WO1999025788A2 - Flüssigkristalline einkristall-hydrogele mit hoher doppelbrechung - Google Patents

Flüssigkristalline einkristall-hydrogele mit hoher doppelbrechung Download PDF

Info

Publication number
WO1999025788A2
WO1999025788A2 PCT/DE1998/003368 DE9803368W WO9925788A2 WO 1999025788 A2 WO1999025788 A2 WO 1999025788A2 DE 9803368 W DE9803368 W DE 9803368W WO 9925788 A2 WO9925788 A2 WO 9925788A2
Authority
WO
WIPO (PCT)
Prior art keywords
lsch
network
groups
hydrogels
polymer
Prior art date
Application number
PCT/DE1998/003368
Other languages
English (en)
French (fr)
Other versions
WO1999025788A3 (de
Inventor
Heino Finkelmann
Original Assignee
Heino Finkelmann
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heino Finkelmann filed Critical Heino Finkelmann
Priority to AU21484/99A priority Critical patent/AU2148499A/en
Publication of WO1999025788A2 publication Critical patent/WO1999025788A2/de
Publication of WO1999025788A3 publication Critical patent/WO1999025788A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0086Mechanical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking

Definitions

  • the invention relates to new anisotropic hydrogels and to processes for their preparation, their use and products made from these hydrogels
  • Thermotropic liquid-crystalline single-crystal elastomers are polymer networks with a macroscopically uniform orientation of the director.Their optical properties correspond, for example, to organic or inorganic single crystals, but due to the polymer network structure above the glass transition temperature, the rubber-elastic behavior of your mechanical module is orders of magnitude smaller than of solids, which is why they can also be referred to as soft crystals. Their production and properties are described for the first time in EP 9201591 and meanwhile in the literature.
  • the previously known LSCE as liquid monomer units, only carry thermotropic liquid crystalline components (rod-shaped or disk-shaped) mesogenic groups)
  • the previously known LSCE are not swellable with water to form an anisotropic hydrogel
  • Hydrogels that have been widely used generally show optically isotropic behavior. Hydrogels with anisotropic properties have so far been described in the literature with only a few examples. In contrast to the LSCE, they do not show a spontaneous macroscopically uniform order. Only an orientation that could be observed through mechanical deformation but relaxes again into the disordered state without mechanical deformation. Anisotropic hydrogels with spontaneous macroscopically uniform orientation of the optical axis (LSCH, Liquid Single Crystal Hydrogels) are of great interest for applications such as materials for bifocal contact lenses. selective separation membrane carrier material for controlled drug release.
  • LSCH Liquid Single Crystal Hydrogels
  • the invention thus relates to processes according to 1 to 4 for the production of LSCH, LSCH according to claims 5 to 8, their use according to claims 9 to 11, and products from the same according to claims 12 to 14
  • LSCH CORRECTED SHEET (RULE 91) ISA / EP
  • the LSCH according to the invention are produced in 2 or 3 successive steps, the first two steps corresponding to the production of thermotropic liquid-crystalline elastomers (LSCE) with a fixed network structure (EP 9201591).
  • LSCE thermotropic liquid-crystalline elastomers
  • EP 9201591 fixed network structure
  • the network is swollen with water, the formula 1 described amphiphilic networks only the anisotropic phase structure with a high birefringence arises
  • the networks with anisotropic net chain conformation produced in the first two steps are preferably selected from the group of hydrogels of formula 1
  • V is a polymer chain crosslinking group
  • R is a reactive radical containing at least one unreacted functional part
  • Formula 1 describes the preferred hydrogels only very schematically. For example, it is not necessary for each main chain unit to carry an amphiphile. Formula 1 is also intended to include copolymers with different polymer chain units. In addition, the number of groups V, A and R ia does not agree despite this deficiency appears to be suitable for the diagrammatic pictorial representation of the hydrogels and is therefore used
  • hydrogels of formula 1 are prepared analogously to those known per se
  • Hydrogels of the formula 1 can be obtained, for example, in a very simple polymer-analogous addition reaction of amphiphilic side chain polymers with crosslinking molecules V * and reactive compounds of the R * type
  • A denotes the amphiphiles bound to the monomer units with a high polarizability anisotropy.
  • the main chain contains further functional monomer units to which the crosslinker molecules V * and the molecules R * are bound in the polymer-analogous reaction.
  • the index * indicates that the Crosslinker molecules V * and the reactive compounds R * generally have 2 or more reactive sites, wherein in the reactive compounds at least one of the reactive sites can be characterized by a different reactivity than the other or other reactive sites
  • the hydrogels of the formula 1 can further be prepared by polymerizing monomers and / or oligomers in the presence of reactive compounds R * and, if appropriate, V * . If the monomers and / or oligomers have at least predominantly only 2 linking sites, the presence of crosslinking agents V * is necessary, whereby at least one of the reactive sites of the reactive compound R * under the conditions under which the linking sites of the monomers and / or oligomers and the reactive sites of the crosslinking agents are not yet reacting or only partially if the monomers and / or oligomers have more than two linking sites in the If necessary, the crosslinker may also have a molecule
  • the synthesis of the hydrogels from low molecular weight compounds often has the advantage that important properties of the hydrogels, such as their elasticity or birefringence or other properties, are influenced by varying the synthesis parameters, such as the polymerization temperature, the concentration of the polymerization initiator, the relative mass ratio of comonomers or cooligomers, etc. and can be set within certain limits
  • the low molecular weight compounds are preferably amphiphilic As already mentioned, the subsequent attachment of these groups to functionalized polymer scaffolds is also possible
  • hydrogels of the formula 1 are preferably prepared analogously to processes for thermotropically liquid-liquid systems as described in DE 3817088, DE 381 1334 and DE 3621 581, in which case reactive compounds R * are also reacted
  • Polymers with C-C main chains in particular polyacrylates, methacrylates, ⁇ -haloacrylates, ⁇ -cyanoacrylates, acrylamides or methylene malonates, are preferably used.
  • Polymers with heteroatoms in the main chain for example polyethers, esters, amides, imides or urethanes or in particular polysiloxanes, are also preferred.
  • amphiphilic units A have the following schematic structure:
  • A1 and A2 differ essentially in that in A1 the amphiphile “end-on” is linked via S and the hydrophobic unit with high polarizability anisotropy to the main polymer chain, while in A2 an amphiphile with two hydrophilic groups “side-on” "is connected to the main chain via S.
  • Suitable spacers S are, in particular, linear or branched alkylene groups with 1-20 C atoms, in which one or more non-adjacent CH 2 groups are formed by -O-, -S-, -CO-, -O-CO-, - S-CO-, -O-COO-, -CO-S-, -CO-O-, -CH-halogen-, -CHCN-, -
  • CH CH-
  • -C C- can be replaced.
  • the following groups are suitable as spacers: ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, decylene, undecylene, dodecylene, octadecylene, ethyleneoxyethylene, methyleneoxybutylene, ethylene thioethylene, ethylene-N-methyliminoethylene or 1-methylalkylene.
  • the units with high polarizability anisotropy M are preferably rod-like or board-like aromatic molecular segments. They are preferably mesogenic groups which are used for the synthesis of thermotropic liquid crystals. In contrast to the molecular structure of conventional mesogenic However, a strictly linear structure of M is not absolutely necessary for groups, M is particularly preferably a radical of the formula 3
  • Formula 3 includes 2-, 3-, 4- and 5-nucleus radicals of the partial formula 3-1 to 3-4:
  • Cyc means a 1,4-cycloheyl group, in which one or two non-adjacent CH 2 groups can also be replaced by - O-
  • Phe a 1,4-phenylene group, in which one or more CH groups are also replaced by N.
  • PheX is a 1,4-phenylene group which carries the spacer in the amphiphile of the formula A2.
  • Combinations with Pip, a piperidine-1,4-diyl group and Nap, a deca-, tertrahydronaphthalene-2,6-diyl or naphthalene-2,6-diyl group can also be used.
  • Z 2 is very particularly preferably an ester group (-CO-O- or -O-CO-), -CH 2 CH 2 or single bond.
  • Particularly preferred mesogenic residues of sub-formula 3-2 are sub-formulas 5-1 to 5-11: for amphiphiles in group A1
  • Z 2 is very particularly preferably an ester group (-CO-O- or -O-CO-), -CH 2 CH 2 or a single bond.
  • Non-ionic and zwitterionic groups which are used for the synthesis of conventional surfactants and are known are suitable as the hydrophilic group H.
