WO1999041014A1 - Verfahren zur kennzeichnung von probenbehältern - Google Patents

Verfahren zur kennzeichnung von probenbehältern Download PDF

Info

Publication number
WO1999041014A1
WO1999041014A1 PCT/EP1999/000943 EP9900943W WO9941014A1 WO 1999041014 A1 WO1999041014 A1 WO 1999041014A1 EP 9900943 W EP9900943 W EP 9900943W WO 9941014 A1 WO9941014 A1 WO 9941014A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample container
sample
identification
marking
during
Prior art date
Application number
PCT/EP1999/000943
Other languages
English (en)
French (fr)
Inventor
Ronny Knepple
Hubert Riegger
Original Assignee
Perkin Elmer Bodenseewerk Zweigniederlassung Der Berthold Gmbh & Co.Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Perkin Elmer Bodenseewerk Zweigniederlassung Der Berthold Gmbh & Co.Kg filed Critical Perkin Elmer Bodenseewerk Zweigniederlassung Der Berthold Gmbh & Co.Kg
Priority to US09/403,072 priority Critical patent/US6899267B2/en
Priority to EP99908888A priority patent/EP0975428B1/de
Priority to CA002287489A priority patent/CA2287489C/en
Priority to AU28336/99A priority patent/AU2833699A/en
Priority to JP54104499A priority patent/JP4536832B2/ja
Publication of WO1999041014A1 publication Critical patent/WO1999041014A1/de
Priority to US11/040,536 priority patent/US7743976B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/22Removing surface-material, e.g. by engraving, by etching
    • B44C1/228Removing surface-material, e.g. by engraving, by etching by laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/54Labware with identification means
    • B01L3/545Labware with identification means for laboratory containers
    • B01L3/5453Labware with identification means for laboratory containers for test tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/22Removing surface-material, e.g. by engraving, by etching
    • B44C1/225Removing surface-material, e.g. by engraving, by etching by engraving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/0047Digital printing on surfaces other than ordinary paper by ink-jet printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/0041Digital printing on surfaces other than ordinary paper
    • B41M5/007Digital printing on surfaces other than ordinary paper on glass, ceramic, tiles, concrete, stones, etc.

