EP2663091B1 - Haut-parleur digital a performance ameliorée - Google Patents

Haut-parleur digital a performance ameliorée Download PDF

Info

Publication number
EP2663091B1
EP2663091B1 EP13166609.1A EP13166609A EP2663091B1 EP 2663091 B1 EP2663091 B1 EP 2663091B1 EP 13166609 A EP13166609 A EP 13166609A EP 2663091 B1 EP2663091 B1 EP 2663091B1
Authority
EP
European Patent Office
Prior art keywords
membranes
membrane
actuator
stable state
loudspeaker according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13166609.1A
Other languages
German (de)
English (en)
Other versions
EP2663091A1 (fr
Inventor
Fabrice Casset
Rémy Dejaeger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Publication of EP2663091A1 publication Critical patent/EP2663091A1/fr
Application granted granted Critical
Publication of EP2663091B1 publication Critical patent/EP2663091B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/005Details of transducers, loudspeakers or microphones using digitally weighted transducing elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present invention relates to a digital speaker with improved performance.
  • the speakers are present in a large number of devices such as mobile phones, flat screens ... and their miniaturization is sought.
  • MEMS technologies can provide ultrafine speakers.
  • the MEMS technology is particularly interesting for making digital speakers, for which the large membrane of the analog speaker is replaced by several unitary membranes, called speaklets, of small sizes, to reconstruct the sound.
  • each speaklet is operated individually, by operating the speaklets, depending on the sound to be reconstructed, in a high position, or in a low position.
  • the document US 2011/0051985 discloses a speaker in which the membranes are moved by piezoelectric means.
  • the membranes move up or down and then oscillate around the equilibrium position when the actuation signal stops. This return to equilibrium is accompanied by a parasitic oscillation that can disturb the audible sound.
  • WO 2007/135680 discloses a digital speaker in which the membranes are moved by magnetic means and are held in a high position or a low position by electrostatic means. Parasitic oscillations are then reduced, however this maintaining in position requires energy since it is necessary to feed the electrostatic means, which is penalizing in the case of portable devices.
  • a loudspeaker comprising at least one matrix of several suspended membranes, an actuator associated with each membrane to move it upwards or downwards, wherein the membranes are each formed by a bistable element.
  • bistable element in the present application, an element having two stable states, the transition from one stable state to another can be obtained by means of an actuator that exerts a force on the element.
  • the bistable element maintains each of its stable positions when the actuator stops exerting a force and in the absence of other external means.
  • the membranes are always in one of their stable states, and when the membranes are moved under the action of the actuator, they reach their other stable state with a minimum of parasitic oscillations which are then greatly reduced.
  • the performance of the speaker is improved.
  • the type of displacement of the bistable approaches the ideal displacement in the case of a digital speaker.
  • the membranes maintain one or the other of their stable states without energy input.
  • the power consumption of the speaker is reduced, which is particularly interesting in the case of portable systems.
  • the loudspeaker comprises a first group of bistable membranes and a second group of bistable membranes, which are able to be controlled separately.
  • the membranes of each group may have either opposite stable states or the same stable state.
  • the subject of the present invention is therefore a digital loudspeaker comprising a support, a plurality of first membranes suspended on the support, said first membranes being bistable, and said loudspeaker comprising first actuating means of each of the first capable membranes. to pass each of the first membranes from a first stable state to a second stable state and vice versa and means for controlling said first actuating means
  • the membranes can thus be controlled independently of each other or by independent group.
  • the actuating means of these membranes are interconnected.
  • all the upper (respectively lower) electrodes can be connected to each other.
  • the first membranes form a first group of membranes
  • the loudspeaker comprises at least a second group of second membranes and second actuating means of each of the second membranes, the first and second means of actuation being controlled separately by the control means.
  • the first membranes and the second membranes can be either in different stable states or in the same stable state.
  • first membranes and the second number of membranes are equal, this embodiment is advantageous but is not however mandatory.
  • control means are able to send a reset signal to the first and / or second membranes, before sending a control signal to pass said membranes in one of said first and second stable states.
  • the first and / or second actuating means are of piezoelectric type, respectively comprising at least one piezoelectric material element in contact with each of the membranes and control electrodes associated with each piezoelectric element able to apply a piezoelectric element. control voltage to each of the elements of piezoelectric material.
  • the actuating means may be formed of several actuators made of ferroelectric material, an actuator has a crown shape on the edge of the membrane and an actuator in the center of the membrane moving upwards or towards the bottom of the membrane being obtained by activation of one or other of the actuators.
  • first and / or second actuating means are of the thermal type, respectively comprising an element forming an electrical resistance controlled by the control means and disposed in contact with each of the membranes, each electrical resistance being capable of to apply a mechanical torque to the membrane associated with it.
  • first and / or second actuating means are magnetic.
  • the piezoelectric element disposed on the membrane has a surface area of 0.4 and 0.6 times the surface of the membrane.
  • the digital speaker can be advantageously made by microelectronic methods.
  • the layer formed in step a) can be made with at least one predetermined stress level.
  • step a) different predetermined stress levels are advantageously applied to different zones of the layer intended to form the membranes so as to form the first and second membranes having on release in step c) different stable states.
  • One of the subsets can be returned.
  • actuating means Preferably, a portion of the actuating means is activated to pass the membranes associated with said actuating means in the other stable state.
  • part of the actuating means is meant a part of the same group of membranes or all or part of another group of membranes.
  • a top view of a digital loudspeaker comprising a support 2 and a plurality of membranes 4 suspended above the support 2 can be seen.
  • the loudspeaker also comprises individual actuating means for each membrane 4. These means can be electrostatic, magnetic, thermal, piezoelectric ...
  • a digital speaker generally comprises of the order of one to several hundred speaklets.
  • FIG. 2 On the figure 2 a top view of a membrane 4 and piezoelectric actuating means 6 can be seen.
  • the membrane 4 is preferably in the form of a disc suspended by its periphery.
  • the piezoelectric actuating means 6 are formed by a disk 8 made of piezoelectric material disposed on one of the faces of the membrane 4.
  • the actuating means also comprise electrodes 10, 12, called lower and upper electrodes respectively made on the piezoelectric material 8 and under the piezoelectric material 8, the electrodes 10, 12 are connected to a voltage source (not shown).
  • the pairs of electrodes 10, 12 of each membrane 4 are individually connected to the voltage source and the application of a voltage is controlled individually.
  • speaklets can be bit-grouped to form groups of speaklets.
  • the shape of the membrane may be elliptical or polygonal.
  • the actuators are made from piezoelectric materials such as AIN, ZnO ...
  • a positive voltage causes the expansion of the piezoelectric material while a negative voltage will induce its contraction.
  • the upward and downward movements can be obtained using a single actuator.
  • the lower electrode 10 may have a circular shape of the same surface as the membrane, or of lower surface or even have a shape different from that of the membrane.
  • the radius of the suspended portion Rm of the membrane may be between 100 ⁇ m and 7500 ⁇ m, which is also the radius of the piezoelectric material and the lower electrode in the example shown.
  • the radius of the upper electrode Re can be between 10 microns and 7480 microns.
  • Connection pads 14 and electrical conductors 16 connecting the pads to the electrodes 10, 12 are also shown schematically.
  • the pads are preferably located at the periphery of the speaklet matrix and are connected to the electrodes by tracks. These pads are generally connected to the voltage source via a wire (not shown).
  • the membrane 4 forms a bistable element.
  • the latter presents in each of its stable states a concavity opposite to that of the other stable state.
  • the unitary acoustic pressure generated by the displacement of the membrane from the first stable state to the second stable state, ie from the top downward in the example shown, is designated "negative pulse” and the unit acoustic pressure generated by the displacement of the membrane of the second stable state to the first stable state, ie from bottom to top in the example shown is designated "positive pulse”.
  • the negative pulse and the positive pulse are symmetrical with respect to the abscissa axis if the pressure pulses as a function of time are represented.
  • control electronics sends a signal to generate one or the other of the pulses.
  • the convex shape of the membrane can be obtained during manufacture. For example, during the deposition of the membrane, for example by chemical vapor deposition (CVD) or by PCVD or by growth, this takes place with a predetermined compressive stress level, which depends in part on deposit conditions, for example deposition temperature, deposition rate, gases used and in part the composition of the membrane material.
  • the curved shape of the membrane can be obtained by adjusting the compressive stress in one or more of the constituent layers of the membrane. During the release of the membrane, it is in one of its stable states.
  • FIGS. 3A to 3E we will describe the transition from one stable state to another of a bistable membrane of a loudspeaker according to the invention.
  • membrane 4 is in its first stable state. No voltage is applied to the piezoelectric material 8.
  • a negative voltage is applied to the piezoelectric material 8, which contracts (the contraction is symbolized by the two arrows C), which has the effect of causing the displacement of the membrane 4 downwards by bimetallic effect (the membrane and the piezoelectric material forming a mechanical bimetallic strip) and its passage to its second stable position ( figure 3C ).
  • the membrane 4 moving moves the air around the membrane 4 and generates a unitary acoustic pressure of a speaklet.
  • the voltage ceases to be applied to the piezoelectric material 8 which regains its original size but with a concavity opposite to that which it had when the membrane 4 was in its first equilibrium position.
