FR2990320A1 - Haut-parleur digital a performance amelioree - Google Patents

Haut-parleur digital a performance amelioree Download PDF

Info

Publication number
FR2990320A1
FR2990320A1 FR1254172A FR1254172A FR2990320A1 FR 2990320 A1 FR2990320 A1 FR 2990320A1 FR 1254172 A FR1254172 A FR 1254172A FR 1254172 A FR1254172 A FR 1254172A FR 2990320 A1 FR2990320 A1 FR 2990320A1
Authority
FR
France
Prior art keywords
membranes
membrane
actuating means
loudspeaker
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1254172A
Other languages
English (en)
Other versions
FR2990320B1 (fr
Inventor
Fabrice Casset
Remy Dejaeger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Priority to FR1254172A priority Critical patent/FR2990320B1/fr
Priority to EP13166609.1A priority patent/EP2663091B1/fr
Priority to US13/887,707 priority patent/US9282385B2/en
Publication of FR2990320A1 publication Critical patent/FR2990320A1/fr
Application granted granted Critical
Publication of FR2990320B1 publication Critical patent/FR2990320B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/005Details of transducers, loudspeakers or microphones using digitally weighted transducing elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

Haut-parleur digital comportant un support (2), une pluralité de première membranes (4) suspendues sur le support (2), lesdites premières membranes (4) étant bistables, et ledit haut-parleur comportant des moyens d'actionnement (6) de chacune des premières membranes aptes à faire passer chacune des premières membranes (4) d'un premier état stable à un deuxième état stable et inversement et des moyens de commande desdits moyens d'actionnement (6).