Definitions

  • the invention relates to a method for labeling sample containers for an analysis device, in which the sample containers can be heated to an operating temperature, with automatically readable labeling.
  • sample containers serves to uniquely identify the sample to be analyzed, so that the analysis results can be clearly assigned to the sample and incorrect assignments are avoided, especially if several similar sample containers are used.
  • sample identification Several methods for sample identification are known, which are used depending on the purpose of the sample container.
  • the sample container is marked by hand, for example with a felt tip pen (for example a waterproof pen). If analysis devices with a reading unit are used for the automatic reading of sample markings, the handwritten identification cannot generally be automatically detected by the reading unit. A measurement protocol provided with a label therefore generally requires the identification to be entered manually into an input unit of the analysis device. This means an increased workload with the risk of incorrect assignment if the license plate is entered incorrectly.
  • sample container can be made indirectly, for example, via a position number of the sample container in a magazine. It is also disadvantageous here that no clear identification of the sample container is automatically detected and manual assignment of the sample container and the position number is therefore necessary. This can lead to incorrect assignments between the sample (sample holder) and position number, especially if several magazine fillings are to be analyzed.
  • the sample container 1 is provided with a machine-readable code 2 by the user, which is printed on a label, for example.
  • the marking can be created, for example, by means of a computer 3 with a printer (coding device) 4 and glued to the sample container 1.
  • the sample container 1 is identified (decoded) in the analyzer 5, the identification being returned to the computer together with the measurement results.
  • the label can also be printed directly on the sample container, although each user needs a special label unit (coding device 4) instead of a commercially available printer, which allows the printing of sample containers.
  • a labeling unit generally causes significantly higher acquisition costs and can only be used for a specific purpose.
  • Another decisive disadvantage of the methods described hitherto is that constituents of the marking ink or constituents of the adhesive of the adhesive label or of the label can contaminate the analyzing substance during the measurement, in particular if the sample container and samples, as in headspace gas chromatography, are very strong be heated (for example 300 ° C). It is the object of the present invention to eliminate the disadvantages mentioned above and to provide an improved method for labeling sample containers.
  • this object is achieved in that the identification is applied during the final cooling phase of the finished sample container in a temperature interval between a maximum temperature during sample container manufacture and the operating temperature of the sample container in the analysis device during the manufacturing process of the sample container.
  • the method according to the invention results in considerable advantages for the user, since there is no need to affix the marking (for example a coding) to the sample container, which means that, for example, marking devices can be saved. As a result, the costs of the analysis process are reduced overall, since the number of work steps for the analysis and possible sources of error in the sample identification are reduced.
  • the labeling takes place in a temperature interval between a maximum temperature occurring during the sample production and the operating temperature of the sample container in the analysis device, there is the advantage that the labeling means (for example inks) heats up to a temperature higher than the operating temperature when the sample container is labeled are, the volatile constituents of the marking means already volatilize during the manufacturing process and the marking does not contaminate the sample due to outgassing constituents during the analysis process.
  • This is particularly important when using sample containers in headspace gas chromatography, since there the labeling is exposed to high temperatures together with the sample container, whereby the sensitivity of this analysis method is very high, so that even the slightest contamination of the sample by the label would interfere .
  • the sample containers no longer need to be touched by hand to apply a label, which further reduces the risk of contamination of the sample container and thus contamination of the samples.
  • the elevated temperature of the sample container when the label is applied advantageously results in an "abrasion-resistant" label, since the label burns into the surface of the sample container, which is made of glass, for example, and thus adheres better to the surface of the sample container.
  • the identification means can connect better to the surface of the sample container, the connection being able to take place both chemically and physically (for example by adsorption, melting or diffusing in).
  • sample container-specific information such as, for example, the date of manufacture of the sample container, the materials used, the intended use, size, etc., in the labeling.
  • the labeling is preferably applied at temperatures between 300 ° C and 600 ° C, which is why the sample containers marked in this way are particularly suitable for headspace gas chromatography, in which the sample containers are heated up to 300 ° C. This ensures, as described above, that the label does not contaminate the sample in the labeled sample container during the analysis, for example by outgassing.
  • the identification of the sample container is preferably applied using an inkjet printing method with a known inkjet printing technology, in which the identification monochrome or multicolor is printed on a surface of the sample container using appropriate inks.
  • inks can also be used, which can only identify the marking by means of UV lighting, the fluorescent wavelength range of the ink being able to be adapted, for example, to the spectral sensitivity of the reading device.
  • the application of the marking by means of inkjet printing technology also has the advantage that the dimensional accuracy of the sample container is not impaired by the marking. Sample containers marked in this way therefore also meet the geometric tolerance requirements for use in headspace gas chromatographs.
  • An additional advantage of inkjet printing technology results from the contactless application of the marking, which means that the sample containers do not have to be processed before and after the marking.
  • the identification is preferably applied in the form of a bar code (bar code), for example in the form of a ring, to a cylindrical part of the sample container. If the code is arranged so that it can be read along the cylinder axis, it can be detected reliably and independently of the position angle of the sample container relative to a reading device mounted perpendicular to the cylinder axis. However, the code can also be arranged at any other desired angles to the cylinder axis.
  • bar code bar code
  • the identification of the sample container advantageously also includes numbers and texts which can correspond to the coded information of the identification.
  • the identification can advantageously be read even without the decoding reading device and enables direct control by the operating personnel of the analysis device.
  • the reading device for reading the identification of the sample container can consist of a decoding device, for example a device for reading a bar code, but it can also comprise other image or pattern recognition devices and methods.
  • the identification can be captured via scanners or video cameras and processed in a computer using pattern recognition algorithms become.
  • the coding of the marking can be dispensed with and the marking can be applied directly to the sample holder in the form of numbers and / or letters.
  • symbols for example a company logo
  • Fig. 1 shows a known labeling method for sample containers
  • Fig. 2 shows an example of a labeling method according to the invention with application for sample identification in an analysis device.
  • sample containers 10 in the special example made of glass
  • sample container manufacture glass manufacture
  • the sample container 10 can also consist of plastic, ceramic or metal.
  • a bar code 12 is applied to the glass sample container 10 during its final cooling phase in a ring around its cylindrical part with the coding device 14 so that it can be read along the cylinder axis.
  • the bar code 12 is sprayed on with ink, for example, in a contactless manner using an inkjet printer.
  • the marking can also be applied by mechanical action, for example by scratching or grinding, or also, for example, by means of laser beams or by vapor deposition.
  • Both the optical properties of the sample container 10, such as refractive index and reflectivity, and the material thickness of the sample container jacket can be manipulated by the labeling process in order to display the information content of the label.
  • the user of the sample container can read and decode 13a the identification with a reading unit, such as a scanner, and the information of the identification 7
  • the labeled sample container 10 with the sample reaches the analysis device 15, in which the sample is analyzed.
  • the marked sample container 10 is also identified by a reading unit on the basis of its identification and the analysis data together with the identification are transferred to the computer 13 (FIG. 15b).
  • the measurement data can then be further processed in the computer 13, taking into account the labeling.
  • the coding of glass sample containers for headspace gas chromatography essentially consists of a compact (maximum 30 mm long) all-round barcode (for example 2 of 5) that can be measured in the axial direction of the sample container, black ink being sprayed onto a matt glass surface of the sample container, for example becomes.
  • the code can also be applied in multiple colors, for example by alternately spraying black and white ink onto the glass surface of the sample container using inkjet printing technology.
  • the temperature of the sample container is preferably about 500 ° C. when labeled.
  • the all-round barcode described above can advantageously be read all around by a scanner or a reading unit, regardless of the position of the sample container relative to the reading unit.
  • a suitable marking this can also be done, for example, by mechanical scanning with reading pens or by determining the dielectric or magnetic properties of the marking of the sample container.
  • an eight- or nine-digit numerical barcode is preferably used, with which approximately one hundred million or one billion different identifications result. With this numerical code, the sample holder can be uniquely identified at any time anywhere in the world.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Versehen von Probenbehältern (10) für eine Analysevorrichtung, in der die Probenbehälter (10) auf eine Betriebstemperatur erhitzbar sind, mit automatisch lesbarer Kennzeichnung (12). Es ist eine Aufgabe der Erfindung, die Kennzeichnung (12) von Probenbehältern (10) so zu verbessern, daß die im Probenbehälter (10) enthaltene Probe bei der Analyse nicht durch Bestandteile der Kennzeichnung kontaminiert wird. Erfindungsgemäß wird die Aufgabe so gelöst, daß beim Herstellungsprozeß (10a) des Probenbehälters (10) die Kennzeichnung (12) während der abschließenden Abkühlphase des fertigen Probenbehälters in einem Temperaturintervall zwischen einer maximalen Temperatur bei der Probenbehälterherstellung (10a) und der Betriebstemperatur aufgebracht wird. Durch das erfindungsgemäße Verfahren werden vorteilhaft die flüchtigen Bestandteile des Kennzeichnungsmittels bereits während des Herstellungsprozesses verflüchtigt, so daß bei der Verwendung des Probenbehälters bei der Betriebstemperatur der Analysenvorrichtung die zu analysierende Probe nicht mehr durch ausgasende Bestandteile des Kennzeichnungsmittels kontaminiert werden.