  • a positive voltage is applied again to the piezoelectric material 8 which expands ( 3D figure ; the expansion is symbolized by the two arrows D), which causes a displacement of the membrane 4 by bimetallic effect upwards, to its first bistable position.
  • the membrane 4 while moving, displaces the air around the membrane and generates a unitary acoustic pressure of a speaklet.
  • the actuator 6 has the shape of a crown bordering the membrane. The operation is then reversed, the application of a positive tension causing the expansion of the crown displaces the membrane downwards and generates a negative pulse, and the application of a negative tension causing the contraction of the crown displaces the membrane. up and generates a positive pulse.
  • the speaklets are controlled by an electronic control well known to those skilled in the art and which will not be described in detail.
  • This electronics controls the voltage supply, the voltage applied to each of the actuators 6, to cause or not the change of state.
  • the unit acoustic pressure by a bistable membrane for a given membrane surface is greater than that generated by a membrane of the state of the art.
  • the bistable membrane has a rigidity greater than that of the prior art membranes because of the internal stresses responsible for the bistable effect, which induces a greater resonance frequency and a greater acceleration when moving. of the membrane from one to the other of its stable states. As the sound pressure is directly proportional to the acceleration, it is therefore increased.
  • the loudspeaker comprises a speaklet matrix in which all the membranes 4 are in the same initial state, for example in the first stable state. If initially the control electronics requires a sound pressure resulting from a negative pulse, a signal is sent to the actuators to move the membranes down.
  • control electronics If, in a second step, the control electronics request a sound pressure resulting from a positive pulse, a signal is sent to the actuators to move the membranes upwards.
  • control electronics require a sound pressure resulting from a positive pulse the membranes are not in the adequate stable state. It is then expected that the control electronics will send a pre-reset signal to move the membranes to their second stable state, and then send a signal for again cause the transition from the second stable state to the first state and generate the desired sound pressure.
  • control electronics twice request the same signal: ie to generate twice a sound pressure resulting from a negative or positive pulse, during the second command the membranes will not be in the adequate state . It is also expected that the control electronics will send a reset signal for the membranes to change state before being actuated to generate the desired sound pressure.
  • this reset step can induce acoustic interference due to the sound pressure generated during the reset. Nevertheless, this is a case where the occurrence is very weak.
  • the loudspeaker comprises at least two groups I, II of bistable membranes 4, 4 'respectively controlled separately, as shown in FIG. figure 4 .
  • the membranes 4, 4 'of the two groups I, II have opposite stable states in the initial state.
  • control electronics sends the same control signal twice in succession, twice a negative pulse or twice a positive pulse. If there are two groups I, II initially in the same state, the first group I is then actuated when sending the first signal and the second group II is actuated when sending the second signal.
  • More than two groups may be considered to further reduce the need for reinitialization. It should be noted that the size of the speaker is all the more increased.
  • the two groups preferably have the same number of speaklets.
  • the number of speaklets per group is not necessarily equal to that of a digital speaker of the state of the art comprising conventional membranes. It is for example between 50% and 100% of the number of speaklets of a digital speaker of the state of the art.
  • the two groups each comprise a number of speaklets closest or identical to that of a digital speaker of the state of the art in order to tend towards a perfect reconstruction of the sound. In this case, the surface of the speaker is doubled.
  • the number of speaklets per group is determined according to the footprint and the desired sound quality.
  • the digital speaker of the figure 4 has 200 speaklets per group, ie 400 speaklets.
  • the number of speaklets of the two groups can be chosen lower to preserve a reduced space but sufficient to make negligible the risk of initialization
  • the actuating means 206 comprise two actuators 206.1, 206.2.
  • Each actuator comprises a core 208.1, 208.2 made of ferroelectric material, for example the PZT, which has the property of contracting whatever the voltage applied, and electrodes 210.1, 210.2 to apply an actuating voltage thereto.
  • the actuator 206.1 has the shape of a ring disposed on the periphery of the membrane and the actuator 206.2 has the shape of a disc located in the central part of the membrane, as in the example of FIG. figure 2 .
  • the actuating means 306 are of the thermal type.
  • the actuating means comprise two actuators 306.1, 306.2 which have the structure of the actuators 206.1, 206.2.
  • the actuators 306.1 306.2 comprise a metallic pattern, for example Al, Ti, Au, ... which heats by the Joule effect during the passage of a current. This heating causes the expansion of the pattern due to its coefficient of expansion. This expansion will be different from that of the membrane material, for example silicon, silicon oxide or nitride on which the actuator is deposited. This differential expansion causes a mechanical torque that induces the actuation of the speaklet.
  • the actuator 306.1 is heated, its expansion causes a downward movement of the membrane.
  • the actuator 306.2 When the actuator 306.2 is heated, its expansion causes an upward movement of the membrane.
  • FIGS 8A and 8B a variant of the thermal actuation means 406 can be seen Figures 7A and 7B , comprising two ring-shaped actuators, one 406.1 being located on the edge of the membrane on its upper face and the other 406.2 being located on the edge of the membrane on its underside.
  • the heating of the actuator 406.1 causes the downward movement of the membrane and the heating of the actuator 406.2 causes the upward movement of the membrane.
  • the actuating means are of the electrostatic type.
  • the potential difference applied between an electrode positioned on the membrane and an electrode positioned facing, for example on the substrate or on a protective cover induces the movement of the membrane.
  • the actuating means are not necessarily identical for all the membranes, nevertheless the management of all the membranes with a single type of actuator is simplified and the reaction of the membranes is more homogeneous.
  • a silicon substrate 100 represented on the Figure 5A .
  • a first step the substrate is subjected to thermal oxidation so as to form an oxide layer 102 on all the substrate surfaces with a thickness of 2 ⁇ m, for example.
  • a hard oxide mask 104 is deposited on the rear face of the substrate.
  • This mask has for example a thickness of 5 microns.
  • the substrate is positioned in the deposition equipment so as to leave its rear face accessible.
  • the oxide deposit is preferably produced on this single face.
  • a photolithography step makes it possible to define the desired pattern on a resin deposited on the oxide layer. The resin is revealed to etch this pattern into the resin. Finally, the desired pattern is transferred to the oxide layer, by etching this oxide, so as to reach the silicon only where the photolithography resin has been removed by the revelation step.
  • a layer 106 is formed on the front face for forming the membrane 2.
  • This layer is for example made of polysilicon, SiC or SiO 2 .
  • the thickness of the layer 106 is for example between a few hundred nm to several ⁇ m, or even several tens of ⁇ m.
  • the layer 106 is for example made by chemical vapor deposition or by epitaxial growth. As previously explained, the internal stress of this layer is controlled so as to obtain a membrane having a certain concavity when it is released. For example, the deposition or growth of the layer 106 takes place with a predetermined compressive stress level, which depends in part on the deposition conditions, for example the deposition temperature, the deposition rate ... and partly of the deposition temperature. the composition of the membrane material. The level of stress in the membrane fixing the shape of the latter after release can be obtained by controlling the stress of one or more layers constituting the membrane, for this layer 106 may comprise one or more material.
  • a layer 108 is formed on the layer 106, for example of SiO 2 or SiN.
  • the layer 108 has for example a thickness of between a few hundred nm and several ⁇ m.
  • the layer 108 is formed for example by chemical vapor deposition. Again, the realization of this layer is done with a predetermined stress level as for the layer 106.
  • the piezoelectric actuation means are produced.
  • a layer 110 is firstly produced for forming the lower electrode of the actuating means, for example in Pt, Mo.
  • the layer 110 is made for example by depositing on the layer 108.
  • layer 110 has for example a thickness between a few tens of nm to a few hundred nm.
  • a layer of piezoelectric material 112 is then deposited on the layer 110, for example PZT, AlN, ZnO, LNO whose thickness is for example between a few hundred nm to a few microns or tens of microns.
  • the upper electrode is then produced by forming a layer 114 on the piezoelectric material 112, for example in Ru, Au for example having a thickness of between a few tens of nm and a few hundred nm.
  • an additional layer 116 is deposited on the layer of the upper electrodes intended to ensure the resumption of the contacts on the upper electrodes.
  • the layers 106 to 116 are deposited on each other.
  • the layer 116 at the top of the stack is etched with a photolithography mask.
  • the layer 114 is etched with a second mask which is preferably slightly larger than the first to avoid any problem in case of misalignment of the masks.
  • the layer of the lower electrode and the layer 108 are etched with the same or different masks in order to finish defining the actuator.
  • the membrane is released by deep etching of the substrate through the rear face until reaching the membrane.
  • all the membranes are made so that they have the same stable state during their release. Then, prior to the use of the speaker, by a selective control of the actuators causes the passage to the other stable state of a given number of membranes.
  • two fields of membrane matrices can be produced, which at their release all have the same stable state. Then, the matrix fields are cut and a three-dimensional assembly of the control electronics and the first field of speaklet matrices, and the second field of speaklets, the latter having been previously returned so that the assembly the membranes of the first field have a stable position and the second field have another stable position.
  • the first and second fields are assembled for example in the same plane.
  • the two fields retain the same orientations, however, an activation signal is applied to the membranes of one plate so that they take on the other stable state.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Description

