 ス ト リ ンジェ ン 卜な条件と しては、 例えば 4 2 °C、 5 X S S C、 0 . 1 % ドデシル硫酸ナ ト リ ウム、 5 0 %ホルムア ミ ドにより与えら れる洗浄条件である。 より好ま しく は、 高ス ト リ ンジヱ ン トな条件 が挙げられる。 高ス ト リ ンジェ ン 卜な条件と しては、 例えば 6 0 °C 、 0 . 1 X S S C、 0 . 1 % ドデシル硫酸ナ ト リ ウムにより与えら れる洗浄条件である。
本発明はまた、 配列番号 : 4 に示すプロモータ一の塩基配列にお いて、 1 又は複数個の塩基の欠失、 付加及び 又は他の塩基による 置換により修飾されており、 且つプロモータ一活性を維持している D N A断片をも含む。 修飾の程度は、 配列番号 : 4 に示す塩基配列 に対して 7 0 %相同性の範囲であり、 好ま しく は 8 0 %以上、 さ ら に好ま しく は 9 0 %以上の相同性を有する。
なお、 本発明において 「相同性」 とは、 二つ以上の相補的ではな い塩基配列またはァ ミ ノ酸配列により示される残基の同一性 (iden tity) の程度を示す (Gene Cloning 2n d edition, T.A. Brown, Cha pman and Hall, 1990 ) 。 すなわち、 9 0 %の相同性とは、 二つ以 上の配列において、 1 0 0残基のうち 9 0以上の残基が同一である ことを意味する。
次に、 本発明のプロモータ一活性を有する D N A、 その断片及び 修飾体の製造方法について説明する。 配列番号 : 4 に示す塩基配列 を有する D N Aは、 アダプタ一に対するプライマー A P I ( 5 ' - GTAATACGACTCACTATAGGGC- 3 ' ) (配列番号 : 5 ) と、 前記 P a n n i n g法により クロ一ニングした c D N Aクロー ン P 3. 1 9 の塩 基番号 : 4 7〜 7 2 に対応する HM 1 プライマ一 (配列 : 5 ' —AT C CCC GTC TTC CAT GGG CAC TCT GCA - 3 ' ) (配列番号 : 6 ) と を用い、 ヒ トゲノム D N Aライブラ リ一を铸型と して P C R増幅し 、 次にこの P C R増幅生成物を铸型と して、 A P 2 プライマー (配 列 : ACTATAGGGC ACGCGTGGT) (配列番号 : 7 ) とクローン P 3. 1 9 の塩基 1 9〜 4 0 に対応する HM 2 プライマー (配列 : 5 ' —AT A GTC ATA CGA ACT AGA TGC CAT CCA G - 3 ' ) (配列番号 : 8 ) とにより nested PCRを行い、 クローニングベクタ一 p C R II ( Invi trogen) にサブクローニングする。 配列決定の結果、 配列番号 : 4 に示す塩基配列を有する D N Aが得られた。
プロモーターを有する D NA断片は、 例えば次のようにして得ら れる。 前記クローニングベクタ一 p C R IIにサブク ローニングされ た D NAを、 制限酵素、 S c a l 、 B a mH I 、 P v u II、 P s t I 等により消化する方法、 超音波処理による方法、 ホスホルア ミ ダ ィ ト法で化学合成する方法、 ポリ メ ラーゼ連鎖反応法等を利用 して 調製する方法等も利用できる。 例えば、 配列番号 : 4 の D N A配列 から適宜プライマーを調製し、 ポリ メ ラーゼ連鎖反応法により所望 の D N A断片を容易に調製することができる。
本発明のプロモータ一の塩基配列を利用するハィブリ ダイゼ一シ ョ ン法により、 他の細胞由来の遺伝子から本発明のプロモーターを 得ること もできる。 この場合は、 例えば以下の方法が適用できる。 まず他の細胞の遺伝子源から得た染色体 D NAを常法に従いプラス ミ ドゃフ ァージベクターに接続して宿主に導入し、 ライブラ リ ーを 作製する。 そのライブラ リ 一をプレー ト上で培養し、 生育したコロ 二一又はプラークを二 トロセルロースやナイ 口ンの膜に移し取り、 変性処理により D N Aを膜に固定する。 この膜をあらかじめ32 P等 で標識したプローブ (プローブと しては、 配列表の配列番号 : 4に 記載した D NA断片、 またはその一部) を含む溶液中で保温し、 膜 上の D N Aとプローブとの間でハイプリ ッ ドを形成させる。
例えば D N Aを固定化した膜を、 6 X S S C、 1 % ドデシル硫酸 ナ ト リ ウム ( S D S:) 、 1 0 0 / gZmlのサケ精子 D N A、 5 Xデ ンハルツを含む溶液中で 6 5 °Cで 2 0時間、 プローブとハイブリ ダ ィゼ一シ ヨ ンを行う。 ハイブリ ダィゼーシ ヨ ン後、 非特異的吸着を 洗い流し、 オー トラジオグラフ ィ 一等によりプローブとハイプリ ッ ド形成したク ロー ンを同定する。 この操作をハイブリ ッ ド形成した ク ローンが単一になるまで繰り返す。 こう して得られたク ロー ンの 中には、 目的のプロモータ一をコー ドする D N Aが揷入されている o
前記の、 塩基の欠失、 付加及び Z又は置換により修飾されたプロ モーターは、 例えば、 部位特定変異誘発、 P C R法等の周知の方法 により作製することができる。
得られた遺伝子は、 例えば次のように塩基配列を決定し、 得られ た遺伝子が目的のプロモータ一であるかを確認する。 塩基配列の決 定は、 ハイブリダィゼ一シ ヨ ンにより得られたクロー ンの場合、 組 換体が大腸菌であれば試験管等で培養を行い、 プラス ミ ドを常法に 従い抽出する。 これを制限酵素により切断し挿入断片を取り出し、
M l 3 フ ァージベクター等にサブク ローニングし、 ジデォキシ法に より塩基配列を決定する。
組換体がフ ァージの場合も基本的に同様のステップにより塩基配 列を決定することが出来る。 これら培養から塩基配列決定までの基 本的な操作法については、 例えば、 モレキュラー ク ローニング 7 ラ 'ボラ 卜 リー マ二ユアノレ (Molecular Cloning A Laboratory Manual ) 、 第 2版、 T. マニアテイ ス (T.Maniatis) 、 第 1章、 第 9 0〜 1 0 4頁、 コール ド スプリ ング ハーバー ラボラ ト リ —社、 1 9 8 9年発行に記載されているとおりに行う ことができる o
得られた遺伝子が目的のプロモーターであるかどうかは、 決定さ れた塩基配列を本発明のプロモータ一と比較してその相同性から推 定することができる。 得られた遺伝子がプロモーターの全てを含ま ないと考えられる場合には、 得られた遺伝子を基にして合成 D N A プライマーを作製し、 P C Rにより足りない領域を增幅したり、 得 られた遺伝子の断片をプローブと して、 更に D N Aライブラ リ ーま たは c D NAライブラ リ ーをスク リ ーニングすることにより、 本発 明のプロモータ一にハイブリ ダイズするプロモーターの全コ一 ド領 域の塩基配列を決定することができる。
本発明の有用遺伝子の発現方法は、 このようにして得られる本発 明のプロモーターの下流に有用遺伝子を発現可能に連結して得られ る D N A断片を動物細胞に導入し、 得られた細胞を培養することを 特徴とするものである。 上記のようにして調製された本発明のプロ モーターを含む D N A断片の下流に目的の有用遺伝子を発現可能に 連結するには、 D N A リガーゼやホモポ リマー法を利用すること力《 できる。