  • Nonionic surfactants are particularly preferred
  • zwitterionic compounds such as imidazole carboxylates, betaines and aminocarboxylic acids.
  • the hydrophilic groups are bonded to the mesogenic group M directly or via Y.
  • Suitable crosslinkers V * are compounds which can carry out a crosslinking reaction in accordance with the chemistry of the main polymer chain.
  • the reactive radicals R * have at least 2 functional groups, it being possible for the reactivity of one group to differ from that of the other groups under the chosen reaction conditions.
  • at least one of the reactive groups of R * to have a vinyl, acryloyl or or another radically polymerizable group, while one of the groups not reacted under the conditions of radical polymerization is a hydroxyl, carboxyl or ammo group.
  • B also possible for the molecules to have R * groups which, however, are reacted according to the same reaction mechanism under selective catalysis or at a different temperature with significantly different reactivity (cf. Example 1).
  • the reactive groups are in the non-terminal position.
  • Particularly preferred are compounds analogous to V but with different reactive groups
  • hydrogels according to the invention can be prepared
  • B copolymers which, in addition to amphiphiles, also contain non-amphiphilic side groups, sometimes preferably for example by too high a value for the
  • hydrogels of formula I which are described in detail and which are preferred, and the hydrogels which are further specified are only to be understood as examples and are only intended to illustrate the invention without limiting it.
  • the invention can be applied quite generally to hydrogels containing reactive radicals with at least one unreacted functional group are and is not limited to special hydrogels
  • the networks are uniaxially or biaxially stretched by applying a mechanical “field” before the reactive residues R are converted, thereby orienting the network chains.
  • Other orientations can be achieved, for example, if the network is stretched biaxially, ie if the mechanical stress is preferred along two different deformation axes at the same time are at right angles to one another, acts Complicated deformation patterns are possible but generally not preferred
  • the mechanical tension that is transferred to the sample by means of suitable devices can cause stretching, compression or even shearing of the sample.
  • torsional or bending stresses generally do not lead to a desired orientation. However, they can be combined with stretching.
  • the tension to be applied depends on the size and geometry of the sample and in particular also on its elasticity and is typically between 1 0 "and 10 5 N / m 2 and depends on the crosslinking density and temperature difference to the glass transition of the network
  • this orientation of the network chains is fixed in a subsequent 2 step by additionally crosslinking the network in the deformed state by converting the free functional groups of the reactive radicals R with neighboring polymer chains
  • amino groups in particular also come as free reactive groups Mercapto groups, carboxyl groups or functional groups derived from carboxyl groups, sulfonic acid groups or functional groups derived from this group, epoxy groups and further functional groups ppen in question
  • Mercapto groups carboxyl groups or functional groups derived from carboxyl groups, sulfonic acid groups or functional groups derived from this group, epoxy groups and further functional groups ppen in question
  • the additional crosslinking reaction is carried out under suitable conditions.
  • the reaction of the free functional groups can be carried out, for example, by increasing the temperature or by UV radiation, if appropriate with the addition of a catalyst.
  • the total crosslinking density for hydrogels is typically between 2% and 20, but these values can are only to be regarded as a rough guideline, and larger deviations are also possible, since they depend on the molar mass of the starting polymers
  • the networks are swollen with water. By swelling with water, the network changes to the lyotropic, liquid-crystalline state.
  • a hexagonal or lamellar phase can be formed.
  • the concentration of water at which this phase transition takes place is from the structure of A abhan ⁇ i ⁇ and from both low molecular weight and linear polymers
  • the dry network for example, already has a lamellar superstructure that is retained through swelling with water.
  • the lyotropic, liquid-stable phase structure is spontaneously macroscopically ordered
  • a uniform director orientation forms in the hydrogel, the director indicating the orientation of the longitudinal axes of the rod-shaped micellar associates in the hexagonal phase (H r phase) or the layer normals of the lamellar phase (L ⁇ phase)
  • the degree of swelling or the absorption of water in the hydrogel is limited by two factors.On the one hand, this is the crosslinking density of the hydrogel, which determines the degree of equilibrium swelling, and, secondly, it is the looseness of the network. Depending on the hydrophilic / hydrophobic balance of the amphiphilic groups A, the maximum water absorption of the Network also be limited by the solubility of A in water. Both factors are known and can be derived from conventional water-swellable networks or low-molecular and polymeric amphiphiles
  • the method according to the invention makes it possible to provide anisotropic hydrogels which are distinguished by a high degree of order and high birefringence.
  • the hydrogels according to the invention with fixed anisotropic network structure can be produced in practically any geometry or size, for example films can be rectangular Body cylinders or other shapes can be obtained.
  • the properties of the LSCH according to the invention can be varied over a wide range and optimized with regard to the respective application. For example, the elasticity can be adjusted via the overall degree of crosslinking or the optical properties with regard to the birefringence can be adjusted by the Variation of group M can be set in Formula 2
  • the LSCH according to the invention can be used for a wide variety of applications.
  • Films and foils are, in particular, separating membranes
  • the LSCH according to the invention do not have the disadvantages that occur with conventional liquid-crystalline monodomains, or do so only to a lesser extent, and therefore, like the method according to the invention, they are of considerable economic importance
  • CH 2 CH- (CH 2 ) 9 -0- (CH 2 CH 2 -O) 6
  • reaction mixture dissolved in 1.5 ml of thiophene-free toluene and the reaction mixture is poured into a centrifuge rotor lined with Teflon film on the wall and sealed tightly.
  • the reaction is carried out at about 4000 rpm in a centrifuge which has been thermostated to 60 ° C. as soon as gelation has taken place . the rotor is removed from the centrifuge and rapidly slows down the reaction of the still free functional groups to 0 ° C
  • a piece of adhesive tape is attached as quickly as possible to one end of the gel adhering to the Teflon film and the gel is detached from the Teflon film.
  • the initially swollen network is pre-dried by simply hanging it on a suitable rack, the toluene solvent partially evaporating. Then another adhesive film is attached to the free hanging end of the network, on which there are weights for loading (uniaxial stretching) of the network
  • the loaded sample is annealed in a drying cabinet at approx. 60 ° C for 48 hours. During this reaction time, the toluene solvent evaporates almost completely.To remove any residual toluene, the drying cabinet is then evacuated for another 6 hours Brought to room temperature and - if necessary - the sol portion removed by swelling
  • phase behavior of the network is swollen with defined amounts of water and the phase structure is characterized by NMR spectroscopy (D 2 O instead of H 2 O for swelling) and by X-ray studies.
  • the hydrogel forms between 75-82% by weight (based on the mass of the dry network) a lamellar phase and between 50-75% by weight a hexagonal Phase off The maximum clear temperatures are 42 ° C for the hexagonal phase and approx. 32 ° C for the lamellar phase
  • the films of the dry networks are machined with a layer thickness of approximately 300 to 500 ⁇ m in analogy to the methods known per se for producing contact lenses or intraocular lenses
  • Films cooled to a temperature below the glass temperature of the networks They are in the glass state and can be machined by milling or turning into the shape of a contact lens or intraocular lens.
  • the lens surfaces to be produced lie in the plane of the film. that the subsequent swelling process of the lenses obtained with water to form the LSCH results in the final form for optical use.
  • the swollen LSCH contains the optical A according to the deformation of the network in the synthesis process with uniaxial expansion axis in the plane of the lens, so that when the lens is used, the light is incident perpendicular to the optical axis.
  • the lens is bifocal under these conditions; if necessary, multifocal lenses can also be produced