Description

Verfahren zur Kennzeichnung von Probenbehältern
Die Erfindung betrifft ein Verfahren zur Kennzeichnung von Probenbehältern für eine Analysiervorrichtung, in der die Probenbehalter auf eine Betriebstemperatur erhitzbar sind, mit automatisch lesbarer Kennzeichnung.
Die Kennzeichnung von Probenbehältern dient zur eindeutigen Identifikation der zu analysierenden Probe, damit die Analyseergebnisse eindeutig der Probe zuordenbar sind und Fehlzuordnungen vermieden werden, insbesondere wenn mehrere gleichartige Probenbehalter im Einsatz sind. Es sind mehrere Verfahren zur Probenidentifizierung bekannt, die abhängig vom Einsatzzweck des Probenbehälters angewandt werden.
Im einfachsten Falle wird der Probenbehalter handschriftlich, zum Beispiel mit einem Filzschreiber (zum Beispiel einem wasserfesten Stift), gekennzeichnet. Werden Analysiervorrichtungen mit einer Leseeinheit zum automatischen Lesen von Probenkennzeichnungen verwendet, so kann im allgemeinen die handschriftliche Kennzeichnung nicht von der Leseeinheit automatisch erfaßt werden. Ein mit Kennzeichen versehenes Meßprotokoll erfordert daher in der Regel die manuelle Eingabe der Kennzeichnung in eine Eingabeeinheit der Analysiervorrichtung. Dies bedeutet einen erhöhten Arbeitsaufwand mit der Gefahr von Fehlzuordnung bei falscher Kennzeicheneingabe.
Eine weitere mögliche Zuordnung der Probenbehalter kann zum Beispiel indirekt über eine Positionsnummer des Probenbehälters in einem Magazin erfolgen. Nachteilig ist auch hier, daß keine eindeutige Kennzeichnung des Probenbehälters automatisch erfaßt wird und daher eine manuelle Zuordnung des Probenbehälters und der Positionsnummer erforderlich ist. Dabei können Fehlzuordnungen zwischen Probe (Probenbehalter) und Positionsnummer auftreten, insbesondere, wenn mehrere Magazinfüllungen zu analysieren sind.
Bei Analysiervorrichtungen mit Leseeinheit zum Lesen von Probenbehälterkennzeichnungen, wie zum Beispiel einem Strichcode, erfolgt eine eindeutige Zuordnung der Pro- benbehäiterkennzeichnung und der Analyseergebnisse wie es schematisch in Fig. 1 dargestellt ist.
Der Probenbehalter 1 wird vom Anwender mit einem maschinenlesbaren Code 2 versehen, der zum Beispiel auf ein Kennzeichnungsetikett aufgedruckt wird. Die Kennzeichnung kann zum Beispiel mittels eines Computers 3 mit einem Drucker (Kodiereinrichtung) 4 erstellt und auf den Probenbehalter 1 geklebt werden. Der Probenbehalter 1 wird in der Analysiervorrichtung 5 identifiziert (dekodiert), wobei die Identifikation zusammen mit den Meßergebnissen an den Computer zurückgegeben werden. Alternativ zum Klebeetikett läßt sich die Kennzeichnung auch direkt auf den Probenbehalter drucken, wobei allerdings jeder der Anwender statt eines handelsüblichen Druckers eine spezielle Kenπzeichnungseinheit (Kodiereinrichtung 4) benötigt, die das Bedrucken von Probenbehaltem erlaubt. Eine solche Kennzeichnungseinheit verursacht im allgemeinen deutlich höhere Anschaffungskosten und ist nur zweckgebunden einsetzbar. Bei der Verwendung von Klebeetiketten können sich bezüglich der baulichen Toleranzen der Probenbehalter Nachteile ergeben, da das Klebeetikett die Außenmaße des mit einem Etikett versehenen Probenbehälters ändert. So wird zum Beispiel bei der Headspace- Gaschromatographie der Probenbehalter auf eine Betriebstemperatur bis zu etwa 300° C erhitzt, wobei die Thermostatisierung des Probenbehälters in einer engen Öffnung mit sehr engen Toleranzen innerhalb eines Heizblocks erfolgt. Dadurch ist eine Kennzeichnung mit Klebeetiketten nicht durchführbar. Ferner haben die Klebstoffe der Klebeetiketten für diese Anwendung eine unzureichende Temperaturstabilität. Das Anbringen der Kennzeichnung von Hand ist ebenfalls oft nicht praktikabel, da bei Präzisionsmessungen die Probenbehalter nach einem Reinigungsprozeß nicht mehr von Hand angefaßt werden sollten, um eine Verunreinigung und damit eine Verfälschung der Analyseergebnisse zu vermeiden.
Ein weiterer entscheidender Nachteil der bisher beschriebenen Verfahren ist, daß Bestandteile der Tinte der Kennzeichnung oder Bestandteile des Klebers des Klebeetiketts oder des Etiketts bei der Messung die analysierende Substanz kontaminieren können, insbesondere, wenn die Probenbehalter und Proben wie bei der Headspace-Gaschro- matographie stark erhitzt werden (zum Beispiel 300° C). Es ist die Aufgabe der vorliegenden Erfindung, die obengenannten Nachteile zu beseitigen und ein verbessertes Verfahren zur Kennzeichnung von Probenbehältern anzugeben.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß wird beim Herstellungsprozeß des Probenbehälters die Kennzeichnung während der abschließenden Abkühlphase des fertigen Probenbehälters in einem Temperaturintervall zwischen einer maximalen Temperatur bei der Probenbehalterherstellung und der Betriebstemperatur des Probenbehälters in der Analysevorrichtung aufgebracht wird.
