WO1999037364A1 - Systeme de traitement de tumeurs par balayage par ultrasons focalises a haute intensite - Google Patents

Systeme de traitement de tumeurs par balayage par ultrasons focalises a haute intensite Download PDF

Info

Publication number
WO1999037364A1
WO1999037364A1 PCT/CN1998/000310 CN9800310W WO9937364A1 WO 1999037364 A1 WO1999037364 A1 WO 1999037364A1 CN 9800310 W CN9800310 W CN 9800310W WO 9937364 A1 WO9937364 A1 WO 9937364A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
treatment
ultrasound
scanning
combined
Prior art date
Application number
PCT/CN1998/000310
Other languages
English (en)
French (fr)
Inventor
Zhilong Wang
Zhibiao Wang
Feng Wu
Jin Bai
Original Assignee
Chongqing Hifu Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Hifu Technology Co., Ltd. filed Critical Chongqing Hifu Technology Co., Ltd.
Priority to JP2000528339A priority Critical patent/JP3505512B2/ja
Priority to EP98960989A priority patent/EP1050322A4/en
Priority to CA002326703A priority patent/CA2326703C/en
Priority to AU16594/99A priority patent/AU1659499A/en
Priority to US09/600,854 priority patent/US6685639B1/en
Publication of WO1999037364A1 publication Critical patent/WO1999037364A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/225Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
    • A61B17/2251Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves characterised by coupling elements between the apparatus, e.g. shock wave apparatus or locating means, and the patient, e.g. details of bags, pressure control of bag on patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures

Definitions

  • the invention relates to an ultrasonic treatment device, in particular to a high-intensity focused ultrasound (HIFU), a tumor scanning treatment system, which is a device for scanning and treating a tumor tissue by using a high-energy sound intensity at a focal region of the HIFU.
  • HIFU high-intensity focused ultrasound
  • Ultrasound is a kind of mechanical energy that can penetrate the human body with good directivity. People have been using ultrasound for the treatment and diagnosis of diseases for a long time, so ultrasound physiotherapy equipment and A ultrasound machines and B ultrasound machines have been produced. They all have a common feature, that is, the sound intensity in the target tissue is very low, and the average sound intensity is usually below 3w / cm 2 . In the past two decades, ultrasound diagnostics has achieved brilliant results, and ultrasound therapy has gradually entered a period of rapid development. Among them, ultrasound thermotherapy and high-intensity ultrasound therapy are particularly significant. After medical research, cancer cells were found to be less heat resistant than normal cells. Between 42.5 ° C-45 ° C, cancer cells died within 30 minutes, while normal cells were less damaging and reversible.
  • an ultrasound warming treatment device Utilizing this feature, coupled with the warming effect of ultrasound, an ultrasound warming treatment device has been created.
  • the invention patent application CN91105010.8 and "Ultra-high-speed extracorporeal ultrasound high-temperature treatment device” belong to this type of device.
  • the treatment characteristic of this device is to repeatedly perform sound intensity treatment at a certain point of the target, such as the center. The generated heat spreads, destroying the target, the tumor cell tissue.
  • the reasons for the poor therapeutic effect of such devices are: 1. Active cancer cells are mainly distributed near the tumor mass. O 99/37364
  • the cancerous tissue itself is irregular, and the shape of thermal diffusion is difficult to control, and there is a certain temperature gradient, non-invasive temperature measurement technology for deep tissue, especially It is a worldwide problem to measure the temperature rise and temperature gradient in the thermal diffusion volume; 3. If the irregular shaped cancer block is irradiated with integrity, it is inevitable to damage a large amount of normal tissue; 4. Use a B-type echo The probe captures echoes within a very short interval of the treatment beam and checks the A-type echo images of the target's destruction during the treatment. To this end, a special image storage circuit and sampling comparison circuit are used. Ultrasound images make it difficult to directly observe the effect of treatment, and also complicates the device; 5.
  • Another patent application CN93100813.1 discloses a "method and device for targeting human tissue targets for treatment", which focuses on a method for targeting human tissue targets, using a real-time acoustic ranging recorder probe and The therapeutic beam generator probe uses a visible reference mark to determine the theoretical position of a reference point in the two beams, by making a predetermined displacement of the relative focus F and the reference mark R in the coordinate system, and recording the image by making the sound distance measurement The visible reference signs coincide, and then the treatment generator is shifted until the first and second reference signs coincide to make the focus F of the treatment beam coincide with the target.
  • the device can only be used for localized treatment of the prostate. It has no application significance for other parts of the human body.
  • European Union patent EP0734742A2 "Ultrasound therapeutic apparatus" describes a special feature of an ultrasonic therapy device O
  • the therapeutic ultrasonic generating source has resonance characteristics under the action of the first-order fundamental frequency.
  • the driver will drive the therapeutic ultrasonic generator to work with the driving signal in the first fundamental frequency.
  • the driver uses the driving signal in the second fundamental frequency to drive the ultrasound probe to acquire an ultrasound image in the body.
  • the reflected wave of the first-stage ultrasonic wave generated by the ultrasonic generator undergoing treatment and the reflected wave of the second ultrasonic wave generated by the ultrasonic probe are invented by manpower to make the therapeutic ultrasound and imaging ultrasound more perfectly combined. Fourteen are listed in the literature. Kind of model. In recent years, in order to avoid the shortcomings of hyperthermia, a lot of researches have been performed on high-intensity focused ultrasound (HIFU) to treat tumors.
  • HIFU high-intensity focused ultrasound
  • HIFU high-intensity focused ultrasound
  • the focal area of the focal area causes a strong temperature rise (> 70 ° C), cavitation or mechanical oscillation in the instant (0.1-5s), thereby destroying the tissue at the focal area to achieve the purpose of treatment.
  • Malignant tumor tissue has three distinct characteristics: 1. Because it is a naive cell tissue, it is more sensitive to ultrasound than normal tissue. 2.
  • the first is point-like diffuse distribution; the second is giant block-shaped; the third is dendritic distribution; 3. the malignant degree boundary of tumor cells is higher than the heart. Then consider that while treating tumor tissue, try to minimize damage to normal tissue. Therefore, the difficulties of HIFU treatment of tumor technology are as follows: 1. A high-energy point (focal region) of the ultrasound must be formed, and the length ratio of the long and short axes of the focal region is smaller. 2. The lesion to be treated is visible, and the location and morphology of the tumor can be easily determined. 3. Irregular tumors can be scanned and treated with as many scanning methods as possible For medical staff to choose. 4. The effect of treatment can be monitored at the same time.
  • the object of the present invention is to provide a high-intensity focused ultrasound tumor scanning treatment system, which focuses ultrasound to form a high-energy space point in the body, namely a focal region (the focal region energy reaches 1000w / Above 2 m, it can produce a temperature of> 70 ° C in an instant), and the 4 bar focal region extends into the tumor tissue in the human body for scanning movement, ensuring that the focal region trajectory fully covers the tumor tissue and achieves the purpose of treating tumors.
  • a high-intensity focused tumor scanning treatment system is composed of a combined probe, a high-intensity power source, a B-machine, a multi-dimensional numerical control motion device, a vacuum degassed water device, and a treatment bed. And computer operating system.
  • a combined probe composed of a therapeutic probe for generating ultrasonic waves and a B-mode imaging probe is mounted on a motion device consisting of a three-dimensional right-angle coordinate and a one-dimensional or two-dimensional rotating coordinate, and the upper end of the combined probe passes through open water. ⁇ is connected to the central hole of the treatment table.
  • the lower end of the water ⁇ 2 is connected to the head of the combined probe 3, and the combined probe 3 is installed in the three-dimensional rectangular coordinates and two-dimensional.
  • the combined probe 3 is connected to a high-frequency electric power source 6, a central ultrasonic probe is installed on the central axis of the combined probe and connected to the B-ultrasound machine, the movement system 4 is connected to the NC scanning system, and the water pump 2 is connected to vacuum dehydration
  • the device 5 is connected, and the computer operating system 9 is The power source 6, B ultrasound machine 7, numerical control scanning system 8 and vacuum degassing water device are connected.
  • the B ultrasound probe of the probe is installed at the center of the treatment probe, and the "focal range" of the spatial points generated by the treatment probe is adjusted to fall within the imaging plane of the B ultrasound probe.
  • the ultrasonic emission surface of the combined probe is located below the treatment site. Coupling with the skin through the open water strider, this coupling uses vacuum degassed water with acoustic impedance close to human soft tissue and reduced sound attenuation as a medium.
  • the stepping motor of the moving device drives the guide seat to move on the ball guide through the ball screw. The actual position of the movement is taken by the position sensor to take the position signal to realize the closed-loop control of the motion system.
  • the multi-dimensional motion device consists of several single-dimensional motion devices. Superimposed combination.
  • the high-frequency power source is composed of a signal source, a signal modulator, an amplifier, a matcher, a three-phase power source, a manual control, a computer interface, and a display.
  • the signal modulator is connected to three-phase power, signal source, computer interface and amplifier respectively, and the signal source is connected to three-phase power, amplifier, display, and manual control respectively; the amplifier is connected to three-phase power, matcher, and matcher output 0.2-0.3MHz High-frequency continuous or pulsed power supply.
  • the signal source outputs low-frequency and low-current high-frequency sine wave signals.
  • the signal modulation circuit is used to adjust the continuous or 10-1000Hz carrier signal.
  • the vacuum degassing water device is a vacuum degassing and circulating water device, which is composed of a vacuum pump, a circulating water pump, a water tank, a water temperature regulator combined probe water pump, and a control circuit; the real middle water tank is respectively connected with the vacuum pump, the water temperature regulator, The circulating water pump and the combined probe are connected to the water loop; the control circuit is respectively connected to the circulating water pump, the water temperature regulator, and the vacuum pump; the combined probe and the water loop are respectively connected to the circulating water pump. After vacuum degassing, it was used as ultrasonic coupling medium.
  • the multi-dimensional numerical control scanning system drives the stepping mechanism under the control of the information processing system, and drives the combined control head to perform two-dimensional or three-dimensional scanning motion, so that the focal area (spatial point) of the combined probe is two-dimensional or Three-dimensional scanning treatment or detection.
  • This treatment has the following advantages: 1. No surgery during treatment, less pain for the patient, 2. Since the mass removed by HIFU scan is still in the body, medical research has shown that the retention of treated cancer mass in the body can also promote The immune function of the human body is improved, and finally this treated tumor is absorbed and fibrotic by the human body.
  • the fan scan plane of the B-ultrasound probe is used to find tumor tissue, and the medical staff determines the treatment range.
  • the focal area of the treatment probe is installed and positioned on a B-scanning plane at a position that has been memorized by the computer. Under the control of medical personnel, the computer directs the numerical control scanning system to drive the treatment head to perform scanning movements, and at the same time directs the power source to switch and adjust the power.
  • FIG. 1 is a schematic diagram of the structure of the invention.
  • FIG. 2 is a schematic diagram of a combined probe structure in the invention.
  • Figure 3 is a functional block diagram of the invention.
  • Figure 4 is a block diagram of an ultrasonic high-frequency power supply.
  • Figure 5 is a block diagram of a small device for a vacuum degassing cycle.
  • 6a and 6b are flowcharts of a computer operating system. The best way to implement the invention
  • FIG. 1 The structure of HIFU treatment tumor system is shown in Figure 1.
  • the lower end of the leech 2 is connected to the head of the combined probe 3, and the combined probe 3 is installed on the motion system 4 of the three-dimensional right-angle coordinate and the two-dimensional rotation coordinate.
  • the electric power for ultrasonic treatment in the combined probe 3 is driven by a sine wave power source generated by a high-frequency electric power source 6.
  • a B-ultrasound probe is installed on the central axis of the combined probe, and its work is driven by the B-ultrasound machine 7.
  • the position of the focal region can be easily determined in the ultrasound image of B-ultrasound.
  • the motion of the motion system 4 is controlled and driven by the multi-dimensional numerical control scanning system 8.
  • the leech 2 is filled with vacuum degassed water whose acoustic impedance is very close to that of human tissues.
  • the vacuum degassed water in the leech is provided by the vacuum degassed water device 5 and the vacuum degassed water is recycled.
  • the cooperative work of 6, 7, 8, and 5 and the scanning and treatment trajectory are all controlled and determined by the computer 9.
  • the imaging probe 1 of the B ultrasound machine is installed on the axis line of the treatment probe to ensure that the focal area (spatial point) of the treatment probe falls in the scanning plane of the B ultrasound. Because the focal region formed by the treatment probe has a sound intensity of 100w / cm 2 to 10000w / cm 2 or more, the tumor tissue at the focal region generates a very high temperature (> 70 ° C). On the one hand, such a high temperature makes the tissue Degeneration and necrosis occur, on the other hand, the high acoustic resistance increases there, so a strong echo light group is generated on the B-ultrasound image.
  • the rear end of the treatment probe is equipped with a piezoelectric ceramic 14, and the driving power of the piezoelectric ceramic to generate ultrasonic waves is provided by a cable 16.
  • the entire combined probe is installed in a shield case 13, and the front end of the shield case 13 is equipped with a hydrohead holder 12 and a hydrohead 2.
  • the above-mentioned combination probe is installed from the bottom up. This type of installation can reduce the body movement caused by breathing due to the treatment from the downward direction of the person.
  • the functional block diagram of the HIFU treatment tumor system is shown in Figure 3.
  • the power source sends out a high-frequency power source to cause the treatment probe to emit high-intensity focused ultrasound to form a high-intensity focal region to achieve the purpose of damaging the tumor there.
  • the multi-dimensional scanning system drives the combined probe to perform a scanning motion, so that the focus area generates a scanning trajectory to damage the tumor.
  • the tumor position is monitored, and observed on the B-machine screen.
  • the whole process is controlled by the medical staff, under the program set on the computer, and monitored by the computer. Because the scanning movement of the combined probe causes the water level to change and the treatment probe also needs to be cooled, the computer also automatically controls the circulating water device.
  • the power generator provides a device for treating high-frequency ultrasound power.
  • the principle is shown in Figure 4.
  • the power source provides a low-voltage 0.2-3.5MHz high-frequency sine wave signal from a signal source, which is modulated by a signal modulator into a low-frequency carrier signal or continuous wave of 10-1000Hz, and the modulated signal is sent to an amplifier for replication, amplification and transmission.
  • a matching circuit is added between the amplifier and the probe to ensure the best match between them.
  • the B ultrasound instrument provides the combined probe imaging and monitoring function. It is an existing commercially available B ultrasound instrument and uses the main functions of the existing B ultrasound instrument, which will not be described here.
  • the motion system uses a stepper motor to drive the ball screw to move on the ball guide. This method has the advantages of high accuracy and low noise, and the closed-loop control of the grating ranging can reduce the effect of step loss caused by the stepper motor.
  • the vacuum degassing circulating water system is composed of a vacuum degassing water tank, a vacuum pump, a circulating water pump, a water temperature adjusting device and a control part, as shown in FIG. 5. As shown in Figure 6.
  • the main functions of computer image processing and numerical control system are:
  • B-ultrasound scans the tissue, and performs three-dimensional reconstruction by computer.
  • the medical staff chooses the treatment plan and parameters according to the morphology of the tumor.
  • Site-specific injury treatment The treatment shown in Figure 6, this treatment is mainly applied to tumors smaller than 1 cm 3 and diffuse tumor small pieces. It is characterized in that after the motion mechanism finds the location of the lesion, it is treated without movement. Within a fault plane of the B-ultrasound, individual points or multiple points can be treated individually.
  • variable energy ratio which is the ratio of the average sound intensity at the focal area to the average sound intensity at the probe surface.
  • la (D / d) 2 I D , and the key to improving the variable energy ratio lies in the selection of frequency parameters and the manufacturing process of the probe.
  • the tumor tissue is a three-dimensional tissue, at least three-dimensional coordinate movement is required to complete the scanning treatment.
  • breast tumors usually grow at the bottom of the breast. Therefore, it is best to manually rotate the coordinates during treatment to tilt the combined probe at an angle, which is usually 0 to 60 in the vertical direction. .
  • the intermittent working method is adopted. Under the control of the computer, the power source, B-mode ultrasound machine, and NC scanning device all work intermittently. After B-sampling, the computer performs image memory and directs the NC scanning device to move. When the next position is reached, the computer does a post-sampling and memorization of the B-mode image, and then instructs the power source to start up. This completes a cycle.
  • the computer uses the pre-sampled image and The gray-scale calculation is performed on the late-sampled image of one cycle, and the treatment effect can be judged by the gray-scale change.
  • the fan-scan plane of the B-ultrasound probe was used to find tumor tissue, and the scope of treatment was determined by medical staff.
  • the focal range of the treatment probe is installed and positioned on a B-scanning plane at a position that has been memorized by the computer. Under the control of medical personnel, the computer directs the numerical control scanning system to drive the treatment probe to perform scanning movements, and at the same time directs the power source to switch on and off and adjust the power. Because the position of the focal field is a fixed focal length relative to the treatment probe, the movement of the treatment probe will move the focal field formed by the driving probe in parallel, so the scanning movement of the probe outside the body can ensure the scanning movement of the focal area in the body.