Description

HAUT-PARLEUR DIGITAL A PERFORMANCE AMÉLIORÉE DESCRIPTION DOMAINE TECHNIQUE ET ART ANTÉRIEUR La présente invention se rapporte à un 5 haut-parleur digital à performance améliorée. Les haut-parleurs sont présents dans un grand nombre d'appareils tels que les téléphones portables, les écrans plats_ et leur miniaturisation est recherchée. Les technologies MEMS peuvent permettre 10 d'obtenir des haut-parleurs ultrafins. La technologie MEMS est particulièrement intéressante pour réaliser des haut-parleurs digitaux, pour lesquels la grande membrane du haut-parleur analogique est remplacée par plusieurs membranes 15 unitaires, désignés speaklets, de petites tailles, permettant de reconstituer le son. Dans le cas du haut-parleur digital, chaque speaklet est actionné individuellement, en actionnant les speaklets, selon le son à reconstruire, dans une 20 position haute, ou dans une position basse. Le document WO 2011/0051985 décrit un haut-parleur dans lequel les membranes sont déplacées par des moyens piézoélectriques. Les membranes se déplacent vers le haut ou vers le bas puis oscillent 25 autour de la position d'équilibre lorsque le signal d'actionnement s'arrête. Ce retour à l'équilibre s'accompagne d'une oscillation parasite pouvant perturber le son audible.
Le document WO 2007/135680 décrit un haut-parleur digital dans lequel les membranes sont déplacées par des moyens magnétiques et sont maintenues dans une position haute ou une position basse par des moyens électrostatiques. Les oscillations parasites sont alors réduites, cependant ce maintien en position nécessite de l'énergie puisqu'il faut alimenter les moyens électrostatiques, ce qui est pénalisant dans le cas de dispositifs portables.
EXPOSÉ DE L'INVENTION C'est par conséquent un but de la présente invention d'offrir un haut-parleur digital à performance améliorée, plus particulièrement dans lequel les membranes ne présentent pas ou peu d'oscillations parasites avec une consommation électrique réduite. Le but précédemment énoncé est atteint par un haut-parleur comportant au moins une matrice de plusieurs membranes suspendues, un actionneur associé à chaque membrane pour la déplacer vers le haut ou vers le bas, dans lequel les membranes sont formées chacune par un élément bistable. On entend par " élément bistable " dans la présente demande, un élément présentant deux états stables, le passage d'un état stable à l'autre pouvant être obtenu au moyen d'un actionneur qui exerce un effort sur l'élément. L'élément bistable maintient chacune de ses positions stables lorsque l'actionneur cesse d'exercer un effort.
Ainsi, les membranes sont toujours dans un de leurs états stables, et lorsque les membranes sont déplacées sous l'action de l'actionneur, elles atteignent leur autre état stable avec un minimum d'oscillations parasites qui sont alors très fortement diminuées. Les performances du haut-parleur sont donc améliorées. Par ailleurs, le type de déplacement du bistable s'approche du déplacement idéal dans le cas d'un haut-parleur digital. En outre, les membranes maintiennent l'un ou l'autre de leurs états stables sans apport d'énergie. La consommation électrique du haut-parleur est donc réduite, ce qui est particulièrement intéressant dans le cas de systèmes portables. De manière particulièrement avantageuse, le haut parleur comporte un premier groupe de membranes bistables et un deuxième groupe de membranes bistables, qui sont aptes à être commandés séparément. A l'état initial, les membranes de chaque groupe peuvent présenter soit des états stables opposés, soit le même état stable. La présente invention a alors pour objet un haut-parleur digital comportant un support, une 25 pluralité de première membranes suspendues sur le support, lesdites premières membranes étant bistables, et ledit haut-parleur comportant des premiers moyens d'actionnement de chacune des premières membranes aptes à faire passer chacune des premières membranes d'un 30 premier état stable à un deuxième état stable et inversement et des moyens de commande desdits premiers moyens d'actionnement Les membranes peuvent ainsi être commandées indépendamment les unes des autres ou par groupe indépendant. Lorsqu'un groupe de membrane est commandé ensemble, les moyens d'actionnement de ces membranes sont reliés entre eux. Par exemple dans le cas d'un actionnement piézoélectrique, toutes les électrodes supérieures (respectivement inférieures) peuvent être reliées entres elles. De manière particulièrement avantageuse, les premières membranes forment un premier groupe de membranes, et le haut-parleur comporte au moins un deuxième groupe de deuxièmes membranes et des deuxièmes moyens d'actionnement de chacune des deuxièmes membranes, les premiers et les deuxièmes moyens d'actionnement étant commandés séparément par les moyens de commande. A l'état initial, les premières membranes et les deuxièmes membranes peuvent être soit dans des états stables différents soit dans le même état stable. Le nombre de premières membranes et le nombre deuxième membranes sont égaux, ce mode de réalisation est avantageux mais n'est cependant pas 25 obligatoire. Selon une caractéristique additionnelle, les moyens de commande sont aptes à envoyer un signal de réinitialisation aux premières et/ou aux deuxièmes membranes, préalablement à l'envoi d'un signal de 30 commande pour faire passer lesdites membranes dans un desdits premier et deuxième états stables.
Dans un exemple de réalisation, les premiers et/ou deuxièmes moyens d'actionnement sont de type piézoélectrique, comportant respectivement au moins un élément en matériau piézoélectrique en contact avec chacune des membranes et des électrodes de commande associées à chaque élément piézoélectrique aptes à appliquer une tension de commande à chacun des éléments en matériau piézoélectrique. Dans un autre exemple de réalisation, les moyens d'actionnement peuvent être formé de plusieurs actionneurs en matériau ferroélectrique, un actionneur a une forme de couronne sur le bord de la membrane et un actionneur au centre de la membrane le déplacement vers le haut ou vers la bas de la membrane étant obtenu par activation de l'un ou l'autre des actionneurs. Dans un autre exemple de réalisation, les premiers et/ou deuxièmes moyens d'actionnement sont de type thermique, comportant respectivement un élément formant une résistance électrique commandée par les moyens de commande et disposé en contact avec chacune des membranes , chaque résistance électrique étant apte à appliquer un couple mécanique à la membrane qui lui est associée. Dans un autre exemple de réalisation, les 25 premiers et/ou deuxièmes moyens d'actionnement sont magnétiques. Avantageusement, l'élément piézoélectrique disposé sur la membrane a une surface comprise en 0,4 et 0,6 fois la surface de la membrane. 30 Le haut-parleur digital peut être avantageusement réalisé par des procédés de la microélectronique. La présente invention a également pour 5 objet un procédé de réalisation d'un haut-parleur selon l'invention, comportant les étapes : a) réalisation sur un substrat d'une couche dans laquelle les membranes sont destinées à être formées, 10 b) réalisation des premiers et/ou deuxièmes moyens d'actionnement, c) libération des membranes, d) connexion aux moyens de commande, des premiers et/ou deuxièmes moyens d'actionnement. 15 La couche formée lors de l'étape a) peut être réalisée avec au moins un niveau de contrainte prédéterminé. Lors de l'étape a), des niveaux de contrainte prédéterminés différents sont 20 avantageusement appliquées à des zones différentes de la couche destinée à former les membranes de sorte à former les premières et deuxièmes membranes ayant lors de leur libération à l'étape c) des états stables différents. 25 Entre l'étape c) et l'étape d), - une étape de découpe du dispositif obtenu peut avoir lieu pour former deux sous-éléments ou groupes de membranes, - et lors de l'étape d) les deux 30 sous-éléments peuvent être assemblés et les premiers et deuxièmes moyens d'actionnement peuvent être reliés électriquement aux moyens de commande de sorte que les membranes des deux sous-éléments aient des états stables différents L'un des sous-ensembles peut être retourné.