Durch das erfindungsgemäße Verfahren ergeben sich erhebliche Vorteile für den Anwender, da das Anbringen der Kennzeichnung (zum Beispiel einer Kodierung) auf dem Probenbehalter entfällt, wodurch zum Beispiel Kennzeichnungseinrichtungen eingespart werden können. Dadurch werden die Kosten des Analyseprozesses insgesamt gesenkt, da die Anzahl der Arbeitsschritte für die Analyse, sowie mögliche Fehlerquellen bei der Probenidentifikation verringert werden.
Da die Kennzeichnung in einem Temperaturintervall zwischen einer bei der Probenherstellung auftretenden maximalen Temperatur und der Betriebstemperatur des Probenbehälters in der Analysevorrichtung erfolgt, ergibt sich der Vorteil, daß die Kennzeichnungsmittel (zum Beispiel Tinten) bei der Kennzeichnung des Probenbehälters auf eine Temperatur höher als die Betriebstemperatur erhitzt werden, wobei die flüchtigen Bestandteile der Kennzeichnungsmittel sich bereits während des Herstellungsprozesses verflüchtigen und die Kennzeichnung aufgrund dieser Erhitzung nicht durch ausgasende Bestandteile die Probe während des Analysiervorgangs kontaminiert. Dies ist insbesondere bei der Anwendung von Probenbehältern in der Headspace-Gaschromatographie von Bedeutung, da dort die Kennzeichnung zusammen mit dem Probenbehalter hohen Temperaturen ausgesetzt ist, wobei die Sensitivität dieser Analysenmethode sehr hoch ist, so daß selbst geringste Verunreinigungen der Probe durch das Kennzeichnungsmittel stören würden. Zusätzlich brauchen die Probenbehalter nach einer eventuellen Reinigungsprozedur nicht mehr zum Aufbringen einer Kennzeichnung von Hand angefaßt werden, wodurch die Gefahr einer Verunreinigung des Probenbehälters und damit eine Kontamination der Proben weiter verringert wird. Durch die erhöhte Temperatur des Probenbehälters beim Aufbringen der Kennzeichnung ergibt sich vorteilhaft eine "abriebresistente" Kennzeichnung, da das Kennzeichnungsmittel in die Oberfläche des Probenbehälters, der zum Beispiel aus Glas besteht, einbrennt und somit besser an der Oberfläche des Probenbehälters haftet. Dabei kann sich das Kennzeichnungsmittel besser mit der Oberfläche des Probenbehälters verbinden, wobei die Verbindung sowohl chemisch als auch physikalisch (zum Beispiel durch Adsorption, Einschmelzen oder Eindiffundieren) erfolgen kann.
Da die Kennzeichnung während der abschließenden Abkühlphase der Probenbehalterherstellung aufgebracht wird, ergibt sich zusätzlich der Vorteil, daß zum Anbringen der Probenbehalter nicht erhitzt werden muß, um die oben beschriebenen Vorteile einer solchen Kennzeichnung zu erhalten. Dadurch werden die Kosten des Kennzeichnungsverfahrens aufgrund der verringerten Anzahl der Verfahrensschritte und der Energieeinsparung erheblich reduziert.
Da die Kennzeichnung bereits beim Herstellen der Probenbehalter erfolgt, ergibt sich vorteilhaft die Möglichkeit, diese in Form von fortlaufenden Seriennummern (kodiert und/oder unkodiert) anzubringen, so daß die Probenbehalter weltweit eindeutig identifizierbar sind. Zusätzlich besteht vorteilhaft die Möglichkeit, probenbehälterspezifische Informationen, wie zum Beispiel Herstellungsdatum des Probenbehälters, verwendete Materialien, Verwendungszweck, Größe usw., mit in die Kennzeichnung aufzunehmen.
Die Kennzeichnung wird bevorzugt bei Temperaturen zwischen 300° C und 600° C aufgebracht, weshalb sich die so gekennzeichneten Probenbehalter besonders für die Headspace-Gaschromatographie eignen, bei der die Probenbehalter auf bis zu 300° C aufgeheizt werden. Damit ist, wie oben beschrieben, gewährleistet, daß das Kennzeichnungsmittel nicht während der Analyse, zum Beispiel durch Ausgasen, die in dem gekennzeichneten Probenbehalter befindliche Probe verunreinigt.
Die Kennzeichnung des Probenbehälters wird bevorzugt über ein Tintenstrahldruckver- fahren mit einer bekannten Tintenstrahldrucktechnik aufgebracht, bei der die Kennzeich- nung einfarbig oder mehrfarbig mittels entsprechender Tinten auf eine Oberfläche des Probenbehälters aufgedruckt wird.
Ferner können auch spezielle Tinten verwendet werden, die die Kennzeichnung nur mittels UV-Beleuchtung erkennen lassen, wobei der fluoreszierende Wellenlängenbereich der Tinte zum Beispiel der spektralen Sensitivität der Lesevorrichtung angepaßt sein kann. Das Aufbringen der Kennzeichnung mittels Tintenstrahldrucktechnik hat neben den obengenannten Vorteilen zusätzlich den Vorteil, daß die Maßhaltigkeit des Probenbehälters nicht durch die Kennzeichnung beeinträchtigt wird. Derart gekennzeichnete Probenbehalter erfüllen deshalb auch die geometrischen Toleranzanforderungen für die Anwendung in Headspace-Gaschromatographen. Ein zusätzlicher Vorteil der Tintenstrahldrucktechnik ergibt sich aus dem berührungslosen Aufbringen der Kennzeichnung, wodurch die Probenbehalter vor und nach dem Kennzeichnen nicht zusätzlich bearbeitet werden müssen.
Vorzugsweise wird die Kennzeichnung in Form eines Barcode (Strichcode), zum Beispiel ringförmig, auf einen zylindrischen Teil des Probenbehälters aufgebracht. Wird dabei der Code so angeordnet, daß er entlang der Zylinderachse lesbar ist, so läßt sich dieser zuverlässig und unabhängig vom Positionswinkel des Probenbehälters zu einer senkrecht zur Zylinderachse angebrachten Lesevorrichtung von dieser erfassen. Der Code kann allerdings auch unter anderen beliebigen Winkeln zur Zylinderachse angeordnet sein.