Description

高强度聚焦超声肿瘤扫描治疗系统 技术领域
本发明涉及一种超声波治疗装置, 尤其涉及一种高强度聚 焦超声 HIFU (high intensity focused ultrasound), 肿瘤扫描治 疗系统, 是利用 HIFU焦域处的高能量声强对肿瘤组织进行扫 描治疗的装置。 背景技术
超声波是一种可以透入人体方向性很好的机械能量。 人们 很早就开始将超声波用于疾病的治疗和诊断, 于是产生了超声 理疗设备和 A超机、 B超机等。 它们都有一个共同的特点, 即目标组织内声强很低, 通常平均声强在 3w/cm2以下。 近二 十年来, 超声诊断学取得了辉煌的成绩, 超声治疗也逐渐步入 高速发展期, 其中超声温热治疗与高强度超声治疗尤为显著。 经过医学研究, 发现癌细胞比正常细胞耐热性差, 在 42.5 °C - 45 °C之间, 30 分内癌细胞产生死亡, 而正常细胞损伤 轻, 且可逆转。 利用这一特点, 再加上超声波的温热效应, 就 产生了超声波温热治疗装置。 经检索, 发明专利申请 CN91105010.8、 "超高速体外超 声高温治疗装置" 就属这类装置, 该装置的治疗特点是针对目 标的某个点如中心进行声强反复治疗, 通过在该点上产生的热 的扩散, 摧毁目标即肿瘤细胞组织。 然而, 这类装置治疗效果 收效甚微的原因在于: 1. 活性的癌细胞主要分布在癌块的边 O 99/37364
- 2 - 缘, 而恰恰在边缘获得的温升较低; 2. 癌块组织本身是非规 则形, 而热扩散形状难以控制, 并且有一定的温度梯度, 深部 组织的无创测温技术, 特别是要测定热扩散体积内的升温和温 度梯度是一个世界性难题; 3.要想使非规则形的癌块受到完 整性辐照, 就不可避免损伤较大量的正常组织; 4. 采用 B 型 回声探测头在治疗波束极短的间隔内捕捉回声, 检查治疗期间 目标的毁坏程度的 A型回声图像, 为此, 采用了专门的图像 存储电路和采样比较电路, 由于只存储相继的两辐 A型超声 图像, 很难直接观测治疗的疗效, 同时, 也使装置复杂化; 5. 治疗头不能相对目标进行扫描移动, 治疗的范围受到限制, 不 能治疗点状弥散状和树枝状、 条状及其它不规则形的及所处位 置比较特殊的病灶。 另一专利申请 CN93100813.1 , 公开了一种 "瞄准人体组 织目标以便进行治疗的方法和装置" , 它重点叙述了一种瞄准 人体组织目标的方法, 使用了一个实时音响测距记录器探头和 治疗波束发生器探头, 用一个可见的参考记号来确定两个波束 中一个参考点的理论位置, 通过在座标系统中相对焦点 F 和 参考记号 R作预定的位移, 及通过使音响测距记录图像可见 的参考记号重合, 接着位移所述的治疗发生器直到所述的第一 和第二参考记号重合而使治疗波束一焦点 F 和所述的目标重 合。 该装置只能用于定位治疗前列腺。 对于人体的其它部位无 应用的意义。 欧共体专 利 EP0734742A2 " Ultrasound therapeutic apparatus" (超声治疗设备) 叙述了一种超声波治疗设备的特 O 99/37364
性: 治疗超声波发生源在一级基频的作用下有谐振的特性, 驱 动器将驱动治疗超声波发生器, 用第一次基频中的驱动信号工 作。 驱力器用第二次基频中的驱动信号驱动超声探头获取体内 的超声波图像。 接受治疗超声波发生器所产生的一级超声波的 反射波和由超声探头发生的第二超声波的反射波, 发明人力求 让治疗超声和显像超声更完美的结合, 在文献中列出了十四种 模式。 近几年来, 人们为了避开温热疗法带来的缺点, 对高强度 聚焦超声 (HIFU ) 治疗肿瘤进行了大量研究。 所谓高强度聚 焦超声 (HIFU ) 治疗即是将探头发射出的平均声强较低 (通 常是几 w/m2 ) 的超声波聚焦或者汇聚到一个空间点, 形成一 个平均声强 1000w/m2以上的焦域, 使该焦域瞬时 (0.1 - 5s ) 产生强烈的温升 (>70° C ) , 空化或机械振荡作用, 从而破坏 该焦域处的组织, 达到治疗目的。 恶性肿瘤组织有明显三个特征: 1.由于它是一种幼稚细胞 组织, 对超声波比正常组织敏感。 2. 它在人体内形态有三种 方式: 第一是点状弥散分布; 第二是巨块状; 第三是树枝状分 布, 3.瘤细胞恶性程度边界比心部更高。 再考虑到在治疗肿瘤组织的同时, 尽量减小对正常组织的 伤害。 因此 HIFU治疗肿瘤技术的难点在于: 1. 必须形成一个 超声波的高能点 (焦域) , 并且该焦域的长短轴之短比要小。 2.被治疗的病灶可视, 可以方便地确定肿瘤的位置和形态。 3. 对非规则肿瘤可以进行扫描治疗, 并且有尽可能多的扫描方式 供医务人员选择。 4. 可以同时监视治疗效果。 如果采用 B超 监高, 必须避免强超声反射对 B超图像的干扰。 5. 介质必须 采用接近人体组织声阻抗特征的专用液体, 并且还要求声衰减 小, 不干涉聚焦声场。 发明的概要
根据 HIFU治疗肿瘤的技术难点, 本发明的目的在于提供 一种高强度聚焦超声肿瘤扫描治疗系统, 通过聚焦把超声波在 体内形成一个高能量的空间点一即焦域 (该焦域能量达到 1000w/m2以上, 可以瞬时产生 >70。C 的温度) , 并 4巴焦域伸 入人体中的肿瘤组织内进行扫描运动, 保证焦域轨迹充分覆盖 肿瘤组织, 达到治疗肿瘤的目的。 为实现上述目的, 本发明采用了这样的技术方案, 即一种 高强度聚焦肿瘤扫描治疗系统是由组合探头、 高强功率源、 B 超机、 多维数控运动装置, 真空脱气水装置、 治疗床及计算机 操作系统组成。 其中, 由发生治疗超声波的治疗探头及 B 超 机的显像探头构成的组合探头安装在三维直角座标和一维或二 维转动座标构成的运动装置上, 组合探头的上端通过开式水嚢 联接在治疗床的中心孔洞上, 治疗床的中部有一个安装水囊 2 大孔, 水嚢 2的下端连接在组合探头 3的头部, 组合探头 3又 安装在三维直角座标和二维转动座标的运动系统 4上, 组合探 头 3 和高频电功率源 6相连, 组合探头中心轴线上安装有 B 超探头和 B超机相连, 运动系统 4和数控扫描系统相连, 水 嚢 2和真空脱水装置 5相接 , 计算机操作系统 9分别与高频电 功率源 6、 B超机 7、 数控扫描系统 8及真空脱气水装置相连 接。 探头的 B超探头安装在治疗探头中心部位, 并且通过调 节保证治疗探头产生的空间点的 "焦域" 落在 B 超探头的显 像平面内, 组合探头的超声波发射面位于治疗部位的下方, 通 过开放式水嚢与皮肤耦合, 此耦合是采用声阻抗接近人体软组 织, 声衰减少的真空脱气水作介质。 所述运动装置的步进电机通过滚珠丝杆驱动导轨座在滚珠 导轨上运动, 其运动的实际位置由位置传感器将位置信号采 取, 实现运动系统闭环控制, 多维运动装置由若干个单维运动 装置迭加组合而成。 所述的高频功率源是由信号源, 信号调制器、 放大器、 匹 配器、 三相电源, 手动控制、 计算机接口及显示器组成。 其中 信号调制器分别接三相电源、 信号源, 计算机接口和放大器, 信号源分别接三相电源、 放大器、 显示器、 手动控制; 放大器 又接三相电源, 匹配器、 匹配器输出 0.2 - 0.3MHz高频连续或 脉冲电源, 信号源输出低压小电流的高频正弦波信号, 通过信 号调制电路调整成连续性或 10 - 1000Hz的载波信号。 所述的真空脱气水装置是一种真空脱气循环水装置是由真 空泵、 循环水泵、 水箱、 水温调节器组合探头水嚢, 及控制电 路组成; 其真中水箱分别与真空泵、 水温调节器、 循环水泵及 组合探头水嚢连接; 控制电路分别与循环水泵, 水温调节器, 真空泵连接; 组合探头、 水嚢又分别连循环水泵, 此装置对水 进行真空脱气处理后作超声耦合介质。 多维数控扫描系统在信息处理系统的控制下驱动步进机 构, 带动组合控头进行二维或三维的扫描运动, 从而使组合探 头的焦域 (空间点) 在体内的目标组织中进行二维或三维的扫 描治疗或检测。 工业应用性
这种治疗方法有如下的优点: 1.治疗中不手术, 病人的痛 苦小, 2. 由于 HIFU扫描切除的肿块仍在体内, 医学研究已经 表明, 经治疗的癌块组织保留在体内还能促使人体免疫功能的 提高, 最后这种经治疗的肿瘤被人体吸收和纤维化。 上述系统装置中, 利用 B超探头的扇扫平面寻找肿瘤组 织, 并由医务人员确定治疗范围。 治疗探头的焦域通过安装定 位在 B 超扇扫平面上一个已经被计算机所记忆的位置。 计算 机在医疗人员掌握下, 指挥数控扫描系统带动治疗控头进行扫 描运动, 并同时指挥功率源进行开关及调整功率大小。 由于焦 域的位置相对于治疗探头是一个固定的焦域, 治疗探头运动将 带动治疗探头所形成的焦域作平行运动, 所以探头在体外的扫 描运动就能保证焦域在体内的扫描运动。 为了保证以上技术方案的实施, 釆用以下具体的技术手 段, 并通过附图进一步说明。 附图的简要说明 本发明有如下的附图。 图 1为在发明的结构示意图。 图 2为在发明的组合探头结构示意图。 图 3为在发明的功能框图。 图 4为超声高频电源框图。 图 5为真空脱气循环小装置框图。 图 6a、 图 6b为计算机操作系统流程图。 实现本发明的最佳方式
