WO1999031689A1 - Microsysteme a element deformable sous l'effet d'un actionneur thermique - Google Patents

Microsysteme a element deformable sous l'effet d'un actionneur thermique Download PDF

Info

Publication number
WO1999031689A1
WO1999031689A1 PCT/FR1998/002719 FR9802719W WO9931689A1 WO 1999031689 A1 WO1999031689 A1 WO 1999031689A1 FR 9802719 W FR9802719 W FR 9802719W WO 9931689 A1 WO9931689 A1 WO 9931689A1
Authority
WO
WIPO (PCT)
Prior art keywords
deformable element
layer
substrate
sacrificial
mass
Prior art date
Application number
PCT/FR1998/002719
Other languages
English (en)
Inventor
Yves Fouillet
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to US09/554,272 priority Critical patent/US6812820B1/en
Priority to JP2000539496A priority patent/JP2002509332A/ja
Priority to DE69804352T priority patent/DE69804352T2/de
Priority to EP98959979A priority patent/EP1040492B1/fr
Publication of WO1999031689A1 publication Critical patent/WO1999031689A1/fr
Priority to US10/949,800 priority patent/US7356913B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0024Transducers for transforming thermal into mechanical energy or vice versa, e.g. thermal or bimorph actuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/01Switches
    • B81B2201/012Switches characterised by the shape
    • B81B2201/016Switches characterised by the shape having a bridge fixed on two ends and connected to one or more dimples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/032Bimorph and unimorph actuators, e.g. piezo and thermo
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • H01H2001/0042Bistable switches, i.e. having two stable positions requiring only actuating energy for switching between them, e.g. with snap membrane or by permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H2037/008Micromechanical switches operated thermally
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49105Switch making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49128Assembling formed circuit to base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Definitions