Vorteilhaft umfaßt die Kennzeichnung des Probenbehälters neben einem Code (zum Beispiel Barcode) auch Ziffern und Texte, die der kodierten Information der Kennzeichnung entsprechen können. Dadurch läßt sich die Kennzeichnung vorteilhaft auch ohne die dekodierende Leseeinrichtung lesen und ermöglicht eine direkte Kontrolle durch das Bedienpersonal der Analysiervorrichtung.
Die Leseeinrichtung zum Lesen der Kennzeichnung des Probenbehälters kann aus einer Dekodiervorrichtung, zum Beispiel einer Vorrichtung zum Lesen eines Barcodes, bestehen, sie kann aber auch andere Bild- oder Mustererkennungsvorrichtungen und -verfahren umfassen. So kann zum Beispiel die Kennzeichnung über Scanner oder Videokameras erfaßt und in einem Computer mittels Mustererkennungsalgorithmen verarbeitet werden. Durch die Anwendung solcher Bild- oder Mustererkennungsverfahren kann auf die Kodierung der Kennzeichnung verzichtet und die Kennzeichnung direkt in Form von Ziffern und/oder Buchstaben auf dem Probenbehalter aufgebracht werden. Ferner lassen sich mit dem erfindungsgemäßen Verfahren auch Symbole (zum Beispiel ein Firmenlogo) zusammen mit der Kennzeichnung aufbringen.
Die Erfindung soll nun anhand eines Ausführungsbeispiels und der beiliegenden Zeichnungen näher erläutert und beschrieben werden. Es zeigen:
Fig. 1 ein bekanntes Kennzeichnungsverfahren für Probenbehalter, und
Fig. 2 ein Beispiel eines erfindungsgemäßen Kennzeichnungsverfahrens mit Anwendung zur Probenidentifikation in einer Analysiervorrichtung.
Fig. 1 zeigt, wie eingangs beschrieben, ein bekanntes Kennzeichnungsverfahren für Probenbehalter. In Fig. 2 ist ein Beispiel eines erfindungsgemäßen Kennzeichnungsverfahrens angegeben. Dabei werden die Probenbehalter 10 (im speziellen Beispiel aus Glas) bereits bei der Probenbehalterherstellung (Glasherstellung) 10a mit einer Kennzeichnung 12 versehen. Allgemein kann der Probenbehalter 10 jedoch auch aus Kunststoff, Keramik oder Metall bestehen. Im gezeigten Beispiel wird auf den Glasprobenbehälter 10 während seiner abschließenden Abkühlphase ein Barcode 12 ringförmig um seinen zylindrischen Teil mit der Kodiervorrichtung 14 so aufgebracht, daß dieser entlang der Zylinderachse lesbar ist. Der Strichcode 12 wird zum Beispiel mit Tinte berührungslos über einen Tintenstrahldrucker aufgespritzt. Die Kennzeichnung kann aber auch durch mechanische Einwirkung, zum Beispiel durch Ritzen oder Schleifen, oder auch zum Beispiel mittels Laserstrahlen oder durch Bedampfen, aufgebracht werden. Dabei können durch den Kennzeichnungsprozeß sowohl die optischen Eigenschaften des Probenbehälters 10, wie zum Beispiel Brechungsindex und Reflexionsvermögen, als auch die Materialdicke des Probenbehältermantels manipuliert werden, um den Informationsgehalt der Kennzeichnung darzustellen.
Der Anwender des Probenbehälters kann die Kennzeichnung mit einer Leseeinheit, wie zum Beispiel einem Scanner, lesen und dekodieren 13a, und die Information der Kenn- 7
Zeichnung in einem Computer 13 bereitstellen und zum Beispiel einem anwenderspezifischen Kennzeichen zuordnen. Danach (siehe Pfeil 15a) gelangt der gekennzeichnete Probenbehalter 10 mit der Probe in die Analysiervorrichtung 15, in der die Probe analysiert wird. Bei der Analyse wird der gekennzeichnete Probenbehalter 10 ebenfalls durch eine Leseeinheit anhand seiner Kennzeichnung identifiziert und die Analysedaten werden zusammen mit der Kennzeichnung auf den Computer 13 übertragen (15b). Im Computer 13 können die Meßdaten dann unter Berücksichtigung der Kennzeichnung weiterverarbeitet werden. Die Kodierung von Glasprobenbehältern für die Headspace- Gaschromatographie besteht im wesentlichen aus einem kompakten (maximal 30 mm langen) Rundumbarcode (zum Beispiel 2 aus 5), der in Axialrichtung des Probenbehälters meßbar ist, wobei zum Beispiel schwarze Tinte auf eine mattierte Glasfläche des Probenbehälters aufgespritzt wird. Alternativ läßt sich der Code aber auch mehrfarbig aufbringen, indem zum Beispiel abwechselnd schwarze und weiße Tinte auf die Glas- oberfläche des Probenbehälters mit Hilfe der Tintenstrahldrucktechnik aufgesprüht werden. Die Temperatur des Probenbehälters beträgt bei der Kennzeichnung vorzugsweise etwa 500° C. Der oben beschriebene Rundumbarcode ist vorteilhaft durch einen Scanner oder eine Leseeinheit rundum lesbar, unabhängig von der Position des Probenbehälters zur Leseeinheit. Alternativ zum berührungslosen optischen Lesen der Kennzeichnung kann bei geeigneter Kennzeichnung diese auch zum Beispiel durch mechanisches Abtasten mit Lesestiften oder auch durch die Bestimmung der dielektrischen oder magnetischen Eigenschaften der Kennzeichnung des Probenbehälters erfolgen.
Im gezeigten Ausführungsbeispiel wird vorzugsweise ein acht- oder neunstelliger numerischer Barcode verwendet, mit dem sich etwa Hundertmillionen bzw. eine Milliarde verschiedene Kennzeichnungen ergeben. Durch diesen numerischen Code lassen sich bei fortlaufender Numerierung die Probenbehalter jederzeit weltweit eindeutig identifizieren.