Abstract

Verfahren zur Herstellung von flüssigkristallinen Hydrogelen (LSCH), wobei Polymernetzwerke mit amphiphilen Seitengruppen, enthaltend reaktive Reste mit nicht umgesetzten funktionellen Gruppen, in einem ersten Schritt durch Einwirken einer mechanischen Spannung uni- oder biaxial orientiert werden, wobei diese Orientierung in einem nachfolgenden zweiten Schritt durch Verknüpfung zumindest eines Teils der reaktiven Reste mit Polymerketten fixiert wird; die erfindungsgemässen flüssigkristallinen Hydrogele sind als Werkstoff unter anderem für optische Bauelemente, insbesondere bifokale Kontaktlinsen geeignet.

Description

Flüssigkristalline Einkristall-Hydrogeie mit hoher Doppelbrechung
Die Erfindung betrifft neue anisotrope Hydrogele sowie Verfahren zu ihrer Herstellung, ihre Verwendung und Produkte aus diesem Hydrogelen
Thermotrope flussigkπstalline Einkristall-Elastomere (LSCE) sind Polymernetzwerke mit einer makroskopisch einheitlichen Orientierung des Direktors Sie entsprechen zum Beispiel in ihren optischen Eigenschaften organischen oder anorganischen Einkristallen, weisen aber auf Grund der Polymernetzwerkstruktur oberhalb der Glastemperatur gummielastisches Verhalten auf Ihr mechanischer Modul ist um Größenordnungen kleiner als von Festkörpern, weshalb man sie auch als weiche Kristalle („soft crystals") bezeichnen kann Ihre Herstellung und Eigenschaften sind erstmals in EP 9201591 und zwischenzeitlich in der Literatur beschrieben Die bisher bekannten LSCE tragen als flussigkπstalline Monomereiπheiten ausschließlich thermotrope flussigkristalline Bauelemente (stabchen- oder scheibchenformige mesogene Gruppen) Die bisher bekannten LSCE sind nicht mit Wasser zu einem anisotropen Hydrogel quellbar
Hydrogele die eine breite Anwendung gefunden haben zeigen grundsätzlich optisch isotropes Verhalten Hydrogele mit anisotropen Eigenschaften sind bisher in der Literatur nur mit wenigen Beispielen beschrieben Im Gegensatz zu den LSCE zeigen sie keine spontane makroskopisch einheitliche Ordnung Nur durch eine mechanische Deformation konnte eine Orientierung beobachtet werden, die aber ohne mechanische Deformation wieder in den ungeordneten Zustand relaxiert Anisotrope Hydrogele mit spontaner makroskopisch einheitlicher Orientierung der optischen Achse (LSCH, Liquid Single Crystal Hydrogels) sind vom größten Interesse für Anwendungen z B als Materialien für bifokale Kontaktlinsen selektive Trennmembrane Tragermateπal für kontrolliertes „drug release '
Gegenstand der Erfindung sind somit Verfahren gemäß 1 bis 4 zur Herstellung von LSCH , LSCH gemäß den Ansprüchen 5 bis 8 deren Verwendung gemäß Ansprüchen 9 bis 1 1 , und Produkte aus denselben gemäß Ansprüchen 12 bis 14
BERICHTIGTES BLATT (REGEL 91) ISA / EP Die erfindungsgemaßen LSCH werden in 2 bezw 3 aufeinanderfolgenden Schritten hergestellt, wobei die ersten beiden Schritten der Herstellung von thermotropen flussigkristallinen Elastomeren (LSCE) mit fixierter Netzwerkstruktur entsprechen (EP 9201591 ) Im 3 Schritt wird das Netzwerk mit Wasser gequollen, wobei bei den in Formel 1 beschriebenen amphiphilen Netzwerken erst die anisotrope Phasenstruktur mit einer hohen Doppelbrechung entsteht
Die in den ersten beiden Schritten hergestellten Netzwerke mit anisotroper Netzkettenkonformation werden bevorzugt ausgewählt aus der Gruppe der Hydrogele der Formel 1
Figure imgf000004_0001
i worin
(P) eine Polymerketteneinheit
A ein Amphiphil mit hoher Doppelbrechung
V eine Polymerketten vernetzende Gruppe und
R ein reaktiver Rest, enthaltend mindestens eine nicht umgesetzte funktioneile
Gruppe bedeuten
Durch Formel 1 werden die bevorzugten Hydrogele nur stark schematisch beschrieben So ist es z B nicht erforderlich, das jede Hauptketteneinheit ein Amphiphil tragt Weiterhin soll Formel 1 auch Copolymere mit unterschiedlichen Polymerketteneinheiten umfassen Außerdem stimmt die Zahl der Gruppen V, A und R i a nicht uberein Trotz dieser Mangel erscheint die Formel 1 zur schematisch bildhaften Reprasentierung der Hydrogele geeignet und wird daher verwendet
Die Herstellung der Hydrogele der Formel 1 erfolgt analog zu an sich bekannten
Polymerisationsverfahren wie sie in der Literatur beschrieben sind (z B in den
BERICHTIGTES BLATT (REGEL 91) ISA / EP Standardwerken und Lehrbuchern über Makromolekulare Chemie oder Werken wie Comprehensive Polymer Science, Pergamon Press), und zwar unter Reaktionsbedingungen, die für die Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht naher erwähnten Varianten Gebrauch machen
Hydrogele der Formel 1 können zum Beispiel in einer sehr einfachen polymeranalogen Additionsreaktion von amphiphilen Seitenkettenpolymeren mit Vernetzermolekulen V* und reaktiven Verbindungen vom Typ R* erhalten werden, schematisch
+ nR* + π V*
Figure imgf000005_0001
(P)
A R A
Figure imgf000005_0002
A A
In dieser schematischen Darstellung sind durch A die an die Monomereiπheiten gebundenen Amphiphile mit hoher Polansierbarkeitsanisotropie bezeichnet Die Hauptkette enthalt weitere funktionelle Monomereinheiten, an die in der polymeranalogen Umsetzung die Vernetzermolekuie V* und die Moleküle R* gebunden werden Durch den Index * wird angedeutet, daß die Vernetzermolekuie V* und die reaktiven Verbindungen R* i a 2 oder mehr reaktionsfähige Stellen aufweisen, wobei bei den reaktiven Verbindungen mindestens eine der reaktionsfähigen Stellen durch eine andere Reaktivität gekennzeichnet sein kann als die andere bzw anderen reaktionsfähigen Stellen
Bevorzugt sind weiter auch Verfahren zur Herstellung der Hydrogele der Formel 1 , bei denen die Gruppierungen A sowie R und ggf V an vernetzte oder unvernetzte