  • the present invention relates to a microsystem with a deformable element under the effect of a thermal actuator.
  • a microsystem with a deformable element under the effect of a thermal actuator mention may be made of micro-switches intended for opening or closing an electrical circuit and micro-valves intended for icrofluidic applications.
  • microsystems include an element, in the form of a beam or membrane, deformable under the effect of heat.
  • a strongly nonlinear behavior is sought in order to obtain a rapid switching between two states, an open state and a closed state.
  • microsystems must be able to be designed to be possibly compatible with the production of micro-electronic components.
  • micro-actuators used to cause the deformation of the deformable element of the microsystem can classify according to three main categories according to the principles used. First there are the thermal actuators which use the thermal expansion of one or more constituent elements. Then there are the electrostatic actuators which use the electrostatic force generated between two elements of different charges. Finally, there are magnetic actuators which use forces induced by a magnetic field. However, there are also actuators using piezoelectric and magnetostrictive materials.
  • Thermal actuators seem the most interesting because they generally allow larger deformations than electrostatic actuators while magnetic actuators, or those using piezoelectric or magnetostrictive materials, are generally difficult to implement by conventional micromachining processes, especially for projects requiring technological compatibility with microelectronics.
  • a thermal actuator it is easy to generalize the use of a micro-switch controlled by a thermal micro-switch (change of state from a critical temperature), or a micro-circuit breaker ( change of state from a critical current intensity).
  • the simplest way to make a thermal actuator is to use a bimetallic strip.
  • the latter consists of two layers of materials having different coefficients of thermal expansion so that a variation in temperature of the assembly causes deflection of the bimetallic strip.
  • the temperature rise is obtained by the Joule effect by passing either an electric current directly in one of the two layers constituting the bimetallic strip, or by passing an electric current through resistors formed on one of these layers and obtained, for example, by implantation if one of the layers is made of silicon.
  • FIG. 1 shows the deformation, under the effect of a thermal stress of a free bimetallic strip, that is to say at the ends not fixed but simply supported, consisting of a layer 1 and a layer 2 having different coefficients of thermal expansion.
  • the dashed line shows the average position of the bimetallic strip in the absence of a thermal stress.
  • the theory shows that, in this case, the radius of curvature p is uniform. It is negative if the coefficient of expansion of layer 2 is greater than that of layer 1.
  • the deformable structure is embedded at its ends, it is preferable, because of the shape of the deformed shape, to locate the bimetallic strip in the areas where the expansion effect acts in the direction of the curvature. Depending on the location of the bimetallic strip, an increase in temperature can deflect the structure in one direction or the other.
  • Figure 2 shows a first bimetal structure of this kind. It comprises a first layer 3 and a second layer 4 formed by two portions.
  • the dashed line indicates the average position of the bimetallic strip in the absence of a thermal stress.
  • the coefficient of thermal expansion of layer 4 being greater than that of layer 3, the deformation of the bimetal structure under the effect of expansion takes place in the direction indicated in FIG. 2.
  • Figure 3 shows a second bimetal structure embedded at its ends. It comprises a first layer 5, which is effectively embedded, and a second layer 6 which is located on the central part of the layer 5.
  • the dashed line indicates the average position of the bimetallic strip in the absence of thermal stress.
  • the coefficient of thermal expansion of layer 6 being greater than that of layer 5, the deformation of the bimetal structure under the effect of expansion is in the direction indicated in Figure 3.
  • FIG. 4 shows a recessed membrane 7, located in the rest position according to the mixed line and in the deformed position according to the solid line.
  • the thermal expansion has the effect of putting the structure in compression.
  • the theory of beams or membranes shows that there is a critical compression stress (therefore a temperature) beyond which the structure is in buckling.
  • the article "Buckled Membranes for Microstructures" by DSffy et al., Published in the journal IEEE, pages 188-192 (1994) describes such a structure under compression.
  • the critical compressive stress is given by the relation:
  • A is 2.298 h.
  • One of the drawbacks of this method lies in the indeterminacy of the sign of f. As shown in Figure 4, the membrane 7 can very well deform in the opposite direction and take the position indicated by the broken line. It is also noted from relation (2) that it is difficult to obtain large amplitudes of displacement for structures produced by surface technologies, that is to say in thin layers.
  • the recessed bimetallic strip was studied in the article "Analysis of Mi-metal Thermostats" by TIMOSHENKO published in the journal Journal of the Optical Society of America, vol. 11, pages 233-255, 1925. This article gives in particular a theoretical study of the structure represented in FIG. 5.
  • the deformable structure is a beam 10 made up of a bimetallic strip, the ends of which are retained by two fixed supports 11 and 12. Retention of the ends removes the degrees of freedom in translation but leaves free the degree of freedom in rotation along an axis perpendicular to the plane of the figure.
  • the beam shown in solid lines in FIG. 5, exhibits an initial deformation in an arc of circle of radius p Q. When the temperature increases, the following effects occur:
  • the first and third effects favor the buckling of the structure, which causes the beam to tilt from a critical temperature.
  • the beam then takes the position indicated in broken lines in FIG. 5.
  • a microsystem is proposed whose deformable element (beam or membrane) is, at rest, naturally deflected, this initial deflection not being of the buckling type.
  • the deformable element therefore has a non-planar shape, predefined by construction.
  • This deformable element is embedded and the deformation caused by a thermal actuator results from a bimetallic strip effect and from a buckling phenomenon induced by thermal expansion. In the rest state, the embedding does not exert any constraint on the deformable element.
  • the subject of the invention is therefore a microsystem formed on a substrate and used to obtain a changeover between a first operating state and a second operating state by means of a thermal actuator with bimetallic strip effect, said actuator comprising a deformable element attached, by opposite ends, to the substrate so as to naturally present a deflection without constraint with respect to a surface of the substrate which is opposite to it, this natural deflection determining said first operating state, said second operating state being caused by said thermal actuator which induces, under the effect of a temperature variation, a deformation of the deformable element tending to reduce its deflection and subjecting it to a compressive stress which causes it to tilt by buckling effect in a direction opposite to its natural deflection.
  • the thermal command caused by the actuator is removed, the microsystem returns to its first operating state.
  • the first operating state may correspond to a position of the deformable element furthest from said surface of the substrate, said second operating state corresponding to a position of the deformable element closest to said surface of the substrate.
  • the opposite situation is also possible.
  • the central part of the deformable element may be thicker than its peripheral part.
  • the invention also relates to a microswitch consisting of a microsystem as defined above, a system of electrodes being provided in the microsystem, on the surface of the substrate and on the deformable element, so as to present an electrical continuity between electrodes in one of said operating states and an absence of electrical continuity in the other of said operating states.
  • the invention also relates to a micro-valve made up of a microsystem as defined above, a fluid communication orifice being provided in the microsystem so as to be closed in one of said operating states and open in the other of said operating states.
  • the subject of the invention is also a method of manufacturing a microsystem as defined above, characterized in that:
  • the deformable element is obtained by depositing a layer of suitable material on said surface of the substrate, the layer being integral with said surface with the exception of a portion forming a vault above said surface and constituting the element deformable,
  • the arch portion is obtained by prior deposition, on said surface of the substrate, of a sacrificial mass intended to give a defined shape to said deformable element once the sacrificial mass has been sacrificed, the sacrificial mass being provided so that, at the end of the process, said deformable element naturally has a deflection without stress relative to said surface of the substrate.
  • the method comprises the following successive steps:
  • the mass of material liable to creep can be obtained by depositing a layer of photosensitive resin on the layer of sacrificial material and by etching this layer of photosensitive resin in order to keep only said mass of material capable of creep.
  • the method comprises the following successive steps: - obtaining on said surface of the substrate a sacrificial mass, with a stepped profile, and of shape substantially complementary to the vaulted shape desired for the deformable element, - deposition of the layer intended to provide the deformable element,
  • the sacrificial mass can be obtained by depositing on said surface of the substrate a layer of sacrificial material and successive etchings of this layer of sacrificial material until reaching the surface of the substrate except for the location of the deformable element where the engravings leave said sacrificial mass.
  • the method comprises the following successive steps: - obtaining on said surface of the substrate a mass of sacrificial material of uniform thickness at the location of the deformable element,
  • the sacrificial mass can be obtained by depositing on said surface of the substrate a layer of sacrificial material and etching this layer of sacrificial material.
  • FIGS. 1 to 5 already described, show devices with a deformable element under the effect of a thermal actuator
  • FIGS. 6A to 6H are illustrative of a first variant of a method for manufacturing a microsystem with a deformable element under the effect of a thermal actuator according to the present invention
  • FIGS. 7A to 7D are illustrative of a second variant of a method for manufacturing a microsystem with a deformable element under the effect of a thermal actuator according to the present invention
  • FIGS. 8A to 8D are illustrative of a third variant of a method for manufacturing a microsystem with a deformable element under the effect of a thermal actuator according to the present invention
  • FIG. 9 represents, seen in section, a microswitch according to the present invention in the open state
  • FIG. 10 represents, seen in section, another microswitch according to the present invention in the closed state
  • FIG. 11 shows, seen in section, yet another microswitch according to the present invention in the open state
  • - Figure 12 shows, seen in section, a micro-valve according to the present invention in the open state.
  • the structures obtained by microtechnology processes have a plane geometry, so the production of naturally deflected beams or membranes requires special attention.
  • the methods which will now be described use the deposition of the deformable element on a layer, called the sacrificial layer, which is eliminated at the end of the process. It is thus possible to have a deformable element, beam or membrane, made of Si 3 N 4 using a sacrificial layer of tungsten.
  • a first variant of the method according to the invention makes it possible to obtain a microsystem with a deformable element (beam or membrane) which is not planar and not stressed.
  • a deformable element beam or membrane
  • a sacrificial layer 21 for example made of tungsten
  • a layer of photosensitive resin 22 (FIG. 6A)
  • the resin layer is etched to leave only one mass of resin 23, the area of which is determined by the deformable element desired (FIG. 6B).
  • the photosensitive resin is caused to creep.
  • a mass 24 is obtained, the shape of which is complementary to the arch shape desired for the deformable element (FIG. 6C).
  • FIG. 6D shows a first etching step where the sacrificial layer 21 is etched over part of its thickness at the places where this layer is not masked by the mass 24 of resin.
  • FIG. 6E shows a second etching step where the mass 24 of resin has been eliminated, for example by reactive ion etching.
  • the sacrificial layer was simultaneously etched by reproducing the shape of the mass 24 of FIG. 6D. A mass 25 of sacrificial material is obtained.
  • the sacrificial mass could be obtained directly as shown in FIG. 6E by using an organic material (for example a polyimide) provided that this material can creep while supporting without degradation the stages of manufacture of the deformable element.
  • an organic material for example a polyimide
  • the surface of the substrate 20 supporting the sacrificial mass 25 is then covered first with a layer 26, for example made of Si 3 N 4 or silicon, then with a layer 27 made of a conductive material such as aluminum, gold, nickel (see Figure 6F).
  • a layer 26 for example made of Si 3 N 4 or silicon
  • a layer 27 made of a conductive material such as aluminum, gold, nickel (see Figure 6F).
  • the materials of layers 25 and 26 must have different coefficients of thermal expansion while remaining compatible with the later stage of release of the deformable element.
  • the layer 27 is then etched (see FIG. 6G) to delimit therein parts 28 of the thermal actuator.
  • Layer 26 is also etched. This etching is determined according to the shape which it is desired to give to the deformable element (beam or membrane). It also makes it possible to open the deformable element in order to allow the elimination of the sacrificial mass 25.
  • the microsystem illustrated in FIG. 6H is then obtained, having a deformable element 29 which is naturally deflected relative to the surface of the substrate 20.
  • FIGS. 7A to 7D A second variant of the method according to the invention, illustrated by FIGS. 7A to 7D, also makes it possible to obtain a microsystem with a non-planar and unstrained deformable element.
  • a sacrificial layer 31 is deposited (see FIG. 7A). This sacrificial layer is etched several times and with as many masks until a sacrificial mass 32 is obtained, with a stepped profile, and of shape substantially complementary to the arch shape desired for the deformable element.
  • the surface of the substrate is apparent (see FIG. 7B).
  • a layer 33 and a layer 34 intended to constitute the deformable element and the thermal actuator.
  • the layer 34 is etched to obtain parts 35.
  • the layer 33 is etched according to the shape which it is desired to give to the deformable element and to open this deformable element in order to allow elimination of the sacrificial mass 32.
  • the microsystem illustrated in FIG. 7D is obtained, having a deformable element 36 which is naturally deflected relative to the surface of the substrate 30.
  • the materials used can be the same as above.
  • FIGS. 8A to 8D A third variant of the method according to the invention, illustrated by FIGS. 8A to 8D, makes it possible to obtain a microsystem with a flat and prestressed deformable element in which a difference in temperature will be played during the shaping of the two constituent parts. the bimetallic strip.
  • a sacrificial layer is deposited which is etched to obtain a mass 41 of uniform thickness at the location of the future deformable element (see FIG. 8A).
  • a layer 42 is then deposited, for example made of Si0 2 or Si 3 N 4 , which covers the sacrificial mass 41 and the apparent surface of the substrate.
  • a part 43 of the layer 42 is thus obtained, which is rectilinear above the sacrificial mass 41 and naturally constrained
  • a second layer 44 is then deposited intended to complete the bimetallic strip. This layer 44 is deposited at a temperature higher than room temperature, which will lead, at the end of the process, to a natural deflection of the deformable element.
  • the layer 44 is etched to obtain parts 45 (see FIG. 8C).
  • the layer 42 is etched according to the shape which it is desired to give to the deformable element and to open this deformable element in order to allow the elimination of the sacrificial mass 41.
  • the microsystem illustrated by the figure is obtained 8D where the deformable element 43 is naturally deflected relative to the surface of the substrate 40.
  • the value of the prestress in the layer 42 must be adjusted to obtain buckling only when the bimetallic structure is activated.
  • the deformable element may consist of a Si 3 N 4 beam 1 ⁇ m thick and 200 ⁇ m long.
  • the initial deflection (at room temperature) of the beam can be 2 ⁇ m.
  • the rest of the bimetallic structure can be made of aluminum and be 1 ⁇ m thick.
  • the structure switches for a temperature variation between 100 and 120 ° C.
  • the amplitude obtained is of the order of 5 ⁇ m while for a temperature variation ranging from 0 to 100 ° C. the deflection is less than 1 ⁇ m.
  • FIG. 9 represents a microswitch formed on a substrate 50.
  • the bimetal strip consists of a deformable element 51, for example in the form of a beam, and of two parts 52.
  • electrodes 53 , 54 and 55 have been planned.
  • the electrodes 53 and 54 were produced before the deposition of the sacrificial mass.
  • the electrode 55 is produced on the sacrificial mass, before the deposition of the layers of the bimetallic strip.
  • the microswitch was formed on a substrate 60.
  • the bimetallic strip consists of a deformable element 61 (beam or membrane) and a part 62.
  • the electrodes 63 and 64 were produced before the sacrificial mass was deposited.
  • the electrode 65 is produced on the sacrificial mass, before the deposition of the layers of the bimetallic strip.
  • the normally closed state for the microswitch is obtained by using the third variant of the method according to the invention and by centering the part 62 on the deformable element 61. It is understood that when the bimetallic strip of Figures 9 and 10 switches, there is a transition from a given operating state to another operating state. Thus, for FIG.
  • FIG. 11 This figure represents a normally open micro-switch, formed on a substrate 70 supporting electrodes 74 and 75.
  • the deformable element 71 is formed by a thick layer, locally thinned in order to stiffen the central part 72, which is therefore thicker, at the level of the electrode 73 supported by this central part. This also makes it possible to limit the influence of thermal expansion induced by the electrode 73.
  • the contact zones between the electrode 73 and the electrodes 74 and 75 can also be advantageous to locate the contact zones between the electrode 73 and the electrodes 74 and 75. This can be obtained by a planarization step of the layer sacrificial or, as shown in Figure 11, by making offsets 76 obtained by photolithography of the sacrificial layer.
  • the parts 80 may comprise a first layer 81 adjacent to the deformable and resistivity element high (eg TiN), serving as a heating element.
  • a second layer 82 superimposed on layer 81, having a high coefficient of expansion, has a thermomechanical role.
  • Layer 82 can be made of aluminum. Depending on the materials used, it may be necessary to isolate layers 81 and 82 with a thin passivation layer 83.
  • FIG. 12 represents, seen in section, a microvalve constituted on a substrate 90 pierced with a hole 91 making communicate two opposite faces of the substrate.
  • the micro-valve has a bimetallic structure comprising a deformable element 92 and one or more parts 93. Depending on the temperature induced in the bimetallic strip, the deformable element closes or opens the hole 91.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Micromachines (AREA)
  • Thermally Actuated Switches (AREA)