HIFU治疗肿瘤系统结构如图 1所示。 治疗床 1 的中部有 一个安装水嚢 2的大孔, 水嚢 2的下端连接在组合探头 3的头 部, 组合探头 3又安装在三维直角座标和二维转动座标的运动 系统 4上。 组合探头 3中治疗超声的电功率是由高频电功率源 6产生的正弦波电源所驱动, 组合探头中心轴线上安装有 B超 探头, 它的工作是由 B超机 7所驱动。 在 B超的超声图像中 可以很方便地确定焦域的位置。 运动系统 4的运动受到多维数 控扫描系统 8的控制和驱动。 水嚢 2中充满声阻抗十分接近人 体组织的真空脱气水, 水嚢中的真空脱气水是由真空脱气水装 置 5提供并循环使用真空脱气水。 6、 7、 8、 5相互的配合工 作以及扫描治疗轨迹都由计算机 9所控制和确定。 O 99/37364
- 8 - 组合探头结构如图 2所示, B超机的显像探头 1被安装在 治疗探头的轴心线上, 保证治疗探头的焦域 (空间点) 落在 B 超的扫描平面内。 由于治疗探头所形成的焦域具有 100w/cm2 至 10000w/cm2以上的声强, 使焦域处的肿瘤组织产生很高的 温度 (>70°C ) , 这样高的温度一方面使组织产生变性坏死, 另一方面该处的高声阻增加, 于是在 B超图像上产生强回声 光团。 这样就可以监视治疗点的空间位置以及通过灰阶变化客 观地反映治疗程度。 治疗探头的后端装配有压电陶瓷 14 , 压电陶瓷产生超声 波的驱动电源由电缆 16提供。 整个组合探头安装在屏蔽外壳 13内, 屏蔽外壳 13前端装配有水嚢座 12及水嚢 2。 在探头芯 15 上面有一超声波透镜 1 1 在探头芯 15 中间有一 B超探头 10。 上叙组合探头从下向上安装。 这种安装方式由于从人俯着 的下方治疗, 可以减小呼吸引起的体位运动。 另外人体皮肤和 脱气和脱气水直接接触, 可以减小高强超声通过皮肤介面时造 成的反射损伤。 经过动物实验, 证明这种安装方式是一种可行 的方案。 组合探头的技术参数如下: 1、 焦距: 40 - 280mm
2、 治疗超声工作频率: 0.2 - 3.5MHz 3、 焦域形态: 椭球形 短径: 1.1 - 5mm 长径: 3.5 - 12mm
4、 焦域中心最大声强: 1000w/cm2以上 5、 聚焦角: 30° - 120°
HIFU治疗肿瘤系统功能框图如图 3 所示。 功率源输送出 高频电源使治疗探头发射出高强聚焦超声, 形成高强度焦域, 达到损伤该处肿瘤的目的。 多维扫描系统带动组合探头进行扫 描运动, 使焦域产生扫描轨迹损伤肿瘤。 在治疗过程中肿瘤位 来监视,、、并在 B 超机展幕上观察。 整个过程都是由医 人员、 在计算机上设置的程序下控制, 并被计算机监视。 由于组合探 头的扫描运动导致水位变化, 并且治疗探头也需要冷却, 所以 计算机还自动控制循环水装置。 实现上述系统的关键在于组合探头。 用此探头在组织内的 损伤可以隔着皮肤击打损伤点。 功率发生器提供治疗超声高频电源的装置, 其原理如图 4 所示。 该功率源由信号源提供低压的 0.2 - 3.5MHz 高频正弦 波信号, 经过信号调制器调制成 10 - 1000Hz的低频载波信号 或连续波, 调制后的信号被送到放大器进行复制放大送出。 由 于治疗探头和功率源之间的阻抗有较大的差别, 不同的探头又 有不同的阻抗, 所以在放大器和探头之间增加一个匹配电路, 以保证它们之间的最佳匹配。
B超仪是提供组合探头显像监视功能, 是采用的现有的市 售 B超仪, 使用的都是现有 B超仪的主要功能, 这里不再叙 述。 运动系统采用步进电机驱动滚珠丝杆在滚珠导轨上运动, 这种方式具有精度高, 噪音低等优点, 并且采用光栅测距闭环 控制, 可以减少步进电机造成的失步影响。 真空脱气循环水系统是由真空脱气水箱、 真空泵、 循环水 泵、 水温调节装置及控制部分组成, 如图 5所示。 如图 6所示。 计算机图像处理及数控系统的主要功能有:
1、 B超声图像对组织进行断层扫描, 通过计算机进行三 维重建处理。
2、 由医务人员根据肿瘤的形态选择治疗方案及参数。
3、 根据医务人 确认的治疗边界控制扫描系统进行扫描 治疗。 4、 根据治疗前后目标点的灰度差异进行灰度运算, 判断 治疗程度。
5、 根据治疗深度的变化调整超声辐照强度进行能量补 偿。 用 HIFU肿瘤扫描治疗系统对肿瘤进行治疗有以下几种治 疗模式-.
1、 定点损伤治疗。 如图 6 所示的治疗, 这种治疗主要运 用于肿瘤组织小于 1 cm3以及弥散型的肿瘤小块。 其特征在于: 运动机构寻找病灶位置后, 在不运动的情况 下治疗。 在 B超的一个断层平面内, 可以进行一个点或多个 点的单独治疗。
2、 连续点损伤组合治疗。 这种治疗主要运用于肿瘤组织 大于 1cm3的整块肿瘤组织的治疗。 其特征在于: 运动机构寻找病灶位置后, 在间断运动中治 疗。 由单点损伤组合成一个损伤体, 两个损伤点之间重合 1/10- 1/2 , 保证被治疗的肿瘤组织充分的覆盖, 并且每个断 层扫描面也有适当的重叠, 以保证整块肿瘤组织被充分损伤。
3、 连续损伤治疗。 采用一次较长的辐照时间 (如 30s ) , 在辐照中座标系统进行二维或三维的移动, 使焦域在 体内连续进行 "切割" 。 这种治疗方案特别适合于长条形的肿 瘤组织治疗。 其特征在于: 运动机构寻找到病灶位置后, 在连续运动中 治疗。 其总的辐照时间固定, 运动速度固定, 肿瘤组织各点均 受到等量超声辐照。
4、 上述的三种治疗模式还可以进行组合使用。 为了保证以上专利构思的实施。 采用以下技术手段:
1、 采用尽可以高的变能比, 即焦域处的平均声强和探头 表面的平均声强之比。 如图 1所示, 在不考虑声衰域情况下, la = (D/d)2 ID, 而提高变能比的关键在于频率参数选择以及探 头的制作工艺。
2、 在保证变能比的基础上, 采用尽可能小的声衰减过 程。 目前人们已知的声衰减系数量最小的就是真空脱气水。 根 据我们的研究, 选用了真空脱气水作为耦合介盾, 是最可行的 方案, 根据不同的治疗需要, 频率选用 0.2 - 3.5MHz都是可 以的。
3、 采用 B超机作为显像装置。 由于 B超技术是成熟的技 术, B超探头可以方便地安装在治疗探头心部。 并且治疗头焦 域可以方便地安装在 B超扇扫平面内, 其结构如图 2 所示。 通过试验, 这种方式可以方便地确定治疗探头焦域在扇扫平面 中的位置, 并可以让计算机记忆下这一位置, 然后进行扫描运 动。
4、 采用 4座标数控扫描, 一座标系转动装置。 其原因在 于: 由于肿瘤组织是立体组织, 至少要三维座标运动才能完整 地进行扫描治疗。 在人体中有些组织, 比如肝组织就只需要三 维直角座标扫描就行了。 另有一些组织, 比如乳腺组织, 最好 就是两维直角座标加上一维转动座标进行扫描。 另外, 通常乳 腺肿瘤生长在乳房的底部, 因此治疗中最好有一个手动转动座 标, 使组合探头倾斜一个角度, 通常这个角度为垂直方向倾斜 0 - 60。 。
5、 在整个扫描治疗过程中, 由于以下原因必须使用计算 机自动控制。 ①肿瘤组织的非规则性, 必须采用非规则的扫描 路途。 ②在治疗过程, 随着治疗深度的变化, 为了保证深浅的 肿瘤都受同剂量的超声辐照, 必须根据深度的变化自动进行能 量补偿。 ③由于治疗前后的 B超屏幕上明显的灰度差, 因此 对治疗前后的灰度进行运算可以提供客观的治疗效果。 ④另外 对治疗的自监测也是十分必要的。
6、 为了克服 HIFU对 B 超图像的干扰, 采用间断工作 法。 在计算机控制下, 功率源、 B超机、 数控扫描装置都采用 间断工作。 B超经过前期采样后, 计算机进行图象记忆, 并指 挥数控扫描装置进行运动。 当到下一位置时, 计算机对 B 超 图像进行后期采样并且记忆后, 才指挥功率源开机工作。 这样 就完成了一个周期。 计算机利用第二周期的前期采样图象和第 一周期的后期采样图像进行灰度运算, 就可以通过灰度变化判 断治疗效果。 利用 B超探头的扇扫平面寻找肿瘤组织, 并由医务人员确 定治疗范围。 治疗探头的焦域通过安装定位在 B超扇扫平面 上一个已经被计算机所记忆的位置。 计算机在医疗人员掌握 下, 指挥数控扫描系统带动治疗探头进行扫描运动, 并同时指 挥功率源进行开关及调整功率大小。 由于焦域的位置相对于治 疗探头是一个固定的焦距, 治疗探头运动, 将带动治疗探头所 形成的焦域作平行运动, 所以探头在体外的扫描运动就能保证 焦域在体内的扫描运动。