BERICHTIGTES BLATT (REGEL 91) ISA / EP Polymerketten -P- angeheftet werden (z B durch Aufpfropfungsreaktionen vgl DE 38 17 088)
Die Hydrogele der Formel 1 können weiter durch Polymerisation von Monomeren und/oder Oligomeren in Anwesenheit von reaktiven Verbindungen R* und gegeoenenfalls V* hergestellt werden Wenn die Monomere und/oder Oligomere zumindest überwiegend nur 2 Verknupfungsstellen aufweisen ist die Anwesenheit von Vernetzerπ V* erforderlich wobei zumindest eine der reaktionsfähigen Stellen der reaktiven Verbindung R* bei den Bedingungen, unter denen die Verknupfungsstellen der Monomere und/oder Oligomere und die reaktiven Stellen der Vernetzer umgesetzt werden noch nicht oder erst teilweise reagieren Falls die Monomere und/oder Oligomere mehr als zwei Verknupfungsstellen im Molekül aufweisen kann der Vernetzer ggf auch weggelassen werden
Die Synthese der Hydrogele aus niedermolekularen Verbindungen hat häufig den Vorteil daß durch Variation der Syntheseparameter wie z B der Polymerisationstemperatur der Konzentration des Polymerisationsinitiators, dem relativen Massenverhaltnis von Comonomeren bzw Cooligomeren etc wichtige Eigenschaften der Hydrogele wie z B ihre Elastizität oder Doppelbrechung oder auch andere Eigenschaften beeinflußt und innerhalb gewisser Grenzen gezielt eingestellt werden können
Die niedermolekularen Verbindungen sind bevorzugt amphiphil Wie bereits erwähnt, ist aber auch das anschließende Anbinden dieser Gruppen an funktionalisierte Polymergeruste möglich
Die Hersteilung der Hydrogele der Formel 1 erfolgt bevorzugt analog Verfahren für thermotrop flussigkπstalline Systeme wie sie in DE 3817088 DE 381 1334 und DE 3621 581 beschrieben sind wobei zusätzlich reaktive Verbindungen R* mit umgesetzt werden
BERICHTIGTES BLATT (REGEL 91) ISA / EP Als polymeres Rückrat -(-P-)- kommen prinzipiell alle Polymere in Frage, deren Ketten eine gewisse Flexibilität aufweisen. Es kann sich hierbei um lineare, verzweigte oder cyclische Polymerketten handeln. Der Polymerisationsgrad beträgt normalerweise mindestens 10, vorzugsweise 50-200. Es kommen jedoch auch Oligomere mit 3-15, insbesondere mit 4 bis 7 Monomereinheiten in Frage.
Vorzugsweise werden Polymere mit C-C-Hauptketten, insbesondere Polyacrylate, - methacrylate, -α-halogenacrylate, α-cyanacrylate, -acrylamide oder methylenmalonate eingesetzt. Weiterhin bevorzugt sind auch Polymere mit Heteroatom in der Hauptkette, beispielsweise Polyether, -ester, -amide, -imide oder - urethane oder insbesondere Polysiloxane.
Die amphiphilen Einheiten A haben folgenden schematischen Aufbau:
Figure imgf000007_0001
wobei S- ein flexibler Spacer, die rechteckigen Symbole M eine Einheit mit hoher Polansierbarkeitsanisotropie und die kreisförmigen Symbole H eine hydrophile Einheit, die über Y an M gebunden sind, bezeichnen. Die beiden Bauprinzipen A1 und A2 unterscheiden sich im wesentlichen darin, daß bei A1 das Amphiphil „end- on" über S und die hydrophobe Einheit mit hoher Polansierbarkeitsanisotropie mit der Polymerhauptkette verbunden ist, während bei A2 ein Amphiphil mit zwei hydrophilen Gruppen „side-on" über S mit der Hauptkette verbunden ist.
Als Spacer S kommen vor allem lineare oder verzweigte Alkylengruppen mit 1-20 C- Atomen in Betracht, worin eine oder mehrere nicht benachbarte CH2-Gruppen durch -O-, -S-, -CO-, -O-CO-, -S-CO-, -O-COO-, -CO-S-, -CO-O-, -CH-Halogen-, -CHCN-, -
BERICHTIGTES BLATT REGEL 91) CH=CH-, und -C=C- ersetzt sein können. Als Spacer sind beispielsweise folgende Gruppen geeignet: Ethylen, Propylen, Butylen, Pentylen, Hexylen, Heptylen, Octylen, Decylen, Undecylen, Dodecylen, Octadecylen, Ethylenoxyethylen, Methylenoxybutylen, Ethylenthioethylen, Ethylen-N-methyliminoethylen oder 1- Methylalkylen.
Die Einheiten mit hoher Polansierbarkeitsanisotropie M sind bevorzugt stäbchenförmige („rod-like") oder brettförmige („board-like) aromatische Molekülsegmente. Es sind bevorzugt mesogene Gruppen, die für die Synthese von thermotropen Flüssigkristallen verwendet werden. Im Gegensatz zur Molekülstruktur von üblichen mesogenen Gruppen ist jedoch ein strikt linearer Aufbau von M nicht zwingend notwendig. Besonders bevorzugt bedeutet M einen Rest der Formel 3
-(A1-Z1)n-A2-Z2-A3- 3
worin A1, A2, A3, Z Z2 und n die oben angegebene Bedeutung haben. Durch die Formel 3 sind 2-, 3-, 4- und 5-kernige Reste der Teilformel 3-1 bis 3-4 umfaßt:
-A2-Z2-A3- 3-1
_A1-Z1-A2-Z2-A3- 3-2
-A1-Z1-A1-Z1-A2-Z2-A3- 3-3
_A1-Z1-A1-Z1-A1-Z1-A2-Z2-A3- 3-4
2-, 3- und 4-kemige mesogene Reste sind bevorzugt.
Im folgenden wird eine kleinere Gruppe von besonders bevorzugten mesogenen Resten der Formel 3 aufgeführt. Dabei bedeuten der Einfachheithalber Cyc eine 1 ,4- Cycloheylgruppe, worin auch eine oder zwei nicht benachbarte CH2-Gruppen durch - O- ersetzt sein können, Phe eine 1 ,4-Phenylengruppe, worin auch eine oder mehrere CH-Gruppen durch N ersetzt sein können. PheX ist eine 1 ,4- Phenylengruppe, die im Amphiphil der Formel A2 den Spacer trägt. Weiterhin können Kombinationen mit Pip eine Piperidin-1 ,4-diylgruppe und Nap eine Deca-, Tertrahydronaphthalin-2,6-diyl- oder Naphthalin-2,6-diylgruppe eingesetzt werden.
BERICHTIGTES BLATT (REGEL 91) Besonders bevorzugte mesogene Reste der Formel 3-1 sind die der Teilformeln 4-1 bis 4-8 : für Amphiphile der Gruppe A1
-Phe-Z2-Phe- 4-1
-Cyc-Z2-Cyc- 4-2
-Phe-Z2-Cyc- 4-3
-Cyc-Z2-Cyc- 4-4
für Amphiphile der Gruppe A2
-Phex-Z2-Phe- 4-5
-Phe-Z2-Phex- 4-6
-Cyc-Z2-Phex- 4-7
-Phex-Z2-Cyc- 4-8