De préférence, une partie des moyens d'actionnement est activée pour faire passer les membranes associées auxdits moyens d'actionnement dans l'autre état stable. On entend par "une partie des moyens 10 d'actionnement", soit une partie d'un même groupe de membranes soit tout ou partie d'un autre groupe de membranes. BRÈVE DESCRIPTION DES DESSINS La présente invention sera mieux comprise à 15 l'aide de la description qui va suivre et des dessins en annexes sur lesquels : - la figure 1 est une vue schématique de dessus d'un premier mode de réalisation d'un haut-parleur digital selon l'invention ; 20 - la figure 2 est une vue de dessus d'un exemple de réalisation d'une membrane pouvant être mise en oeuvre dans le haut-parleur de la figure 1 ; - les figures 3A à 3E sont des vues de côté d'une membrane bistable d'un haut-parleur selon 25 l'invention dans différents états ; - la figure 4 est une vue de dessus d'un deuxième mode de haut-parleur digital représenté schématiquement comportant deux groupes de membranes bistables ; - les figures 5A à 5F sont des représentations schématiques des différentes étapes d'un exemple de procédé de réalisation d'un haut-parleur selon l'invention ; - les figures &A et 6B sont des vues de dessus et en coupe respectivement d'un autre exemple de réalisation de membrane pouvant être mise en oeuvre dans le haut-parleur de la figure 1 ; - les figures 6C et 6D sont des représentations schématiques de la membrane de la figure &A dans deux états d'actionnement ; - les figures 7A et 7B sont des vues de dessus et en coupe respectivement d'un autre exemple de réalisation de membrane pouvant être mise en oeuvre dans le haut-parleur de la figure 1 ; - les figures 8A et 8B sont des vues de dessus et en coupe respectivement d'une variante de la membrane des figures 7A et 7B. EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS Sur la figure 1, on peut voir une vue de dessus d'un haut-parleur digital comportant un support 2 et une pluralité de membranes 4 suspendues au-dessus du support 2. Le haut-parleur comporte également des moyens d'actionnement individuels de chaque membrane 4. Ces moyens peuvent être électrostatiques, magnétiques, thermiques, piézoélectriques_ Un haut-parleur digital en général comporte de l'ordre de une à plusieurs centaines de speaklets.
Sur la figure 2, on peut voir une vue de dessus d'une membrane 4 et des moyens d'actionnement 6 piézoélectriques. La membrane 4 a de manière préférée la 5 forme d'un disque suspendu par sa périphérie. Les moyens d'actionnement piézoélectriques 6 sont formés par un disque 8 en matériau piézoélectrique disposé sur l'une des faces de la membrane 4. Les moyens d'actionnement comportent également des 10 électrodes 10, 12, dites électrodes inférieure et supérieure respectivement réalisées sur le matériau piézoélectrique 8 et sous le matériau piézoélectrique 8, les électrodes 10, 12 sont reliées à une source de tension (non représentées). Les paires d'électrodes 10, 15 12 de chaque membrane 4 sont reliées individuellement à la source de tension et l'application d'une tension est commandée individuellement. Dans certains systèmes, des speaklets peuvent être rassemblés par bit pour former des groupes de speaklets. 20 En variante, la forme de la membrane peut être en forme d'ellipse ou polygonale. Dans cet exemple de réalisation, les actionneurs sont réalisés à partir de matériaux piézoélectriques comme par exemple AIN, Zna" Une 25 tension positive provoque la dilatation du matériau piézoélectrique alors qu'une tension négative va induire sa contraction. Ainsi les déplacements vers le haut et le bas peuvent être obtenus en utilisant un seul actionneur. 30 L'électrode inférieure 10 peut avoir une forme circulaire de même surface que la membrane, ou de surface inférieure ou même présenter une forme différente de celle de la membrane. Par exemple le rayon de la partie suspendue Rm de la membrane peut être compris entre 100 pm et 7500 pm, qui est également le rayon du matériau piézoélectrique et de l'électrode inférieure dans l'exemple représenté. Le rayon de l'électrode supérieure Re peut être compris entre 10 pm et 7480 pm. Avantageusement, on pourra choisir une 10 surface d'électrode supérieure 12 couvrant entre 40% et 60% de la surface de la membrane. Des plots de connexion 14 et les conducteurs électriques 16 reliant les plots aux électrodes 10, 12 sont également représentés de manière 15 schématique. Les plots sont de préférence situés en périphérie de la matrice de speaklets et sont reliés aux électrodes par des pistes. Ces plots sont généralement reliés à la source de tension via un fil (non représentés). 20 La membrane 4 forme un élément bistable. Celle-ci présente dans chacun de ses états stables une concavité opposée à celle de l'autre état stable. Mécaniquement la membrane 4 est encastrée dans le support 2, l'application d'une contrainte sur la 25 membrane 4 se traduit comme étant la source d'une contrainte au niveau de l'encastrement. A partir d'une contrainte seuil, le système passe brutalement d'un état stable à l'autre, la membrane présente alors une forte accélération et donc génère une forte pression 30 acoustique.
Sur la figure 3A, on peut voir une vue en coupe de la membrane 4 dans un premier état stable, la concavité orientée vers le bas et sur la figure 3C, on peut voir la membrane dans son deuxième état stable, sa concavité orientée vers le haut. La pression acoustique unitaire générée par le déplacement de la membrane du premier état stable vers le deuxième état stable, i.e. du haut vers le bas dans l'exemple représenté, est désignée " pulse négatif " et la pression acoustique unitaire générée par le déplacement de la membrane du deuxième état stable vers le premier état stable, i.e. du bas vers le haut dans l'exemple représenté est désignée " pulse positif ". De préférence, le pulse négatif et le pulse positif sont symétriques par rapport à l'axe des abscisses si on représente les pulses de pression en fonction du temps. Ainsi, en fonction du son à reconstruire, l'électronique de commande envoie un signal pour générer l'un ou l'autre des pulses. La forme bombée de la membrane peut être obtenue lors de la fabrication. Par exemple, lors de la réalisation de la membrane par dépôt, par exemple par dépôt chimique en phase vapeur (CVD) ou par PCVD ou par croissance, celle-ci a lieu avec un niveau de contraintes de compression prédéterminé, qui dépend en partie des conditions de dépôts, par exemple de la température de dépôt, de la vitesse de dépôt, des gaz utilisés et en partie de la composition du matériau de la membrane. La forme bombée de la membrane peut être obtenu en ajustant la contrainte en compression dans une ou plusieurs des couches constitutives de la membrane. Lors de la libération de la membrane, celle-ci se trouve dans l'un de ses états stables. A l'aide des figures 3A à 3E nous allons 5 décrire le passage d'un état stable à l'autre d'une membrane bistable d'un haut-parleur selon l'invention. Sur la figure 3A, la membrane 4 se trouve dans son premier état stable. Aucune tension n'est appliquée au matériau piézoélectrique 8. 