Claims

权利要求
1. 一种高强度聚焦超声肿瘤扫描治疗系统是由组合探头, 高频电功率源, B超机, 多维数控运动装置, 真空脱气水装 置, 治疗床及计算机操作系统组成,
其特征在于 由发生治疗超声波的治疗探头及 B超机的 显像探头构成的组合探头安装在三维直角座标和一维或二维转 动座标构成的运动装置上, 组合探头的上端通过开式水嚢联接 在治疗床的中心大孔洞上, 治疗床 (1)的中部有一个安装水嚢 (2)的大孔, 水嚢 (2)的下端连接在组合探头 (3)的头部; 组合探 头 (3)又安装在三维直角座标和二维转动座标的运动系统 (4) 上, 组合探头 (3)和高频电动率源 (6)相连, 组合探头中心轴线 上安装有 B超探头和 B超机相连, 运动系统 (4)和数控扫描系 统相连, 水嚢 (2)和真空脱气水装置 (5)相接, 计算机操作系统 (9)分别与高频电动率源 (6), B超机 (7), 数控扫描系统 (8), 真 空脱气水装置连接。
2. 根据权利要求 1所述的治疗系统,
其特征在于 组合探头的 B超探头安装在治疗探头中心 部位, 并且通过调节保证治疗探头产生的空间点的焦域落在 B 超探头的显像平面内。
3. 根据权利要求 1所述的治疗系统,
其特征在于 组合探头的超声波发射面位于治疗部位的 下方, 通过开放式水嚢与皮肤耦合, 此耦合是采用声阻抗接近 人体软组织, 声衰减小的真空脱气水作介质。
4. 根据权利要求 1所述的治疗系统,
其特征在于 运动装置的步进电动通过滚珠丝杆驱动导 轨座在滚珠导轨上运动, 其运动的实际位置由位置传感器将位 置信号采取、 实现运动系统闭环控制, 多维运动装置是由若干 个单维运动装置迭加组合而成。
5. 根据权利要求 1所述的治疗系统,
其特征在于 所述的高频电功率源是由信号源, 信号调 制器、 放大器、 匹配器、 三相电源、 手动控制、 计算机接口及 显示器组成其中信号调制器分别接三相电源、 信号源、 计算机 接口和放大器; 信号源分别接三相电源、 放大器、 显示器、 手 动控制; 放大器又分别接三相电源, 匹配器、 匹配器输出 0.2 - 3.5MHz高频连续或脉沖电源, 信号源输出低压小电流的高 频正弦波信号, 通过信号调制电路调整成连续波或 10 - 1000Hz的载波信号。
6. 根据权利要求 1所述的治疗系统,
其特征在于 所述的真空脱气水装置是一种真空脱气循 环水装置; 它是由真空泵、 循环水泵、 水箱、 水温调节器组合 探头水嚢, 及控制电路组成, 其中水箱分别与真空泵、 水温调 节器、 循环水泵及组合探头水嚢连接; 控制电路分别与循环水 泵, 水温调节器, 真空泵连接; 组合探头、 水嚢又分别连循环 水泵, 此装置对水进行真空脱气处理后作超声耦合介质。
7. 根据权利要求 1所述的治疗系统 , 其特征在于 所述组合探头形成的焦域具有 100w/cm2至 10000 w/cm2声强, 组合探头的技术参数为焦距 40-280mm, 治疗超声工作频率 0.2-3.5 MHz , 焦域形态: 椭球形, 短径 l.l-5mm, 长径 3.5-12mm, 焦域中心最大声域: 1000 w/cm2以 上, 聚焦角 30° -120。 。
8. 根据权利要求 7所述的治疗系统,
其特征在于 所述焦域处的平均声强和探头表面的平均 声强之比在不考虑声衰域情况下 la = (D/d)2 ID尽量高。
9. 根据权利要求 1所述的治疗系统,
其特征在于 采用 4座数控扫描, 一座标系转动装置, 在 计算机控制下, 功率源, B超机, 数控扫描装置都采用间断工 作。
10. 根据权利要求 1所述的治疗系统,
其特征在于 所述的组合探头的整体安装在屏蔽外壳 (13) 内, 屏蔽外壳 (13)前端装配有水嚢座 (12)及水嚢 (2), 在探头芯 (15)上面有一超声波透镜 (11), 在探头芯(15)中间有一 B超探 头(10), 治疗探头的后端装配有压电陶瓷 (14), 压电陶瓷产生 超声波的驱动电源由电缆 (16)提供。
PCT/CN1998/000310 1998-01-25 1998-12-18 Systeme de traitement de tumeurs par balayage par ultrasons focalises a haute intensite WO1999037364A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000528339A JP3505512B2 (ja) 1998-01-25 1998-12-18 腫瘍を走査し処置するための高い強度に集光された超音波システム
EP98960989A EP1050322A4 (en) 1998-01-25 1998-12-18 FOCUSED ULTRASOUND SYSTEM OF HIGH INTENSITY FOR BUTTING AND TREATING A TUMOR
CA002326703A CA2326703C (en) 1998-01-25 1998-12-18 High intensity focused ultrasound system for scanning and treating tumors
AU16594/99A AU1659499A (en) 1998-01-25 1998-12-18 A high intensity focused ultrasound system for scanning and curing tumor
US09/600,854 US6685639B1 (en) 1998-01-25 1998-12-18 High intensity focused ultrasound system for scanning and curing tumor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN98100283A CN1058905C (zh) 1998-01-25 1998-01-25 高强度聚焦超声肿瘤扫描治疗系统
CN98100283.8 1998-01-25

Publications (1)

Publication Number Publication Date
WO1999037364A1 true WO1999037364A1 (fr) 1999-07-29

Family

ID=5215934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1998/000310 WO1999037364A1 (fr) 1998-01-25 1998-12-18 Systeme de traitement de tumeurs par balayage par ultrasons focalises a haute intensite

Country Status (9)

Country Link
US (1) US6685639B1 (zh)
EP (1) EP1050322A4 (zh)
JP (1) JP3505512B2 (zh)
KR (1) KR100505823B1 (zh)
CN (1) CN1058905C (zh)
AU (1) AU1659499A (zh)
CA (1) CA2326703C (zh)
RU (1) RU2210409C2 (zh)
WO (1) WO1999037364A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8942781B2 (en) 2008-04-09 2015-01-27 Universite Pierre Et Marie Curie (Paris 6) Medical system comprising a percutaneous probe
US9144693B2 (en) 2007-06-25 2015-09-29 International Cardio Corporation Image guided plaque ablation
RU211368U1 (ru) * 2021-11-08 2022-06-01 Общество с ограниченной ответственностью "Медуза" Устройство обеспечения акустического контакта излучателя hifu с объектом абляции