D N A リガーゼにより連結する場合は、 例えば両者が同一の制限 酵素部位を有するときはこの制限酵素で消化した後、 例えばモ レキ ユラ一 ク ローニング ァ ラボラ ト リ 一 マニュアル、 第 2版、 T . マニアティ ス他著、 第 1 章、 第 6 2頁、 コール ド スプリ ング ハーバー ラボラ ト リー社、 1 9 8 9年発行に記載された反応緩 衝液中で両方の D N A断片を混合し、 D N A リガ一ゼを加えること により、 また両者が同一の制限酵素部位を有しないときは末端を T 4 D N Aポリ メ ラ一ゼ (宝酒造社製) で平滑末端化した後上記の ように D N A リガーゼで処理することにより連結する。
一方、 ホモポリマー法を用いる場合は、 制限酵素で直鎖状にした ベクターの 3 ' 末端にタ一ミ ナルデォキシ リ ボヌ ク レオチジル トラ ンスフヱラーゼと d G T Pによってポリ G鎖を付加し、 また、 イ ン サー ト D N Aの 3 ' 末端には同様にポリ C鎖を付加し、 これらのポ リ G鎖とポリ C鎖をァニールさせ、 例えば塩化カルシウム法により 大腸菌に導入する 〔プロシ一ディ ングス ォブ ナシ ョ ナル ァカ デミ一 ォブ サイエンシーズ ォブ ザ U S A、 第 7 5卷、 第 3 7 2 7頁 ( 1 9 7 8 ) 〕 ことにより連結する。
本発明に使用できる目的の有用遺伝子と しては、 例えばイ ンター ロイキン 1 〜 1 2遺伝子、 イ ンタ一フ ヱ ロ ン α , β , ァ遺伝子、 腫 瘍壊死因子遺伝子、 コロニー刺激因子遺伝子、 エ リ スロポエチン遺 伝子、 形質転換増殖因子一 遺伝子、 免疫グロブリ ン遺伝子、 組織 プラスミ ノーゲン活性化因子遺伝子、 ゥロキナーゼ遺伝子、 西洋ホ タルルシフエラ一ゼ遺伝子等が挙げられる力 これらに限定される ものではない。
例えばスーパーォキシ ドジスムタ一ゼ、 ッモア一 · ネフ 口一シス ' フ ァ ク ター、 イ ンス リ ン、 カノレシ トニン、 ソマ ト スタチン、 セク レチン、 グロスホルモ ン、 エン ドルフ ィ ン、 ウィルス蛋白、 ァ ミ ラ ーゼ、 リパーゼ、 アルコールォキシダーゼなどの遺伝子が挙げられ る。
上記のようにして得られる本発明の D N A断片と有用遺伝子が連 結した D N A断片は動物細胞用の適当なベクタ一に組み込んで遺伝 子発現用のプラス ミ ドを得ることができる。 かかるベクターと して は、 ρ ΤΜ 〔ヌ ク レイ ッ ク ァシ ッ ズ リ サーチ (Nucleic Acids Research) 、 1 0巻、 6 7 1 5頁 ( 1 9 8 2 ) 〕 、 c o s 2 0 2 〔 ジ ェンボ ジャーナル (The EMBO Journal) 、 第 6巻、 第 3 5 5 頁 ( 1 9 8 7 ) 〕 、 p 9 1 2 0 3 (B) 〔サイエンス (Science ) 、 第 2 2 8卷、 第 8 1 0頁 ( 1 9 8 5 ) 〕 、 B C MG S N e o 〔ジ ヤーナル ォブ ェクスペリ メ ンタノレ メデイ シ ン (Journal of E xperimental Medicine) 、 第 1 7 2巻、 第 9 6 9頁 ( 1 9 9 0 ) 〕 等が挙げられる。
得られた遺伝子発現用のプラス ミ ドは、 リ ン酸カルシウム法 〔モ レキユラ一 ア ン ド セノレラー ノくィォロ ジー (Molecular and Ce llular Biology) 、 第 7巻、 第 2 7 4 5頁 ( 1 9 8 7 ) 〕 、 電気穿 孔法 〔プロシ一ディ ングス ォブ ナシ ョ ナル アカデミ ー ォブ サイエンシーズ ォブ ザ U S A、 第 8 1巻、 第 7 1 6 1頁 ( 1 9 8 4 ) 〕 、 D E A E—デキス トラ ン法 〔メ ソ ッズ イ ン ヌ ク レイ ッ ク ァシ ッ ズ リ サーチ (Methods in Nucleic Acids Resea rch ) 、 第 2 8 3頁、 カラムら編、 C R Cプレス、 1 9 9 1年発行 〕 、 リ ボソーム法 〔バイオテクニークス (BioTechniques ) 、 第 6 巻、 第 6 8 2頁 ( 1 9 8 9 ) 〕 等によって適当な宿主細胞に導入す ることができる。
かかる宿主細胞と しては、 C O S細胞、 H e L a細胞、 C H O細 胞、 B HK— 2 1細胞等が挙げられる。 得られた形質転換細胞を適 当な培地で培養することにより、 目的の有用遺伝子産物を効率よく 製造することができる。
実施例
次に、 実施例及び参考例により本発明をさ らに具体的に説明する 参考—例 1 , HM 1. 2 4抗原をコー ドする c D NAのクローニン
1 ) 細胞株
ヒ ト骨髄腫細胞株 R P M I 8 2 2 6 , U 2 6 6 は 1 0 %ゥシ胎児 血清 (F B S ) を添加した R P M I 1 6 4 0培地 (G I B C 0— B R L) にて培養を行い、 ヒ ト骨髄腫細胞株 K P MM 2 (特開平 7 — 2 3 6 4 7 5 ) は 2 0 %ゥシ胎児血清を添加した R P M I 1 6 4 0 培地にて培養を行った。
2 ) c D NAライブラ リ一の構築
1 X I 0 8 個の K P MM 2細胞よりチォシアン酸グァニンノ塩化 セシウム法により全 R NAを単離し、 Fast Track mRNA isolation Ki t(Invi trogen) を用いて m R N Aの精製を行った。 1 0 gの m R N Aより Not I /ol igo-dT, 8 (Time Saver cDNA Synthesis Kit ; Pharmacia Biotech ) を用いて c D N Aを合成した後、 EcoR I a dapterを連結した。 0. 7 kbp 以上の c D N Aを 1. 0 %低融点ァ ガロースゲル ( S i g m a ) を用いて分画し、 N o t I にて消化し p C O S l発現べクタ一又は; l E x C e 1 1 ベクター (Pharmacia Biotech ) の EcoR l ZNot I site に揷入し、 直接発現ク ロ一ニン グ ( p a n n i n gによるスク リ ーニング) に用いるライブラ リ ー (ライブラ リ一 A) 及び免疫スク リ ーニング用のライブラ リ 一 (ラ イブラ リ ー B) をそれぞれ構築した。
なお、 p C 0 S 1発現べクタ一は、 HEF- PMh- gァ 1 (W092-19759 参照) から、 E c o R Iおよび S m a I消化により含有される遺伝 子を削除し、 EcoRI- Notl-BamHI Adaptor (宝酒造) を連結すること により構築した。
3リ P a n n i n g
ライブラ リ 一 Aをエレク トロボレ一シヨ ン法により C O S— 7細 胞に導入した。 すなわち、 2 のプラス ミ ド D NA ( 5 X 1 0