Claims

8Patentansprüche
1. Verfahren zum Versehen von Probenbehältern für eine Analysiervorrichtung, in der die Probenbehalter auf eine Betriebstemperatur erhitzbar sind, mit automatisch lesbarer Kennzeichnung, dadurch gekennzeichnet, daß beim Herstellungsprozeß des Probenbehälters die Kennzeichnung während der abschließenden Abkühlphase des fertigen Probenbehälters in einem Temperaturintervall zwischen einer maximalen Temperatur bei Probenbehalterherstellung und der Betriebstemperatur aufgebracht wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das Temperaturintervall zwischen 300° C und 600° C liegt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kennzeichnung über Tintenstrahldrucktechnik einfarbig und/oder mehrfarbig mittels Tinte(n) aufgebracht wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß wenigstens eine Tinte aufgebracht wird, die mittels UV-Licht lesbar ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Kennzeichnung in Form eines Barcodes aufgebracht wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Barcode ringförmig auf einem zylindrischen Teil des Probenbehälters derart aufgebracht wird, daß er entlang der Zylinderachse lesbar ist.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Kennzeichnung zusammen mit Ziffern und/oder Buchstaben aufgebracht wird.
8. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Kennzeichnung in Form von Ziffern und/oder Buchstaben aufgebracht wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß mit der Kennzeichnung auch Symbole aufgebracht werden.
PCT/EP1999/000943 1998-02-13 1999-02-12 Verfahren zur kennzeichnung von probenbehältern WO1999041014A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/403,072 US6899267B2 (en) 1998-02-13 1999-02-12 Method for labelling sample containers
EP99908888A EP0975428B1 (de) 1998-02-13 1999-02-12 Verfahren zur kennzeichnung von probenbehältern
CA002287489A CA2287489C (en) 1998-02-13 1999-02-12 Method for labelling sample containers
AU28336/99A AU2833699A (en) 1998-02-13 1999-02-12 Method for labelling sample containers
JP54104499A JP4536832B2 (ja) 1998-02-13 1999-02-12 試料容器の製造方法
US11/040,536 US7743976B2 (en) 1998-02-13 2005-01-21 Method for labeling sample containers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19806049A DE19806049A1 (de) 1998-02-13 1998-02-13 Verfahren zur Kennzeichnung von Probenbehältern
DE19806049.1 1998-02-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09403072 A-371-Of-International 1999-02-12
US11/040,536 Continuation-In-Part US7743976B2 (en) 1998-02-13 2005-01-21 Method for labeling sample containers

Publications (1)

Publication Number Publication Date
WO1999041014A1 true WO1999041014A1 (de) 1999-08-19

Family

ID=7857702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/000943 WO1999041014A1 (de) 1998-02-13 1999-02-12 Verfahren zur kennzeichnung von probenbehältern

Country Status (7)

Country Link
US (2) US6899267B2 (de)
EP (1) EP0975428B1 (de)
JP (1) JP4536832B2 (de)
AU (1) AU2833699A (de)
CA (1) CA2287489C (de)
DE (1) DE19806049A1 (de)
WO (1) WO1999041014A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020532A2 (en) * 1999-09-15 2001-03-22 Diesse Diagnostica Senese S.P.A. Method and means for data management in a laboratory
WO2005096209A2 (en) * 2004-03-23 2005-10-13 Board Of Regents, The University Of Texas System Computer based system and methods for pharmaceutical inventory and dispensation
KR100901047B1 (ko) * 2001-03-30 2009-06-04 백스터 인터내셔널 인코포레이티드 코딩 심볼로지 및 그 인쇄 방법
US7912733B2 (en) 2005-05-04 2011-03-22 Board Of Regents, The University Of Texas System System, method and program product for delivering medical services from a remote location
US8150713B2 (en) 2004-03-23 2012-04-03 Board Of Regents, The University Of Texas System Pharmaceutical treatment effectiveness analysis computer system and methods