In den Verbindungen der Teilformeln 4-1 bis 4-8 ist Z2 ganz besonders bevorzugt eine Estergruppe (-CO-O- oder -O-CO-), -CH2CH2 oder Einfachbindung.
Besonders bevorzugte mesogene Reste der Teilformel 3-2 sind die Teilformeln 5-1 bis 5-11 : für Amphiphile der Gruppe A1
-Phe-Z1-Phe-Z2-Phe- 5-1
-Cyc-Z1-Cyc-Z2-Phe- 5-2
-Cyc-Z1-Phe-Z2-Phe- 5-3
-Phe-Z -Phe-Z2-Cyc- 5-4
-Phe-Z1-Cyc-Z2-Phe- 5-5 und für Amphiphile der Gruppe A2
-Phex-Z1-Phe-Z2-Phe- 5-6
-Phe-Z1-Phex-Z2-Phe- 5-7
-Phe-Z1-Phe-Z2-Phex- 5-8
-Cyc-Z1-Phex-Z2-Phe- 5-9
BERICHTIGTES BLATT (REGEL 91) -Cyc-Z1-Phe-Z2-Phex- 5-10
-Phe-Z1-Phex-Z2-Cyc- 5-11
In den Verbindungen der Teilformeln 5-1 bis 5-11 ist Z2 ganz besonders bevorzugt eine Estergruppe (-CO-O- oder -O-CO-), -CH2CH2 oder Einfachbindung.
Als hydrophile Gruppe H kommen nichtionische und zwitterionische Gruppen in Betracht, die für die Synthese konventioneller Tenside eingesetzt werden und bekannt sind. Besonders bevorzugt sind nichtionische Tenside
1. aus der Reihe der Polyglycolether
-(CH2-CH2-O)π- H -(CH2-CH2-O)n-CH3 mit n= 1 -10
sowie den verzweigten Varianten als Glycerinether CH-O-(CH2-CH2-O)n- H
-CH
I
CH-O-(CH2-CH2-O)n- H mit n = 1-6 und
CH-O-(CH2-CH2-O)n- CH3 i -CH
CH-O-(CH2-CH2-O)n- CH3 mit n= 1 -6
2. Glycoside, Polyclycoside und Polyalkohole und
3. zwitterionische Verbindungen wie lmidazolcarboxylate, Betaine und Aminocarbonsäure.
Die hydrophilen Gruppen sind direkt oder über Y an die mesogene Gruppe M gebunden. Besonders bevorzugt für Y ist -O-, -CO-, -COO-, -O-CO-, -O-CO-O- und lineare oder verzweigte -(CH2)n mit n=0-10 worin auch eine nicht benachbarte CH2 - Gruppen durch eine der obigen Gruppen ersetzt sein kann.
Als Vernetzer V* kommen Verbindungen in Frage, die entsprechend der Chemie der Polymerhauptkette eine Vernetzungsreaktion ausführen können. Besonders
BERICHTIGTES BLATT (REGEL 91) bevorzugt sind hier funktiona sierte Amphiphile, die durch Dimeπsation über die hydrophile Gruppe der Verbindungen der Formel A1 zugänglich sind
Die reaktiven Reste R* weisen mindestens 2 funktionelle Gruppen auf, wobei sich die Reaktivität einer Gruppe von der der anderen Gruppen bei den gewählten Reaktionsbedingungen unterscheiden kann So ist z B möglich, daß mindestens eine der reaktiven Gruppen von R* eine Vinyl-, Acryloyl- oder eine andere radikalisch polymerisierbare Gruppe ist, wahrend eine der unter den Bedingungen der radika schen Polymerisation nicht umgesetzte Gruppe eine Hydroxyl-, Carboxyl- oder Ammogruppe ist Es ist aber z. B auch möglich, daß die Moleküle R* Gruppen aufweisen die nach dem gleichen Reaktionsmechanismus allerdings unter selektiver Katalyse oder bei veränderter Temperatur mit deutlich unterschiedlicher Reaktivität umgesetzt werden (vgl Beispiel 1 ) Die reaktiven Gruppen können z B terminal an den Molekülen R* angeordnet sein und sind dann üblicherweise verknüpft durch eine lineare oder verzweigte C-Kette mit 1 -20 C-Atomen, worin auch bis zu 8 nicht benachbarte CH;-Gruppen durch -O-, -CO-, -COO-, -OCO-, -S-, - HC=CH-, -C=C- -CHHalogen- -C(Halogen)2-, -NH-, -(C, 5-Alkyl)-N- einen alicyclischen oder aromatischen Ring ersetzt sein können Es ist aber auch möglich daß die reaktiven Gruppen sich in nicht-terminaler Position befinden Besonders bevorzugt sind Verbindungen analog V jedoch mit unterschiedlichen reaktiven Gruppen
Die vorstehend angeführten Beispiele für P, S, M,Y, R bzw R* und V bzw V* sind nur beispielhaft zu verstehen und sollen die Erfindung erläutern, ohne sie zu begrenzen
Zur Herstellung der erfindungsgemaßen Hydrogele können neben den bevorzugten
Netzwerken der Formel I auch noch weitere Hydrogele verwendet werden So sind z
B Copolymere, die neben amphiphilen auch nicht-amphiphile Seitengruppen enthalten, manchmal bevorzugt um beispielsweise einen zu hohen Wert für die
Doppelbrechung zu senken oder andere spezifische Materialeigenschaften zu variieren
BERICHTIGTES BLATT (REGEL 91) ISA / EP Die detailliert beschriebenen Hydrogele der Formel I welche bevorzugt sind, und die weiterhin angegebenen Hydrogele sind nur beispielhaft zu verstehen und sollen die Erfindung lediglich erläutern ohne sie zu begrenzen Die Erfindung kann ganz allgemein auf Hydrogele, enthaltend reaktive Reste mit mindestens einer nicht umgesetzten funktionellen Gruppe angewendet werden und ist nicht auf spezielle Hydrogele begrenzt
Die Netzwerke werden durch Anlegen eines mechanischen „Feldes" uniaxial oder biaxial vor Umsetzung der reaktiven Reste R verstreckt und dadurch die Netzketten orientiert Andere Orientierungen können z B erreicht werden wenn das Netzwerk biaxial verstreckt wird d h wenn die mechanische Spannung gleichzeitig entlang 2 verschiedener Deformationsachsen die vorzugsweise rechtwinklig zueinander sind, einwirkt Komplizierte Deformationsmuster sind möglich aber i a nicht bevorzugt
Die mechanische Spannung die durch geeignete Vorrichtungen wie z B Spannklammern Tragerfolien auf die Probe übertragen wird, kann eine Dehnung, Kompression oder auch Scherung der Probe bewirken dagegen fuhren Torsionsoder Biegespannungen im allgemeinen nicht zu einer gewünschten Ausrichtung Sie können aber mit Dehnung kombiniert werden Die aufzuwendende Spannung hangt von der Große und Geometrie der Probe sowie insbesondere auch von deren Elastizität ab und betragt typischerweise zwischen 1 0" und 105 N/m2 und richten sich nach Vernetzungsdichte und Temperaturdifferenz zum Glasubergang des Netzwerkes
Nachdem das Netzwerk in der gewünschten Weise orientiert ist wird diese Orientierung der Netzketten in einem nachfolgenden 2 Schritt dadurch fixiert, daß das Netzwerk im deformierten Zustand durch Umsetzung der freien funktionellen Gruppen der reaktiven Reste R mit benachbarten Polymerketten zusätzlich vernetzt