5 個の独立ク ローンを含む) を 0. 8 mlの細胞 ( 1 X 1 0 7 細胞 Z ml in PBS ) と混合し、 Gene Pulser (Bio-Rad) を用いて 1. 5 kV 、 2 5 t/FDの条件にてエレク トロポレーショ ンを行った。 室温にて 1 0分間清置した後、 細胞を 1 0 % F B S添加 DMEM (G I B C O— B R L) に懸濁し 4枚の 1 0 0 mm培養ディ ッ シュに分け 3 7 °Cにて 7 2時間培養した。
培養後細胞をリ ン酸緩衝液 ( P B S ) で洗浄し、 5 mM E D TA を含む P B Sを加え細胞を剥がし、 5 % F B S、 0. 0 2 % N a N a 添加 P B Sにて 1 — 2 X 1 0 6 cell sZ mlの細胞懸濁液を調整 した。 続いて細胞は抗 HM 1. 2 4抗体をコ一ティ ングした p a n n i n gプレー ト (後述) 上で 2時間清置し、 プレー トを 5 % F B S、 0. 0 2 % N a N 3 を含む 3 mlの P B Sで穩やかに 3回洗 浄した。 洗浄後、 プレー ト上に結合した細胞から、 H i r tの溶液 (Hitt J., Mol. Biol. 26 : 365-369, 1983 ) ( 0. 6 % S D S 、 1 0 mM E D TA) を用いてプラス ミ ド D NAを回収した。 回収 したプラスミ ド D NAは大腸菌内で増幅し、 次の p a n n i n gに 使用した。
P a n n i n gプレー トの調製は次のようにして行った。 3 mlの 抗 HM 1. 2 4抗体溶液 ( 1 0 ^ 3 1111 5 0111\1 T r i s — H C 1、 pH 9. 5 ) を 6 0 mmデイ ツ シュ ( F a 1 c o n ) に加え、 室 温にて 2時間清置し、 0. 1 5 M N a C 1 にて 3回洗浄した後、 3 mlの 5 % F B S、 1 mM E D T A、 0. 0 2 % N a N 3 添加 P B Sを加え、 室温にて 2時間清置しブロ ッキングを行った。 プロ ッキング溶液を除去した後 p a n n i n gプレー トは使用するまで - 2 0 °Cで保存した。
5 X 1 0 5 個のク ローンを含むプラス ミ ドライブラ リー (ライブ ラ リ ー A) を出発材料と して p a n n i n gを 3回繰り返すことに より、 約 0. 9 kbp の c D N Aをイ ンサー トと して持つプラスミ ド D NA力く濃縮された。 Dye Terminator Cycle Sequencing Kit (App lied Biosystems ) を用いて 3 7 3 Aも しく は 377DNA Sequencer ( Applied Biosystems) により塩基配列の決定を行った結果、 クロー ン P 3. 1 9 は 1, 0 1 2 bpの c D N Aから成り、 1 8 0ア ミ ノ酸 をコー ドするオープンリ ーデングフ レーム ( 2 3 - 5 4 9 ) を持つ ことが明らかとなつた (図 1及び図 2 ) (配列番号 : 1 ) 。 この c D N Aより予想されるアミ ノ酸配列はタイプ IIの膜タンパクに特徴 的な構造を示し、 2箇所の N型糖鎖結合部位を有していた。
4 ) 免疫スク リ ーニング
ライブラ リ 一 Bは抗 HM 1. 2 4抗体を用いた免疫スク リ ーニン グに供した。 すなわち、 1. 5 X 1 0 5 個の独立ク ロー ンを含むフ ァージライブラ リ一を大腸菌 N M 5 2 2 (Pharmacia Biotech ) と 共に寒天上に重層し、 4 2 °Cにて 3. 5時間培養した。 培養後、 プ レー ト上に 1 O mM I P T Gで前処置したニ ト ロセルロースフィル ター (Schleicher & Schuell) を重ね、 さ らに 3 7 °Cにて 3時間培 養した。 F i 1 t e rは 0. 0 5 % ( v/v ) Tw e e n— 2 0添 加 T B S ( 2 0 mM T r i s — H C l、 pH7. 4、 1 5 0 mM N a C I ) で洗浄した後、 1 % ( w/ v ) B S A添加 T B Sを加え、 室 温にて 1 時間ィ ンキュベ一 卜 してプロ ッキングを行った。
ブロ ッキング後、 抗 HM 1. 2 4抗体溶液 ( 1 0 〃 gZmlプロ ッ キング緩衝液) を加え、 室温にて 1 時間イ ンキュベー ト し、 洗浄後 5, 0 0 0倍希釈したアルカ リ ホスフ ァターゼ結合抗マウス I g抗 血清 (picoBlue Immunoscreening kit ; Stratagene) ¾カロえ、 さ ら に室温にて 1 時間イ ンキュベー ト した。 抗体と反応したスポッ トは 0. 3 mgZml二 ト 口ブルーテ ト ラ ゾリ ゥム、 0. 1 5 mg/ml 5 ― ブロモ— 4一ク ロ ロ ー 3 —イ ン ド リ ルホスフ ヱ一 トを含む発色溶液 ( 1 0 0 m T r i s — H C l 、 pH9. 5、 1 0 0 mM N a C 5 m M g C 1 2 ) にて発色させた。
免疫スク リーニングにより 5個の陽性ク ロ一ンが単離され、 それ ら全てが P 3. 1 9の部分配列と一致した (図 3 ) 。 ホモ口ジー検 索の結果、 P 3. 1 9 は骨髄または滑膜ス ト 口一マ細胞に発現する B S T— 2 (Ishikawa J. ら、 Genomics, 26; 527-534, 1995 ) の 塩基配列と同一のものであることが明らかとなった。 二通りのスク リ一ニング法により同一の分子が得られ、 P 3. 1 9がコー ドする 膜タ ンパクは HM 1. 2 4抗原分子であることを強く示唆している
O
なお、 前記ヒ ト H M 1 . 2 4抗原タ ンパク質と同一の配列を有す る ヒ トタ ンパク質をコー ドする D N Aを p U Cベク タ一の X b a I 切断部位間に挿入したプラス ミ ド p R S 3 8 — p U C 1 9 を含有す る大腸菌は Escherichia col i DH5 a (pRS38-pUC19 ) と命名され 、 平成 5 ( 1 9 9 3 ) 年 1 0月 5 日に工業技術院生命工学工業技術 研究所 (茨城県つく ば市東 1丁目 1 番 3号) に寄託番号 F E RM B P— 4 4 3 4 と して、 ブダペス ト条約に基づき国際寄託されてい る o
5 ) F A C S解析
さ らに、 P 3. 1 9 によってコー ドされるタンパクが確かに抗 H M l . 2 4抗体と結合するのかを確認するために、 P 3. 1 9 を導 入した C H 0形質転換細胞株を樹立した。 すなわち、 P 3. 1 9 ク ローンをエレク トロポレーシ ヨ ン法により C H 0細胞に導入した後 、 5 0 0 〃 g Zmlの G 4 1 8 ( G I B C 0— B R L ) の存在下で培 養し、 HM 1. 2 4抗原発現 C H 0細胞株を得た。
1 X I 0 6 個の培養細胞を F A C S緩衝液 ( P B S (—) / 2 % F C S / 0. 1 % N a N 3 ) に懸濁し、 HM 1. 2 4抗体を添 加し、 氷中で 3 0分間反応した。 F A C S緩衝液で洗浄後、 G AM — F I T C溶液 ( 2 5 a g /ml in F A C S緩衝液 ; Beet on Dicki nson) で再懸濁し、 さ らに氷中で 3 0分間反応した。 F A C S緩衝 液で 2回洗浄した後、 6 0 0 1 の F A C S緩衝液に再懸濁し F A C S c a n (Becton Dickinson) にて測定した。