Families Citing this family (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
JP4056091B2 (ja) 1997-05-15 2008-03-05 パロマー・メディカル・テクノロジーズ・インコーポレーテッド 皮膚科的治療方法及び装置
US6050943A (en) 1997-10-14 2000-04-18 Guided Therapy Systems, Inc. Imaging, therapy, and temperature monitoring ultrasonic system
US9198635B2 (en) 1997-10-31 2015-12-01 University Of Washington Method and apparatus for preparing organs and tissues for laparoscopic surgery
WO1999046005A1 (en) 1998-03-12 1999-09-16 Palomar Medical Technologies, Inc. System for electromagnetic radiation of the skin
US7722539B2 (en) * 1998-09-18 2010-05-25 University Of Washington Treatment of unwanted tissue by the selective destruction of vasculature providing nutrients to the tissue
US7686763B2 (en) * 1998-09-18 2010-03-30 University Of Washington Use of contrast agents to increase the effectiveness of high intensity focused ultrasound therapy
US7510536B2 (en) 1999-09-17 2009-03-31 University Of Washington Ultrasound guided high intensity focused ultrasound treatment of nerves
US7520856B2 (en) * 1999-09-17 2009-04-21 University Of Washington Image guided high intensity focused ultrasound device for therapy in obstetrics and gynecology
US6656136B1 (en) * 1999-10-25 2003-12-02 Therus Corporation Use of focused ultrasound for vascular sealing
US6626855B1 (en) * 1999-11-26 2003-09-30 Therus Corpoation Controlled high efficiency lesion formation using high intensity ultrasound
CN101194856A (zh) * 2000-12-28 2008-06-11 帕洛玛医疗技术有限公司 用于皮肤的emr治疗处理的方法和装置
US7914453B2 (en) 2000-12-28 2011-03-29 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
JP2002209905A (ja) * 2001-01-22 2002-07-30 Hitachi Medical Corp 超音波治療プローブ及び超音波治療装置
CN1169588C (zh) * 2001-11-05 2004-10-06 北京源德生物医学工程股份有限公司 体外高能聚焦超声波治疗机
US7135033B2 (en) 2002-05-23 2006-11-14 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
WO2003101530A2 (en) * 2002-05-30 2003-12-11 University Of Washington Solid hydrogel coupling for ultrasound imaging and therapy
JP2005535370A (ja) 2002-06-19 2005-11-24 パロマー・メディカル・テクノロジーズ・インコーポレイテッド 皮膚および皮下の症状を治療する方法および装置
CN2581426Y (zh) * 2002-11-25 2003-10-22 上海爱申科技发展股份有限公司 超声聚焦肿瘤消融机水处理装置
AU2003301111A1 (en) * 2002-12-20 2004-07-22 Palomar Medical Technologies, Inc. Apparatus for light treatment of acne and other disorders of follicles
KR20050100404A (ko) * 2003-02-19 2005-10-18 팔로마 메디칼 테크놀로지스, 인코포레이티드 수발 가성모낭염을 치료하기 위한 방법 및 장치
US7303555B2 (en) * 2003-06-30 2007-12-04 Depuy Products, Inc. Imaging and therapeutic procedure for carpal tunnel syndrome
US8419728B2 (en) 2003-06-30 2013-04-16 Depuy Products, Inc. Surgical scalpel and system particularly for use in a transverse carpal ligament surgical procedure
US20070149496A1 (en) * 2003-10-31 2007-06-28 Jack Tuszynski Water-soluble compound
US20080119421A1 (en) * 2003-10-31 2008-05-22 Jack Tuszynski Process for treating a biological organism
US20110040171A1 (en) * 2003-12-16 2011-02-17 University Of Washington Image guided high intensity focused ultrasound treatment of nerves
US20050154309A1 (en) * 2003-12-30 2005-07-14 Liposonix, Inc. Medical device inline degasser
US7857773B2 (en) * 2003-12-30 2010-12-28 Medicis Technologies Corporation Apparatus and methods for the destruction of adipose tissue
KR20060113930A (ko) * 2003-12-30 2006-11-03 리포소닉스 인코포레이티드 지방 조직의 파괴를 위한 시스템 및 장치
US20050185769A1 (en) * 2004-02-25 2005-08-25 Pickerd John J. Calibration method and apparatus
US20070219448A1 (en) * 2004-05-06 2007-09-20 Focus Surgery, Inc. Method and Apparatus for Selective Treatment of Tissue
CN100438941C (zh) * 2004-06-17 2008-12-03 上海交通大学 口腔颌面部恶性肿瘤超声热疗系统
JP2008509777A (ja) * 2004-08-17 2008-04-03 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド 超音波を用いた画像誘導による組織損傷の処置
US9066679B2 (en) 2004-08-31 2015-06-30 University Of Washington Ultrasonic technique for assessing wall vibrations in stenosed blood vessels
US9011336B2 (en) 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
WO2006032059A2 (en) 2004-09-16 2006-03-23 University Of Washington Acoustic coupler using an independent water pillow with circulation for cooling a transducer
US7824348B2 (en) 2004-09-16 2010-11-02 Guided Therapy Systems, L.L.C. System and method for variable depth ultrasound treatment
JP4755186B2 (ja) * 2004-09-16 2011-08-24 ユニヴァーシティ オブ ワシントン ソフトウェアツールを用いた、hifu治療中の無干渉超音波イメージング
US7393325B2 (en) 2004-09-16 2008-07-01 Guided Therapy Systems, L.L.C. Method and system for ultrasound treatment with a multi-directional transducer
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
US10864385B2 (en) 2004-09-24 2020-12-15 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
CN100409813C (zh) * 2004-09-30 2008-08-13 重庆海扶(Hifu)技术有限公司 超声诊断、治疗组合装置
JP5094402B2 (ja) 2004-10-06 2012-12-12 ガイデッド セラピー システムズ, エル.エル.シー. 超音波組織処理ための方法およびシステム
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
US20060111744A1 (en) 2004-10-13 2006-05-25 Guided Therapy Systems, L.L.C. Method and system for treatment of sweat glands
ES2705758T3 (es) * 2004-10-06 2019-03-26 Guided Therapy Systems Llc Sistema para tratamiento térmico controlado de tejido superficial humano
US20120046547A1 (en) * 2004-10-06 2012-02-23 Guided Therapy Systems, Llc System and method for cosmetic treatment
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US8690778B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Energy-based tissue tightening
US11235179B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc Energy based skin gland treatment
US11883688B2 (en) 2004-10-06 2024-01-30 Guided Therapy Systems, Llc Energy based fat reduction
EP2279698A3 (en) 2004-10-06 2014-02-19 Guided Therapy Systems, L.L.C. Method and system for non-invasive cosmetic enhancement of stretch marks
US7758524B2 (en) 2004-10-06 2010-07-20 Guided Therapy Systems, L.L.C. Method and system for ultra-high frequency ultrasound treatment
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US11207548B2 (en) 2004-10-07 2021-12-28 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
CN100542635C (zh) * 2005-01-10 2009-09-23 重庆海扶(Hifu)技术有限公司 高强度聚焦超声治疗装置和方法
CN1814323B (zh) * 2005-01-31 2010-05-12 重庆海扶(Hifu)技术有限公司 一种聚焦超声波治疗系统
CN100563752C (zh) 2005-01-31 2009-12-02 重庆融海超声医学工程研究中心有限公司 Mri引导的超声波治疗装置
US7918795B2 (en) 2005-02-02 2011-04-05 Gynesonics, Inc. Method and device for uterine fibroid treatment
US7856985B2 (en) 2005-04-22 2010-12-28 Cynosure, Inc. Method of treatment body tissue using a non-uniform laser beam
US7571336B2 (en) 2005-04-25 2009-08-04 Guided Therapy Systems, L.L.C. Method and system for enhancing safety with medical peripheral device by monitoring if host computer is AC powered
US8038631B1 (en) 2005-06-01 2011-10-18 Sanghvi Narendra T Laparoscopic HIFU probe
US20070010805A1 (en) * 2005-07-08 2007-01-11 Fedewa Russell J Method and apparatus for the treatment of tissue
US20070066897A1 (en) * 2005-07-13 2007-03-22 Sekins K M Systems and methods for performing acoustic hemostasis of deep bleeding trauma in limbs
US20070049910A1 (en) * 2005-08-08 2007-03-01 Palomar Medical Technologies, Inc. Eye-safe photocosmetic device
US7591996B2 (en) * 2005-08-17 2009-09-22 University Of Washington Ultrasound target vessel occlusion using microbubbles
US7621873B2 (en) * 2005-08-17 2009-11-24 University Of Washington Method and system to synchronize acoustic therapy with ultrasound imaging
US20070073135A1 (en) * 2005-09-13 2007-03-29 Warren Lee Integrated ultrasound imaging and ablation probe
CN101309631A (zh) 2005-09-15 2008-11-19 帕洛玛医疗技术公司 皮肤光学表征设备
WO2007035529A2 (en) 2005-09-16 2007-03-29 University Of Washington Thin-profile therapeutic ultrasound applicators
US8016757B2 (en) * 2005-09-30 2011-09-13 University Of Washington Non-invasive temperature estimation technique for HIFU therapy monitoring using backscattered ultrasound
WO2007047993A2 (en) * 2005-10-20 2007-04-26 Therus Corporation System and methods for sealing a vascular opening
US7766833B2 (en) * 2005-11-23 2010-08-03 General Electric Company Ablation array having independently activated ablation elements
US11259825B2 (en) 2006-01-12 2022-03-01 Gynesonics, Inc. Devices and methods for treatment of tissue
US7874986B2 (en) * 2006-04-20 2011-01-25 Gynesonics, Inc. Methods and devices for visualization and ablation of tissue
US9357977B2 (en) * 2006-01-12 2016-06-07 Gynesonics, Inc. Interventional deployment and imaging system
US7815571B2 (en) * 2006-04-20 2010-10-19 Gynesonics, Inc. Rigid delivery systems having inclined ultrasound and needle
US10058342B2 (en) 2006-01-12 2018-08-28 Gynesonics, Inc. Devices and methods for treatment of tissue
US20070161905A1 (en) * 2006-01-12 2007-07-12 Gynesonics, Inc. Intrauterine ultrasound and method for use
US20070191711A1 (en) * 2006-02-15 2007-08-16 Misonix, Incorporated Liquid processing and handling apparatus and associated method for use in medical procedures
US9107798B2 (en) * 2006-03-09 2015-08-18 Slender Medical Ltd. Method and system for lipolysis and body contouring
WO2008048708A2 (en) * 2006-04-11 2008-04-24 Koninklijke Philips Electronics, N.V. A device for positioning an ultrasound transducer inside a mr scanner
US8206300B2 (en) 2008-08-26 2012-06-26 Gynesonics, Inc. Ablation device with articulated imaging transducer
US10595819B2 (en) 2006-04-20 2020-03-24 Gynesonics, Inc. Ablation device with articulated imaging transducer
US20100056926A1 (en) * 2008-08-26 2010-03-04 Gynesonics, Inc. Ablation device with articulated imaging transducer
US20080015436A1 (en) * 2006-07-13 2008-01-17 Misonix, Incorporated High intensity focused ultrasound method and associated apparatus
JP2008022956A (ja) * 2006-07-19 2008-02-07 Medical Support Co Ltd 超音波腫瘍治療装置
KR100811663B1 (ko) * 2006-07-24 2008-03-11 재단법인서울대학교산학협력재단 공진을 이용한 평면형 애플리케이터의 발산부
US7586957B2 (en) 2006-08-02 2009-09-08 Cynosure, Inc Picosecond laser apparatus and methods for its operation and use
US20080039724A1 (en) * 2006-08-10 2008-02-14 Ralf Seip Ultrasound transducer with improved imaging
CN100574829C (zh) * 2006-08-24 2009-12-30 重庆融海超声医学工程研究中心有限公司 一种影像设备引导的高强度聚焦超声治疗系统
JP2010502254A (ja) * 2006-08-30 2010-01-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 組織の熱処置用装置
US20080097207A1 (en) * 2006-09-12 2008-04-24 Siemens Medical Solutions Usa, Inc. Ultrasound therapy monitoring with diagnostic ultrasound
US9566454B2 (en) 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
US7559905B2 (en) * 2006-09-21 2009-07-14 Focus Surgery, Inc. HIFU probe for treating tissue with in-line degassing of fluid
WO2008062338A1 (en) * 2006-11-20 2008-05-29 Koninklijke Philips Electronics, N.V. Displaying anatomical tree structures
US9782608B2 (en) * 2007-01-05 2017-10-10 Angel Science & Technology (Canada) Inc. High intensity focused ultrasound treatment head and system
PT2152167T (pt) 2007-05-07 2018-12-10 Guided Therapy Systems Llc Métodos e sistemas para acoplamento e focagem de energia acústica utilizando um componente acoplador
US20150174388A1 (en) 2007-05-07 2015-06-25 Guided Therapy Systems, Llc Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue
JP2010526589A (ja) 2007-05-07 2010-08-05 ガイデッド セラピー システムズ, エル.エル.シー. 音響エネルギーを使用してメディカントを調節するための方法およびシステム
US8235902B2 (en) * 2007-09-11 2012-08-07 Focus Surgery, Inc. System and method for tissue change monitoring during HIFU treatment