  • La présente invention se rapporte à un haut-parleur digital à performance améliorée.
  • Les haut-parleurs sont présents dans un grand nombre d'appareils tels que les téléphones portables, les écrans plats... et leur miniaturisation est recherchée. Les technologies MEMS peuvent permettre d'obtenir des haut-parleurs ultrafins.
  • La technologie MEMS est particulièrement intéressante pour réaliser des haut-parleurs digitaux, pour lesquels la grande membrane du haut-parleur analogique est remplacée par plusieurs membranes unitaires, désignés speaklets, de petites tailles, permettant de reconstituer le son.
  • Dans le cas du haut-parleur digital, chaque speaklet est actionné individuellement, en actionnant les speaklets, selon le son à reconstruire, dans une position haute, ou dans une position basse.
  • Le document US 2011/0051985 décrit un haut-parleur dans lequel les membranes sont déplacées par des moyens piézoélectriques. Les membranes se déplacent vers le haut ou vers le bas puis oscillent autour de la position d'équilibre lorsque le signal d'actionnement s'arrête. Ce retour à l'équilibre s'accompagne d'une oscillation parasite pouvant perturber le son audible.
  • Le document WO 2007/135680 décrit un haut-parleur digital dans lequel les membranes sont déplacées par des moyens magnétiques et sont maintenues dans une position haute ou une position basse par des moyens électrostatiques. Les oscillations parasites sont alors réduites, cependant ce maintien en position nécessite de l'énergie puisqu'il faut alimenter les moyens électrostatiques, ce qui est pénalisant dans le cas de dispositifs portables.
  • EXPOSÉ DE L'INVENTION
  • C'est par conséquent un but de la présente invention d'offrir un haut-parleur digital à performance améliorée, plus particulièrement dans lequel les membranes ne présentent pas ou peu d'oscillations parasites avec une consommation électrique réduite.
  • Le but précédemment énoncé est atteint par un haut-parleur comportant au moins une matrice de plusieurs membranes suspendues, un actionneur associé à chaque membrane pour la déplacer vers le haut ou vers le bas, dans lequel les membranes sont formées chacune par un élément bistable.
  • On entend par " élément bistable " dans la présente demande, un élément présentant deux états stables, le passage d'un état stable à l'autre pouvant être obtenu au moyen d'un actionneur qui exerce un effort sur l'élément. L'élément bistable maintient chacune de ses positions stables lorsque l'actionneur cesse d'exercer un effort et en l'absence d'autre moyen extérieur.
  • Ainsi, les membranes sont toujours dans un de leurs états stables, et lorsque les membranes sont déplacées sous l'action de l'actionneur, elles atteignent leur autre état stable avec un minimum d'oscillations parasites qui sont alors très fortement diminuées. Les performances du haut-parleur sont donc améliorées.
  • Par ailleurs, le type de déplacement du bistable s'approche du déplacement idéal dans le cas d'un haut-parleur digital.
  • En outre, les membranes maintiennent l'un ou l'autre de leurs états stables sans apport d'énergie. La consommation électrique du haut-parleur est donc réduite, ce qui est particulièrement intéressant dans le cas de systèmes portables.
  • De manière particulièrement avantageuse, le haut parleur comporte un premier groupe de membranes bistables et un deuxième groupe de membranes bistables, qui sont aptes à être commandés séparément. A l'état initial, les membranes de chaque groupe peuvent présenter soit des états stables opposés, soit le même état stable.
  • La présente invention a alors pour objet un haut-parleur digital comportant un support, une pluralité de première membranes suspendues sur le support, lesdites premières membranes étant bistables, et ledit haut-parleur comportant des premiers moyens d'actionnement de chacune des premières membranes aptes à faire passer chacune des premières membranes d'un premier état stable à un deuxième état stable et inversement et des moyens de commande desdits premiers moyens d'actionnement
  • Les membranes peuvent ainsi être commandées indépendamment les unes des autres ou par groupe indépendant. Lorsqu'un groupe de membrane est commandé ensemble, les moyens d'actionnement de ces membranes sont reliés entre eux. Par exemple dans le cas d'un actionnement piézoélectrique, toutes les électrodes supérieures (respectivement inférieures) peuvent être reliées entres elles.
  • De manière particulièrement avantageuse, les premières membranes forment un premier groupe de membranes, et le haut-parleur comporte au moins un deuxième groupe de deuxièmes membranes et des deuxièmes moyens d'actionnement de chacune des deuxièmes membranes, les premiers et les deuxièmes moyens d'actionnement étant commandés séparément par les moyens de commande. A l'état initial, les premières membranes et les deuxièmes membranes peuvent être soit dans des états stables différents soit dans le même état stable.
  • Le nombre de premières membranes et le nombre deuxième membranes sont égaux, ce mode de réalisation est avantageux mais n'est cependant pas obligatoire.
  • Selon une caractéristique additionnelle, les moyens de commande sont aptes à envoyer un signal de réinitialisation aux premières et/ou aux deuxièmes membranes, préalablement à l'envoi d'un signal de commande pour faire passer lesdites membranes dans un desdits premier et deuxième états stables.
  • Dans un exemple de réalisation, les premiers et/ou deuxièmes moyens d'actionnement sont de type piézoélectrique, comportant respectivement au moins un élément en matériau piézoélectrique en contact avec chacune des membranes et des électrodes de commande associées à chaque élément piézoélectrique aptes à appliquer une tension de commande à chacun des éléments en matériau piézoélectrique.
  • Dans un autre exemple de réalisation, les moyens d'actionnement peuvent être formé de plusieurs actionneurs en matériau ferroélectrique, un actionneur a une forme de couronne sur le bord de la membrane et un actionneur au centre de la membrane le déplacement vers le haut ou vers la bas de la membrane étant obtenu par activation de l'un ou l'autre des actionneurs.
  • Dans un autre exemple de réalisation, les premiers et/ou deuxièmes moyens d'actionnement sont de type thermique, comportant respectivement un élément formant une résistance électrique commandée par les moyens de commande et disposé en contact avec chacune des membranes , chaque résistance électrique étant apte à appliquer un couple mécanique à la membrane qui lui est associée.
  • Dans un autre exemple de réalisation, les premiers et/ou deuxièmes moyens d'actionnement sont magnétiques.
  • Avantageusement, l'élément piézoélectrique disposé sur la membrane a une surface comprise en 0,4 et 0,6 fois la surface de la membrane.
  • Le haut-parleur digital peut être avantageusement réalisé par des procédés de la microélectronique.
  • La présente invention a également pour objet un procédé de réalisation d'un haut-parleur selon l'invention, comportant les étapes :
    1. a) réalisation sur un substrat d'une couche dans laquelle les membranes sont destinées à être formées,
    2. b) réalisation des premiers et/ou deuxièmes moyens d'actionnement,
    3. c) libération des membranes,
    4. d) connexion aux moyens de commande, des premiers et/ou deuxièmes moyens d'actionnement.
  • La couche formée lors de l'étape a) peut être réalisée avec au moins un niveau de contrainte prédéterminé.
  • Lors de l'étape a), des niveaux de contrainte prédéterminés différents sont avantageusement appliquées à des zones différentes de la couche destinée à former les membranes de sorte à former les premières et deuxièmes membranes ayant lors de leur libération à l'étape c) des états stables différents.
  • Entre l'étape c) et l'étape d),
    • une étape de découpe du dispositif obtenu peut avoir lieu pour former deux sous-éléments ou groupes de membranes,
    • et lors de l'étape d) les deux sous-éléments peuvent être assemblés et les premiers et deuxièmes moyens d'actionnement peuvent être reliés électriquement aux moyens de commande de sorte que les membranes des deux sous-éléments aient des états stables différents