なお、 陰性対照抗体と して U P C 1 0を用いた。
F A C S解析の結果、 P 3. 1 9を導入した C H O細胞は抗 HM 1. 2 4抗体と強く 反応したのに対し、 コン トロールの発現べクタ 一のみを導入した C H 0細胞 (C H OZN E O) では有意な結合は 認められなかった (図 4 ) 。 したがって、 P 3. 1 9 によってコー ドされるタ ンパク質は抗 HM 1. 2 4抗体と結合することが確認さ れた。
6 ) 免疫沈降
細胞は P B S (-) で 2回洗浄した後、 細胞溶解緩衝法 ( 5 0 mM 萌酸ナ ト リ ウム、 1 5 0 mM N a C l 、 0. 5 %デォキシコール酸 ナ ト リ ウム、 1 % Nonidet P_40、 0. 1 mg/mlフヱニルメ チルス ルホニルフルオリ ド、 プロテア一ゼ阻害剤カクテニル 〔Boehringer Mannheim 〕 ) 内で超音波破砕を行い、 可溶化画分を得た。 可溶化 画分は抗 HM 1. 2 4抗体をコ ンジユゲー ト した Sepharose 4Bビー ズに加えた。 遠心後、 沈殿物は S D S— P A G E ( 1 2 % g e 1 ) により分離し、 P V D F膜に転写した。 P V D F膜は抗 HM 1. 2 4抗体、 続いて POD-anti- mouse IgGと反応させた後、 E C Lキッ ト (Am e r s h a m) を用いて検出を行った。
K P MM 2 , R P M I 8 2 2 6及び U 2 6 6の各種ミエローマ細 胞株は HM 1. 2 4抗原を強く発現し、 これらの細胞溶解物を抗 H M l . 2 4抗体で免疫沈降を行う と、 分子量が約 2 9〜 3 3 kDa の タンパクが特異的に検出された (図 5 ) 。 P 3. 1 9を導入した C H O細胞株 ( C H O/HM) においても同様の実験を行った結果、 C H OZHM細胞においても ミエローマ細胞株と同様に免疫沈降物 が確認され (図 5、 レー ン 4 ) 、 発現ベクター p C O S lのみを導 入したコ ン ト口ール細胞 (C H O/N E O) ではそのような免疫沈 降物は確認されなかった (図 5、 レー ン 5 ) 。
P 3. 1 9 は 1 8 0 ア ミ ノ酸からなる推定分子量 1 9. 8 kDa の タンパクをコー ドしており、 2力所の N型糖鎖結合モチーフが存在 している (図 1 ) 。 従って、 免疫沈降により認められた分子量の異 なったものの存在は、 N型糖鎖の修飾の違いによることが考えられ た。 事実、 免疫沈降物が数種のレクチンと結合することが確認され ている。
参考例 2. マゥス抗 HM1.24モノ クローナル抗体産生ハイブリ ドー マの調製
Goto, T. et al. , Blood (1994) 84, 1992-1930 に記載の方法に て、 マウス抗 HM1.24モノ ク ローナル抗体産生ハイプリ ドーマを調製 した。
ヒ ト多発性骨髄腫患者骨髄由来の形質細胞株 KPC-32 (lxlO7 個) (Goto, T. et al. , Jpn. J. Clin. Hematol. (11991) 32, 1400) を BALB/Cマウス (チヤ一ルス リ バ一製) の腹腔内に 6 週間おきに 2 回注射した。
このマウスを屠殺する 3 日前にマウスの抗体産生価をさ らに上昇 CT/JP99/00 84 させるために、 1.5 x 106 個の KPC- 32をマウスの脾臓内に注射した (Goto, T. et al. , Tokushima J. Exp. Med. (1990) 37, 89 ) 。 マウスを屠殺した後に脾臓を摘出し、 Groth, de St. & Schreidegg erの方法 (Cancer Research (1981) 41, 3465 ) に従い摘出した脾 臓細胞と ミ エローマ細胞 SP2/0 を細胞融合に付した。
KPC-32を用いた Cell ELISA (Posner, . R. et al. , J. Immunol . Methods (1982) 48, 23 ) によりハイプリ ドーマ培養上清中の抗 体のスク リーニングを行った。 5 X 104 個の KPC- 32を 50 ml の PBS に懸濁し、 96穴プレー ト (U 底型、 Corning, Iwaki製) に分注し 37 °Cで一晩風乾した。 1 ゥシ血清アルブミ ン (BSA ) を含む PBS でブ ロ ッ ク した後、 ハイブリ ドーマ培養上清を加え 4 °Cにて 2 時間イ ン キュペー ト した。 次いで、 4 °Cにて 1 時間ペルォキシダ一ゼ檩識抗 マウス IgG ャギ抗体 (Zymed 製) を反応させ、 洗浄後室温にて 30分 間 0-フ エ二レ ンジア ミ ン基質溶液 (Sumitomo Bakelite 製) を反応 させた。
2N硫酸で反応を停止させ、 ELISA reader (Bio-Rad 製) で 492nm における吸光度を測定した。 ヒ 卜免疫グロプリ ンに対する抗体を産 生するハイプリ ドーマを除去するために、 陽性ハイプリ ドーマ培養 上清をヒ ト血清にあらかじめ吸着させ、 他の細胞株に対する反応性 を ELISA にてスク リ ーニングした。 陽性のハイブリ ドーマを選択し 、 種々の細胞に対する反応性をフローサイ トメ ト リ一で調べた。 最 後に選択されたハイプリ ドーマクローンを二度ク ローン化し、 これ をプリスタ ン処理した BALB/Cマウスの腹腔に注射して、 腹水を取得 した。
モノ クローナル抗体は、 硫酸ァンモニゥムによる沈澱とプロティ ン A ァフ ィ 二ティ ク ロマ ト グラ フ ィ ーキッ 卜 ( Ampure PA 、 Amersh am製) によりマウス腹水より精製した。 精製抗体は、 Quick Tag FI TC結合キッ ト (ベ一 リ ンガーマンハイ ム製) を使用するこ とによ り FITC標識した。
その結果、 30のハイブリ ドーマク 口一ンが産生するモノ クローナ ル抗体が KPC- 32および RPMI 8226 と反応した。 クローニングの後、 これらのハイプリ ドーマの培養上清と他の細胞株あるいは末梢血単 核球との反応性を調べた。
このうち、 3 つのク ローンが形質細胞に特異的に反応するモノ ク ローナル抗体であった。 これらの 3 つのクローンのうち、 最もフロ —サイ トメ ト リ一分析に有用であり、 かつ RPMI 8226 に対する CDC 活性を有するハイプリ ドーマク ローンを選択し、 HM1.24と名付けた 。 このハイブリ ドーマが産生するモノ クローナル抗体のサブクラス を、 サブクラス特異的抗マウスゥサギ抗体 (Zymed 製) を用いた EL ISA にて決定した。 抗 HM1.24抗体は、 IgG2a のサブクラスを有し ていた。 抗 HM1.24抗体を産生するハイプリ ドーマ HM1.24は、 工業技 術院生命工学工業研究所 (茨城県つく ば巿東 1 丁目 1 番 3 号) に、 平成 7 年 9 月 14日に FERM BP- 5233と してブタぺス ト条約に基づき国 際寄託された。