US8088072B2 (en) 2007-10-12 2012-01-03 Gynesonics, Inc. Methods and systems for controlled deployment of needles in tissue
US20100092424A1 (en) * 2007-11-21 2010-04-15 Sanghvi Narendra T Method of diagnosis and treatment of tumors using high intensity focused ultrasound
US20090216122A1 (en) * 2008-02-22 2009-08-27 Yousry Faragalla Method and apparatus to control therapy of moving objects in living body
US20090287081A1 (en) * 2008-04-29 2009-11-19 Gynesonics , Inc Submucosal fibroid ablation for the treatment of menorrhagia
KR102352609B1 (ko) 2008-06-06 2022-01-18 얼테라, 인크 초음파 치료 시스템
WO2010008834A2 (en) * 2008-06-23 2010-01-21 Angiodynamics, Inc. Treatment devices and methods
WO2010029555A1 (en) * 2008-09-12 2010-03-18 Slender Medical, Ltd. Virtual ultrasonic scissors
JP2012504011A (ja) * 2008-09-30 2012-02-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 超音波療法治療のためのシステム及び方法
KR101032393B1 (ko) * 2008-11-07 2011-05-03 (주)킴스팜 맥섬석을 이용한 소형 오리 훈제 장치
KR101041256B1 (ko) * 2008-11-07 2011-06-14 이혜경 소형 오리 훈제 장치
US20100160781A1 (en) * 2008-12-09 2010-06-24 University Of Washington Doppler and image guided device for negative feedback phased array hifu treatment of vascularized lesions
JP2012513837A (ja) 2008-12-24 2012-06-21 ガイデッド セラピー システムズ, エルエルシー 脂肪減少および/またはセルライト処置のための方法およびシステム
US20100191157A1 (en) * 2009-01-27 2010-07-29 Sanghvi Narendra T Method for treating skin lesions
US8262574B2 (en) 2009-02-27 2012-09-11 Gynesonics, Inc. Needle and tine deployment mechanism
KR101093734B1 (ko) * 2009-05-08 2011-12-19 알피니언메디칼시스템 주식회사 초음파 치료기용 헤드, 초음파 치료기 및 초음파 치료기의 동작 방법
RU2568356C2 (ru) * 2009-06-12 2015-11-20 Конинклейке Филипс Электроникс Н.В. Ультразвуковая терапия с наведением по мр-визуализации
US9919168B2 (en) 2009-07-23 2018-03-20 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
RU2549528C2 (ru) * 2009-09-17 2015-04-27 Конинклейке Филипс Электроникс Н.В. Медицинское ультразвуковое устройство с определением температуры на дистальном конце
US9174065B2 (en) * 2009-10-12 2015-11-03 Kona Medical, Inc. Energetic modulation of nerves
US8517962B2 (en) 2009-10-12 2013-08-27 Kona Medical, Inc. Energetic modulation of nerves
US8986231B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US8295912B2 (en) 2009-10-12 2012-10-23 Kona Medical, Inc. Method and system to inhibit a function of a nerve traveling with an artery
US20110118600A1 (en) 2009-11-16 2011-05-19 Michael Gertner External Autonomic Modulation
US8469904B2 (en) 2009-10-12 2013-06-25 Kona Medical, Inc. Energetic modulation of nerves
US9119951B2 (en) 2009-10-12 2015-09-01 Kona Medical, Inc. Energetic modulation of nerves
US20160059044A1 (en) 2009-10-12 2016-03-03 Kona Medical, Inc. Energy delivery to intraparenchymal regions of the kidney to treat hypertension
US8986211B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US20110092880A1 (en) 2009-10-12 2011-04-21 Michael Gertner Energetic modulation of nerves
WO2011046511A1 (en) * 2009-10-13 2011-04-21 Agency For Science, Technology And Research A method and system for segmenting a liver object in an image
US8715186B2 (en) 2009-11-24 2014-05-06 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US20110184322A1 (en) * 2010-01-22 2011-07-28 Slender Medical Ltd. Method and device for treatment of keloids and hypertrophic scars using focused ultrasound
CN101791452B (zh) * 2010-02-26 2012-05-09 南京海克医疗设备有限公司 宽焦距高强度聚焦超声治疗头
US8956346B2 (en) 2010-05-14 2015-02-17 Rainbow Medical, Ltd. Reflectance-facilitated ultrasound treatment and monitoring
US9242122B2 (en) 2010-05-14 2016-01-26 Liat Tsoref Reflectance-facilitated ultrasound treatment and monitoring
US20120029393A1 (en) * 2010-07-30 2012-02-02 General Electric Company Compact ultrasound transducer assembly and methods of making and using the same
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
US10183182B2 (en) 2010-08-02 2019-01-22 Guided Therapy Systems, Llc Methods and systems for treating plantar fascia
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
WO2012094426A2 (en) 2011-01-04 2012-07-12 Schwartz Alan N Gel-based seals and fixation devices and associated systems and methods
US11045246B1 (en) 2011-01-04 2021-06-29 Alan N. Schwartz Apparatus for effecting feedback of vaginal cavity physiology
US10813553B2 (en) * 2011-03-02 2020-10-27 Diagnostic Photonics, Inc. Handheld optical probe in combination with a fixed-focus fairing
CN102728007B (zh) * 2011-03-29 2015-07-08 重庆微海软件开发有限公司 超声治疗系统的控制系统
JP2014514951A (ja) * 2011-05-18 2014-06-26 コーニンクレッカ フィリップス エヌ ヴェ モジュール式キャビテーション感知素子を持つ球面超音波hifuトランスデューサ
CN102836505A (zh) * 2011-06-15 2012-12-26 黄品同 一种具有超声聚焦定位功能的聚焦超声空化治疗仪
US9452302B2 (en) 2011-07-10 2016-09-27 Guided Therapy Systems, Llc Systems and methods for accelerating healing of implanted material and/or native tissue
EP2731675B1 (en) 2011-07-11 2023-05-03 Guided Therapy Systems, L.L.C. Systems and methods for coupling an ultrasound source to tissue
KR20130020054A (ko) * 2011-08-18 2013-02-27 삼성전자주식회사 초음파 영상 생성 방법 및 그 초음파 시스템
JP6120857B2 (ja) * 2011-09-06 2017-04-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 流体脱気処理中の熱交換
WO2013044166A1 (en) 2011-09-23 2013-03-28 Schwartz Alan N Non-invasive and minimally invasive and tightly targeted minimally invasive therapy methods and devices for parathyroid treatment
WO2013059358A2 (en) 2011-10-17 2013-04-25 Butterfly Network, Inc. Transmissive imaging and related apparatus and methods
US9107737B2 (en) 2011-11-21 2015-08-18 Alan Schwartz Goggles with facial conforming eyepieces
CN102397647A (zh) * 2011-11-24 2012-04-04 何伟宗 超声波结合脱肛药物治疗脱肛的方法及装置
CN102525596B (zh) * 2011-12-31 2014-09-17 重庆海扶医疗科技股份有限公司 超声采集和治疗控制系统及其获取图像的方法
US9707414B2 (en) 2012-02-14 2017-07-18 Rainbow Medical Ltd. Reflectance-facilitated ultrasound treatment and monitoring
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
KR102183581B1 (ko) 2012-04-18 2020-11-27 싸이노슈어, 엘엘씨 피코초 레이저 장치 및 그를 사용한 표적 조직의 치료 방법
WO2013173810A2 (en) 2012-05-17 2013-11-21 Schwartz Alan N Localization of the parathyroid
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
JP6496662B2 (ja) * 2012-10-12 2019-04-03 プロファウンド メディカル インク 磁気共鳴ガイドされた焦点式超音波を使用する加温療法処置のためのマルチ焦点超音波照射
US9770593B2 (en) 2012-11-05 2017-09-26 Pythagoras Medical Ltd. Patient selection using a transluminally-applied electric current
EP2914192B1 (en) 2012-11-05 2019-05-01 Pythagoras Medical Ltd. Controlled tissue ablation
CN102921116B (zh) * 2012-11-12 2016-04-06 上海交通大学 一种磁共振引导的浅表肿瘤超声温热治疗系统
CN113648551A (zh) 2013-03-08 2021-11-16 奥赛拉公司 用于多焦点超声治疗的装置和方法
US10561862B2 (en) 2013-03-15 2020-02-18 Guided Therapy Systems, Llc Ultrasound treatment device and methods of use
WO2014145707A2 (en) 2013-03-15 2014-09-18 Cynosure, Inc. Picosecond optical radiation systems and methods of use
CN103143125B (zh) * 2013-03-25 2015-12-23 广州多浦乐电子科技有限公司 一种高强度聚焦超声治疗仪
US9667889B2 (en) 2013-04-03 2017-05-30 Butterfly Network, Inc. Portable electronic devices with integrated imaging capabilities
CN103230648B (zh) * 2013-04-24 2016-09-14 重庆医科大学 低强度聚焦超声分子显像与治疗系统
KR101467511B1 (ko) * 2013-07-24 2014-12-02 알피니언메디칼시스템 주식회사 고강도 집속 초음파 치료용 보조기구
JP2015204894A (ja) * 2014-04-17 2015-11-19 オリンパス株式会社 超音波治療装置
MX371246B (es) 2014-04-18 2020-01-22 Ulthera Inc Terapia de ultrasonido con transductor de banda.
US10478249B2 (en) 2014-05-07 2019-11-19 Pythagoras Medical Ltd. Controlled tissue ablation techniques
CN104107510B (zh) * 2014-07-31 2017-07-14 重庆海扶医疗科技股份有限公司 高强度聚焦超声治疗系统的运动扫描装置
US10925579B2 (en) 2014-11-05 2021-02-23 Otsuka Medical Devices Co., Ltd. Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery
CN105879211A (zh) * 2015-01-26 2016-08-24 李明德 远场连续型治疗超声波探头
WO2016143921A1 (ko) * 2015-03-11 2016-09-15 알피니언메디칼시스템 주식회사 고강도 집속 초음파 치료헤드
RU2594806C1 (ru) * 2015-04-07 2016-08-20 Валентина Николаевна Федорова Датчик для акустического микросканирования мягких биологических тканей
US10383685B2 (en) 2015-05-07 2019-08-20 Pythagoras Medical Ltd. Techniques for use with nerve tissue
CN105251142B (zh) * 2015-11-13 2019-01-29 浙江大学 高强度聚焦超声肿瘤治疗设备的预防性维护方法
CN105435380B (zh) * 2015-11-13 2018-05-01 浙江大学 基于反向热传导的hifu治疗设备的风险评估方法
US20170157366A1 (en) * 2015-12-03 2017-06-08 Benny Assif Urinary catheters, systems and methods for use during treatment of the prostate
WO2017127328A1 (en) 2016-01-18 2017-07-27 Ulthera, Inc. Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof
EP3457975A2 (en) 2016-05-18 2019-03-27 Pythagoras Medical Ltd. Helical catheter
RU2748788C2 (ru) 2016-08-16 2021-05-31 Ультера, Инк. Системы и способы для косметической ультразвуковой обработки кожи
CA3043314A1 (en) 2016-11-11 2018-05-17 Gynesonics, Inc. Controlled treatment of tissue and dynamic interaction with, and comparison of, tissue and/or treatment data
CN107260217B (zh) * 2017-07-17 2018-07-17 西安交通大学 用于脑部聚焦超声空化实时监控的三维无源成像方法及系统
PL233294B1 (pl) * 2017-09-08 2019-09-30 Inst Podstawowych Problemow Techniki Polskiej Akademii Nauk Bimodalne urządzenie ultradźwiękowe do nieinwazyjnego niszczenia litych guzów nowotworowych u małych zwierząt
WO2019050533A1 (en) * 2017-09-08 2019-03-14 National Health Research Institutes APPARATUS FOR COMBINING AN ULTRASONIC IMAGING PROBE AND A FOCUSED ULTRASONIC PROBE
RU2664597C1 (ru) * 2017-12-12 2018-08-21 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр радиологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ радиологии" Минздрава России) Способ комбинированного лечения больных первично операбельным и местно-распространенным неоперабельным раком молочной железы
US11944849B2 (en) 2018-02-20 2024-04-02 Ulthera, Inc. Systems and methods for combined cosmetic treatment of cellulite with ultrasound
CN112042066A (zh) 2018-02-26 2020-12-04 赛诺秀股份有限公司 调q倾腔亚纳秒激光器
CN108939327A (zh) * 2018-08-20 2018-12-07 安徽声达愈医疗器械有限公司 一种复合型双焦点聚焦超声换能器及使用方法
CN109893785A (zh) * 2019-03-19 2019-06-18 深圳市声科生物医学研究院 一种聚焦超声科研平台
CN110664433A (zh) * 2019-11-13 2020-01-10 上海爱申科技发展股份有限公司 一种用于hifu治疗的b超监视运动机构
US20210222128A1 (en) 2020-01-22 2021-07-22 Massachusetts Institute Of Technology Inducible tissue constructs and uses thereof
US20230095465A1 (en) * 2020-01-23 2023-03-30 Acoustic Medsystems, Inc. Image-guided pulsed volume focused ultrasound
CN111494817B (zh) * 2020-02-26 2022-03-04 南北兄弟药业投资有限公司 一种hifu设备大焦域形成系统及其焦域形成方法
CN111408075B (zh) * 2020-03-23 2022-08-30 南京广慈医疗科技有限公司 一种带测温功能的高强度聚焦超声诊疗系统及其控制方法
WO2021047242A1 (zh) * 2020-06-28 2021-03-18 南通大学 无偏差立体定位仪用校正器
CN111773567A (zh) * 2020-08-17 2020-10-16 杭州福嵩科技有限责任公司 一种高强度聚焦超声-穿刺消融的融合治疗设备
WO2022120807A1 (zh) * 2020-12-11 2022-06-16 深圳先进技术研究院 一种免疫系统调控方法及超声免疫治疗装置
CN112473026A (zh) * 2020-12-11 2021-03-12 深圳先进技术研究院 一种免疫系统调控方法及超声免疫治疗装置
CN115591137A (zh) * 2021-07-09 2023-01-13 四川大学华西医院(Cn) 一种脉冲聚焦超声肝脏再生治疗装置
CN113332620B (zh) * 2021-07-12 2023-03-14 重庆融海超声医学工程研究中心有限公司 一种超声医疗设备
CN114028741A (zh) * 2021-11-16 2022-02-11 上海吾魅科技有限公司 一种结合高强度聚焦超声和浅表成像超声的探头
WO2023134395A1 (zh) * 2022-01-14 2023-07-20 杭州福嵩科技有限责任公司 密封组件、聚焦超声治疗系统及操作方法、超声半干式水囊的组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111386A2 (en) * 1982-10-26 1984-06-20 University Of Aberdeen Ultrasound hyperthermia unit
CN1058539A (zh) * 1990-07-23 1992-02-12 艾达普国际公司 超高速体外超声高温治疗装置
CN1076376A (zh) * 1992-01-21 1993-09-22 艾达普国际公司 瞄准人体组织目标以便进行治疗的方法及装置
EP0734742A2 (en) * 1995-03-31 1996-10-02 Kabushiki Kaisha Toshiba Ultrasound therapeutic apparatus
CN1185982A (zh) * 1996-12-27 1998-07-01 中国科学院声学研究所 医用体外超声治疗机