Abstract

L'invention concerne un microsystème, utilisable notamment pour réaliser des micro-rupteurs ou des micro-valves, constitué sur un substrat (50) et servant à obtenir un basculement entre un premier état de fonctionnement et un deuxième état de fonctionnement grâce à un actionneur thermique à effet bilame. L'actionneur comprend un élément déformable (51) rattaché, par des extrémités opposées, au substrat (50) de façon à présenter naturellement une déflexion sans contrainte par rapport à une surface du substrat qui lui est opposée, cette déflexion naturelle déterminant le premier état de fonctionnement, le deuxième état de fonctionnement étant provoqué par l'actionneur thermique qui induit, sous l'effet d'une variation de température, une déformation de l'élément déformable (51) tendant à diminuer sa déflexion et le soumettant à une contrainte de compression qui entraîne son basculement par effet de flambage dans une direction opposée à sa déflexion naturelle.

Description

MICROSYSTEME A ELEMENT DEFORMABLE SOUS L'EFFET D'UN
ACTIONNEUR THERMIQUE
Domaine technique
La présente invention concerne un microsystème à élément deformable sous l'effet d'un actionneur thermique. Parmi les applications de tels microsystèmes on peut citer les micro-rupteurs destinés à ouvrir ou à fermer un circuit électrique et les micro-valves destinées à des applications icrofluidiques .
Ces microsystèmes comportent un élément, en forme de poutre ou de membrane, deformable sous l'effet de la chaleur. Un comportement fortement non linéaire est recherché afin d'obtenir un basculement rapide entre deux états, un état ouvert et un état fermé.
Ces microsystèmes doivent pouvoir être conçus pour être éventuellement compatibles avec la réalisation de composants micro-électroniques.
Etat de la technique antérieure
On peut classer les micro-actionneurs utilisés pour provoquer la déformation de l'élément deformable du microsystème selon trois catégories principales en fonction des principes mis en oeuvre. On trouve d'abord les actionneurs thermiques qui utilisent la dilatation thermique d'un ou de plusieurs éléments constitutifs. On trouve ensuite les actionneurs électrostatiques qui utilisent la force électrostatique générée entre deux éléments de charges différentes. On trouve enfin les actionneurs magnétiques qui utilisent des forces induites par un champ magnétique. Il existe cependant aussi des actionneurs utilisant des matériaux piézoélectriques et magnétostrictifs .
Les actionneurs thermiques semblent les plus intéressants car ils permettent généralement de plus grandes déformations que les actionneurs électrostatiques tandis que les actionneurs magnétiques, ou ceux utilisant des matériaux piézoélectriques ou magnétostrictifs, sont généralement difficiles à mettre en oeuvre par les procédés classiques du micro-usinage, notamment pour les réalisations nécessitant la compatibilité technologique avec la micro-électronique. De plus, avec un actionneur thermique, il est facile de généraliser l'utilisation d'un micro-rupteur commandé à un micro-rupteur thermique (changement d'état à partir d'une température critique), ou à un micro-disjoncteur (changement d'état à partir d'une intensité de courant critique) .
La manière la plus simple pour réaliser un actionneur thermique est d'utiliser un bilame. Ce dernier est constitué de deux couches de matériaux ayant des coefficients de dilatation thermique différents de manière qu'une variation de température de l'ensemble entraine une déflexion du bilame. L'élévation de température est obtenue par effet Joule en faisant passer soit directement un courant électrique dans l'une des deux couches constituant le bilame, soit en faisant passer un courant électrique dans des résistances formées sur l'une de ces couches et obtenues, par exemple, par implantation si l'une des couches est en silicium.
La déformation d'un bilame dépend de son type de fixation sur son support. La figure 1 montre la déformation, sous l'effet d'une contrainte thermique d'un bilame libre, c'est-à-dire aux extrémités non fixées mais simplement supportées, constitué d'une couche 1 et d'une couche 2 présentant des coefficients de dilatation thermique différents. Le trait mixte montre la position moyenne du bilame en l'absence d'une contrainte thermique. La théorie montre que, dans ce cas, le rayon de courbure p est uniforme. Il est négatif si le coefficient de dilatation de la couche 2 est plus grand que celui de la couche 1.
Si la structure deformable est encastrée à ses extrémités, il est préférable, en raison de l'allure de la déformée de localiser le bilame dans les zones ou l'effet de dilatation agit dans le sens de la courbure. Suivant la localisation du bilame, une augmentation de température peut défléchir la structure dans un sens ou dans l'autre sens.
La figure 2 montre une première structure bilame de cette sorte. Elle comprend une première couche 3 et une deuxième couche 4 formée de deux portions. Le trait mixte indique la position moyenne du bilame en l'absence d'une contrainte thermique. Le coefficient de dilatation thermique de la couche 4 étant plus grand que celui de la couche 3, la déformation de la structure bilame sous l'effet d'une dilatation se fait dans le sens indiqué sur la figure 2.
La figure 3 montre une deuxième structure bilame encastrée à ses extrémités. Elle comprend une première couche 5, qui est effectivement encastrée, et une deuxième couche 6 qui est située sur la partie centrale de la couche 5. Le trait mixte indique la position moyenne du bilame en l'absence d'une contrainte thermique. Le coefficient de dilatation thermique de la couche 6 étant plus grand que celui de la couche 5, la déformation de la structure bilame sous l'effet d'une dilatation se fait dans le sens indiqué sur la figure 3.
On montre aussi que l'amplitude f de la déformée est proportionnelle à la température et donc que la déformée dépend de la température ambiante. Il est possible cependant de trouver des configurations de structure permettant d'obtenir que la déformée reste indépendante de la température ambiante.
Cependant, en raison des mécanismes complexes mis en jeu lors de l'ouverture et de la fermeture d'un circuit électrique (phénomènes d'arc électrique, de rebond, etc.), il est préférable de rechercher des systèmes pour lesquels le changement d'état (le passage de l'état d'ouverture du circuit à son état de fermeture) soit le plus rapide possible. L'idéal serait de concevoir des systèmes ayant une température critique au delà de laquelle on change d'état d'équilibre mécanique. Ceci ne peut cependant pas être obtenu simplement par un bilame. Le brevet US-A-5 463 233 divulgue un interrupteur thermique micro-usiné combinant un bilame et un actionneur électrostatique. En l'absence de déformation du bilame, la force électrostatique est faible, le bilame est en équilibre entre la force électrostatique et la force de rappel mécanique de la structure. Quand la température augmente, l'effet bilame rapproche les électrodes de l'actionneur jusqu'à ce que la force électrostatique devienne suffisamment forte pour vaincre la force de rappel mécanique et provoquer ainsi le basculement instantané de la structure.
Une autre manière de générer un déplacement par changement de température consiste à chauffer une poutre ou une membrane encastrée. Le figure 4 montre une membrane 7 encastrée, située en position de repos selon le trait mixte et en position déformée selon le trait plein. La dilatation thermique a pour effet de mettre la structure en compression. La théorie des poutres ou des membranes montre qu'il existe une contrainte de compression (donc une température) critique au delà de laquelle la structure est en flambage. L'article "Buckled Membranes for Microstructures" de D.S. Popescu et al., paru dans la revue IEEE, pages 188-192 (1994), décrit une telle structure mise en compression. Dans le cas d'une poutre d'épaisseur h, de longueur L, réalisée avec un matériau ayant un coefficient de dilatation α, la contrainte de compression critique est donnée par la relation :
ff„ = -A (i,
3αL
La théorie montre aussi que l'amplitude f de la déformée de la structure est donnée par la relation :
Figure imgf000007_0001
Dans le cas d'une membrane carrée, A vaut 2,298 h. L'un des inconvénients de cette méthode réside dans l'indétermination du signe de f. Comme le montre la figure 4, la membrane 7 peut très bien se déformer dans le sens opposé et prendre la position indiquée par la ligne de trait interrompu. On constate aussi d'après la relation (2) qu'il est difficile d'obtenir de grandes amplitudes de déplacement pour des structures réalisées par des technologies de surface, c'est-à-dire en couches minces.
Une autre solution dérivée de la précédente consiste à utiliser une membrane naturellement en flambage. Ceci est par exemple obtenu en utilisant des membranes en oxyde de silicium. Le système a donc deux positions stables f = + A ou S est la
Figure imgf000008_0001
contrainte interne et Scr est la contrainte critique de flambage. Pour basculer d'une position à une autre il est nécessaire d'ajouter une action mécanique supplémentaire. Dans l'article cité plus haut de D.S. Popescu et al., cette action mécanique supplémentaire est constituée par un champ de pression sur la membrane.
Le bilame encastré a été étudié dans l'article "Analysis of Mi-metal Thermostats" de TIMOSHENKO paru dans la revue Journal of the Optical Society of America, vol. 11, pages 233-255, 1925. Cet article donne notamment une étude théorique de la structure représentée à la figure 5. La structure deformable est une poutre 10 constituée d'un bilame dont les extrémités sont retenues par deux supports fixes 11 et 12. La rétention des extrémités supprime les degrés de liberté en translation mais laisse libre le degré de liberté en rotation suivant un axe perpendiculaire au plan de la figure. Au repos, c'est-à-dire à une température telle qu'il n'y a pas de contrainte thermique dues à l'effet bilame, la poutre, représentée en traits pleins sur la figure 5, présente une déformée initiale en arc de cercle de rayon pQ. Lorsque la température augmente, les effets suivants se produisent :