実施例 1 . HM 1 . 2 4抗原遺伝子のプロモーター領域のク ロ一 ニング
これまでに解析した全てのミエローマ細胞で HM 1 . 2 4抗原が 強く発現し、 HM 1 . 2 4抗原の発現は多発性骨髄腫の生理的な特 性に深く 関与している可能性が考えられる。 そこで HM 1 . 2 4抗 原発現調節機構の解明は重要な課題であり、 プロモーター領域遺伝 子構造を明らかにした。
H M 1 . 2 4抗原遺伝子のプロモーター領域は PromoterFinder D NA Walking kit (Clontech) を用いて単離した。 Panning により単 離したクローン P 3. 1 9 の 5 ' —端塩基配列より 2本の P C Rプ P T P / 84 ライマ— ; H M 1 ( 5 ' -ATC CCC GTC TTC CAT GGG CAC TCT GCA - 3 ' ) (配列番号 : 6 ) 及び H M 2 ( 5 ' -ATA GTC ATA CGA AG T AGA TGC CAT CCA G - 3 ' ) (配列番号 : 8 ) をデザィ ンした。 1 回目の P C Rではアダプターに対するプライマ一 A P 1 (キッ ト 添付) と HM 1 プライマーを用いてキッ ト添付マニュアルに準じて 行い、 P C R産物は引き続き A P 2プライマー (キッ ト添付) と H M 2プライマーを用いた nested PCRに供した。 最終的な P C R産物 は精製した後、 p C R IIク ロ一ニングベクタ一 (Invitrogen) にサ ブク ローニングした。
プロモータ一領域遺伝子は P C R法により簡便に単離した。 すな わち、 約 2. 0 kb, 0. 7 kb, 0. 3 kbの P C R産物がそれぞれ E c o R V , P v u IIおよび D r a l ライブラ リ 一 ( Promo terFinder Kit; Clontech) から特異的に増幅された。 制限酵素による切断パ ターンよりそれぞれ同一のゲノ ム D NA由来のものであるこ とが明 らかになつた (図 6 ) 。 次にそれらの塩基配列を決定した結果、 c D N Aの 5 ' —端から 1 9 5 9 bp上流までの遺伝子配列が決定され た (図 7及び図 8 ) (配列番号 : 4 ) 。 既知の転写因子の結合モチ —フ検索を行った結果、 A P— 2、 S p l、 N F— I L 6、 N F— c B、 S TA T 3 または I S G F 3等の転写調節ェレメ ン トが存在 し、 I L— 6 または I F N— αといった炎症性サイ トカイ ンの刺激 により発現が調節されている可能性が示唆された。
また、 I L _ 6は骨髄腫細胞の増殖因子と して働いていることが 知られており、 I L— 6の下流で働く転写因子である N F— I L 6 および S T A Τ 3が骨髄腫細胞における HM 1. 2 4抗原の発現調 節に関与している可能性が強く示唆された (図 7及び図 8 ) 。 転写 開始点は CapSwi tch oligonucleotide (CapFnder Kit ; Clontech) を用いて増幅された P C R産物の塩基配列より推定し、 その上流一 2 7位に TA TA b o x様配列 (T A A T A A A) が認められた ( 図 7及び図 8 ) 。
実施例 2. H M 1. 2 4抗原ゲノ ム D N Aのク ローニング
H M 1. 2 4抗原ゲノム D NAはヒ トゲノ ム D NAライブラ リー (PromoterFinder DNA walking kit; Clontech) も し く は末梢血よ り調製したヒ トゲノ ム D N A (Clontech) より図 9 に示す各 P C R プライマ一を用いて増幅した。 P C R産物はそれぞれ精製した後 p C R IIベクタ一にサブクロ一ニングし、 塩基配列の決定を行った。
HM 1. 2 4抗原をコー ドしているゲノ ム D N Aは 4本の断片に 分け、 ヒ ト胎盤より調製したヒ トゲノ ム D NAライブラ リ一 (Prom oter Finder Kit ; Clontech) も しく はヒ ト末梢血より調製したヒ ト ゲノム D N Aより増幅した (図 9 ) 。 それらの塩基配列を確認した 後、 HM 1. 2 4抗原 c D N Aの塩基配列と比較した結果、 HM 1 . 2 4抗原遺伝子は 4つのェク ソ ンにより構成され、 8 5 0 bp, 1 8 3 bpおよび 3 0 7 bpの 3つのイ ン トロ ンが存在した (図 1 0 ) 。
しかしながら、 ヒ ト胎盤組織より調製したヒ トゲノ ム D NAライ ブラ リーからはイ ン ト ロ ン 3が欠如した 3ェク ソ ンからなる遺伝子 のみ増幅され、 ェク ソ ン · イ ン トロ ン構造の異なるゲノム遺伝子の 存在が示唆された。 いずれの構造においても、 HM 1. 2 4抗原の 細胞外領域に存在する 2力所の N型糖鎖結合部位ならびに 3 力所の システィ ン残基は全てェクソン 1 に存在した (図 1 1及び図 1 2 ) (配列番号 : 2 ) 。
実施例 3. HM 1. 2 4抗原スプライ シングバリ ア ン 卜の確認 H M 1. 2 4抗原にスプライ シングバリ アン トが存在するのかを 確認するために、 前述の方法により ヒ ト骨髄腫細胞株 K P MM 2よ り調製した c D N Aを铸型と して用い、 P C R法により HM 1. 2 4抗原 c D NAを増幅した。 P C Rに用いたセ ンスプライマー B S T/JP 0884
T 2 - N (配列番号 1 7 ; ATG GCA TCT ACT TCG TAT GAC ) は今回 単離した P 3。 1 9 (配列番号 1 ) の塩基 1 0〜 3 0 に対応し、 ァ ンチセンスプライマー S 3 (配列番号 1 8 ; AAC CGT GTT GCC CCA TGA ) は P 3. 1 9 の塩基 6 4 1〜 6 5 8 に対応している。
P C Rにより増幅された産物はクローニングベクター Peri ί (In vi trogen) にサブク ローニングし、 得られた独立のク ローンからプ ラス ミ ド D N Aを回収した結果、 約 6 5 O bpと約 5 5 0 bpの 2種類 の異なるサイズのィ ンサー 卜が認められた。 それぞれ塩基配列を決 定した結果、 約 6 5 0 bpのィ ンサー トは P 3. 1 9 と同一の配列を 示したが、 約 5 5 0 bpのィ ンサ一 トは P 3. 1 9 の塩基 2 9 4〜 4 2 2 に相当する部分の欠損が認められた (配列番号 1 9 ) 。 欠損が 認められた部位はヒ ト HM 1 . 2 4 ゲノ ム D NAのェク ソ ン 2, 3 に相当し、 スプライ シングの違いによるバリアン 卜の存在が示され た。
実施例 4. HM 1 . 2 4遺伝子のポ リ モルフ ィ ズムの解析