  • L'un des sous-ensembles peut être retourné.
  • De préférence, une partie des moyens d'actionnement est activée pour faire passer les membranes associées auxdits moyens d'actionnement dans l'autre état stable.
  • On entend par "une partie des moyens d'actionnement", soit une partie d'un même groupe de membranes soit tout ou partie d'un autre groupe de membranes.
  • BRÈVE DESCRIPTION DES DESSINS
  • La présente invention sera mieux comprise à l'aide de la description qui va suivre et des dessins en annexes sur lesquels :
    • la figure 1 est une vue schématique de dessus d'un premier mode de réalisation d'un haut-parleur digital selon l'invention ;
    • la figure 2 est une vue de dessus d'un exemple de réalisation d'une membrane pouvant être mise en oeuvre dans le haut-parleur de la figure 1 ;
    • les figures 3A à 3E sont des vues de côté d'une membrane bistable d'un haut-parleur selon l'invention dans différents états ;
    • la figure 4 est une vue de dessus d'un deuxième mode de haut-parleur digital représenté schématiquement comportant deux groupes de membranes bistables ;
    • les figures 5A à 5F sont des représentations schématiques des différentes étapes d'un exemple de procédé de réalisation d'unhaut-parleur selon l'invention ;
    • les figures 6A et 6B sont des vues de dessus et en coupe respectivement d'un autre exemple de réalisation de membrane pouvant être mise en oeuvre dans le haut-parleur de la figure 1 ;
    • les figures 6C et 6D sont des représentations schématiques de la membrane de la figure 6A dans deux états d'actionnement ;
    • les figures 7A et 7B sont des vues de dessus et en coupe respectivement d'un autre exemple de réalisation de membrane pouvant être mise en oeuvre dans le haut-parleur de la figure 1 ;
    • les figures 8A et 8B sont des vues de dessus et en coupe respectivement d'une variante de la membrane des figures 7A et 7B.
    EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
  • Sur la figure 1, on peut voir une vue de dessus d'un haut-parleur digital comportant un support 2 et une pluralité de membranes 4 suspendues au-dessus du support 2. Le haut-parleur comporte également des moyens d'actionnement individuels de chaque membrane 4. Ces moyens peuvent être électrostatiques, magnétiques, thermiques, piézoélectriques... Un haut-parleur digital en général comporte de l'ordre de une à plusieurs centaines de speaklets.
  • Sur la figure 2, on peut voir une vue de dessus d'une membrane 4 et des moyens d'actionnement 6 piézoélectriques.
  • La membrane 4 a de manière préférée la forme d'un disque suspendu par sa périphérie. Les moyens d'actionnement piézoélectriques 6 sont formés par un disque 8 en matériau piézoélectrique disposé sur l'une des faces de la membrane 4. Les moyens d'actionnement comportent également des électrodes 10, 12, dites électrodes inférieure et supérieure respectivement réalisées sur le matériau piézoélectrique 8 et sous le matériau piézoélectrique 8, les électrodes 10, 12 sont reliées à une source de tension (non représentées). Les paires d'électrodes 10, 12 de chaque membrane 4 sont reliées individuellement à la source de tension et l'application d'une tension est commandée individuellement. Dans certains systèmes, des speaklets peuvent être rassemblés par bit pour former des groupes de speaklets.
  • En variante, la forme de la membrane peut être en forme d'ellipse ou polygonale.
  • Dans cet exemple de réalisation, les actionneurs sont réalisés à partir de matériaux piézoélectriques comme par exemple AIN, ZnO... Une tension positive provoque la dilatation du matériau piézoélectrique alors qu'une tension négative va induire sa contraction. Ainsi les déplacements vers le haut et le bas peuvent être obtenus en utilisant un seul actionneur.
  • L'électrode inférieure 10 peut avoir une forme circulaire de même surface que la membrane, ou de surface inférieure ou même présenter une forme différente de celle de la membrane.
  • Par exemple le rayon de la partie suspendue Rm de la membrane peut être compris entre 100 µm et 7500 µm, qui est également le rayon du matériau piézoélectrique et de l'électrode inférieure dans l'exemple représenté. Le rayon de l'électrode supérieure Re peut être compris entre 10 µm et 7480 µm.
  • Avantageusement, on pourra choisir une surface d'électrode supérieure 12 couvrant entre 40% et 60% de la surface de la membrane.
  • Des plots de connexion 14 et les conducteurs électriques 16 reliant les plots aux électrodes 10, 12 sont également représentés de manière schématique. Les plots sont de préférence situés en périphérie de la matrice de speaklets et sont reliés aux électrodes par des pistes. Ces plots sont généralement reliés à la source de tension via un fil (non représentés).
  • La membrane 4 forme un élément bistable. Celle-ci présente dans chacun de ses états stables une concavité opposée à celle de l'autre état stable. Mécaniquement la membrane 4 est encastrée dans le support 2, l'application d'une contrainte sur la membrane 4 se traduit comme étant la source d'une contrainte au niveau de l'encastrement. À partir d'une contrainte seuil, le système passe brutalement d'un état stable à l'autre, la membrane présente alors une forte accélération et donc génère une forte pression acoustique.
  • Sur la figure 3A, on peut voir une vue en coupe de la membrane 4 dans un premier état stable, la concavité orientée vers le bas et sur la figure 3C, on peut voir la membrane dans son deuxième état stable, sa concavité orientée vers le haut.
  • La pression acoustique unitaire générée par le déplacement de la membrane du premier état stable vers le deuxième état stable, i.e. du haut vers le bas dans l'exemple représenté, est désignée "pulse négatif " et la pression acoustique unitaire générée par le déplacement de la membrane du deuxième état stable vers le premier état stable, i.e. du bas vers le haut dans l'exemple représenté est désignée "pulse positif ". De préférence, le pulse négatif et le pulse positif sont symétriques par rapport à l'axe des abscisses si on représente les pulses de pression en fonction du temps.
  • Ainsi, en fonction du son à reconstruire, l'électronique de commande envoie un signal pour générer l'un ou l'autre des pulses.
  • La forme bombée de la membrane peut être obtenue lors de la fabrication. Par exemple, lors de la réalisation de la membrane par dépôt, par exemple par dépôt chimique en phase vapeur (CVD) ou par PCVD ou par croissance, celle-ci a lieu avec un niveau de contraintes de compression prédéterminé, qui dépend en partie des conditions de dépôts, par exemple de la température de dépôt, de la vitesse de dépôt, des gaz utilisés et en partie de la composition du matériau de la membrane. La forme bombée de la membrane peut être obtenu en ajustant la contrainte en compression dans une ou plusieurs des couches constitutives de la membrane. Lors de la libération de la membrane, celle-ci se trouve dans l'un de ses états stables.
  • A l'aide des figures 3A à 3E nous allons décrire le passage d'un état stable à l'autre d'une membrane bistable d'un haut-parleur selon l'invention.
  • Sur la figure 3A, la membrane 4 se trouve dans son premier état stable. Aucune tension n'est appliquée au matériau piézoélectrique 8.
  • Lorsque l'on souhaite générer une pression acoustique résultant d'un pulse négatif, une tension négative est appliquée au matériau piézoélectrique 8, celui-ci se contracte (la contraction est symbolisée par les deux flèches C), ce qui a pour effet de provoquer le déplacement de la membrane 4 vers le bas par effet de type bilame (la membrane et le matériau piézoélectrique formant un bilame mécanique) et son passage à sa deuxième position stable (figure 3C). Le membrane 4 en se déplaçant déplace l'air autour de la membrane 4 et génère une pression acoustique unitaire d'un speaklet.
  • Lorsque la membrane 4 atteint son deuxième état stable, la tension cesse d'être appliquée au matériau piézoélectrique 8 qui retrouve sa taille initiale mais avec une concavité opposée à celle qu'il avait lorsque la membrane 4 était dans sa première position d'équilibre.