- 1er effet : la dilatation thermique longitudinale de la poutre étant bloquée par les supports 11 et 12, la poutre est soumise à une contrainte de compression.
- 2ème effet : le bilame est réalisé de manière qu'une augmentation de la température entraîne une augmentation de la courbure. Ceci se traduit par une déflexion de la poutre vers le bas sur la figure 5,
- 3ème effet : en raison de l'effet précédent, la longueur de la poutre diminue. Ceci induit une contrainte interne supplémentaire de compression dans la poutre.
Les premier et troisième effets favorisent le flambage de la structure, ce qui provoque le basculement de la poutre à partir d'une température critique. La poutre prend alors la position indiquée en traits interrompus sur la figure 5.
Les systèmes de l'art antérieur étudiés ci-dessus présentent des caractéristiques telles qu'ils ne permettent pas d'obtenir un micro-actionneur pour défléchir une membrane ou une poutre en utilisant les effets de dilatation thermique avec les avantages suivants :
- une non-linéarité entre température et déflexion de manière à avoir un changement brutal (basculement et notion de température critique) avec une amplitude importante ;
- pas d'autre actionneur que celui procurant l'effet de dilatation thermique ;
- l'utilisation d'une technique de réalisation en couche mince, ce qui oblige à avoir des encastrements rigides pour l'élément deformable.
Exposé de l'invention
Pour remédier aux inconvénients cités ci-dessus, on propose un microsystème dont l'élément deformable (poutre ou membrane) est, au repos, naturellement défléchie, cette déflexion initiale n'étant pas du type flambage. L'élément deformable présente donc une forme non plane, prédéfinie par construction. Cet élément deformable est encastré et la déformation provoquée par un actionneur thermique résulte d'un effet bilame et d'un phénomène de flambage induit par la dilatation thermique. A l'état de repos, l'encastrement n'exerce pas de contrainte sur l'élément deformable .
L'invention a donc pour objet un microsystème constitué sur un substrat et servant à obtenir un basculement entre un premier état de fonctionnement et un deuxième état de fonctionnement grâce à un actionneur thermique à effet bilame, ledit actionneur comprenant un élément deformable rattaché, par des extrémités opposées, au substrat de façon à présenter naturellement une déflexion sans contrainte par rapport à une surface du substrat qui lui est opposée, cette déflexion naturelle déterminant ledit premier état de fonctionnement, ledit deuxième état de fonctionnement étant provoqué par ledit actionneur thermique qui induit, sous l'effet d'une variation de température, une déformation de l'élément deformable tendant à diminuer sa déflexion et le soumettant à une contrainte de compression qui entraîne son basculement par effet de flambage dans une direction opposée à sa déflexion naturelle. Lorsque la commande thermique provoquée par l'actionneur est supprimée, le microsystème revient à son premier état de fonctionnement .
Le premier état de fonctionnement peut correspondre à une position de l'élément deformable la plus éloignée de ladite surface du substrat, ledit deuxième état de fonctionnemenet correspondant à une position de l'élément deformable la plus proche de ladite surface du substrat. La situation inverse est également possible. La partie centrale de l'élément deformable peut être plus épaisse que sa partie périphérique.
L'invention a aussi pour objet un micro-rupteur constitué d'un microsystème tel que défini ci-dessus, un système d'électrodes étant prévu dans le microsystème, sur la surface du substrat et sur l'élément deformable, de façon à présenter une continuité électrique entre électrodes dans l'un desdits états de fonctionnement et une absence de continuité électrique dans l'autre desdits états de fonctionnement .
L'invention a aussi pour objet une micro-valve constituée d'un microsystème tel que défini ci-dessus, un orifice de communication de fluide étant prévu dans le microsystème de façon à être obturé dans l'un desdits états de fonctionnement et ouvert dans l'autre desdits états de fonctionnement.
L'invention a aussi pour objet un procédé de fabrication d'un microsystème tel que défini ci-dessus, caractérisé en ce que :
- l'élément deformable est obtenu par dépôt d'une couche de matériau approprié sur ladite surface du substrat, la couche étant solidaire de ladite surface à l'exception d'une partie formant voûte au-dessus de ladite surface et constituant l'élément deformable,
- des moyens, obtenus par dépôt, sont prévus pour être en contact intime avec ledit élément deformable et constituer avec celui-ci ledit actionneur thermique à effet bilame.
Avantageusement, la partie formant voûte est obtenue grâce au dépôt préalable, sur ladite surface du substrat, d'une masse sacrificielle destinée à donner une forme définie audit élément deformable une fois que la masse sacrificielle aura été sacrifiée, la masse sacrificielle étant prévue pour que, à l'issue du procédé, ledit élément deformable présente naturellement une déflexion sans contrainte par rapport à ladite surface du substrat. Selon une première variante, le procédé comprend les étapes successives suivantes :
- dépôt sur ladite surface du substrat d'une couche de matériau sacrificiel,
- obtention sur la couche de matériau sacrificiel, d'une masse d'un matériau susceptible de fluer sans altérer le substrat et le matériau sacrificiel,
- fluage du matériau susceptible de fluer pour lui conférer une forme complémentaire de la forme en voûte désirée pour l'élément deformable,
- gravure de la couche de matériau sacrificiel et du matériau qui a flué jusqu'à ne garder sur ladite surface du substrat que ladite masse sacrificielle qui reproduit la forme que possédait le matériau qui a flué,
- dépôt de la couche destinée à fournir l'élément deformable,
- dépôt des moyens destinés à constituer, avec ledit élément deformable, ledit actionneur thermique,
- élimination de la masse sacrificielle. Dans ce cas, la masse de matériau susceptible de fluer peut être obtenue par dépôt d'une couche de résine photosensible sur la couche de matériau sacrificiel et par gravure de cette couche de résine photosensible pour n'en garder que ladite masse de matériau susceptible de fluer.
Selon une deuxième variante, le procédé comprend les étapes successives suivantes : - obtention sur ladite surface du substrat d'une masse sacrificielle, à profil en escalier, et de forme sensiblement complémentaire de la forme en voûte désirée pour l'élément deformable, - dépôt de la couche destinée à fournir l'élément deformable,
- dépôt des moyens destinés à constituer, avec ledit élément deformable, ledit actionneur thermique, - élimination de la masse sacrificielle.
Dans ce cas, la masse sacrificielle peut être obtenue par dépôt sur ladite surface du substrat d'une couche de matériau sacrificiel et gravures successives de cette couche de matériau sacrificiel jusqu'à atteindre la surface du substrat à l'exception de l'emplacement de l'élément deformable où les gravures laissent subsister ladite masse sacrificielle. Selon une troisième variante, le procédé comprend les étapes successives suivantes : - obtention sur ladite surface du substrat d'une masse de matériau sacrificiel d'épaisseur uniforme à l'emplacement de l'élément deformable,
- dépôt de la couche destinée à fournir l'élément deformable, le dépôt étant réalisé de façon que la partie de cette couche recouvrant la masse de matériau sacrificiel soit naturellement contrainte,
- dépôt, sur la couche précédemment déposée, d'une couche dans laquelle seront formés les moyens destinés à constituer, avec ledit élément deformable, ledit actionneur thermique, ce dépôt étant réalisé à une température déterminée pour que, à l'issue du procédé, l'élément deformable soit naturellement défléchi, - gravure de la couche précédemment déposée pour former les moyens destinés à constituer, avec ledit élément deformable, ledit actionneur thermique,
- élimination de la masse sacrificielle. Dans ce cas, la masse sacrificielle peut être obtenue par dépôt sur ladite surface du substrat d'une couche de matériau sacrificiel et gravure de cette couche de matériau sacrificiel.
Quel que soit le procédé mis en oeuvre, il peut être nécessaire de prévoir une étape consistant à ouvrir l'élément deformable de façon que cette ouverture de l'élément deformable permette d'éliminer la masse sacrificielle.
Brève description des dessins
L'invention sera mieux comprise au moyen de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :
- les figures 1 à 5, déjà décrites, représentent des dispositifs à élément deformable sous l'effet d'un actionneur thermique,
- les figures 6A à 6H sont illustratives d'une première variante d'un procédé de fabrication d'un microsystème à élément deformable sous l'effet d'un actionneur thermique selon la présente invention,
- les figures 7A à 7D sont illustratives d'une deuxième variante d'un procédé de fabrication d'un microsystème à élément deformable sous l'effet d'un actionneur thermique selon la présente invention,
- les figures 8A à 8D sont illustratives d'une troisième variante d'un procédé de fabrication d'un microsystème à élément deformable sous l'effet d'un actionneur thermique selon la présente invention, - la figure 9 représente, vu en coupe, un micro-rupteur selon la présente invention à l'état ouvert,
- la figure 10 représente, vu en coupe, un autre micro-rupteur selon la présente invention à l'état fermé,
- la figure 11 représente, vu en coupe, encore un autre micro-rupteur selon la présente invention à l'état ouvert, - la figure 12 représente, vue en coupe, une micro-valve selon la présente invention à l'état ouvert .