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3765403A (en) * 1968-05-20 1973-10-16 Holotron Corp Ultrasonic imaging techniques and mammograph equipment
GB1543739A (en) * 1975-05-01 1979-04-04 Australia Dept Of Health Method and apparatus for ultrasonic examination
US4485819A (en) * 1980-01-21 1984-12-04 Wolfgang Igl Mechanical accessory for commercially available compound apparatuses for echo mammography
US5150712A (en) * 1983-12-14 1992-09-29 Edap International, S.A. Apparatus for examining and localizing tumors using ultra sounds, comprising a device for localized hyperthermia treatment
FR2563725B1 (fr) * 1984-05-03 1988-07-15 Dory Jacques Appareil d'examen et de localisation de tumeurs par ultrasons muni d'un dispositif de traitement localise par hyperthermie
FR2619003B1 (fr) * 1987-08-05 1997-06-27 Toshiba Kk Appareil ultrasonore de traitement therapeutique
US4936303A (en) * 1987-11-20 1990-06-26 Ultrathermics Ultrasonic heating apparatus and method
US5054470A (en) * 1988-03-02 1991-10-08 Laboratory Equipment, Corp. Ultrasonic treatment transducer with pressurized acoustic coupling
US4938217A (en) * 1988-06-21 1990-07-03 Massachusetts Institute Of Technology Electronically-controlled variable focus ultrasound hyperthermia system
US4893624A (en) * 1988-06-21 1990-01-16 Massachusetts Institute Of Technology Diffuse focus ultrasound hyperthermia system
US5065761A (en) * 1989-07-12 1991-11-19 Diasonics, Inc. Lithotripsy system
DE4005228A1 (de) * 1990-02-20 1991-08-22 Wolf Gmbh Richard Lithotripsie-einrichtung mit einer anlage zur aufbereitung des akustischen koppelmediums
DE4117638A1 (de) * 1990-05-30 1991-12-05 Toshiba Kawasaki Kk Stosswellengenerator mit einem piezoelektrischen element
WO1993019705A1 (en) * 1992-03-31 1993-10-14 Massachusetts Institute Of Technology Apparatus and method for acoustic heat generation and hyperthermia
JP3860227B2 (ja) * 1993-03-10 2006-12-20 株式会社東芝 Mriガイド下で用いる超音波治療装置
US5549638A (en) * 1994-05-17 1996-08-27 Burdette; Everette C. Ultrasound device for use in a thermotherapy apparatus
US5520188A (en) * 1994-11-02 1996-05-28 Focus Surgery Inc. Annular array transducer
DE19507478C1 (de) * 1995-03-03 1996-05-15 Siemens Ag Therapiegerät zur Behandlung mit fokussiertem Ultraschall
US5769790A (en) * 1996-10-25 1998-06-23 General Electric Company Focused ultrasound surgery system guided by ultrasound imaging
US6042556A (en) * 1998-09-04 2000-03-28 University Of Washington Method for determining phase advancement of transducer elements in high intensity focused ultrasound
US6425867B1 (en) * 1998-09-18 2002-07-30 University Of Washington Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111386A2 (en) * 1982-10-26 1984-06-20 University Of Aberdeen Ultrasound hyperthermia unit
CN1058539A (zh) * 1990-07-23 1992-02-12 艾达普国际公司 超高速体外超声高温治疗装置
CN1076376A (zh) * 1992-01-21 1993-09-22 艾达普国际公司 瞄准人体组织目标以便进行治疗的方法及装置
EP0734742A2 (en) * 1995-03-31 1996-10-02 Kabushiki Kaisha Toshiba Ultrasound therapeutic apparatus
CN1185982A (zh) * 1996-12-27 1998-07-01 中国科学院声学研究所 医用体外超声治疗机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1050322A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9144693B2 (en) 2007-06-25 2015-09-29 International Cardio Corporation Image guided plaque ablation
US9630030B2 (en) 2007-06-25 2017-04-25 International Cardio Corporation Image guided plaque ablation
US8942781B2 (en) 2008-04-09 2015-01-27 Universite Pierre Et Marie Curie (Paris 6) Medical system comprising a percutaneous probe
RU211368U1 (ru) * 2021-11-08 2022-06-01 Общество с ограниченной ответственностью "Медуза" Устройство обеспечения акустического контакта излучателя hifu с объектом абляции
RU2781675C1 (ru) * 2021-12-24 2022-10-17 Федеральное государственное учреждение "Федеральный исследовательский центр "Информатика и управление" Российской академии наук" (ФИЦ ИУ РАН) Способ определения размера структурных образований при ультразвуковой визуализации