10 Lorsque l'on souhaite générer une pression acoustique résultant d'un pulse négatif, une tension négative est appliquée au matériau piézoélectrique 8, celui-ci se contracte (la contraction est symbolisée par les deux flèches C), ce qui a pour effet de 15 provoquer le déplacement de la membrane 4 vers le bas par effet de type bilame (la membrane et le matériau piézoélectrique formant un bilame mécanique) et son passage à sa deuxième position stable (figure 3C). Le membrane 4 en se déplaçant déplace l'air autour de la 20 membrane 4 et génère une pression acoustique unitaire d'un speaklet. Lorsque la membrane 4 atteint son deuxième état stable, la tension cesse d'être appliquée au matériau piézoélectrique 8 qui retrouve sa taille 25 initiale mais avec une concavité opposée à celle qu'il avait lorsque la membrane 4 était dans sa première position d'équilibre. Lorsque l'on veut générer une pression acoustique résultant d'un pulse positif, on applique à 30 nouveau une tension positive au matériau piézoélectrique 8 qui se dilate (figure 3D; la dilatation est symbolisée par les deux flèches D), ce qui provoque un déplacement de la membrane 4 par effet de type bilame vers le haut, vers sa première position bistable. La membrane 4, en se déplaçant, déplace l'air autour de la membrane et génère une pression acoustique unitaire d'un speaklet. Lorsque la membrane 4 atteint son premier état stable, la tension cesse d'être appliquée au matériau piézoélectrique 8 qui retrouve sa taille, cet état est représenté sur la figure 3E qui est identique à l'état de la figure 3A. En variante, on peut envisager que l'actionneur 6 ait la forme d'une couronne bordant la membrane. Le fonctionnement est alors inversé, l'application d'une tension positive provoquant la dilatation de la couronne déplace la membrane vers le bas et génère un pulse négatif, et l'application d'une tension négative provoquant la contraction de la couronne déplace la membrane vers le haut et génère un pulse positif. Dans l'exemple de la figure 1, toutes les membranes sont dans le même état au début de l'utilisation. Les speaklets sont commandés simultanément de la manière décrite ci-dessus pour provoquer une pluralité de pressions acoustiques unitaires qui forment une pression acoustique du haut-parleur générant un son audible donné. Les speaklets sont commandés par une électronique de commande bien connue de l'homme du métier et qui ne sera pas décrite en détail. Cette électronique commande l'alimentation en tension, la tension appliquée à chacun des actionneurs 6, pour provoquer ou non le changement d'état. Grâce à l'invention, la pression acoustique unitaire par une membrane bistable pour une surface de membrane donnée est supérieure à celle générée par une membrane de l'état de la technique. En effet, la membrane bistable présente une rigidité supérieure à celle des membranes de l'état de la technique du fait des contraintes internes responsables de l'effet bistable, ce qui induit une plus grande fréquence de résonance et une plus grande accélération lors du déplacement de la membrane de l'un à l'autre des ses états stables. La pression acoustique étant directement proportionnelle à l'accélération, celle-ci est donc augmentée. Dans le mode de réalisation de la figure 1, le haut-parleur comporte une matrice de speaklets dans laquelle toutes les membranes 4 sont dans le même état initial, par exemple dans le premier état stable. Si dans un premier temps l'électronique de commande demande une pression acoustique résultant d'un pulse négatif, un signal est envoyé aux actionneurs pour déplacer les membranes vers le bas. Si, dans un deuxième temps, l'électronique 25 de commande demande une pression acoustique résultant d'un pulse positif, un signal est envoyé aux actionneurs pour déplacer les membranes vers le haut. Si, dans un premier temps, l'électronique de commande demande une pression acoustique résultant 30 d'un pulse positif les membranes ne sont pas dans l'état stable adéquate. On prévoit alors que l'électronique de commande envoie un signal de réinitialisation préalable pour déplacer les membranes vers leur deuxième état stable, et ensuite envoie un signal pour provoquer à nouveau le passage du deuxième état stable au premier état et générer la pression acoustique voulue. De même, si l'électronique de commande demande deux fois de suite le même signal : i.e. de générer deux fois une pression acoustique résultant d'un pulse négatif ou positif, lors de la deuxième commande les membranes ne seront pas dans l'état adéquat. On prévoit alors également que l'électronique de commande envoie un signal de réinitialisation pour que les membranes changent d'état avant d'être actionnées pour générer la pression acoustique souhaitée. Il s'agit d'une méthode très simple, néanmoins il est à noter que cette étape de réinitialisation peut induire un parasite acoustique du fait de la pression acoustique générée lors de la réinitialisation. Néanmoins il s'agit d'un cas de figure dont l'occurrence est très faible. De manière très avantageuse, le haut-parleur comporte au moins deux groupes I, II de membranes bistables 4, 4' respectivement commandées séparément, comme cela est représenté sur la figure 4. Dans le mode de réalisation représenté, les membranes 4, 4' des deux groupes I, II présentent à l'état initial des états stables opposés.
Ainsi il existe un groupe de membranes dans l'état stable souhaité. Si on considère que le premier groupe I est dans le premier état stable et le deuxième groupe II est dans le deuxième état stable. Si l'électronique de commande commande un pulse négatif, c'est le groupe I qui est actionné, et si elle commande un pulse positif c'est le groupe II qui est actionné. Dans le cas de figure où l'électronique de commande envoie deux fois de suite le même signal de commande, deux fois un pulse négatif ou deux fois un pulse positif. Si on dispose de deux groupes I, II initialement dans le même état, le premier groupe I est alors actionné lors de l'envoi du premier signal et le deuxième groupe II est actionné lors de l'envoi du deuxième signal. Grâce à ce mode de réalisation, 15 l'occurrence d'un besoin de réinitialisation est réduite, et donc la qualité du son produit est encore améliorée. On peut envisager de prévoir plus de deux groupes pour réduire encore le besoin de 20 réinitialisation. Il est à noter que l'encombrement du haut-parleur s'en trouve d'autant plus augmenté. Les deux groupes comportent de préférence le même nombre de speaklets. Le nombre de speaklets par groupe n'est pas 25 nécessairement égal à celui d'un haut-parleur digital de l'état de la technique comportant des membranes classiques. Il est par exemple compris entre 50 % et 100 % du nombre de speaklets d'un haut-parleur digital de l'état de la technique. De manière avantageuse, les 30 deux groupes comportent chacun un nombre de speaklets le plus proche voire identique à celui d'un haut-parleur digital de l'état de la technique afin de tendre vers une reconstitution parfaite du son. Dans ce cas, la surface du haut-parleur est doublée. Le nombre de speaklets par groupe est déterminé en fonction de l'encombrement et de la qualité de son souhaitée. Par exemple si un haut-parleur digital de l'état de la technique comporte 200 speaklets, le haut-parleur digital de la figure 4 comporte 200 speaklets par groupe, i.e. 400 speaklets.
Le nombre de speaklets des deux groupes peut être choisi inférieur pour conserver un encombrement réduit mais suffisant pour rendre négligeable le risque d'initialisation Dans un autre exemple de réalisation 15 représenté sur les figures 6A à 6D, les moyens d'actionnement 206 comportent deux actionneurs 206.1, 206.2. Chaque actionneur comporte une âme 208.1, 208.2 en matériau ferroélectrique, par exemple le PZT, qui a comme propriété de se contracter quelle que soit la 20 tension appliquée, et des électrodes 210.1, 210.2 pour lui appliquer une tension d'actionnement. L'actionneur 206.1 a la forme d'une couronne disposée sur la périphérie de la membrane et l'actionneur 206.2 a la forme d'un disque situé dans la partie centrale de la 25 membrane comme dans l'exemple de la figure 2. Si on applique une tension sur l'actionneur 206.2 par les électrodes 210.2, l'âme en matériau ferroélectrique 208.2 se contracte induisant un couple entrainant le mouvement vers le bas de la membrane et 30 générant un pulse négatif.