Description détaillée de modes de réalisation de l'invention
Généralement, les structures obtenues par des procédés de la microtechnologie ont une géométrie plane, aussi la réalisation de poutres ou de membranes naturellement défléchies nécessite une attention particulière.
Les procédés qui vont maintenant être décrits mettent en oeuvre le dépôt de l'élément deformable sur une couche, dite couche sacrificielle, que l'on élimine en fin de procédé. On peut ainsi avoir un élément deformable, poutre ou membrane, en Si3N4 en utilisant une couche sacrificielle en tungstène.
Une première variante du procédé selon l'invention, illustrée par les figures 6A à 6H, permet d'obtenir un microsystème à élément deformable (poutre ou membrane) non plan et non contraint. Sur un substrat 20, par exemple en verre, on dépose d'abord une couche sacrificielle 21, par exemple en tungstène, puis une couche de résine photosensible 22 (figure 6A) . La couche de résine est gravée pour ne laisser qu'une masse de résine 23 dont la superficie est déterminée par l'élément deformable désiré (figure 6B) . Par un traitement thermique, on provoque le fluage de la résine photosensible. On obtient une masse 24 dont la forme est complémentaire de la forme en voûte désirée pour l'élément deformable (figure 6C) .
La couche sacrificielle 21 est ensuite gravée. La figure 6D montre une première étape de gravure où la couche sacrificielle 21 est gravée sur une partie de son épaisseur aux endroits où cette couche n'est pas masquée par la masse 24 de résine. La figure 6E montre une deuxième étape de gravure où la masse 24 de résine a été éliminée, par exemple par gravure ionique réactive. La couche sacrificielle a simultanément été gravée en reproduisant la forme de la masse 24 de la figure 6D. On obtient une masse 25 de matériau sacrificiel.
On pourrait obtenir directement la masse sacrificielle telle que montrée sur la figure 6E en utilisant un matériau organique (par exemple un polyimide) à condition que ce matériau puisse fluer tout en supportant sans dégradation les étapes de fabrication de l'élément deformable.
On recouvre ensuite la surface du substrat 20 supportant la masse sacrificielle 25 d'abord d'une couche 26, par exemple en Si3N4 ou en silicium, puis d'une couche 27 en matériau conducteur tel que l'aluminium, l'or, le nickel (voir la figure 6F). Les matériaux des couches 25 et 26 doivent avoir des coefficients de dilatation thermique différents tout en restant compatible avec l'étape postérieure de libération de l'élément deformable.
La couche 27 est ensuite gravée (voir la figure 6G) pour y délimiter des parties 28 de l'actionneur thermique. La couche 26 est également gravée. Cette gravure est déterminée en fonction de la forme que l'on désire donner à l'élément deformable (poutre ou membrane). Elle permet également d'ouvrir l'élément deformable afin de permettre l'élimination de la masse sacrificielle 25.
On obtient alors le microsystème illustré par la figure 6H possédant un élément deformable 29 naturellement défléchi par rapport à la surface du substrat 20.
Une deuxième variante du procédé selon l'invention, illustrée par les figures 7A à 7D, permet également d'obtenir un microsystème à élément deformable non plan et non contraint. Sur une surface d'un substrat 30, on dépose une couche sacrificielle 31 (voir la figure 7A) . Cette couche sacrificielle est gravée à plusieurs reprises et avec autant de masques jusqu'à obtenir une masse sacrificielle 32, à profil en escalier, et de forme sensiblement complémentaire de la forme en voûte désirée pour l'élément deformable. Autour de la masse sacrificielle 32, la surface du substrat est apparente (voir la figure 7B) . On dépose ensuite, comme précédemment, une couche 33 et une couche 34 destinées à constituer l'élément deformable et l'actionneur thermique.
Comme précédemment, la couche 34 est gravée pour obtenir des parties 35. De même, la couche 33 est gravée en fonction de la forme que l'on désire donner à l'élément deformable et pour ouvrir cet élément deformable afin de permettre l'élimination de la masse sacrificielle 32.
On obtient le microsystème illustré par la figure 7D possédant un élément deformable 36 naturellement défléchi par rapport à la surface du substrat 30. Les matériaux utilisés peuvent être les mêmes que précédemment.
Une troisième variante du procédé selon l'invention, illustrée par les figures 8A à 8D, permet d'obtenir un microsystème à élément deformable plan et précontraint où l'on jouera sur une différence de température lors de la mise en forme des deux parties constituant le bilame.
Sur une surface d'un substrat 40, on dépose une couche sacrificielle que l'on grave pour obtenir une masse 41 d'épaisseur uniforme à l'emplacement du futur élément deformable (voir la figure 8A) . On dépose ensuite une couche 42, par exemple en Si02 ou en Si3N4, qui recouvre la masse sacrificielle 41 et la surface apparente du substrat. On obtient ainsi une partie 43 de la couche 42, qui est rectiligne au-dessus de la masse sacrificielle 41 et naturellement contrainte
(voir la figure 8B) . On dépose ensuite une seconde couche 44 destinée à compléter le bilame. Cette couche 44 est déposée à une température supérieure à la température ambiante, ce qui conduira, à l'issue du procédé, à une déflexion naturelle de l'élément deformable .
Comme précédemment, la couche 44 est gravée pour obtenir des parties 45 (voir la figure 8C) . De même, la couche 42 est gravée en fonction de la forme que l'on désire donner à l'élément deformable et pour ouvrir cet élément deformable afin de permettre l'élimination de la masse sacrificielle 41. On obtient le microsystème illustré par la figure 8D où l'élément deformable 43 est naturellement défléchi par rapport à la surface du substrat 40. La valeur de la précontrainte dans la couche 42 doit être ajustée pour obtenir le flambage uniquement lorsque la structure bilame est activée. A titre d'exemple, l'élément deformable peut être constitué d'une poutre de Si3N4 de 1 μm d'épaisseur et de 200 μm de longueur. La déflexion initiale (à la température ambiante) de la poutre peut être de 2 μm. Le reste de la structure bilame peut être en aluminium et avoir 1 μm d'épaisseur. La structure bascule pour une variation de température comprise entre 100 et 120°C. L'amplitude obtenue est de l'ordre de 5 μm alors que pour une variation de température allant de 0 à 100°C la déflexion est inférieure à 1 μm.
Les figures suivantes illustrent des exemples d'application de l'invention et qui peuvent être obtenus par les procédés décrits ci-dessus.
La figure 9 représente un micro-rupteur formé sur un substrat 50. Le bilame est constitué d'un élément deformable 51, par exemple en forme de poutre, et de deux parties 52. Au cours du procédé de fabrication du microsystème, des électrodes 53, 54 et 55 ont été prévues. Les électrodes 53 et 54 ont été réalisées avant le dépôt de la masse sacrificielle. L'électrode 55 est réalisée sur la masse sacrificielle, avant le dépôt des couches du bilame.
Il est aussi possible de concevoir un micro-rupteur normalement fermé comme le montre la figure 10. Le micro-rupteur a été formé sur un substrat 60. Le bilame est constitué d'un élément deformable 61 (poutre ou membrane) et d'une partie 62. Les électrodes 63 et 64 ont été réalisées avant le dépôt de la masse sacrificielle. L'électrode 65 est réalisée sur la masse sacrificielle, avant le dépôt des couches du bilame. L'état normalement fermé pour le micro-rupteur est obtenu en utilisant la troisième variante du procédé selon l'invention et en centrant la partie 62 sur l'élément deformable 61. On comprend que lorsque le bilame des figures 9 et 10 bascule, il y a passage d'un état de fonctionnement donné vers un autre état de fonctionnement. Ainsi, pour la figure 9, le basculement du bilame permettra le passage de l'état ouvert (cas représenté à la figure 9) à l'état fermé par mise en contact de l'électrode 55 avec les électrodes 53 et 54. Le microsystème de la figure 10 fonctionne de façon inverse. Afin d'avoir un bon contact électrique entre les électrodes lorsque le micro-rupteur est fermé, il est avantageux d'apporter les modifications représentées sur la figure 11. Cette figure représente un micro-rupteur normalement ouvert, formé sur un substrat 70 supportant des électrodes 74 et 75. L'élément deformable 71 est formé par une couche épaisse, localement amincie afin de rigidifier la partie centrale 72, qui est donc plus épaisse, au niveau de l'électrode 73 supportée par cette partie centrale. Ceci permet aussi de limiter l'influence de dilatation thermique induite par l'électrode 73.
Suivant les épaisseurs de dépôt des différentes couches, et suivant le procédé utilisé, il peut aussi être avantageux de localiser les zones de contact entre l'électrode 73 et les électrodes 74 et 75. Ceci peut être obtenu par une étape de planarisation de la couche sacrificielle ou, comme représenté sur la figure 11, en réalisant des déports 76 obtenus par photolithogravure de la couche sacrificielle.
Une autre amélioration possible consiste à utiliser différents matériaux pour réaliser l'autre partie du bilame, référencée 80 sur la figure 11. Les parties 80 peuvent comprendre une première couche 81 adjacente à l'élément deformable et de résistivité élevée (par exemple en TiN) , servant d'élément chauffant. Une deuxième couche 82, superposée à la couche 81, ayant un coefficient de dilatation élevée, a un rôle thermomécanique. La couche 82 peut être en aluminium. Suivant les matériaux utilisés, il peut être nécessaire d'isoler les couches 81 et 82 par une fine couche de passivation 83.
La figure 12 représente, vue en coupe, une micro-valve constituée sur un substrat 90 percé d'un trou 91 faisant communiquer deux faces opposées du substrat. La micro-valve comporte une structure bilame comprenant un élément deformable 92 et une ou des parties 93. En fonction de la température induite dans le bilame, l'élément deformable ferme ou ouvre le trou 91.