  • Lorsque l'on veut générer une pression acoustique résultant d'un pulse positif, on applique à nouveau une tension positive au matériau piézoélectrique 8 qui se dilate (figure 3D; la dilatation est symbolisée par les deux flèches D), ce qui provoque un déplacement de la membrane 4 par effet de type bilame vers le haut, vers sa première position bistable. La membrane 4, en se déplaçant, déplace l'air autour de la membrane et génère une pression acoustique unitaire d'un speaklet.
  • Lorsque la membrane 4 atteint son premier état stable, la tension cesse d'être appliquée au matériau piézoélectrique 8 qui retrouve sa taille, cet état est représenté sur la figure 3E qui est identique à l'état de la figure 3A.
  • En variante, on peut envisager que l'actionneur 6 ait la forme d'une couronne bordant la membrane. Le fonctionnement est alors inversé, l'application d'une tension positive provoquant la dilatation de la couronne déplace la membrane vers le bas et génère un pulse négatif, et l'application d'une tension négative provoquant la contraction de la couronne déplace la membrane vers le haut et génère un pulse positif.
  • Dans l'exemple de la figure 1, toutes les membranes sont dans le même état au début de l'utilisation. Les speaklets sont commandés simultanément de la manière décrite ci-dessus pour provoquer une pluralité de pressions acoustiques unitaires qui forment une pression acoustique du haut-parleur générant un son audible donné.
  • Les speaklets sont commandés par une électronique de commande bien connue de l'homme du métier et qui ne sera pas décrite en détail. Cette électronique commande l'alimentation en tension, la tension appliquée à chacun des actionneurs 6, pour provoquer ou non le changement d'état.
  • Grâce à l'invention, la pression acoustique unitaire par une membrane bistable pour une surface de membrane donnée est supérieure à celle générée par une membrane de l'état de la technique. En effet, la membrane bistable présente une rigidité supérieure à celle des membranes de l'état de la technique du fait des contraintes internes responsables de l'effet bistable, ce qui induit une plus grande fréquence de résonance et une plus grande accélération lors du déplacement de la membrane de l'un à l'autre des ses états stables. La pression acoustique étant directement proportionnelle à l'accélération, celle-ci est donc augmentée.
  • Dans le mode de réalisation de la figure 1, le haut-parleur comporte une matrice de speaklets dans laquelle toutes les membranes 4 sont dans le même état initial, par exemple dans le premier état stable. Si dans un premier temps l'électronique de commande demande une pression acoustique résultant d'un pulse négatif, un signal est envoyé aux actionneurs pour déplacer les membranes vers le bas.
  • Si, dans un deuxième temps, l'électronique de commande demande une pression acoustique résultant d'un pulse positif, un signal est envoyé aux actionneurs pour déplacer les membranes vers le haut.
  • Si, dans un premier temps, l'électronique de commande demande une pression acoustique résultant d'un pulse positif les membranes ne sont pas dans l'état stable adéquate. On prévoit alors que l'électronique de commande envoie un signal de réinitialisation préalable pour déplacer les membranes vers leur deuxième état stable, et ensuite envoie un signal pour provoquer à nouveau le passage du deuxième état stable au premier état et générer la pression acoustique voulue.
  • De même, si l'électronique de commande demande deux fois de suite le même signal : i.e. de générer deux fois une pression acoustique résultant d'un pulse négatif ou positif, lors de la deuxième commande les membranes ne seront pas dans l'état adéquat. On prévoit alors également que l'électronique de commande envoie un signal de réinitialisation pour que les membranes changent d'état avant d'être actionnées pour générer la pression acoustique souhaitée.
  • Il s'agit d'une méthode très simple, néanmoins il est à noter que cette étape de réinitialisation peut induire un parasite acoustique du fait de la pression acoustique générée lors de la réinitialisation. Néanmoins il s'agit d'un cas de figure dont l'occurrence est très faible.
  • De manière très avantageuse, le haut-parleur comporte au moins deux groupes I, II de membranes bistables 4, 4' respectivement commandées séparément, comme cela est représenté sur la figure 4. Dans le mode de réalisation représenté, les membranes 4, 4' des deux groupes I, II présentent à l'état initial des états stables opposés.
  • Ainsi il existe un groupe de membranes dans l'état stable souhaité. Si on considère que le premier groupe I est dans le premier état stable et le deuxième groupe II est dans le deuxième état stable. Si l'électronique de commande commande un pulse négatif, c'est le groupe I qui est actionné, et si elle commande un pulse positif c'est le groupe II qui est actionné.
  • Dans le cas de figure où l'électronique de commande envoie deux fois de suite le même signal de commande, deux fois un pulse négatif ou deux fois un pulse positif. Si on dispose de deux groupes I, II initialement dans le même état, le premier groupe I est alors actionné lors de l'envoi du premier signal et le deuxième groupe II est actionné lors de l'envoi du deuxième signal.
  • Grâce à ce mode de réalisation, l'occurrence d'un besoin de réinitialisation est réduite, et donc la qualité du son produit est encore améliorée.
  • On peut envisager de prévoir plus de deux groupes pour réduire encore le besoin de réinitialisation. II est à noter que l'encombrement du haut-parleur s'en trouve d'autant plus augmenté.
  • Les deux groupes comportent de préférence le même nombre de speaklets.
  • Le nombre de speaklets par groupe n'est pas nécessairement égal à celui d'un haut-parleur digital de l'état de la technique comportant des membranes classiques. II est par exemple compris entre 50 % et 100 % du nombre de speaklets d'un haut-parleur digital de l'état de la technique. De manière avantageuse, les deux groupes comportent chacun un nombre de speaklets le plus proche voire identique à celui d'un haut-parleur digital de l'état de la technique afin de tendre vers une reconstitution parfaite du son. Dans ce cas, la surface du haut-parleur est doublée. Le nombre de speaklets par groupe est déterminé en fonction de l'encombrement et de la qualité de son souhaitée.
  • Par exemple si un haut-parleur digital de l'état de la technique comporte 200 speaklets, le haut-parleur digital de la figure 4 comporte 200 speaklets par groupe, i.e. 400 speaklets.
  • Le nombre de speaklets des deux groupes peut être choisi inférieur pour conserver un encombrement réduit mais suffisant pour rendre négligeable le risque d'initialisation
  • Dans un autre exemple de réalisation représenté sur les figures 6A à 6D, les moyens d'actionnement 206 comportent deux actionneurs 206.1, 206.2. Chaque actionneur comporte une âme 208.1, 208.2 en matériau ferroélectrique, par exemple le PZT, qui a comme propriété de se contracter quelle que soit la tension appliquée, et des électrodes 210.1, 210.2 pour lui appliquer une tension d'actionnement. L'actionneur 206.1 a la forme d'une couronne disposée sur la périphérie de la membrane et l'actionneur 206.2 a la forme d'un disque situé dans la partie centrale de la membrane comme dans l'exemple de la figure 2.
  • Si on applique une tension sur l'actionneur 206.2 par les électrodes 210.2, l'âme en matériau ferroélectrique 208.2 se contracte induisant un couple entrainant le mouvement vers le bas de la membrane et générant un pulse négatif.
  • Si on applique une tension sur l'actionneur 206.1 par les électrodes 210.1, l'âme en matériau ferroélectrique 208.1 se contracte induisant un couple entrainant le mouvement vers le haut du speaklet et générant un pulse positif.
  • Dans un autre exemple de réalisation représenté sur les figures 7A et 7B, les moyens d'actionnement 306 sont de type thermique.
  • Les moyens d'actionnement comportent deux actionneurs 306.1, 306.2 qui ont la structure des actionneurs 206.1, 206.2.