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19806049A1 (de) * 1998-02-13 1999-08-19 Bodenseewerk Perkin Elmer Co Verfahren zur Kennzeichnung von Probenbehältern
GB0004456D0 (en) 2000-02-26 2000-04-19 Glaxo Group Ltd Medicament dispenser
GB0012465D0 (en) 2000-05-24 2000-07-12 Glaxo Group Ltd Monitoring method
GB0013619D0 (en) * 2000-06-06 2000-07-26 Glaxo Group Ltd Sample container
CN1443081A (zh) 2000-07-15 2003-09-17 葛兰素集团有限公司 药剂配送器
DE10100828B4 (de) 2001-01-10 2006-07-13 Merz & Krell Gmbh & Co. Kgaa Verfahren zur Herstellung einer Oberflächenstruktur und glasähnliche Wand mit einer Oberflächenstruktur
NZ532929A (en) * 2001-10-26 2008-09-26 Int Barcode Corp Method and apparatus for applying bar code information to products during production
DE102004024265B4 (de) * 2004-05-15 2014-07-17 Daimler Ag Sicherheitssystem zum Betrieb wenigstens einer elektrisch betätigbaren Verschlusseinrichtung einer Tür eines Fahrzeuges
US20060018698A1 (en) * 2004-07-26 2006-01-26 Multi-Color Corporation System including apparatus and associated method for object decoration
DE102007008958B3 (de) * 2007-02-21 2008-04-03 Hartmut Geisel Verfahren und Einrichtung zur Überwachung von Glasartikeln
US8511348B2 (en) * 2008-02-14 2013-08-20 Insight Beverages, Inc. Beverage identification system and method
CH699407A1 (de) * 2008-08-25 2010-02-26 Tecan Trading Ag Probenröhrchen mit Kennzeichnung.
DE102014105548A1 (de) * 2014-04-17 2015-10-22 Krones Ag Inspektionsvorrichtung für Behälter und/oder Gebinde und Computer-implementiertes Verfahren zum Inspizieren von Behältern und/oder Gebinden
CN110168360A (zh) 2017-01-17 2019-08-23 沃特世科技公司 提供溶剂容器识别的设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0088914A1 (de) * 1982-03-12 1983-09-21 Oberland Glas Aktiengesellschaft Verfahren und Vorrichtung zur Überwachung der Fertigungsqualität von Glasbehältern
US4705551A (en) * 1986-08-22 1987-11-10 Chase Instruments Corporation Test tube making and end coating
EP0398717A2 (de) * 1989-05-18 1990-11-22 Spectra-Physics, Inc. Verfahren und Gerät zur Oberflächenmarkierung
US5507388A (en) * 1991-12-19 1996-04-16 Johnson & Johnson Clinical Diagnostics, Inc. Cartridge-free stacks of slide elements
US5670118A (en) * 1996-07-25 1997-09-23 Dynex Technologies, Inc. Color coded test wells

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745314A (en) * 1971-06-18 1973-07-10 Owens Illinois Inc Cavity identification
US3767496A (en) * 1971-06-30 1973-10-23 Owens Illinois Inc Method of making a plastic-covered glass container
US4004904A (en) * 1975-08-04 1977-01-25 Index, Incorporated Electronic system for article identification
US4230266A (en) * 1979-04-25 1980-10-28 Owens-Illinois, Inc. Method and apparatus of cavity identification of mold of origin of a glass container
US4323755A (en) * 1979-09-24 1982-04-06 Rca Corporation Method of making a machine-readable marking in a workpiece
US4270863A (en) * 1979-11-01 1981-06-02 Owens-Illinois, Inc. Method and apparatus for inspecting objects for defects
US4476381A (en) * 1982-02-24 1984-10-09 Rubin Martin I Patient treatment method
DE3242489A1 (de) * 1982-11-18 1984-06-20 Günter Dr. Gauglitz Reversibles chemisches aktinometer
JPS60226429A (ja) * 1984-04-25 1985-11-11 Matsushita Electric Works Ltd 塗模付ガラス製品の製法
US4691830A (en) * 1985-08-26 1987-09-08 Owens-Illinois, Inc. Inspection and sorting of molded containers as a function of mold of origin
DE3732245A1 (de) * 1987-09-24 1988-04-14 Viktor Rossmann Babyflasche mit eingebauten hitzebestaendigem celsius-thermometer
JPH0737121B2 (ja) * 1988-10-08 1995-04-26 日東電工株式会社 焼成パターン形成用シート及び焼成用ラベル
CA2002285C (en) * 1988-11-07 2002-01-08 Thomas L. Brandt Container label and system for applying same
US5347726A (en) * 1989-04-19 1994-09-20 Quad/Tech Inc. Method for reducing chill roll condensation
DE4126626C2 (de) * 1990-08-15 1994-08-04 United Distillers Plc Markierter Materialkörper und Verfahren zu dessen Herstellung
GB9104171D0 (en) * 1991-02-27 1991-04-17 British Ceramic Res Ltd Improved ink
JPH04298960A (ja) * 1991-03-27 1992-10-22 Ushio Inc マーキング装置
JPH05821A (ja) * 1991-06-21 1993-01-08 Mitsubishi Heavy Ind Ltd バーコード付きびんの製造方法及び選別方法
JPH0517712A (ja) * 1991-07-08 1993-01-26 Seiko Epson Corp インクジエツト記録用インクの脱気方法
US5441561A (en) * 1993-02-23 1995-08-15 Fuji Xerox Co., Ltd. Ink-jet recording ink and ink-jet recording methods thereof
JPH0822755B2 (ja) * 1993-11-02 1996-03-06 東洋ガラス株式会社 ガラス器製造装置及びガラス器の生産管理方法
JPH0853121A (ja) * 1994-08-10 1996-02-27 Nasu Toa Kk ステンレス製容器
WO1996009366A1 (en) * 1994-09-23 1996-03-28 Church & Dwight Company, Inc. Aqueous metal cleaner
US5510610A (en) * 1994-10-07 1996-04-23 Emhart Glass Machinery Investments Inc. Apparatus for detecting defects on the bottom of bottles by manipulating an image to remove knurls
US6277228B1 (en) * 1996-03-20 2001-08-21 Marvin Fabrikant Method of forming identification mark or indicia on a plastic substrate
TW447769U (en) * 1996-07-11 2001-07-21 Koninkl Philips Electronics Nv Glass object having an encodable layer
US5939468A (en) * 1996-07-26 1999-08-17 Videojet Systems International, Inc. Blush resistant invisible fluorescent jet ink
GB2326003B (en) * 1997-06-07 2001-02-28 Aquasol Ltd Coding systems
US6165594A (en) * 1998-01-15 2000-12-26 3M Innovative Properties Company Multilayer, temperature resistant, composite label
DE19806049A1 (de) * 1998-02-13 1999-08-19 Bodenseewerk Perkin Elmer Co Verfahren zur Kennzeichnung von Probenbehältern
US6096408A (en) * 1998-06-08 2000-08-01 Avery Dennison Corporation Heat-transfer label and method of decorating polyethylene-coated glass using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0088914A1 (de) * 1982-03-12 1983-09-21 Oberland Glas Aktiengesellschaft Verfahren und Vorrichtung zur Überwachung der Fertigungsqualität von Glasbehältern
US4705551A (en) * 1986-08-22 1987-11-10 Chase Instruments Corporation Test tube making and end coating
EP0398717A2 (de) * 1989-05-18 1990-11-22 Spectra-Physics, Inc. Verfahren und Gerät zur Oberflächenmarkierung
US5507388A (en) * 1991-12-19 1996-04-16 Johnson & Johnson Clinical Diagnostics, Inc. Cartridge-free stacks of slide elements
US5670118A (en) * 1996-07-25 1997-09-23 Dynex Technologies, Inc. Color coded test wells