Claims

REVENDICATIONS
1. Microsystème constitué sur un substrat (50, 60, 70, 90) et servant à obtenir un basculement entre un premier état de fonctionnement et un deuxième état de fonctionnement grâce à un actionneur thermique à effet bilame, ledit actionneur comprenant un élément deformable (51,61,71,92) rattaché, par des extrémités opposées, au substrat de façon à présenter naturellement une déflexion sans contrainte par rapport à une surface du substrat qui lui est opposée, cette déflexion naturelle déterminant ledit premier état de fonctionnement, ledit deuxième état de fonctionnement étant provoqué par ledit actionneur thermique qui induit, sous l'effet d'une variation de température, une déformation de l'élément deformable (51,61,71,92) tendant à diminuer sa déflexion et le soumettant à une contrainte de compression qui entraîne son basculement par effet de flambage dans une direction opposée à sa déflexion naturelle.
2. Microsystème selon la revendication 1, caractérisé en ce que ledit premier état de fonctionnement correspond à une position de l'élément deformable (51) la plus éloignée de ladite surface du substrat (50), ledit deuxième état de fonctionnement correspondant à une position de l'élément deformable (51) la plus proche de ladite surface du substrat.
3. Microsystème selon la revendication 1, caractérisé en ce que ledit premier état de fonctionnement correspond à une position de l'élément deformable (61) la plus proche de ladite surface du substrat (60), ledit deuxième état de fonctionnement correspondant à une position de l'élément deformable (61) la plus éloignée de ladite surface du substrat (60) .
4. Microsystème selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'élément deformable (71) présente une partie centrale (72) plus épaisse que sa partie périphérique.
5. Microsystème selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le substrat (50,60,70,90) est en un matériau choisi parmi le verre et le silicium.
6. Microsystème selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'élément deformable (51,61,71,92) est en un matériau choisi parmi Si3N4 et Si02.
7. Microsystème selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'actionneur thermique à effet bilame est constitué d'une couche en un matériau choisi parmi Si3N4 et Si02 associée à une couche d'aluminium.
8. Micro-rupteur constitué d'un microsystème selon l'une quelconque des revendications 1 à 7, un système d'électrodes (53,54,55) étant prévu dans le microsystème, sur la surface du substrat (50) et sur l'élément deformable (51), de façon à présenter une continuité électrique entre électrodes (53,54,55) dans l'un desdits états de fonctionnement et une absence de continuité électrique dans l'autre desdits états de fonctionnement.
9. Micro-rupteur selon la revendication 8, caractérisé en ce que des zones de contact localisées (76) sont prévues sur le système d'électrodes.
10. Micro-valve constituée d'un microsystème selon l'une quelconque des revendications
1 à 7, au moins un orifice de communication de fluide
(91) étant prévu dans le microsystème de façon à être obturé dans l'un desdits états de fonctionnement et ouvert dans l'autre desdits états de fonctionnement.
11. Procédé de fabrication d'un microsystème tel que défini dans la revendication 1, caractérisé en ce que :
- l'élément deformable (29,36,43) est obtenu par dépôt d'une couche (26,33,42) de matériau approprié sur ladite surface du substrat (20,30,40), la couche étant solidaire de ladite surface à l'exception d'une partie formant voûte au-dessus de ladite surface et constituant l'élément deformable, - des moyens (28,35,45), obtenus par dépôt, sont prévus pour être en contact intime avec ledit élément deformable (29,36,43) et constituer avec celui-ci ledit actionneur thermique à effet bilame.
12. Procédé selon la revendication 11, caractérisé en ce que la partie formant voûte est obtenue grâce au dépôt préalable, sur ladite surface du substrat (20,30,40), d'une masse sacrificielle (25,32,41) destinée à donner une forme définie audit élément deformable une fois que la masse sacrificielle aura été sacrifiée, la masse sacrificielle (25,32,41) étant prévue pour que, à l'issue du procédé, ledit élément deformable (29,36,43) présente naturellement une déflexion sans contrainte par rapport à ladite surface du substrat (20,30,40).
13. Procédé selon la revendication 12, caractérisé en ce qu'il comprend les étapes successives suivantes :
- dépôt sur ladite surface du substrat (20) d'une couche de matériau sacrificiel (21), - obtention sur la couche de matériau sacrificiel (21), d'une masse (23) d'un matériau susceptible de fluer sans altérer le substrat (20) et le matériau sacrificiel (21), - fluage du matériau susceptible de fluer pour lui conférer une forme (24) complémentaire de la forme en voûte désirée pour l'élément deformable,
- gravure de la couche de matériau sacrificiel (21) et du matériau qui a flué jusqu'à ne garder sur ladite surface du substrat que ladite masse sacrificielle (25) qui reproduit la forme que possédait le matériau qui a flué,
- dépôt de la couche (26) destinée à fournir l'élément deformable (29),
- dépôt des moyens (28) destinés à constituer, avec ledit élément deformable (29) , ledit actionneur thermique,
- élimination de la masse sacrificielle (25) .
14. Procédé selon la revendication 13, caractérisé en ce que la masse (23) de matériau susceptible de fluer est obtenue par dépôt d'une couche de résine photosensible (22) sur la couche de matériau sacrificiel (21) et par gravure de cette couche de résine photosensible pour n'en garder que ladite masse (23) de matériau susceptible de fluer.
15. Procédé selon la revendication 12, caractérisé en ce qu'il comprend les étapes successives suivantes :
- obtention sur ladite surface du substrat (30) d'une masse sacrificielle (32), à profil en escalier, et de forme sensiblement complémentaire de la forme en voûte désirée pour l'élément deformable, - dépôt de la couche (33) destinée à fournir l'élément deformable (36),
- dépôt des moyens (35) destinés à constituer, avec ledit élément deformable (36) , ledit actionneur thermique, - élimination de la masse sacrificielle (32) .
16. Procédé selon la revendication 12, caractérisé en ce qu'il comprend les étapes successives suivantes :
- obtention sur ladite surface du substrat
(40) d'une masse (41) de matériau sacrificiel d'épaisseur uniforme à l'emplacement de l'élément deformable (43) , - dépôt de la couche (42) destinée à fournir l'élément deformable, le dépôt étant réalisé de façon que la partie de cette couche recouvrant la masse
(41) de matériau sacrificiel soit naturellement contrainte, - dépôt, sur la couche précédemment déposée, d'une couche (44) dans laquelle seront formés les moyens (45) destinés à constituer, avec ledit élément deformable (43) , ledit actionneur thermique, ce dépôt étant réalisé à une température déterminée pour que, à l'issue du procédé, l'élément deformable (43) soit naturellement défléchi,
- gravure de la couche précédemment déposée pour former les moyens (45) destinés à constituer, avec ledit élément deformable, ledit actionneur thermique, - élimination de la masse sacrificielle
(41) .
17. Procédé selon l'une quelconque des revendications 13 à 16, caractérisé en ce qu'il est prévu une étape consistant à ouvrir l'élément deformable (29,36,43) de façon que cette ouverture de l'élément deformable permette d'éliminer la masse sacrificielle (25,32,41).
PCT/FR1998/002719 1997-12-16 1998-12-14 Microsysteme a element deformable sous l'effet d'un actionneur thermique WO1999031689A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/554,272 US6812820B1 (en) 1997-12-16 1998-12-14 Microsystem with element deformable by the action of heat-actuated device
JP2000539496A JP2002509332A (ja) 1997-12-16 1998-12-14 感熱センサによって変形可能な部材を備えたマイクロシステム
DE69804352T DE69804352T2 (de) 1997-12-16 1998-12-14 Mikrostruktur mit einem verformbaren element durch einwirkung eines thermischen antriebes
EP98959979A EP1040492B1 (fr) 1997-12-16 1998-12-14 Microsysteme a element deformable sous l'effet d'un actionneur thermique
US10/949,800 US7356913B2 (en) 1997-12-16 2004-09-24 Process for manufacturing a microsystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/15931 1997-12-16
FR9715931A FR2772512B1 (fr) 1997-12-16 1997-12-16 Microsysteme a element deformable sous l'effet d'un actionneur thermique