BERICHTIGTES BLATT (REGEL 91) ISA / EP Für diese zweite Vernetzungsreaktion kommt je nach der Natur der freien funktionellen Gruppe eine Vielzahl von Reaktionsmoglichkeiten in Betracht Handelt es sich bei den freien funktionellen Gruppen beispielsweise um Hydroxylgruppen, so können z B freie Hydroxylgruppen von reaktiven Resten benachbarter Polymerketten oder aber auch freie Hydroxylgruppen reaktiver Reste mit Hydroxylgruppen von Polymerketteneinheiten etwa durch Dnsocyanate miteinander verknüpft werden Es ist natürlich z B auch möglich, die freie Hydroxylgruppe mit Carboxylgruppen oder Saurechlondgruppen benachbarter reaktiver Reste bzw Polymerketten zu verestem oder aber auch mit weiteren funktionellen Gruppen umzusetzen Außer der Hydroxylgruppe kommen als freie reaktive Gruppen insbesondere auch Amiπogruppen Mercaptogruppen, Carboxylgruppen oder von Carboxylgruppen abgeleitete funktionelle Gruppen Sulfonsauregruppen bzw von dieser Gruppe abgeleitete funktionelle Gruppen, Epoxygruppen sowie weitere funktionelle Gruppen in Frage Diese Aufzahlung soll die Erfindung nur erläutern und keinesfalls begrenzen, der Fachmann kann leicht weitere reaktive Gruppen und Reaktionsmoglichkeiten angeben ohne daß es einer erfinderischen Tätigkeit bedurfte
Die zusätzliche Vernetzungsreaktion wird unter geeigneten Bedingungen ausgeführt So kann die Umsetzung der freien funktionellen Gruppen z B durch Temperaturerhöhung oder durch UV-Bestrahlung, ggf unter Zugabe eines Katalysators, durchgeführt werden Die Gesamtvernetzungsdichte liegt bei Hydrogelen typischerweise zwischen 2% und 20, diese Werte können allerdings nur als grobe Richtschnur angesehen werden, und es sind auch größere Abweichungen möglich, da sie von der Molmasse der Ausgangspolymere abhangen
Im dritten Schritt werden die Netzwerke mit Wasser gequollen Durch die Quellung mit Wasser geht das Netzwerk in den lyotrop flussigkristallinen Zustand über Je nach hydrophil/hydrophober Balance der amphiphilen Einheiten A kann eine hexagonale oder lamellare Phase ausgebildet werden Die Konzentration an Wasser bei der dieser Phasenubergang stattfindet ist von der Struktur von A abhanαiα und sowohl von niedπαmolekularen als auch linearen Polymeren her
BERICHTIGTES BLATT (REGEL 91)
ISA / EP ableitbar Es ist aber auch möglich daß schon das trockene Netzwerk z B eine lamellare Uberstruktur aufweist die durch die Quellung mit Wasser erhalten bleibt Durch die in der zweiten Vernetzungsreaktion mit den reaktiven Resten R bzw R* eingeführten Netzkettenorientierung wird die lyotrop flussigknstalline Phasenstruktur spontan makroskopisch einheitlich geordnet Es bildet sich im Hydrogel eine einheitliche Direktororientierung aus wobei der Direktor die Orientierung der Langsachsen der stabchenformigen mizellaren Assoziate in der hexagonalen Phase (HrPhase) oder der Schichtnormalen der lamellaren Phase (Lα-Phase) bezeichnet
Der Quellungsgrad bzw die Aufnahme von Wasser im Hydrogel wird durch zwei Faktoren begrenzt Zum einen ist dies die Vernetzungsdichte des Hydrogels die den Gleichgewichtsquellungsgrad bestimmt zum zweiten ist es die Los chkeit des Netzwerkes Je nach hydrophil/hydrophober Balance der amphiphilen Gruppen A kann die maximale Wasseraufnahme des Netzwerks auch durch die Wasserloslichkeit von A begrenzt sein Beide Faktoren sind bekannt und lassen sich von konventionelle wasserquellbaren Netzwerken bzw niedrigmolekularen und polymeren Amphiphilen ableiten
Das erfindungsgemaße Verfahren erlaubt die Bereitstellung von anisotropen Hydrogelen die sich durch einen hohen Ordnungsgrad und hohe Doppelbrechung auszeichnen Im Unterschied zu herkömmlichen flussigkristallinen Monodomanen lyotroper Flussigkπstalle sind die erfindungsgemaßen Hydrogele mit fixierter anisotroper Netzwerkstruktur praktisch in jeder beliebigen Geometrie oder Große herstellbar so können z B Filme Folien quaderformige Korper Zylinder oder auch weitere Formen erhalten werden Die Eigenschaften der erfindungsgemaßen LSCH können in weiten Bereichen variiert und im Hinblick auf die jeweilige Anwendung optimiert werden So kann etwa die Elastizität über den Gesamtvemetzungsgrad eingestellt werden oder es können die optischen Eigenschaften im Hinblick auf die Doppelbrechung durch die Variation der Gruppe M in Formel 2 eingestellt werden
Die erfindungsgemaßen LSCH können für verschiedenste Anwendungen eingesetzt werden Filme und Folien sind insbesondere als Trennmembrane αeeiαnet Von
BERICHTIGTES BLATT (REGEL 91) ISA / EP besonderer Bedeutung ist die Verwendung der LSCH als völlig neuartiges Material für die Herstellung von bifokalen Kontaktlinsen oder bifokalen Intraokularlmsen Sie kombinieren einerseits die hervorragenden Eigenschaften der bisher bekannten aber isotropen Hydrogele mit den außergewöhnlichen optischen anisotropen Eigenschaften flussigkristalliner Systeme
Die erfindungsgemaßen LSCH weisen die bei herkömmlichen flussigkristallinen Monodomanen auftretenden Nachteile nicht oder nur in geringerem Ausmaß auf und ihnen kommt daher ebenso wie dem erfindungsgemaßen Verfahren eine erhebliche wirtschaftliche Bedeutung zu
Die nachfolgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen
Beispiel 1 a) Herstellung der LSCH
Es werden die folgenden Komponenten
Poly(methylhydrogensιloxan) (Pn= 100) 61 ,6 mg
Amphiphi
Figure imgf000015_0001
579,9 mg Vernetzer 71 ,3 mg
CH2=CH-(CH2)9-0-(CH2CH2-O)6
CH2=CH-(CH2)9-0-(CH2CH2-O)6 Katalysator SLM 86005 (Wacker) ui