  • Les actionneurs 306.1 306.2 comportent un motif métallique, par exemple en Al, Ti, Au, ... qui s'échauffe par effet Joule lors du passage d'un courant. Cet échauffement provoque la dilatation du motif du fait de son coefficient de dilatation. Cette dilatation sera différente de celle du matériau de membrane, par exemple en silicium, oxyde de silicium ou nitrure sur lequel l'actionneur est déposé. Cette dilatation différentielle provoque un couple mécanique qui induit l'actionnement du speaklet. Lorsque l'actionneur 306.1 est échauffé, sa dilation provoque un mouvement vers le bas de la membrane. Lorsque l'actionneur 306.2 est échauffé, sa dilation provoque un mouvement vers le haut de la membrane.
  • Sur les figures 8A et 8B, on peut voir une variante des moyens d'actionnement thermique 406 des figures 7A et 7B, comportant deux actionneurs en forme de couronne, l'un 406.1 étant situé sur le bord de la membrane sur sa face supérieure et l'autre 406.2 étant situé sur le bord de la membrane sur sa face inférieure. L'échauffement de l'actionneur 406.1 provoque le déplacement vers le bas de la membrane et l'échauffement de l'actionneur 406.2 provoque le déplacement vers le haut de la membrane.
  • Dans un autre exemple de réalisation, les moyens d'actionnement sont de type électrostatique. Dans ce cas, la différence de potentielle appliquée entre une électrode positionnée sur la membrane et une électrode positionnée en regard, par exemple sur le substrat ou sur un capot de protection induit le mouvement de la membrane.
  • Les moyens d'actionnement ne sont pas nécessairement identiques pour toutes les membranes, néanmoins la gestion des toutes les membranes avec un seul type d'actionneur est simplifiée et la réaction des membranes est plus homogène.
  • Nous allons maintenant décrire un exemple de procédé de réalisation d'un exemple de haut-parleur à membrane bistable selon l'invention à l'aide des figures 5A à 5F sur lesquelles les étapes sont représentées schématiquement.
  • Par exemple, on utilise un substrat en silicium 100 représenté sur la figure 5A.
  • Lors d'une première étape, on effectue une oxydation thermique du substrat de sorte à former une couche d'oxyde 102 sur toutes les surfaces du substrat d'une épaisseur de 2 µm par exemple. Ensuite, on réalise un dépôt d'un masque dur d'oxyde 104 sur la face arrière du substrat. Ce masque a par exemple une épaisseur de 5 µm. Pour cela le substrat est positionné dans l'équipement de dépôt de sorte à laisser accessible sa face arrière. Le dépôt d'oxyde est réalisé préférentiellement sur cette seule face. Ensuite, une étape de photolithographie, permet de définir le motif voulu sur une résine déposée sur la couche d'oxyde. La résine est révélée afin de graver ce motif dans la résine. Enfin le motif voulu est reporté dans la couche d'oxyde, par gravure de cet oxyde, de sorte à atteindre le silicium uniquement là où la résine de photolithographie a été enlevée par l'étape de révélation.
  • L'élément ainsi obtenu est représenté sur la figure 5B.
  • Lors d'une étape suivante, on forme une couche 106 en face avant destinée à former la membrane 2. Cette couche est par exemple en polysilicium, en SiC ou en SiO2. L'épaisseur de la couche 106 est par exemple comprise entre quelques centaines de nm à plusieurs µm, voire plusieurs dizaines de µm.
  • La couche 106 est par exemple réalisée par dépôt chimique en phase vapeur ou par croissance épitaxiale. Comme expliqué précédemment, on contrôle la contrainte interne de cette couche de sorte à obtenir une membrane présentant une certaine concavité lorsque celle-ci sera libérée. Par exemple, le dépôt ou la croissance de la couche 106 a lieu avec un niveau de contraintes de compression prédéterminé, qui dépend en partie des conditions de dépôts, par exemple la température de dépôt, la vitesse de dépôt... et en partie de la composition du matériau de la membrane. Le niveau de contrainte dans la membrane fixant la forme de cette dernière après libération peut être obtenu en maîtrisant la contrainte d'une ou de plusieurs couches constitutives de la membrane, pour cela la couche 106 peut comporter un ou de plusieurs matériau.
  • L'élément ainsi obtenu est représenté sur la figure 5C.
  • Lors d'une étape suivante, on forme une couche 108 sur la couche 106 par exemple en SiO2 ou en SiN. La couche 108 a par exemple une épaisseur comprise entre quelques centaines de nm et plusieurs µm. La couche 108 est formée par exemple par dépôt chimique en phase vapeur. A nouveau, la réalisation de cette couche se fait avec un niveau de contrainte prédéterminé comme pour la couche 106.
  • L'élément ainsi obtenu est représenté sur la figure 5D.
  • Lors d'une étape suivante, on réalise les moyens d'actionnement piézoélectriques.
  • Pour cela on réalise tout d'abord une couche 110 destinée à former l'électrode inférieure des moyens d'actionnement, par exemple en Pt, Mo. La couche 110 est réalisée par exemple par dépôt sur la couche 108. La couche 110 a par exemple une épaisseur comprise entre quelques dizaines de nm à quelques centaines de nm.
  • Une couche de matériau piézoélectrique 112 est ensuite déposée sur la couche 110, par exemple en PZT, AIN, ZnO, LNO dont l'épaisseur est par exemple comprise entre quelques centaines de nm à quelques µm voir dizaines de µm.
  • On réalise ensuite l'électrode supérieure par formation d'une couche 114 sur le matériau piézoélectrique 112, par exemple en Ru, Au par exemple d'épaisseur comprise entre quelques dizaines de nm à quelques centaines de nm.
  • De préférence une couche supplémentaire 116, par exemple en or, est déposée sur la couche des électrodes supérieures destinées à assurer la reprise des contacts sur les électrodes supérieures.
  • Les couches 106 à 116 sont déposées les unes sur les autres. On commence à graver la couche 116 située en haut de l'empilement avec un masque de photolithographie. Puis on grave la couche 114 avec un second masque qui est de préférence légèrement plus grand que le premier pour éviter tout problème en cas de désalignement des masques. On obtient alors le profil en escalier de la figure 5F.
  • L'élément ainsi obtenu est représenté sur la figure 5E.
  • Ensuite on grave la couche de l'électrode inférieure ainsi que la couche 108, avec le même masque ou des masques différents, afin de finir de définir l'actionneur.
  • Enfin, on libère la membrane par gravure profonde du substrat par la face arrière jusqu'à atteindre la membrane.
  • Lors de la libération de la membrane, du fait des contraintes dans la membrane, celle-ci prend une forme bombée et se trouve dans l'un de ses états stables.
  • Le haut-parleur ainsi obtenu est visible sur la figure 5F. A des fins de simplicité, la réalisation d'une seule membrane est décrite, cependant il sera compris que le procédé permet avantageusement de réaliser toutes les membranes simultanément.
  • Pour réaliser le haut-parleur de la figure 4 comportant deux groupes I, II de membranes 4, 4' dans des états initiaux différents, plusieurs méthodes sont envisageables.
  • Selon une méthode, lors des étapes de réalisation des couches 106 et 108, il peut être appliqué des contraintes différentes dans différentes zones des couches 106, 108, de sorte que lors de leur libération certaines membranes se trouvent dans le premier état stable et les autres membranes se trouvent dans l'autre état stable.
  • Selon une autre méthode, on réalise toutes les membranes de sorte qu'elles présentent le même état stable lors de leur libération. Ensuite, préalablement à l'utilisation du haut-parleur, par une commande sélective des actionneurs on provoque le passage à l'autre état stable d'un nombre donné de membranes.
  • Selon une autre méthode, on peut réaliser deux champs de matrices de membranes, qui lors de leur libération, présentent toutes le même état stable. Ensuite, les champs de matrices sont découpés et on réalise un assemblage tridimensionnel de l'électronique de commande et du premier champ de matrices de speaklets, et du deuxième champ de speaklets, ce dernier ayant été préalablement retourné de sorte qu'à l'assemblage, les membranes du premier champ aient une position stable et le deuxième champ aient une autre position stable. Les premier et deuxième champs sont assemblés par exemple dans le même plan.
  • Selon une variante, les deux champs conservent les mêmes orientations, cependant on applique un signal d'actionnement des membranes d'une plaque pour qu'elles prennent l'autre état stable.