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/949,800 Division US7356913B2 (en) 1997-12-16 2004-09-24 Process for manufacturing a microsystem

Publications (1)

Publication Number Publication Date
WO1999031689A1 true WO1999031689A1 (fr) 1999-06-24

Family

ID=9514668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/002719 WO1999031689A1 (fr) 1997-12-16 1998-12-14 Microsysteme a element deformable sous l'effet d'un actionneur thermique

Country Status (6)

Country Link
US (2) US6812820B1 (fr)
EP (1) EP1040492B1 (fr)
JP (1) JP2002509332A (fr)
DE (1) DE69804352T2 (fr)
FR (1) FR2772512B1 (fr)
WO (1) WO1999031689A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100421222B1 (ko) * 2001-11-24 2004-03-02 삼성전자주식회사 저전압 구동의 마이크로 스위칭 소자
US7356913B2 (en) 1997-12-16 2008-04-15 Commissariat A L'energie Atomique Process for manufacturing a microsystem

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6367252B1 (en) * 2000-07-05 2002-04-09 Jds Uniphase Corporation Microelectromechanical actuators including sinuous beam structures
FR2818795B1 (fr) 2000-12-27 2003-12-05 Commissariat Energie Atomique Micro-dispositif a actionneur thermique
WO2003014789A2 (fr) * 2001-07-05 2003-02-20 International Business Machines Coporation Commutateurs microsysteme
WO2003017301A1 (fr) * 2001-08-20 2003-02-27 Honeywell International Inc. Thermocontacteur a rupture brusque
KR100485787B1 (ko) * 2002-08-20 2005-04-28 삼성전자주식회사 마이크로 스위치
AU2003901253A0 (en) * 2003-03-17 2003-04-03 Zip Holdings Pty Ltd Temperature Sensing Devices, Systems and Methods
FR2857153B1 (fr) * 2003-07-01 2005-08-26 Commissariat Energie Atomique Micro-commutateur bistable a faible consommation.
FR2865724A1 (fr) * 2004-02-04 2005-08-05 St Microelectronics Sa Microsysteme electromecanique pouvant basculer entre deux positions stables
FR2868591B1 (fr) * 2004-04-06 2006-06-09 Commissariat Energie Atomique Microcommutateur a faible tension d'actionnement et faible consommation
US7239064B1 (en) 2004-10-15 2007-07-03 Morgan Research Corporation Resettable latching MEMS temperature sensor apparatus and method
US7283030B2 (en) * 2004-11-22 2007-10-16 Eastman Kodak Company Doubly-anchored thermal actuator having varying flexural rigidity
US7665300B2 (en) * 2005-03-11 2010-02-23 Massachusetts Institute Of Technology Thin, flexible actuator array to produce complex shapes and force distributions
US7339454B1 (en) * 2005-04-11 2008-03-04 Sandia Corporation Tensile-stressed microelectromechanical apparatus and microelectromechanical relay formed therefrom
TW200728605A (en) * 2006-01-20 2007-08-01 Univ Tamkang Thermo-buckled micro-actuator unit made of polymer with high thermal expansion coefficient
JP2008039502A (ja) * 2006-08-03 2008-02-21 Alps Electric Co Ltd 接触子およびその製造方法
US8206025B2 (en) 2007-08-07 2012-06-26 International Business Machines Corporation Microfluid mixer, methods of use and methods of manufacture thereof
FR2930457B1 (fr) * 2008-04-24 2010-06-25 Commissariat Energie Atomique Procede de fabrication de microcanaux reconfigurables
US8779886B2 (en) * 2009-11-30 2014-07-15 General Electric Company Switch structures
US11001494B2 (en) * 2011-06-23 2021-05-11 Duality Reality Energy, LLC Multi-zone microstructure spring
US9085454B2 (en) * 2011-07-05 2015-07-21 Duality Reality Energy, LLC Reduced stiffness micro-mechanical structure
FR2982424B1 (fr) * 2011-11-09 2014-01-10 Commissariat Energie Atomique Systeme de conversion d'energie thermique en energie electrique a efficacite amelioree
US9076961B2 (en) 2012-01-31 2015-07-07 Duality Reality Energy, LLC Energy harvesting with a micro-electro-machanical system (MEMS)
WO2013119834A1 (fr) 2012-02-10 2013-08-15 Northeastern University Micro-soupape refermable pouvant être ouverte et fermée hermétiquement à plusieurs reprises
US9511995B2 (en) 2012-02-15 2016-12-06 Massachusetts Institute Of Technology Method and apparatus for building three-dimensional MEMS elements
US9573802B2 (en) 2012-02-15 2017-02-21 Massachusetts Institute Of Technology Method and apparatus for building three-dimensional MEMS elements
US9217755B2 (en) 2012-02-15 2015-12-22 Massachusetts Institute Of Technology Method and apparatus for building three-dimensional MEMS elements
WO2013122585A1 (fr) * 2012-02-15 2013-08-22 Massachusetts Institute Of Technology Procédé et appareil pour bâtir des éléments mems à trois dimensions
FR2988911A1 (fr) * 2012-04-02 2013-10-04 St Microelectronics Crolles 2 Plaque incurvee et son procede de fabrication
FR2988912A1 (fr) 2012-04-02 2013-10-04 St Microelectronics Crolles 2 Dispositif de recuperation d'energie
KR102019098B1 (ko) * 2013-04-19 2019-11-04 엘지이노텍 주식회사 멤스 소자
KR102085803B1 (ko) * 2013-06-28 2020-04-14 엘지이노텍 주식회사 멤스 소자 및 카메라 모듈
KR102107584B1 (ko) * 2013-08-29 2020-05-07 엘지이노텍 주식회사 멤스 소자
DE102016112762B4 (de) * 2016-07-12 2019-07-11 Infineon Technologies Ag Schichtstruktur und Verfahren zum Herstellen einer Schichtstruktur
EP3301425B1 (fr) 2016-09-30 2021-01-20 Sciosense B.V. Dispositif de capteur de pression et procédé de formation de dispositif de capteur de pression
US11693295B2 (en) * 2019-06-28 2023-07-04 Taiwan Semiconductor Manufacturing Co., Ltd. Auto-focusing device and method of fabricating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338244A (ja) * 1993-05-28 1994-12-06 Sharp Corp マイクロリレー
DE19516997A1 (de) * 1994-05-10 1995-11-16 Sharp Kk Tintenstrahlkopf und Verfahren zu dessen Herstellung
EP0709911A2 (fr) * 1994-10-31 1996-05-01 Texas Instruments Incorporated Interrupteurs améliorés
US5681024A (en) * 1993-05-21 1997-10-28 Fraunhofer-Gesellschaft zur Forderung der angerwanden Forschung e.V. Microvalve