HM 1 . 2 4遺伝子に見いだされたポ リ モルフ ィ ズムに関して、 多発性骨髄腫との関連を検討した。 健常人末梢血は日本赤十字徳島 血液センターより献血材料のパフィ ーコー トの提供を受けた。 骨髄 腫患者については徳島大学第一内科及びその関連病院の患者より末 梢血または骨髄液を採取した。 血液サンプルは Ficoll- Conrey 比重 遠心法にて単核細胞を分離した。 骨髄腫細胞株は 1 0 %牛胎児血清 を含む R P M I 1 6 4 0培地 (GIBC0- BRし, Rockville MD U. S.A.) にて 5 %炭酸ガス恒温槽 3 7 °C中で培養した。 末梢血単核細胞また は骨髄腫細胞株を D N A z 0 1 試薬 (G I B C O— B R L) を用い 、 p r o t o c o l に従って処理し、 細胞からゲノ 厶 D N Aを抽出 し
塩基配列は P C R— direct sequencing 法により決定した。 5 ' プロモータ—領域はプライマー 6 S (TCCATAGTCCCCTCGGTGG) (配列 番号 : 2 2 ) および B S T 2 B ( ATAGTCATACGAAGTAGATGCCATCCAG) ( 配列番号 : 2 3 ) を用い、 ampl iTaq 醒 polymerase(Perkin-Blmer 、 千葉) による P C R ( 9 4 °C 1 分、 5 5 °C 1 分、 7 2 °C 1 分を 3 0 サイ クル) を行った。 また HMコー ド領域はプライマ一 HM P 2 K (AAAGGTACCAGCTGTCTTTCTGTCTGTC) (配列番号 : 2 4 ) および B S T 2 — R 4 (GTGCTCTCCCCGCTAACC) (配列番号 : 2 5 ) を用い、 LA T aq DNA Polymerase (宝酒造、 大津) による P C Rを行った。 反応液 を铸型と して、 さ らにプライマー 8 S (GGACGTTTCCTATGCTAA) (配列 番号 : 2 6 ) 及び B S T 2 - R l (AAAGCGGCCGCTCATCACTGCAGCAGAG CGCTGAG) (配列番号 : 2 7 ) を用い、 Ex Taq D N Aポリ メ ラーゼ (宝酒造) による P C Rを行った。
反応液を QIA Quick PCR Purification Kit (QIAGEN, 東京) にて 精製し、 得られた P C Rフラ グメ ン トを铸型と し、 5 ' プロモータ 一領域では 6 Sまたは B S T 2 B, HMコー ド領域は 8 S, HM I NT I F (AGGGGAACTCACCAGACC) (配列番号 : 2 8 ) 、 HM E X 2 F (ATGGCCCTAATGGCTTCC) (配列番号 : 2 9 ) 、 H M E X 3 F (CATT AAACCATAAGCTTCAGG) (配列番号 : 3 0 ) 、 HM E X 2 R (CCCTCAAG CTCCTCCACT) (配列番号 : 3 1 ) 、 または B S T 2 — R 1 をプライマ —と して BigDye Terminator Cycle Sequencing Kit (Perkin-Elmer ) にて反応した。 塩基配列の決定は ABI377 DNA Sequencer (Perkin -Elmer) により行った。 H M 1 . 2 4遺伝子の開始コ ドン上流 2 0 塩基対付近の 8塩基対欠失頻度は P C Rにより検出した。 すなわち 、 プライマー 8 S及び B S T 2 — R 3 (GACGGATCCTAAAGCTTACAGCGC TTATC) (配列番号 : 3 2 ) を用い、 ampl iTaq DNAポリ メ ラ一ゼ (Pe rkin-Elmer) による P C R ( 9 4 °C 1 分、 5 5 °C 1 分、 7 2 °C 1 分 を 3 0サイ クル) を行った。 反応液を 4 %ァガロースゲルにて電気 泳動し、 ェチジゥムブ口マイ ド染色により検出した。
H M 1 . 2 4遺伝子 5 ' プロモータ一領域のポリモルフィ ズム
健常人および患者検体について HM 1 . 2 4遺伝子 5 ' プロモー ター領域の塩基配列を決定した。 結果を図 1 4〜図 1 8 (配列番号 : 3 3 ) に示した。 下線を引いた図 1 4の 1 8 7、 2 6 2及び 3 2 3 に塩基置換並びに図 1 4の 3 6 0付近及び図 1 5 の 5 5 5付近に 欠失のある検体が認められ、 また 3 6 6〜 5 5 8 の間が解読不能な 検体が存在した。 図 1 4〜図 1 8 (配列番号 : 3 3 ) に記載した配 列を Aタイプ、 上記の塩基置換 · 欠失のある変異タイプを Bタイプ とすると、 3 6 6〜 5 5 8 の間が解読不能な検体は Aと Bのへテロ 接合体 (A B ) であり、 Aまたは Bタイプに解読できた検体は Aの ホモ接合体 (A A) あるいは Bのホモ接合体 ( B B ) であると考え られる。 上述のポリモルフィ ズムの他に、 骨髄腫細胞株 H S - s u 1 t a nでは二重下線の部分がタ ンデムに 1 9 bp揷入していること も明らカ、にした (Mタイプ) 。
H M 1 . 2 4遺伝子のポリモルフィ ズム
ゲノム遺伝子領域について A Aタィプの細胞株 (U 2 6 6 , H S - s u 1 t a n ) および B Bタイプの健常人検体 2例について塩基 配列を決定した。 この結果、 Bタイプの配列ではイ ン トロン 3の 2 3 1 5付近で cが 3塩基欠失していることが明らかになつたが、 コ 一ド領域には全く変異は認められなかった。
A, Bタイプの遺伝子頻度
ポリモルフィ ズムと疾患感受性について検討した。 HM 1 . 2 4 遺伝子の開始コ ドン上流 2 0塩基対付近の 8塩基対欠失を P C Rに より検出した結果、 健常人 9 4例と骨髄腫患者 4 6例の間にポリモ ルフイズムの頻度に差は見いだされなかった (表 1 ) 。 健常人、 骨 髄腫患者ともに Aタイプの遺伝子が多く 、 およそ A : B = 2 : 1 で これらの遺伝子が分布していることが判明した。 細胞株については
1 1例中 9例が A Aタイプで、 Aタイプに偏りがあった。
HM 1 . 2 4 プロモータ一領域のポ リモルフ ィ ズムに骨髄腫疾患 感受性との関連は認められなかった。
表 1 . ポ リ モルフ ィ ズムの頻度
AA AB BB 合計 健常人 43 37 14 94
(%) 45.7 39.4 14.9
骨髄腫患者 21 21 4 46
(%) 45.7 45.7 8.7
骨髄腫細胞株 9 2 0
(%) 81.8 18, 2 0
産業上の利用可能性
本発明によれば、 骨髄腫細胞すべてに高発現している HM 1 . 2 4抗原のゲノム遺伝子を得ることができた。 H M 1 . 2 4抗原をコ ー ドするゲノ ム遺伝子は HM 1 . 2 4抗原の解析に有用である。 ま た、 HM 1 . 4抗原は強く発現されていることから、 そのプロモ —ター領域は強いプロモーター活性を有していると考えられ、 有用 遺伝子の発現に有用である。
特許協力条約第 13規則の 2の寄託された微生物への言及及び寄託 機関
寄託機関 名 称 : 工業技術院生命工学工業技術研究所
あて名 : 日本国茨城県つく ば市東 1 丁目 1 — 3 微生物(1) 表 示 : Escherichia coli DH5a (pRS38-pUC19)
寄託番号 : FERM BP- 4434 寄託日 : 1993年 10月 5 曰 (2) 表 示 : HM1.24
寄託番号 : FERM BP- 5233 寄託日 : 1995年 9月 14日