Claims (16)

  1. Haut-parleur digital comportant un support (2), une pluralité de première membranes (4) suspendues sur le support, lesdites premières membranes (4) étant bistables, et ledit haut-parleur comportant des premiers moyens d'actionnement (6) de chacune des premières membranes (4) aptes à faire passer chacune des premières membranes (4) d'un premier état stable à un deuxième état stable et inversement et des moyens de commande desdits premiers moyens d'actionnement.
  2. Haut-parleur digital selon la revendication 1, dans lequel lesdites premières membranes (4) forment un premier groupe (I) de membranes, et le haut-parleur comporte au moins un deuxième groupe (II) de deuxièmes membranes (4') et des deuxièmes moyens d'actionnement de chacune des deuxièmes membranes, les premiers et les deuxièmes moyens d'actionnement étant commandés séparément par les moyens de commande.
  3. Haut-parleur digital selon la revendication 2, dans lequel, à l'état initial, les premières membranes (4) et les deuxièmes membranes (4') sont dans des états stables différents.
  4. Haut-parleur digital selon la revendication 2, dans lequel, à l'état initial, les premières membranes (4) et les deuxièmes membranes (4') sont dans le même état stable.
  5. Haut-parleur digital selon l'une des revendications 2 à 4, dans lequel le nombre de premières membranes (4) et le nombre deuxième membranes (4') sont égaux.
  6. Haut-parleur selon l'une des revendications 1 à 5, dans lequel les moyens de commande sont aptes à envoyer un signal de réinitialisation aux premières (4) et/ou aux deuxièmes (4') membranes, préalablement à l'envoi d'un signal de commande.
  7. Haut-parleur digital selon l'une des revendications 1 à 6, dans lequel les premiers (6) et/ou deuxièmes moyens d'actionnement sont de type piézoélectrique, comportant respectivement au moins un élément en matériau piézoélectrique (8) en contact avec chacune des membranes (4, 4') et des électrodes de commande associées à chaque élément piézoélectrique (8) aptes à appliquer une tension de commande à chacun des éléments en matériau piézoélectrique (8).
  8. Haut-parleur digital selon l'une des revendications 1 à 6, dans lequel les premiers et/ou deuxièmes moyens d'actionnement (306, 406) sont de type thermique, comportant respectivement un élément formant une résistance électrique commandée par les moyens de commande et disposé en contact avec chacune des membranes, chaque résistance électrique étant apte à appliquer un couple mécanique à la membrane qui lui est associée.
  9. Haut-parleur digital selon la revendication 7, dans lequel l'élément piézoélectrique disposée sur la membrane a une surface comprise en 0,4 et 0,6 fois la surface de la membrane.
  10. Haut-parleur digital selon l'une des revendications 1 à 9, réalisé par des procédés de la microélectronique.
  11. Procédé de réalisation d'un haut-parleur selon l'une des revendications 1 à 10, comportant les étapes :
    a) réalisation sur un substrat d'une couche (106) dans laquelle les membranes (4, 4') sont destinées à être formées,
    b) réalisation des premiers et/ou deuxièmes moyens d'actionnement,
    c) libération des membranes (4, 4'),
    d) connexion aux moyens de commande, des premiers et/ou deuxièmes moyens d'actionnement.
  12. Procédé selon la revendication 11, dans lequel la couche formée lors de l'étape a)est réalisée avec au moins un niveau de contrainte prédéterminée.
  13. Procédé selon la revendication 12, dans lequel lors de l'étape a), des niveaux de contrainte prédéterminés différents sont appliquées à des zones différentes de la couche destinée à former les membranes de sorte à former les premières et deuxièmes membranes ayant lors de leur libération à l'étape c) des états stables différents.
  14. Procédé selon l'une des revendications 11 à 13, dans lequel entre l'étape c) et l'étape d),
    - une étape de découpe du dispositif obtenu a lieu pour former deux sous-éléments ou groupes de membranes,
    - et lors de l'étape d) les deux sous-éléments sont assemblés et les premiers et deuxièmes moyens d'actionnement sont reliés électriquement aux moyens de commande de sorte que les membranes des deux sous-éléments aient des états stables différents.
  15. Procédé selon la revendication 14, dans lequel l'un des sous-ensembles est retourné.
  16. Procédé selon l'une des revendications 11 à 15, dans lequel une partie des moyens d'actionnement est activée pour faire passer les membranes associées auxdits moyens d'actionnement dans l'autre état stable.
EP13166609.1A 2012-05-07 2013-05-06 Haut-parleur digital a performance ameliorée Not-in-force EP2663091B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1254172A FR2990320B1 (fr) 2012-05-07 2012-05-07 Haut-parleur digital a performance amelioree