Si on applique une tension sur l'actionneur 206.1 par les électrodes 210.1, l'âme en matériau ferroélectrique 208.1 se contracte induisant un couple entrainant le mouvement vers le haut du speaklet et générant un pulse positif. Dans un autre exemple de réalisation représenté sur les figures 7A et 7B, les moyens d'actionnement 306 sont de type thermique. Les moyens d'actionnement comportent deux 10 actionneurs 306.1, 306.2 qui ont la structure des actionneurs 206.1, 206.2. Les actionneurs 306.1 306.2 comportent un motif métallique, par exemple en Al, Ti, Au, ... qui s'échauffe par effet Joule lors du passage d'un 15 courant. Cet échauffement provoque la dilatation du motif du fait de son coefficient de dilatation. Cette dilatation sera différente de celle du matériau de membrane, par exemple en silicium, oxyde de silicium ou nitrure sur lequel l'actionneur est déposé. Cette 20 dilatation différentielle provoque un couple mécanique qui induit l'actionnement du speaklet). Lorsque l'actionneur 306.1 est échauffé, sa dilation provoque un mouvement vers le bas de la membrane. Lorsque l'actionneur 306.2 est échauffé, sa dilation provoque 25 un mouvement vers le haut de la membrane. Sur les figures 8A et 8B, on peut voir une variante des moyens d'actionnement thermique 406 des figures 7A et 7B, comportant deux actionneurs en forme de couronne, l'un 406.1 étant situé sur le bord de la 30 membrane sur sa face supérieure et l'autre 406.2 étant situé sur le bord de la membrane sur sa face inférieure. L'échauffement de l'actionneur 406.1 provoque le déplacement vers le bas de la membrane et l'échauffement de l'actionneur 406.2 provoque le déplacement vers le haut de la membrane.
Dans un autre exemple de réalisation, les moyens d'actionnement sont de type électrostatique. Dans ce cas, la différence de potentielle appliquée entre une électrode positionnée sur la membrane et une électrode positionnée en regard, par exemple sur le substrat ou sur un capot de protection induit le mouvement de la membrane. Les moyens d'actionnement ne sont pas nécessairement identiques pour toutes les membranes, néanmoins la gestion des toutes les membranes avec un seul type d'actionneur est simplifiée et la réaction des membranes est plus homogène. Nous allons maintenant décrire un exemple de procédé de réalisation d'un exemple de haut-parleur à membrane bistable selon l'invention à l'aide des figures 5A à 5F sur lesquelles les étapes sont représentées schématiquement. Par exemple, on utilise un substrat en silicium 100 représenté sur la figure 5A. Lors d'une première étape, on effectue une 25 oxydation thermique du substrat de sorte à former une couche d'oxyde 102 sur toutes les surfaces du substrat d'une épaisseur de 2 pm par exemple. Ensuite, on réalise un dépôt d'un masque dur d'oxyde 104 sur la face arrière du substrat. Ce masque a par exemple une 30 épaisseur de 5 pm. Pour cela le substrat est positionné dans l'équipement de dépôt de sorte à laisser accessible sa face arrière. Le dépôt d'oxyde est réalisé préférentiellement sur cette seule face. Ensuite, une étape de photolithographie, permet de définir le motif voulu sur une résine déposée sur la couche d'oxyde. La résine est révélée afin de graver ce motif dans la résine. Enfin le motif voulu est reporté dans la couche d'oxyde, par gravure de cet oxyde, de sorte à atteindre le silicium uniquement là où la résine de photolithographie a été enlevée par l'étape de révélation. L'élément ainsi obtenu est représenté sur la figure 5B. Lors d'une étape suivante, on forme une couche 106 en face avant destinée à former la membrane 2. Cette couche est par exemple en polysilicium, en SiC ou en Si02. L'épaisseur de la couche 106 est par exemple comprise entre quelques centaines de nm à plusieurs pm, voire plusieurs dizaines de pm.
La couche 106 est par exemple réalisée par dépôt chimique en phase vapeur ou par croissance épitaxiale. Comme expliqué précédemment, on contrôle la contrainte interne de cette couche de sorte à obtenir une membrane présentant une certaine concavité lorsque celle-ci sera libérée. Par exemple, le dépôt ou la croissance de la couche 106 a lieu avec un niveau de contraintes de compression prédéterminé, qui dépend en partie des conditions de dépôts, par exemple la température de dépôt, la vitesse de dépôt_ et en partie de la composition du matériau de la membrane. Le niveau de contrainte dans la membrane fixant la forme de cette dernière après libération peut être obtenu en maîtrisant la contrainte d'une ou de plusieurs couches constitutives de la membrane, pour cela la couche 106 peut comporter un ou de plusieurs matériau.
L'élément ainsi obtenu est représenté sur la figure 5C. Lors d'une étape suivante, on forme une couche 108 sur la couche 106 par exemple en Si02 ou en SiN. La couche 108 a par exemple une épaisseur comprise entre quelques centaines de nm et plusieurs pm. La couche 108 est formée par exemple par dépôt chimique en phase vapeur. A nouveau, la réalisation de cette couche se fait avec un niveau de contrainte prédéterminé comme pour la couche 106.
L'élément ainsi obtenu est représenté sur la figure 5D. Lors d'une étape suivante, on réalise les moyens d'actionnement piézoélectriques. Pour cela on réalise tout d'abord une couche 110 destinée à former l'électrode inférieure des moyens d'actionnement, par exemple en Pt, Mo. La couche 110 est réalisée par exemple par dépôt sur la couche 108. La couche 110 a par exemple une épaisseur comprise entre quelques dizaines de nm à quelques centaines de nm. Une couche de matériau piézoélectrique 112 est ensuite déposée sur la couche 110, par exemple en PZT, AIN, ZnO, LNO dont l'épaisseur est par exemple comprise entre quelques centaines de nm à quelques pm voir dizaines de pm.
On réalise ensuite l'électrode supérieure par formation d'une couche 114 sur le matériau piézoélectrique 112, par exemple en Ru, Au par exemple d'épaisseur comprise entre quelques dizaines de nm à quelques centaines de nm. De préférence une couche supplémentaire 116, par exemple en or, est déposée sur la couche des électrodes supérieures destinées à assurer la reprise des contacts sur les électrodes supérieures.
Les couches 106 à 116 sont déposées les unes sur les autres. On commence à graver la couche 116 située en haut de l'empilement avec un masque de photolithographie. Puis on grave la couche 114 avec un second masque qui est de préférence légèrement plus grand que le premier pour éviter tout problème en cas de désalignement des masques. On obtient alors le profil en escalier de la figure 5F. L'élément ainsi obtenu est représenté sur la figure 5E.
Ensuite on grave la couche de l'électrode inférieure ainsi que la couche 108, avec le même masque ou des masques différents, afin de finir de définir l'actionneur. Enfin, on libère la membrane par gravure 25 profonde du substrat par la face arrière jusqu'à atteindre la membrane. Lors de la libération de la membrane, du fait des contraintes dans la membrane, celle-ci prend une forme bombée et se trouve dans l'un de ses états 30 stables.
Le haut-parleur ainsi obtenu est visible sur la figure 5F. A des fins de simplicité, la réalisation d'une seule membrane est décrite, cependant il sera compris que le procédé permet avantageusement de réaliser toutes les membranes simultanément. Pour réaliser le haut-parleur de la figure 4 comportant deux groupes I, II de membranes 4, 4' dans des états initiaux différents, plusieurs méthodes sont envisageables.
Selon une méthode, lors des étapes de réalisation des couches 106 et 108, il peut être appliqué des contraintes différentes dans différentes zones des couches 106, 108, de sorte que lors de leur libération certaines membranes se trouvent dans le premier état stable et les autres membranes se trouvent dans l'autre état stable. Selon une autre méthode, on réalise toutes les membranes de sorte qu'elles présentent le même état stable lors de leur libération. Ensuite, préalablement à l'utilisation du haut-parleur, par une commande sélective des actionneurs on provoque le passage à l'autre état stable d'un nombre donné de membranes. Selon une autre méthode, on peut réaliser deux champs de matrices de membranes, qui lors de leur 25 libération, présentent toutes le même état stable. Ensuite, les champs de matrices sont découpés et on réalise un assemblage tridimensionnel de l'électronique de commande et du premier champ de matrices de speaklets, et du deuxième champ de speaklets, ce 30 dernier ayant été préalablement retourné de sorte qu'à l'assemblage, les membranes du premier champ aient une position stable et le deuxième champ aient une autre position stable. Les premier et deuxième champs sont assemblés par exemple dans le même plan. Selon une variante, les deux champs 5 conservent les mêmes orientations, cependant on applique un signal d'actionnement des membranes d'une plaque pour qu'elles prennent l'autre état stable.