Claims

請 求 の 範 囲
I . 配列番号 : 2に示すァ ミ ノ酸配列をコ一ドする 4個のェクソ ン領域を含む、 HM 1. 2 4抗原タ ンパク質をコー ドするゲノム D N A。
2. 配列番号 : 2に示すァ ミ ノ酸配列をコー ドする 4個のェク ソ ンと、 3個のイ ン トロ ンを有する請求項 1 に記載のゲノム D N A。
3. 請求項 1又は 2 に記載の HM 1. 2 4抗原タ ンパク質をコー ドするゲノム D N Aのスプライ シ ングバリ ア ン ト。
4. ェクソ ン 2を欠く 、 請求項 3 に記載のスプライ シ ングバリア ン 卜。
5. ェク ソ ン 2及び 3を欠く 、 請求項 3 に記載のスプライ シ ング バリ ア ン ト。
6. 請求項 1〜5のいずれか 1項に記載のゲノム D NAを含んで 成る発現ベクターにより形質転換された動物細胞を培養することを 特徵とする、 HM 1. 2 4抗原タンパク質の製造方法。
7. 配列番号 : 4に示す 5 ' —非コー ド領域の塩基配列を有する プロモーター配列 D NA、 又は動物細胞においてプロモータ一活性 を有する該配列の D N A断片。
8. 請求項 7 に記載の D N A又はその断片と、 ス ト リ ンジヱ ン ト な条件下でハイブリ ダィズし、 且つ動物細胞においてプロモータ一 活性を有する D N A。
9. 前記プロモータ一活性を有する D NAが動物細胞由来である 、 請求項 8 に記載のプロモータ一活性を有する D N A。
1 0. 前記動物細胞が哺乳動物細胞である、 請求項 9 に記載のプ 口モーター活性を有する D NA。
I I . 配列番号 : 4に示す 5 ' —非コ一 ド領域の塩基配列におい て、 1 〜複数個の塩基の欠失、 付加及びノ又は他の塩基による置換 により修飾されており、 且つ動物細胞においてプロモータ一活性を 有する D N A。
1 2 . 請求項?〜 1 1 のいずれか 1 項に記載のプロモータ一活性 を有する D N Aと有用な遺伝子とを作用可能に連結してなる組換え D N A。
1 3 . 前記有用な遺伝子が、 有用タンパク質をコ一 ドする核酸、 アンチセンス D N A、 アンチセンス R N A、 デコイをコー ドする核 酸、 及びリ ボザィムから成る群から選択される核酸である、 請求項 1 2 に記載の組換え D N A。
1 4 . 請求項 1 2又は 1 3 に記載の組換え D N Aを含んで成るベ クタ一。
1 5 , ベクターがプラス ミ ドベクター又はウィルスベクタ一であ る、 請求項 1 4 に記載のベクタ一。
1 6 . 請求項 1 2又は 1 3 に記載の組換え D N Aが導入された動 物細胞。
1 7 . 請求項 1 4又は 1 5 に記載のベクタ一により形質転換され た動物細胞。
1 8 . 請求項 1 6又は 1 7 に記載の動物細胞を有する動物。
1 9 . 請求項 1 2又は 1 3 に記載の組換え D N Aを導入した動物 細胞を培養することを特徵とする、 有用遺伝子の発現方法。
2 0 . 請求項 7〜 1 1 のいずれか 1 項に記載の D N Aに作用可能 に連結された有用タンパク質をコ一 ドする核酸を含んで成る発現べ クタ一により形質転換された動物細胞を培養することを特徵とする 、 有用蛋白質の製造方法。
PCT/JP1999/000884 1998-02-25 1999-02-25 Gene codant pour la proteine antigenique hm1.24 et son promoteur WO1999043803A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69929876T DE69929876T2 (de) 1998-02-25 1999-02-25 Für hm1.24 antigen kodierendes gen und dessen promotor
US09/622,166 US6613546B1 (en) 1998-02-25 1999-02-25 Gene encoding HM1.24 antigen protein and promoter thereof
EP99906488A EP1065269B1 (en) 1998-02-25 1999-02-25 Genomic gene encoding hm1.24 antigen protein and promoter thereof
AU26402/99A AU2640299A (en) 1998-02-25 1999-02-25 Genomic gene encoding hm1.24 antigen protein and promoter thereof
US10/423,007 US6908750B2 (en) 1998-02-25 2003-04-25 Gene encoding HM1.24 antigen protein and promoter thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6061798 1998-02-25
JP10/60617 1998-02-25
JP9388398 1998-03-24
JP10/93883 1998-03-24

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/622,166 A-371-Of-International US6613546B1 (en) 1998-02-25 1999-02-25 Gene encoding HM1.24 antigen protein and promoter thereof
US09622166 A-371-Of-International 1999-02-25
US10/423,007 Division US6908750B2 (en) 1998-02-25 2003-04-25 Gene encoding HM1.24 antigen protein and promoter thereof

Publications (2)