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001020532A2 (en) * 1999-09-15 2001-03-22 Diesse Diagnostica Senese S.P.A. Method and means for data management in a laboratory
WO2001020532A3 (en) * 1999-09-15 2002-04-11 Diesse Diagnostica Senese Spa Method and means for data management in a laboratory
EP1755057A1 (de) * 1999-09-15 2007-02-21 DIESSE DIAGNOSTICA SENESE S.p.A. Verfahren und System zur Datenverwaltung in einem Labor
KR100901047B1 (ko) * 2001-03-30 2009-06-04 백스터 인터내셔널 인코포레이티드 코딩 심볼로지 및 그 인쇄 방법
WO2005096209A2 (en) * 2004-03-23 2005-10-13 Board Of Regents, The University Of Texas System Computer based system and methods for pharmaceutical inventory and dispensation
WO2005096209A3 (en) * 2004-03-23 2006-04-27 Univ Texas Computer based system and methods for pharmaceutical inventory and dispensation
US7813939B2 (en) 2004-03-23 2010-10-12 Board Of Regents, The University Of Texas System Pharmaceutical inventory and dispensation computer system and methods
US8150713B2 (en) 2004-03-23 2012-04-03 Board Of Regents, The University Of Texas System Pharmaceutical treatment effectiveness analysis computer system and methods
US7912733B2 (en) 2005-05-04 2011-03-22 Board Of Regents, The University Of Texas System System, method and program product for delivering medical services from a remote location
US8321284B2 (en) 2005-05-04 2012-11-27 Board Of Regents, The University Of Texas System System, method, and program product for delivering medical services from a remote location

Also Published As

Publication number Publication date
US7743976B2 (en) 2010-06-29
DE19806049A1 (de) 1999-08-19
US20030136839A1 (en) 2003-07-24
CA2287489A1 (en) 1999-08-19
JP2002509507A (ja) 2002-03-26
US20050214463A1 (en) 2005-09-29
AU2833699A (en) 1999-08-30
CA2287489C (en) 2009-05-05
US6899267B2 (en) 2005-05-31
EP0975428B1 (de) 2004-01-07
JP4536832B2 (ja) 2010-09-01
EP0975428A1 (de) 2000-02-02

Similar Documents

Publication Publication Date Title
EP0975428B1 (de) Verfahren zur kennzeichnung von probenbehältern
US5919553A (en) Microscope slide having bar code indicia inscribed thereon
EP1245395B1 (de) Verfahren und Vorrichtung zum Bedrucken von Kassetten oder Objektträgern für histologische Präparate
DE69806972T2 (de) Vielschichtiges, temperaturbeständiges verbundetikett
JP2002509507A5 (de)
DE2344930A1 (de) Probentraeger und vorrichtung zum einschreiben und auslesen desselben
US20140022631A1 (en) Microscope slide for specimen tracking and verification, and method of making same
EP0271096A2 (de) Farbcodierung von Informationsträgern
EP1447327A2 (de) Verfahren zur Identifizierung und/oder Überwachung von medizinischen Spritzen
EP2896458A1 (de) Transparenter 0bjektträger mit Kennzeichnung
EP0226144A2 (de) Verfahren zum Herstellen eines Eich- und Prüfstandardelements und nach dem Verfahren hergestelltes Eich- und Prüfstandardelement
DD151049A5 (de) Maschinenlesbare werkstueckmarkierung und verfahren zu ihrer herstellung
EP2018624A1 (de) Vorrichtung und verfahren zur erfassung und/oder erkennung von markierungen in/an/auf transparenten markierungsträgern
DE102007014083A1 (de) Verfahren zur Verhinderung des mehrfachen Gebrauchs von Einmalartikeln in Analysegeräten
DE10115066B4 (de) Vorrichtung zum Trocknen lösungsmittelbasierender Tinte
DE19841554A1 (de) Vorrichtung zur Aufnahme von festem oder flüssigem Probenmaterial
Igoe et al. A lifting process for determining the writing sequence of two intersecting ball-point pen strokes
DE29601443U1 (de) Individuell gekennzeichnete Werkstücke aus Glas, Glaskeramik oder Keramik
EP2157533A1 (de) Verfahren zur Identifikation von medizinischen Behältnissen
US5773576A (en) Coded thin layer chromatography support
DE4334751A1 (de) Verfahren zur Gebrauchsbeschriftung von Kunststoffteilen von Laborgeräten
DE102006051373A1 (de) Volumenmessgerät mit Kennzeichnung
DE102020007674A1 (de) Laborgerät und Verfahren zur individuellen Kennzeichnung von Laborgeräten
DE102019134562B4 (de) Medizinisches Produkt mit Kennzeichnung und Verfahren zum Aufbringen einer Kennzeichnung auf ein medizinisches Produkt
WO2001070404A1 (de) Verfahren zur individualisierung von gegenständen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2287489

Country of ref document: CA

Ref country code: CA

Ref document number: 2287489

Kind code of ref document: A

Format of ref document f/p: F

Ref country code: JP

Ref document number: 1999 541044

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1999908888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09403072

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999908888

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999908888

Country of ref document: EP