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2453757C3 (de) 1974-11-13 1980-07-24 Pierburg Gmbh & Co Kg, 4040 Neuss Thermoventil für Brennkraftmaschinen
US4027828A (en) * 1976-06-14 1977-06-07 Mackay Center Specialties, Inc. Perforating machine
JPH0670429B2 (ja) * 1985-04-03 1994-09-07 時枝 直満 直線運動型アクチュエータ
CA1340955C (fr) 1988-02-24 2000-04-11 Michael Klaus Derives du stilbene
US5065978A (en) * 1988-04-27 1991-11-19 Dragerwerk Aktiengesellschaft Valve arrangement of microstructured components
DE3814150A1 (de) * 1988-04-27 1989-11-09 Draegerwerk Ag Ventilanordnung aus mikrostrukturierten komponenten
DE3844669A1 (de) * 1988-12-09 1990-06-13 Fraunhofer Ges Forschung Mikromechanische einrichtung
US5490034A (en) * 1989-01-13 1996-02-06 Kopin Corporation SOI actuators and microsensors
US5061914A (en) * 1989-06-27 1991-10-29 Tini Alloy Company Shape-memory alloy micro-actuator
US5058856A (en) * 1991-05-08 1991-10-22 Hewlett-Packard Company Thermally-actuated microminiature valve
US5325880A (en) * 1993-04-19 1994-07-05 Tini Alloy Company Shape memory alloy film actuated microvalve
US5536963A (en) * 1994-05-11 1996-07-16 Regents Of The University Of Minnesota Microdevice with ferroelectric for sensing or applying a force
US5529279A (en) * 1994-08-24 1996-06-25 Hewlett-Packard Company Thermal isolation structures for microactuators
DE4437260C1 (de) * 1994-10-18 1995-10-19 Siemens Ag Mikromechanisches Relais
US5619177A (en) * 1995-01-27 1997-04-08 Mjb Company Shape memory alloy microactuator having an electrostatic force and heating means
FR2736205B1 (fr) * 1995-06-30 1997-09-19 Motorola Semiconducteurs Dispositif detecteur a semiconducteur et son procede de formation
JPH0982199A (ja) 1995-09-11 1997-03-28 Omron Corp 継電器
US5638946A (en) * 1996-01-11 1997-06-17 Northeastern University Micromechanical switch with insulated switch contact
JPH09213183A (ja) 1996-02-05 1997-08-15 Eiko Takahashi 小型サーモスタット
US5796152A (en) * 1997-01-24 1998-08-18 Roxburgh Ltd. Cantilevered microstructure
FR2772512B1 (fr) 1997-12-16 2004-04-16 Commissariat Energie Atomique Microsysteme a element deformable sous l'effet d'un actionneur thermique
US6236300B1 (en) * 1999-03-26 2001-05-22 R. Sjhon Minners Bistable micro-switch and method of manufacturing the same
US6239685B1 (en) * 1999-10-14 2001-05-29 International Business Machines Corporation Bistable micromechanical switches

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681024A (en) * 1993-05-21 1997-10-28 Fraunhofer-Gesellschaft zur Forderung der angerwanden Forschung e.V. Microvalve
JPH06338244A (ja) * 1993-05-28 1994-12-06 Sharp Corp マイクロリレー
DE19516997A1 (de) * 1994-05-10 1995-11-16 Sharp Kk Tintenstrahlkopf und Verfahren zu dessen Herstellung
EP0709911A2 (fr) * 1994-10-31 1996-05-01 Texas Instruments Incorporated Interrupteurs améliorés

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIROTSUGU MATOBA ET AL: "A BISTABLE SNAPPING MICROACTUATOR", PROCEEDING OF THE WORKSHOP ON MICRO ELECTRO MECHANICAL SYSTEMS (MEM, OISO, JAN. 25 - 28, 1994, no. WORKSHOP 7, 25 January 1994 (1994-01-25), INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, pages 45 - 50, XP000528391 *
MEHREGANY M: "MICROELECTROMECHANICAL SYSTEMS", IEEE CIRCUITS AND DEVICES MAGAZINE, vol. 9, no. 4, 1 July 1993 (1993-07-01), pages 14 - 22, XP000441757 *
PATENT ABSTRACTS OF JAPAN vol. 095, no. 003 28 April 1995 (1995-04-28) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7356913B2 (en) 1997-12-16 2008-04-15 Commissariat A L'energie Atomique Process for manufacturing a microsystem
KR100421222B1 (ko) * 2001-11-24 2004-03-02 삼성전자주식회사 저전압 구동의 마이크로 스위칭 소자

Also Published As

Publication number Publication date
FR2772512B1 (fr) 2004-04-16
US20050046541A1 (en) 2005-03-03
EP1040492A1 (fr) 2000-10-04
US7356913B2 (en) 2008-04-15
US6812820B1 (en) 2004-11-02
DE69804352D1 (de) 2002-04-25
JP2002509332A (ja) 2002-03-26
FR2772512A1 (fr) 1999-06-18
EP1040492B1 (fr) 2002-03-20
DE69804352T2 (de) 2002-10-10

Similar Documents

Publication Publication Date Title
EP1040492B1 (fr) Microsysteme a element deformable sous l'effet d'un actionneur thermique
EP2663091B1 (fr) Haut-parleur digital a performance ameliorée
EP1639613B1 (fr) Micro-commutateur bistable a faible consommation
US6267605B1 (en) Self positioning, passive MEMS mirror structures
CH691559A5 (fr) Micro-contacteur magnétique et son procédé de fabrication.
EP1562207B1 (fr) Microsystème électromécanique pouvant basculer entre deux positions stables
EP2450949B1 (fr) Structure d'encapsulation d'un micro-dispositif comportant un matériau getter
EP1736435A1 (fr) Actionneur électrostatique comprenant un pivot conducteur suspendu
EP2284121A1 (fr) Structure a microcavite et structure d'encapsulation d'un dispositif microelectronique
EP0753671B1 (fr) Procédé de fabrication d'éléments de microstructures flottants rigides et dispositif équipé de tels éléments
FR3120622A1 (fr) Commutateur MEMS à commande électrique et son procédé de réalisation
EP2298693B1 (fr) Réalisation d'un composant électromecanique pour un micro- ou nano- système doté d'un barreau formant un axe de rotation du composant et recouvert de graphène
WO2006072627A1 (fr) Microsysteme a commande electromagnetique
EP1717830A1 (fr) Micro-condensateur électromécanique à capacité variable et procédé de fabrication d'un tel micro-condensateur
EP1438728A2 (fr) Micro-condensateur variable (mems) a fort rapport et faible tension d'actionnement
EP3037381B1 (fr) Dispositif de transformation d'un mouvement hors plan en un mouvement dans le plan et/ou inversement
EP0874379B1 (fr) Micro-contacteur magnétique et son procédé de fabrication
EP3828943B1 (fr) Microsystème mécanique et procédé de fabrication associé
EP3264480B1 (fr) Actionneur électromécanique
FR2639085A1 (fr) Microvanne electrostatique integree et procede de fabrication d'une telle microvanne
CH677136A5 (en) Electrostatically operated medical micro-valve - has integrated structure with channels and components formed in engraved layers
EP0861496A1 (fr) Dispositif de commutation electrique et dispositif d'affichage utilisant ce dispositif de commutation
EP3671873B1 (fr) Microsysteme electromecanique comprenant un element actif pourvu d'une couche coeur structuree
FR2912128A1 (fr) Microsysteme d'actionnement et procede de fabrication associe
WO2004051688A1 (fr) Micro-commutateur electrostatique pour composant a faible tension d’actionnement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998959979

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09554272

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998959979

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998959979

Country of ref document: EP