Publication Number Publication Date
WO1999043803A1 true WO1999043803A1 (fr) 1999-09-02
WO1999043803A9 WO1999043803A9 (fr) 2000-06-08

Family

ID=26401695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000884 WO1999043803A1 (fr) 1998-02-25 1999-02-25 Gene codant pour la proteine antigenique hm1.24 et son promoteur

Country Status (7)

Country Link
US (2) US6613546B1 (ja)
EP (1) EP1065269B1 (ja)
AT (1) ATE317900T1 (ja)
AU (1) AU2640299A (ja)
DE (1) DE69929876T2 (ja)
ES (1) ES2255247T3 (ja)
WO (1) WO1999043803A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008886A1 (ja) * 2004-06-11 2006-01-26 Ginkgo Biomedical Research Institute Co., Ltd. インターフェロン産生細胞の活性調節剤
WO2009051201A1 (ja) 2007-10-16 2009-04-23 Sbi Biotech Co., Ltd. 抗bst2抗体
US8394374B2 (en) 2006-09-18 2013-03-12 Xencor, Inc. Optimized antibodies that target HM1.24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080219974A1 (en) * 2002-03-01 2008-09-11 Bernett Matthew J Optimized antibodies that target hm1.24

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196694A (ja) * 1993-10-15 1995-08-01 Toshio Hirano プレb細胞増殖支持能を有する膜タンパクポリペプチド及びその遺伝子

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196694A (ja) * 1993-10-15 1995-08-01 Toshio Hirano プレb細胞増殖支持能を有する膜タンパクポリペプチド及びその遺伝子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GOTO T, ET AL.: "A NOVEL MEMBRANE ANTIGEN SELECTIVELY EXPRESSED ON TERMINALLY DIFFERENTIATED HUMAN B CELLS", BLOOD, AMERICAN SOCIETY OF HEMATOLOGY, US, vol. 84, no. 06, 1 September 1994 (1994-09-01), US, pages 1922 - 1930, XP002931288, ISSN: 0006-4971 *
GOTOU T, ET AL., NIHON RINSHO MEN'EKI GAKKAI KAISHI - JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY, NIHON RINSHO MEN'EKI GAKKAI, TOKYO,, JP, vol. 15, no. 06, 1 January 1992 (1992-01-01), JP, pages 688 - 691, XP002931289, ISSN: 0911-4300 *
SHIKAWA J, ET AL.: "MOLECULAR CLONING AND CHROMOSOMAL MAPPING OF A BONE MARROW STROMAL CELL SURFACE GENE, BST2, THAT MAY BE INVOLVED IN PRE-B-CELL GROWTH", GENOMICS, ACADEMIC PRESS, SAN DIEGO., US, vol. 26, 1 January 1995 (1995-01-01), US, pages 527 - 534, XP002931290, ISSN: 0888-7543, DOI: 10.1016/0888-7543(95)80171-H *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008886A1 (ja) * 2004-06-11 2006-01-26 Ginkgo Biomedical Research Institute Co., Ltd. インターフェロン産生細胞の活性調節剤
US8435530B2 (en) 2004-06-11 2013-05-07 Sbi Biotech Co., Ltd. Methods for suppressing activity of activated interferon-producing cells
US8394374B2 (en) 2006-09-18 2013-03-12 Xencor, Inc. Optimized antibodies that target HM1.24
US9040042B2 (en) 2006-09-18 2015-05-26 Xencor, Inc. Optimized antibodies that target HM1.24
WO2009051201A1 (ja) 2007-10-16 2009-04-23 Sbi Biotech Co., Ltd. 抗bst2抗体
US8529896B2 (en) 2007-10-16 2013-09-10 Sbi Biotech Co., Ltd. Anti-BST2 antibody

Also Published As

Publication number Publication date
DE69929876D1 (de) 2006-04-20
AU2640299A (en) 1999-09-15
US6908750B2 (en) 2005-06-21
ATE317900T1 (de) 2006-03-15
EP1065269A1 (en) 2001-01-03
EP1065269B1 (en) 2006-02-15
EP1065269A4 (en) 2003-04-09
US6613546B1 (en) 2003-09-02
US20030180889A1 (en) 2003-09-25
WO1999043803A9 (fr) 2000-06-08
ES2255247T3 (es) 2006-06-16
DE69929876T2 (de) 2006-08-10

Similar Documents

Publication Publication Date Title
JP3981416B2 (ja) Pca3タンパク質、pca3遺伝子、及びこれらの用途
de Planell-Saguer et al. Biochemical and genetic evidence for a role of IGHMBP2 in the translational machinery
WO2000058480A1 (fr) Nouvelle cytidine desaminase
JP2006129879A (ja) 新規の7−トランスメンブランレセプター
US20070196370A1 (en) Type 2 cytokine receptor and nucleic acids encoding same
KR20170138410A (ko) 비-천연 세마포린 3 및 이의 의학적 용도
JP2002539773A (ja) 分泌タンパク質およびそれらをコードする核酸
JPH07133298A (ja) ヒトIL−2レセプターγ鎖分子
EP1140976A2 (en) Secreted proteins and uses thereof
WO1999043803A1 (fr) Gene codant pour la proteine antigenique hm1.24 et son promoteur
US6171857B1 (en) Leucine zipper protein, KARP-1 and methods of regulating DNA dependent protein kinase activity
JPWO2019168176A1 (ja) 抗インテグリンα11モノクローナル抗体、およびその利用
JP2003219894A (ja) Hm1.24抗原タンパク質をコードするゲノム遺伝子及びそのプロモーター
WO2000056756A2 (en) Prolactin regulatory element binding protein and uses thereof
WO2005040204A1 (fr) Proteine inhibant les tumeurs et utilisation associee
EP1187851A1 (en) Novel integrin alpha subunit and uses thereof
US6982317B2 (en) C21 polypeptide that modulates the stability of transcriptional regulatory complexes regulating nuclear hormone receptor activity
JP3929744B2 (ja) 新規ポリぺプチド、新規dna、新規抗体および新規遺伝子改変動物
US20050136451A1 (en) Hypoxia responsive human CNGH 0002 genes and polypeptides
JPWO2003044197A1 (ja) ハンチントン病遺伝子転写因子
WO2000044783A1 (fr) Proteine meg 4
EP1105473A2 (en) A single gene encoding aortic-specific and striated-specific muscle cell isoforms, its regulatory sequences and uses thereof
Esteso et al. Molecular Cloning, Characterization, Expression Analysis and Chromosomal Localization of the Gene Coding for the Porcine αIIb Subunit of the αIIbβ3 Integrin Platelet Receptor
Pettersson et al. The hematopoietic transcription factor PU. 1 is downregulated in
JP2004154079A (ja) タンパク質PGC−1vとその遺伝子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: (EXCEPT GD)

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: PAGE 1, SEQUENCE LISTING, REPLACED BY A NEW PAGE 1; AFTER RECTIFICATION OF OBVIOUS ERRORS AS AUTHORIZED BY THE INTERNATIONAL SEARCHING AUTHORITY

WWE Wipo information: entry into national phase

Ref document number: 09622166

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999906488

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1999906488

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999906488

Country of ref document: EP