Also Published As

Publication number Publication date
AU1659499A (en) 1999-08-09
CN1215616A (zh) 1999-05-05
CA2326703A1 (en) 1999-07-29
JP3505512B2 (ja) 2004-03-08
US6685639B1 (en) 2004-02-03
KR100505823B1 (ko) 2005-08-04
JP2002500939A (ja) 2002-01-15
CA2326703C (en) 2002-12-10
RU2210409C2 (ru) 2003-08-20
KR20010040408A (ko) 2001-05-15
EP1050322A1 (en) 2000-11-08
CN1058905C (zh) 2000-11-29
EP1050322A4 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
WO1999037364A1 (fr) Systeme de traitement de tumeurs par balayage par ultrasons focalises a haute intensite
US7828734B2 (en) Device for ultrasound monitored tissue treatment
US20180071554A1 (en) Reflective ultrasound technology for dermatological treatments
US5643179A (en) Method and apparatus for ultrasonic medical treatment with optimum ultrasonic irradiation control
JP3860227B2 (ja) Mriガイド下で用いる超音波治療装置
US9107798B2 (en) Method and system for lipolysis and body contouring
US20090048514A1 (en) Device for ultrasound monitored tissue treatment
JP4322322B2 (ja) 超音波治療装置
US20170080258A1 (en) Systems and Methods for Ultrasound Treatment
JPH05300910A (ja) 超音波治療装置
WO2008025190A1 (fr) Système thérapeutique à ultrasons focalisés de haute intensité guidé par un dispositif d'imagerie
CN113041522B (zh) 超声波理疗系统
CN108904038A (zh) 一种聚焦超声治疗系统及其控制方法
JP4283330B2 (ja) 超音波治療装置
JP2004130145A (ja) 超音波治療装置
JP2007175509A (ja) 超音波治療装置
CN209059413U (zh) 一种聚焦超声治疗系统
JP3914199B2 (ja) 超音波治療装置
JP3369504B2 (ja) 超音波治療装置
AU2003200533B2 (en) A High Intensity Focused Ultrasound System for Scanning and Curing Tumors
Häcker et al. High-intensity focused ultrasound for ex vivo kidney tissue ablation: influence of generator power and pulse duration
CN114712736A (zh) 聚焦超声治疗系统及其使用方法
JPS61154665A (ja) 温熱治療装置
CN113101551A (zh) 用于乳腺肿瘤的超声治疗探头及包括其的装置
Vernon et al. Scanned focused ultrasound hyperthermia using the Sonotherm 6500 system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 16594/99

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2326703

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2326703

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1998960989

Country of ref document: EP

Ref document number: 1020007008118

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09600854

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998960989

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020007008118

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020007008118

Country of ref document: KR