Claims (8)

  1. REVENDICATIONS1. Haut-parleur digital comportant un support (2), une pluralité de première membranes (4) suspendues sur le support, lesdites premières membranes (4) étant bistables, et ledit haut-parleur comportant des premiers moyens d'actionnement (6) de chacune des premières membranes (4) aptes à faire passer chacune des premières membranes (4) d'un premier état stable à 10 un deuxième état stable et inversement et des moyens de commande desdits premiers moyens d'actionnement.
  2. 2. Haut-parleur digital selon la revendication 1, dans lequel lesdites premières 15 membranes (4) forment un premier groupe (I) de membranes, et le haut-parleur comporte au moins un deuxième groupe (II) de deuxièmes membranes (4') et des deuxièmes moyens d'actionnement de chacune des deuxièmes membranes, les premiers et les deuxièmes 20 moyens d'actionnement étant commandés séparément par les moyens de commande.
  3. 3. Haut-parleur digital selon la revendication 2, dans lequel, à l'état initial, les 25 premières membranes (4) et les deuxièmes membranes (4') sont dans des états stables différents.
  4. 4. Haut-parleur digital selon la revendication 2, dans lequel, à l'état initial, les 30 premières membranes (4) et les deuxièmes membranes (4') sont dans le même état stable.
  5. 5. Haut-parleur digital selon l'une des revendications 2 à 4, dans lequel le nombre de premières membranes (4) et le nombre deuxième membranes (4') sont égaux.
  6. 6. Haut-parleur selon l'une des revendications 1 à 5, dans lequel les moyens de commande sont aptes à envoyer un signal de réinitialisation aux premières (4) et/ou aux deuxièmes (4') membranes, préalablement à l'envoi d'un signal de commande.
  7. 7. Haut-parleur digital selon l'une des revendications 1 à 6, dans lequel les premiers (6) et/ou deuxièmes moyens d'actionnement sont de type piézoélectrique, comportant respectivement au moins un élément en matériau piézoélectrique (8) en contact avec chacune des membranes (4, 4') et des électrodes de commande associées à chaque élément piézoélectrique (8) aptes à appliquer une tension de commande à chacun des éléments en matériau piézoélectrique (8).
  8. 8 Haut-parleur digital selon l'une des revendications 1 à 6, dans lequel les premiers et/ou deuxièmes moyens d'actionnement (306, 406) sont de type thermique, comportant respectivement un élément formant une résistance électrique commandée par les moyens de commande et disposé en contact avec chacune des membranes, chaque résistance électrique étant apte à appliquer un couple mécanique à la membrane qui lui est associée.9. Haut-parleur digital selon la revendication 7, dans lequel l'élément piézoélectrique disposée sur la membrane a une surface comprise en 0,4 et 0,6 fois la surface de la membrane. 10. Haut-parleur digital selon l'une des revendications 1 à 9, réalisé par des procédés de la microélectronique. 11. Procédé de réalisation d'un haut-parleur selon l'une des revendications 1 à 10, comportant les étapes : a) réalisation sur un substrat d'une couche (106) dans laquelle les membranes (4, 4') sont destinées à être formées, b) réalisation des premiers et/ou deuxièmes moyens d'actionnement, c) libération des membranes (4, 4'), d) connexion aux moyens de commande, des 20 premiers et/ou deuxièmes moyens d'actionnement. 12. Procédé selon la revendication 11, dans lequel la couche formée lors de l'étape a)est réalisée avec au moins un niveau de contrainte prédéterminée. 25 13. Procédé selon la revendication 12, dans lequel lors de l'étape a), des niveaux de contrainte prédéterminés différents sont appliquées à des zones différentes de la couche destinée à former les 30 membranes de sorte à former les premières et deuxièmesmembranes ayant lors de leur libération à l'étape c) des états stables différents. 14. Procédé selon l'une des revendications 11 à 13, dans lequel entre l'étape c) et l'étape d), - une étape de découpe du dispositif obtenu a lieu pour former deux sous-éléments ou groupes de membranes, - et lors de l'étape d) les deux sous-éléments sont assemblés et les premiers et deuxièmes moyens d'actionnement sont reliés électriquement aux moyens de commande de sorte que les membranes des deux sous-éléments aient des états stables différents. 15. Procédé selon la revendication 14, dans lequel l'un des sous-ensembles est retourné. 16. Procédé selon l'une des revendications 11 à 15, dans lequel une partie des moyens d'actionnement est activée pour faire passer les membranes associées auxdits moyens d'actionnement dans l'autre état stable.
FR1254172A 2012-05-07 2012-05-07 Haut-parleur digital a performance amelioree Expired - Fee Related FR2990320B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1254172A FR2990320B1 (fr) 2012-05-07 2012-05-07 Haut-parleur digital a performance amelioree
EP13166609.1A EP2663091B1 (fr) 2012-05-07 2013-05-06 Haut-parleur digital a performance ameliorée
US13/887,707 US9282385B2 (en) 2012-05-07 2013-05-06 Digital loudspeaker with enhanced performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1254172A FR2990320B1 (fr) 2012-05-07 2012-05-07 Haut-parleur digital a performance amelioree

Publications (2)

Publication Number Publication Date
FR2990320A1 true FR2990320A1 (fr) 2013-11-08
FR2990320B1 FR2990320B1 (fr) 2014-06-06

Family

ID=47137792

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1254172A Expired - Fee Related FR2990320B1 (fr) 2012-05-07 2012-05-07 Haut-parleur digital a performance amelioree

Country Status (3)

Country Link
US (1) US9282385B2 (fr)
EP (1) EP2663091B1 (fr)
FR (1) FR2990320B1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000354B1 (fr) * 2012-12-20 2015-01-30 Commissariat Energie Atomique Dispositif a membrane a deplacement controle
FR3010272B1 (fr) 2013-09-04 2017-01-13 Commissariat Energie Atomique Dispositif acoustique digital a puissance sonore augmentee
CN103956936A (zh) * 2014-05-28 2014-07-30 哈尔滨工业大学 压电双稳态能量收集器
DE102014217798A1 (de) 2014-09-05 2016-03-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromechanische piezoelektrische Aktuatoren zur Realisierung hoher Kräfte und Auslenkungen
WO2016107975A1 (fr) * 2014-12-31 2016-07-07 Teknologian Tutkimuskeskus Vtt Oy Transducteur micro-électromécanique piézoélectrique
FR3033468B1 (fr) * 2015-03-02 2018-04-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif a membranes actionnables et haut-parleur digital comportant au moins un tel dispositif
US10327052B2 (en) 2015-04-08 2019-06-18 King Abdullah University Of Science And Technology Piezoelectric array elements for sound reconstruction with a digital input
JP6213679B2 (ja) * 2015-05-20 2017-10-18 第一精工株式会社 デジタルスピーカ、スピーカシステム及びイヤホン
JP6461724B2 (ja) * 2015-06-05 2019-01-30 太陽誘電株式会社 圧電式発音体及び電気音響変換装置
US10516943B2 (en) * 2016-05-04 2019-12-24 Infineon Technologies Ag Microelectromechanical device, an array of microelectromechanical devices, a method of manufacturing a microelectromechanical device, and a method of operating a microelectromechanical device
FR3056572B1 (fr) * 2016-09-23 2021-02-19 Commissariat Energie Atomique Dispositif a membrane suspendue presentant une amplitude de deplacement augmentee
KR102583487B1 (ko) * 2016-10-17 2023-09-27 엘지전자 주식회사 오디오 출력 장치
DE102016121587B4 (de) * 2016-11-10 2023-06-01 Pi Ceramic Gmbh Piezoelektrischer Antrieb, insbesondere für den Einsatz in feuchter Umgebung
DE102017208911A1 (de) 2017-05-26 2018-11-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromechanischer Schallwandler
DE102017126644B4 (de) * 2017-11-13 2020-11-12 Infineon Technologies Ag Membranelementanordnung und Verfahren hierzu
US11252511B2 (en) 2019-12-27 2022-02-15 xMEMS Labs, Inc. Package structure and methods of manufacturing sound producing chip, forming package structure and forming sound producing apparatus
US11057716B1 (en) * 2019-12-27 2021-07-06 xMEMS Labs, Inc. Sound producing device
US11395073B2 (en) 2020-04-18 2022-07-19 xMEMS Labs, Inc. Sound producing package structure and method for packaging sound producing package structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1206160A1 (fr) * 2000-11-09 2002-05-15 Texas Instruments Incorporated Haut-parleur numérique
WO2007135680A1 (fr) * 2006-05-22 2007-11-29 Audio Pixels Ltd. Appareils et procédés pour générer des ondes de pression

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330686A (en) 1978-12-21 1982-05-18 Stephen Roe Loudspeaker systems
US5867302A (en) 1997-08-07 1999-02-02 Sandia Corporation Bistable microelectromechanical actuator
US6278790B1 (en) * 1997-11-11 2001-08-21 Nct Group, Inc. Electroacoustic transducers comprising vibrating panels
AU5051399A (en) * 1998-07-21 2000-02-14 New Transducers Limited Digital loudspeaker
EP0999723B1 (fr) * 1998-11-05 2006-03-08 Matsushita Electric Industrial Co., Ltd. Haut-parleur piézoélectrique,méthode pour sa fabrication,et système de haut-parleur le comprenant
US20020015507A1 (en) * 2000-05-31 2002-02-07 Neil Harris Loudspeaker
FR2857153B1 (fr) 2003-07-01 2005-08-26 Commissariat Energie Atomique Micro-commutateur bistable a faible consommation.
US20070188846A1 (en) * 2003-09-03 2007-08-16 Slicker James M MEMS switch with bistable element having straight beam components
US7589456B2 (en) 2005-06-14 2009-09-15 Siemens Medical Solutions Usa, Inc. Digital capacitive membrane transducer
US8165323B2 (en) 2006-11-28 2012-04-24 Zhou Tiansheng Monolithic capacitive transducer
WO2011005198A1 (fr) 2009-07-10 2011-01-13 Milux Holding S.A. Dispositif d'articulation de la hanche et procédé correspondant
US8477970B2 (en) * 2009-04-14 2013-07-02 Strubwerks Llc Systems, methods, and apparatus for controlling sounds in a three-dimensional listening environment
KR101561663B1 (ko) 2009-08-31 2015-10-21 삼성전자주식회사 피스톤 다이어프램을 가진 압전형 마이크로 스피커 및 그 제조 방법
WO2011051985A1 (fr) 2009-10-30 2011-05-05 Icube+ (Malta) Limited Procédé interactif de gestion de publicité pour un bien et système basé sur la messagerie unifiée et la communication unifiée
FR3000354B1 (fr) 2012-12-20 2015-01-30 Commissariat Energie Atomique Dispositif a membrane a deplacement controle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1206160A1 (fr) * 2000-11-09 2002-05-15 Texas Instruments Incorporated Haut-parleur numérique
WO2007135680A1 (fr) * 2006-05-22 2007-11-29 Audio Pixels Ltd. Appareils et procédés pour générer des ondes de pression

Also Published As

Publication number Publication date
EP2663091B1 (fr) 2015-09-30
US9282385B2 (en) 2016-03-08
US20130294636A1 (en) 2013-11-07
EP2663091A1 (fr) 2013-11-13
FR2990320B1 (fr) 2014-06-06

Similar Documents

Publication Publication Date Title
EP2663091B1 (fr) Haut-parleur digital a performance ameliorée
EP2747452B1 (fr) Dispositif à membrane à déplacement contrôlé
EP1040492B1 (fr) Microsysteme a element deformable sous l'effet d'un actionneur thermique
EP2074695B1 (fr) Resonateur en silicium de type diapason
FR2679665A1 (fr) Modulateur spatial de lumiere.
EP2426556A1 (fr) Moule pour la lithographie par nano-impression thermique, son procédé de preparation, et procédé de nano-impression thermique le mettant en oeuvre
EP1652205B1 (fr) Commutateur micro-mecanique bistable, methode d' actionnement et procede de realisation correspondant
EP3042509B1 (fr) Dispositif acoustique numerique a puissance sonore augmentee
EP1717830B1 (fr) Micro-condensateur électromécanique à capacité variable et procédé de fabrication d'un tel micro-condensateur
FR2982414A1 (fr) Procede ameliore de realisation d'un dispositif a cavite formee entre un element suspendu reposant sur des plots isolants semi-enterres dans un substrat et ce substrat
EP3120171A1 (fr) Dispositif optique a membrane deformable a temps de reponse reduit
EP3743951B1 (fr) Procedes de conception et de fabrication d'un dispositif comprenant un reseau d'elements micro-usines
EP3516442B1 (fr) Dispositif a membrane suspendue presentant une amplitude de deplacement augmentee
EP3898503A1 (fr) Procede de fabrication d'un dispositif comprenant une membrane surplombant une cavite
EP3828943A1 (fr) Microsystème mécanique et procédé de fabrication associé
EP1365271B1 (fr) Dispositif d'actionnement électrostatique miniature et installation comprenant de tels dispositifs
EP2438339B1 (fr) Organe de circulation fluidique, et ensemble de circulation fluidique comprenant au moins un tel organe
EP3925930B1 (fr) Procédé de fabrication d'un dispositif microélectronique comprenant une membrane suspendue au-dessus d'une cavité
WO2003069645A1 (fr) Procede de fabrication d'un micro-composant du type micro-interrupteur
EP3939935A1 (fr) Actuateur électromécanique nanométrique et son procédé de fabrication
EP4075526A1 (fr) Dispositif à transduction piézorésistive
EP3201121A1 (fr) Structure mecanique comprenant un actionneur et des moyens d'amplification mecanique et procede de fabrication
FR2850762A1 (fr) Dispositif d'orientation d'un objet

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 5

ST Notification of lapse

Effective date: 20180131