Publications (2)

Publication Number Publication Date
EP2663091A1 EP2663091A1 (fr) 2013-11-13
EP2663091B1 true EP2663091B1 (fr) 2015-09-30

Family

ID=47137792

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13166609.1A Not-in-force EP2663091B1 (fr) 2012-05-07 2013-05-06 Haut-parleur digital a performance ameliorée

Country Status (3)

Country Link
US (1) US9282385B2 (fr)
EP (1) EP2663091B1 (fr)
FR (1) FR2990320B1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000354B1 (fr) * 2012-12-20 2015-01-30 Commissariat Energie Atomique Dispositif a membrane a deplacement controle
FR3010272B1 (fr) 2013-09-04 2017-01-13 Commissariat Energie Atomique Dispositif acoustique digital a puissance sonore augmentee
CN103956936A (zh) * 2014-05-28 2014-07-30 哈尔滨工业大学 压电双稳态能量收集器
DE102014217798A1 (de) 2014-09-05 2016-03-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromechanische piezoelektrische Aktuatoren zur Realisierung hoher Kräfte und Auslenkungen
WO2016107975A1 (fr) * 2014-12-31 2016-07-07 Teknologian Tutkimuskeskus Vtt Oy Transducteur micro-électromécanique piézoélectrique
FR3033468B1 (fr) * 2015-03-02 2018-04-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif a membranes actionnables et haut-parleur digital comportant au moins un tel dispositif
WO2016162829A1 (fr) * 2015-04-08 2016-10-13 King Abdullah University Of Science And Technology Éléments de réseau piézoélectrique pour la reconstruction de son avec une entrée numérique
US10021473B2 (en) * 2015-05-20 2018-07-10 Dai-Ichi Seiko Co., Ltd. Digital speaker, speaker system, and earphones
JP6461724B2 (ja) * 2015-06-05 2019-01-30 太陽誘電株式会社 圧電式発音体及び電気音響変換装置
US10516943B2 (en) * 2016-05-04 2019-12-24 Infineon Technologies Ag Microelectromechanical device, an array of microelectromechanical devices, a method of manufacturing a microelectromechanical device, and a method of operating a microelectromechanical device
FR3056572B1 (fr) * 2016-09-23 2021-02-19 Commissariat Energie Atomique Dispositif a membrane suspendue presentant une amplitude de deplacement augmentee
KR102583487B1 (ko) * 2016-10-17 2023-09-27 엘지전자 주식회사 오디오 출력 장치
DE102016121587B4 (de) * 2016-11-10 2023-06-01 Pi Ceramic Gmbh Piezoelektrischer Antrieb, insbesondere für den Einsatz in feuchter Umgebung
DE102017208911A1 (de) 2017-05-26 2018-11-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromechanischer Schallwandler
DE102017126644B4 (de) * 2017-11-13 2020-11-12 Infineon Technologies Ag Membranelementanordnung und Verfahren hierzu
US11395073B2 (en) 2020-04-18 2022-07-19 xMEMS Labs, Inc. Sound producing package structure and method for packaging sound producing package structure
US11252511B2 (en) 2019-12-27 2022-02-15 xMEMS Labs, Inc. Package structure and methods of manufacturing sound producing chip, forming package structure and forming sound producing apparatus
US11057716B1 (en) * 2019-12-27 2021-07-06 xMEMS Labs, Inc. Sound producing device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330686A (en) 1978-12-21 1982-05-18 Stephen Roe Loudspeaker systems
US5867302A (en) 1997-08-07 1999-02-02 Sandia Corporation Bistable microelectromechanical actuator
US6278790B1 (en) * 1997-11-11 2001-08-21 Nct Group, Inc. Electroacoustic transducers comprising vibrating panels
AU5051399A (en) * 1998-07-21 2000-02-14 New Transducers Limited Digital loudspeaker
EP0999723B1 (fr) * 1998-11-05 2006-03-08 Matsushita Electric Industrial Co., Ltd. Haut-parleur piézoélectrique,méthode pour sa fabrication,et système de haut-parleur le comprenant
US20020015507A1 (en) * 2000-05-31 2002-02-07 Neil Harris Loudspeaker
EP1206160A1 (fr) * 2000-11-09 2002-05-15 Texas Instruments Incorporated Haut-parleur numérique
FR2857153B1 (fr) 2003-07-01 2005-08-26 Commissariat Energie Atomique Micro-commutateur bistable a faible consommation.
US20070188846A1 (en) * 2003-09-03 2007-08-16 Slicker James M MEMS switch with bistable element having straight beam components
US7589456B2 (en) 2005-06-14 2009-09-15 Siemens Medical Solutions Usa, Inc. Digital capacitive membrane transducer
TWI468024B (zh) 2006-05-22 2015-01-01 Audio Pixels Ltd 產生壓力波之裝置及方法
US8165323B2 (en) 2006-11-28 2012-04-24 Zhou Tiansheng Monolithic capacitive transducer
US8699849B2 (en) * 2009-04-14 2014-04-15 Strubwerks Llc Systems, methods, and apparatus for recording multi-dimensional audio
CA2805021C (fr) 2009-07-10 2019-09-10 Milux Holding S.A. Dispositif d'articulation de la hanche et procede correspondant
KR101561663B1 (ko) 2009-08-31 2015-10-21 삼성전자주식회사 피스톤 다이어프램을 가진 압전형 마이크로 스피커 및 그 제조 방법
WO2011051985A1 (fr) 2009-10-30 2011-05-05 Icube+ (Malta) Limited Procédé interactif de gestion de publicité pour un bien et système basé sur la messagerie unifiée et la communication unifiée
FR3000354B1 (fr) 2012-12-20 2015-01-30 Commissariat Energie Atomique Dispositif a membrane a deplacement controle

Also Published As

Publication number Publication date
US20130294636A1 (en) 2013-11-07
US9282385B2 (en) 2016-03-08
FR2990320B1 (fr) 2014-06-06
EP2663091A1 (fr) 2013-11-13
FR2990320A1 (fr) 2013-11-08

Similar Documents

Publication Publication Date Title
EP2663091B1 (fr) Haut-parleur digital a performance ameliorée
EP2747452B1 (fr) Dispositif à membrane à déplacement contrôlé
EP1040492B1 (fr) Microsysteme a element deformable sous l'effet d'un actionneur thermique
EP2074695B1 (fr) Resonateur en silicium de type diapason
EP1562207B1 (fr) Microsystème électromécanique pouvant basculer entre deux positions stables
EP1519213B1 (fr) Micro-miroir oscillant à actionnement bimorphe
EP3811402B1 (fr) Procédé de transfert de couche(s) de matériau depuis un premier substrat sur un deuxième substrat
EP1736435A1 (fr) Actionneur électrostatique comprenant un pivot conducteur suspendu
EP1652205B1 (fr) Commutateur micro-mecanique bistable, methode d' actionnement et procede de realisation correspondant
EP3042509B1 (fr) Dispositif acoustique numerique a puissance sonore augmentee
EP2776364B1 (fr) Procede ameliore de realisation d'un dispositif a cavites formees entre un element suspendu reposant sur des plots isolants semi-enterres dans un substrat et ce substrat
FR3018927A1 (fr) Dispositif optique a membrane deformable a temps de reponse reduit
EP1717830B1 (fr) Micro-condensateur électromécanique à capacité variable et procédé de fabrication d'un tel micro-condensateur
FR3033468A1 (fr) Dispositif a membranes actionnables et haut-parleur digital comportant au moins un tel dispositif
EP3516442B1 (fr) Dispositif a membrane suspendue presentant une amplitude de deplacement augmentee
EP3925930B1 (fr) Procédé de fabrication d'un dispositif microélectronique comprenant une membrane suspendue au-dessus d'une cavité
EP3587343A1 (fr) Procede de realisation d'un dispositif au moins partiellement transparent integrant une structure de type condensateur
EP4075526A1 (fr) Dispositif à transduction piézorésistive
FR3103966A1 (fr) Microsystème mécanique et procédé de fabrication associé
EP2438339B1 (fr) Organe de circulation fluidique, et ensemble de circulation fluidique comprenant au moins un tel organe
EP1365271A1 (fr) Dispositif d'actionnement électrostatique miniature et installation comprenant de tels dispositifs
EP3939935A1 (fr) Actuateur électromécanique nanométrique et son procédé de fabrication
FR3143256A1 (fr) Elément actif piézoélectrique pour système électromécanique
EP3201121A1 (fr) Structure mecanique comprenant un actionneur et des moyens d'amplification mecanique et procede de fabrication
FR2850762A1 (fr) Dispositif d'orientation d'un objet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140507

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 1/00 20060101AFI20141017BHEP

INTG Intention to grant announced

Effective date: 20141120

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 1/02 20060101ALI20150325BHEP

Ipc: H04R 1/00 20060101AFI20150325BHEP

INTG Intention to grant announced

Effective date: 20150428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 753054

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013003258

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151231

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 753054

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160130

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013003258

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

26N No opposition filed

Effective date: 20160701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160506

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130506

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200513

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200527

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210531

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013003258

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210506

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531