in 1 ,5 ml thiophenfreiem Toluol gelost und das Reaktionsgemisch in einen an der Wandung mit Teflonfolie ausgekleideten Zentrifugenrotor eingefüllt und dicht verschlossen Die Reaktion wird bei ca 4000 U/min in der durch einen Thermostaten auf 60°C temperierten Zentrifuge durchgeführt Sobald eine Gelation stattgefunden hat. wird der Rotor aus der Zentrifuge genommen und zur Verlangsamung der Reaktion der noch freien funktionellen Gruppen auf 0°C rasch
BERICHTIGTES BLATT (REGEL 91) ISA / EP abgekühlt Bei tiefer Temperatur wird der Deckel des Rotors entfernt und das auf der Teflonfolien haftende Gel aus dem Rotor entnommen
b) Orientierung des Netzwerkes
An einem Ende des auf der Teflonfolie haftenden Gels wird möglichst rasch ein Stuck Klebeband befestigt und das Gel von der Teflonfolie gelost Das zunächst aufgequollene Netzwerk wird durch einfaches Aufhangen an einem geeigneten Gestell vorgetrocknet, wobei das Losungsmittel Toluol partiell verdampft. Anschließend wird am frei hangenden Ende des Netzwerkes ein weiterer Klebefilm angebracht, an dem sich Gewichte zur Belastung (uniaxiale Dehnung) des Netzwerkes befinden
c) Fixierung der Orientierung
Zur Fixierung der Orientierung des Netzwerkes wird die belastete Probe in einem Trockenschrank bei ca 60°C 48 Stunden getempert Wahrend dieser Reaktionszeit verdampft das Losungsmittel Toluol nahezu vollständig Um Reste von Toluol zu entfernen wird anschließend der Trockenschrank für weitere 6 Stunden evakuiert Hiernach kann das Netzwerk auf Raumtemperatur gebracht werden und - wenn notwendig - der Solanteil durch Entquellung entfernt werden
d) Eigenschaften des LSCH
Zur Charakterisierung des anisotropen Phasenverhaltens des Netzwerkes wird das Netzwerk mit definierten Mengen an Wasser angequollen und die Phasenstruktur NMR-spektroskopisch (D2O anstelle von H2O zur Quellung) und durch Rontgenuntersuchungen charakterisiert Die Ergebnisse zur Analyse der Phasenstruktur sind in Fig 1 (Phasenverhalten des LSCH (gestrichelte Koexistenzlmen = Phasenverhalten des entsprechenden linearen Polymers)) in Form des Phasendiagrammes wiedergeben Das Hydrogel bildet zwischen ca 75-82 Gew % (bezogen auf die Masse des trockenen Netzwerkes) eine lamellare Phase und zwischen ca 50-75 Gew % eine hexagonale Phase aus Die maximalen Klartemperaturen sind 42°C für die hexagonale Phase und ca 32°C für die lamellare Phase
BERICHTIGTES BLATT (REGEL 91)
ISA / EP Bei der Quellung des trockenen Netzwerkes mit Wasser geht das Netzwerk bei der Phasenumwandlung in die lyotrop flussigknstalline Phase spontan ohne externe mechanische Felder auf Grund der durch die Synthese eingeführten Netzwerkanisotropie in einen makroskopisch einheitlich geordneten Zustand über. In Fig. 2 (Röntgenbild und winkelabhängige Streuintensität für das LSCH) ist ein Röntgenbild der Kleinwinkelreflexe gezeigt, aus denen die hexagonale Struktur ableitbar ist. Von Bedeutung ist die azimuthale Intensitätsverteilung der Kleinwinkelreflexe mit äquatorialen Maxima, die anzeigen, daß die hexagonale Phase mit ihrer optischen Achse in Richtung der bei der Synthese angelegten und durch die zweite Vernetzung fixierten Netzwerkanisotropie ausgerichtet ist.
Beispiel 2
In Analogie zu Beispiel 1 , in dem für die Herstellung des LSCH ein Amphiphil mit einer hydrophilen Gruppe eingesetzt wird und die Bindung an die Polymerkette über die hydrophobe Gruppe erfolgt, wird das Amphiphil mit zwei hydrophilen Gruppen der Struktur
Figure imgf000017_0001
über die laterale Alkylkette in der Hydrosilylierungsreaktion an Poly(methylhydrogensiloxan) addiert. Durch die chemische Konstitution und die beiden hydrophilen Gruppen an der starren Einheit kann dieses System nur eine lamellare Phase mit Wasser ausbilden. Schon die monomere Verbindung zeigt in einem breiten Konzentrationsbereich die lamellare Phase, die bei den Temperaturen Lα 35°C LT in die isotrope Phase übergeht und ab L^ 47°C l^+Lj eine Mischungslücke aufweist. Die Phasenstruktur der monomeren Verbindung bleibt bei der Herstellung des LSCH erhalten und wird wie im Beispiel 1 nur geringfügig im Hinblick auf den Temperatur- und Konzentrationsbereich verschoben.
BERICHTIGTES BLATT (REGEL 91) Herstellung einer bifokalen Linse
Zur Herstellung einer bifokalen Linse als Kontaktlinse oder Intraokularlinse werden die Filme der trockenen Netzwerke z B der Beispiele 1 und 2 mit einer Schichtdicke von etwa 300 bis 500 μm in Analogie zu den an sich bekannten Verfahren zur Herstellung von Kontaktlinsen oder Intraokularlinsen spanabhebend bearbeitet Dazu werden die Filme auf eine Temperatur unterhalb der Glastemperatur der Netzwerke abgekühlt Sie befinden sich im Glaszustand und können spanabhebend durch Fräsen bzw Drehen in die Form einer Kontaktlinse oder Intraokularlinse gebracht werden Die bei der Bearbeitung herzustellenden Linsenoberflachen liegen in der Ebene des Filmes Bei der Formgebung ist zu berücksichtigen, daß durch den anschließenden Quellungsvorgang der erhaltenen Linsen mit Wasser zum LSCH sich erst die endgültige Form für die optische Anwendung ergibt In dem gequollenen LSCH befindet sich entsprechend der Deformation des Netzwerkes bei dem Syntheseprozeß bei uniaxialer Dehnung die optische Achse in der Ebene des Linse, so daß beim Einsatz der Linse das Licht senkrecht zur optischen Achse einfallt Entsprechend der Brechungsindizes der lyotrop flussigkristallinen Phasenstruktur des LSCH ist die Linse unter diesen Bedingungen bifokal, in entsprechender Weise können bei Bedarf auch multifokale Linsen hergestellt werden
BERICHTIGTES BLATT (REGEL 91) ISA / EP

Claims

Patentansprüche
1 Verfahren zur Herstellung von flussigkristallinen Hydrogelen (LSCH), wobei Polymernetzwerke mit amphiphilen Seiteπgruppen, enthaltend reaktive Reste mit nicht umgesetzten funktionellen Gruppen, in einem ersten Schritt durch Einwirken einer mechanischen Spannung uni- oder biaxial orientiert werden, wobei diese Orientierung in einem nachfolgenden zweiten Schritt durch Verknüpfung zumindest eines Teils der reaktiven Reste mit Polymerketten fixiert wird
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß man durch anschließendes Quellen mit Wasser eine hochgeordnete aniosotrope Phasenstruktur mit hoher Doppelbrechung ausbildet
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Polymernetzwerke ein Netzwerk der Formel 1
Figure imgf000019_0001
verwendet wird, in der
P eine Polymerkette,
A eine amphiphile Einheit mit hoher Polansierbarkeitsanisotropie
V einen Vernetzer von Polymerketten und
R einen reaktiven Rest bedeuten
Verfahren zur Herstellung des Netzwerks gemäß Formel 1 nach Anspruch 3, dadurch gekennzeichnet, daß man ein oder mehrere Poiymerketten P mit einer oder mehreren Amphiphilen A mit einem oder mehreren Vernetzern V und mit einer oder mehreren Verbindungen vom Typ R umsetzt
BERICHTIGTES BLATT (REGEL 91) ISA / EP LSCH, gekennzeichnet durch Herstellung nach Anspruch 1
LSCH, gekennzeichnet durch Herstellung nach Anspruch 2
LSCH, gekennzeichnet durch Herstellung nach Anspruch 3
LSCH, gekennzeichnet durch Herstellung nach Anspruch 4
Verwendung des LSCH nach einem der Ansprüche 5 bis 8 als Trennmembran oder Trennmembranelement
Verwendung des LSCH nach einem der Ansprüche 5 bis 8 als optisches Bauelement
Verwendung des LSCH nach einem der Ansprüche 5 bis 8 als bifokale Kontaktlinse oder Bauelement einer bifokalen Kontaktlinse
Optisches Bauelement, das ganz oder teilweise aus einem LSCH gemäß einem der Ansprüche 5 bis 8 besteht
Trennmembran, das ganz oder teilweise aus einem LSCH gemäß einem der Ansprüche 5 bis 8 besteht
Bi- oder multifokale Kontaktlinse, die ganz oder teilweise aus einem der LSCH nach einem der Ansprüche 5 bis 8 besteht
BERICHTIGTES BLATT (REGEL 91) ISA / EP
PCT/DE1998/003368 1997-11-14 1998-11-13 Flüssigkristalline einkristall-hydrogele mit hoher doppelbrechung WO1999025788A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU21484/99A AU2148499A (en) 1997-11-14 1998-11-13 Liquid crystalline single crystal hydrogels with high double refraction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19750628.3 1997-11-14
DE1997150628 DE19750628A1 (de) 1997-11-14 1997-11-14 Flüssigkristalline Einkristall-Hydrogele mit hoher Doppelbrechung

Publications (2)

Publication Number Publication Date
WO1999025788A2 true WO1999025788A2 (de) 1999-05-27
WO1999025788A3 WO1999025788A3 (de) 1999-07-22

Family

ID=7848828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/003368 WO1999025788A2 (de) 1997-11-14 1998-11-13 Flüssigkristalline einkristall-hydrogele mit hoher doppelbrechung

Country Status (3)

Country Link
AU (1) AU2148499A (de)
DE (1) DE19750628A1 (de)
WO (1) WO1999025788A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100532434C (zh) * 2007-04-28 2009-08-26 中国科学院广州化学研究所 主链型液晶弹性体的制备方法
CN101974123A (zh) * 2010-09-10 2011-02-16 天津工业大学 一种液晶增强快速响应性温敏水凝胶及其制备方法
WO2012063509A1 (ja) * 2010-11-11 2012-05-18 独立行政法人科学技術振興機構 両親媒性液晶化合物、ミセル、及びそれらの利用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110396198A (zh) * 2019-08-05 2019-11-01 集美大学 一种双亲氟硅氧烷及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990016005A1 (de) * 1989-06-14 1990-12-27 MERCK Patent Gesellschaft mit beschränkter Haftung Eleltrooptisches system mit kompensationsfilm
DE4124859A1 (de) * 1991-07-26 1993-01-28 Merck Patent Gmbh Fluessigkristalline elastomere oder duomere mit fixierter anisotroper netzwerkstruktur
DE4327359A1 (de) * 1993-08-14 1995-02-16 Basf Ag Vernetzungsfähige Oligomere oder Polymere

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990016005A1 (de) * 1989-06-14 1990-12-27 MERCK Patent Gesellschaft mit beschränkter Haftung Eleltrooptisches system mit kompensationsfilm
DE4124859A1 (de) * 1991-07-26 1993-01-28 Merck Patent Gmbh Fluessigkristalline elastomere oder duomere mit fixierter anisotroper netzwerkstruktur
DE4327359A1 (de) * 1993-08-14 1995-02-16 Basf Ag Vernetzungsfähige Oligomere oder Polymere

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAPRI SYMPOSIUM IN HONOUR OF G.GRAY, 11. - 14. September 1996, Capri (Italy) & KELLY S.: "ANISOTROPIC NETWORKS,ELASTOMERS AND GELS" LIQUID CRYSTALS, Bd. 24, Nr. 1, 1. Januar 1998, Seiten 71-82, XP000737331 *
H.FINKELMANN: "liquid crystalline elastomers :a novel class of materials" 17TH ILLC, 19. - 24. Juli 1998, Strasbourg *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100532434C (zh) * 2007-04-28 2009-08-26 中国科学院广州化学研究所 主链型液晶弹性体的制备方法
CN101974123A (zh) * 2010-09-10 2011-02-16 天津工业大学 一种液晶增强快速响应性温敏水凝胶及其制备方法
WO2012063509A1 (ja) * 2010-11-11 2012-05-18 独立行政法人科学技術振興機構 両親媒性液晶化合物、ミセル、及びそれらの利用

Also Published As

Publication number Publication date
AU2148499A (en) 1999-06-07
WO1999025788A3 (de) 1999-07-22
DE19750628A1 (de) 1999-05-20

Similar Documents

Publication Publication Date Title
EP0622789B1 (de) Flächenhafte Gebilde aus Seitengruppenpolymeren
DE69733987T2 (de) Kompensator
Yamagishi et al. Morphological control in polymer-dispersed liquid crystal film matrices
EP0550720B1 (de) Flussigkristalline elastomere oder duromere mit fixierter anisotroper netzwerkstruktur
EP1144547B1 (de) Verwendung polymerisierbarer flüssigkristalliner substanzen zur herstellung optischer bauelemente
EP0512308A1 (de) Flüssigkristalline Polymere mit nahezu einheitlichem Molekulargewicht
DE69919585T2 (de) Orientierungsschicht für flüssigkristallmaterial
EP1581271B1 (de) Photosensitive polymere netzwerke
DE60021855T2 (de) Temperatursensitives polymer und verfahren zu seiner herstellung
DE69929040T2 (de) Flüssigkristall orientierungschicht
DE69634767T2 (de) Flüssigkristallvorrichtung und ihre Herstellungsverfahren
EP0322708B1 (de) Amid-Seitenkettenpolymere
DE602004009763T2 (de) Verfahren zur herstellung optischer elemente mit cholesterischen flüssigkristallen
EP0847432A2 (de) Polymerisierbare flüssigkristalline verbindungen
EP1629309A1 (de) Polymerfilm mit helikaler molekularstruktur
EP0875525A1 (de) Verfahren zur Herstellung von dreidimensional vernetzten polymeren Materialien mit breiten cholesterischen Reflexionsbanden, und nach diesem Verfahren hergestellte Filter, Reflektoren und Polarisatoren
DE69914067T2 (de) Optisches system, insbesondere intraokulare oder kontaktlinse
WO1990000586A1 (de) Ferroelektrische flüssigkristalline polymere, ein verfahren zu ihrer herstellung und ihre verwendung in elektrooptischen bauteilen
DE19534358A1 (de) Vernetzbares Material verwendbar in der Opto-Elektronik, Verfahren zur Herstellung dieses Materials und Monomere, die die Herstellung dieses Materials erlauben
DE10251861A1 (de) Polymerisierbare Mischungen
WO1999025788A2 (de) Flüssigkristalline einkristall-hydrogele mit hoher doppelbrechung
EP0559081A1 (de) Optische Elemente auf der Basis flüssigkristalliner Substanzen und ein Verfahren zu ihrer Herstellung
EP0559113B1 (de) Material mit temperaturabhängiger Lichttransmission
EP0951520B1 (de) Flächengebilde mit cholesterisch, flüssigkristalliner ordnungsstruktur
DE3328083C2 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA