WO1999023048A1 - Plateletverstärkter sinterformkörper - Google Patents

Plateletverstärkter sinterformkörper Download PDF

Info

Publication number
WO1999023048A1
WO1999023048A1 PCT/EP1998/006914 EP9806914W WO9923048A1 WO 1999023048 A1 WO1999023048 A1 WO 1999023048A1 EP 9806914 W EP9806914 W EP 9806914W WO 9923048 A1 WO9923048 A1 WO 9923048A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered
zirconium dioxide
oxides
oxide
vol
Prior art date
Application number
PCT/EP1998/006914
Other languages
English (en)
French (fr)
Inventor
Wolfgang Burger
Gundula Kiefer
Eduardo Bellido
Hans Andersch
Original Assignee
Ceramtec Ag Innovative Ceramic Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramtec Ag Innovative Ceramic Engineering filed Critical Ceramtec Ag Innovative Ceramic Engineering
Priority to EP98963407A priority Critical patent/EP1028928A1/de
Priority to JP2000518926A priority patent/JP2001521874A/ja
Priority to KR1020007004735A priority patent/KR100635675B1/ko
Priority to US09/509,839 priority patent/US6452957B1/en
Publication of WO1999023048A1 publication Critical patent/WO1999023048A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • C04B2235/3243Chromates or chromites, e.g. aluminum chromate, lanthanum strontium chromite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a sintered molded body made of a matrix material, which contains an aluminum oxide / chromium oxide mixed crystal and is platelet-reinforced “in situ”.
  • DE-A-36 08 854 specifies the use of an oxide ceramic material for pressing tools for molding components made of glass or glass-containing ceramic.
  • an oxide ceramic material for pressing tools for molding components made of glass or glass-containing ceramic.
  • cubic and tetragonal zirconium dioxide, aluminum oxide, chromium oxide, spinel and an Al-Cr mixed oxide (AICr 2 0 3 ) which is not defined in terms of its quantitative composition are specified as matrix materials.
  • the individual proposals for the matrix components stand side by side on an equal footing, so that for the selection of a special matrix component as well as for the proportion of the quantity to be stored in the matrix, e.g. B. zirconia no teaching is taught.
  • stabilizing oxides such. B.
  • yttrium oxide in an amount of 3.5 to 12, preferably 8 to 10 or magnesium oxide (MgO) in an amount of 6.0 to 16, preferably 8 to 14 mol% and cerium oxide (Ce0 2 ) in an amount of 3.5 to 12 mol.%, preferably 8 to 10 mol.%, based on the oxide ceramic material.
  • a particle size for the particles embedded in a polycrystalline matrix is between 5 and 5000 nm, corresponding to 0.005 to 5 ⁇ m.
  • a further proposal for a so-called "conversion-reinforced" ceramic composition in which a finely divided solid solution of Zr0 2 -Hf0 2 in a solid solution of either chromium-containing aluminum oxide or chromium-containing mullite is given, is found in WO 85/01936 and is there for high-temperature applications, such as proposed for diesel engines and gas turbines, the chromium oxide content considered between 3 and 30 mol%, in particular a content of 20 mol% chromium oxide in the Interaction with a proportion of 10 to 20 mol% of hafnium dioxide should serve to improve the hardness and to set a low thermal conductivity.
  • EP-A-199 459 relates to ceramic compositions of high toughness and sees an interaction of zirconium dioxide, partly stabilized zirconium dioxide, solid solutions of zirconium dioxide / hafnium dioxide, solid solutions of partly stabilized zirconium dioxide / hafnium dioxide, partly stabilized hafnium dioxide and hafnium dioxide with mixtures of metal oxides, in particular y metal oxide, YNb0) or yttrium tantalum oxide (YTa0 4 ) before, the yttrium ion of the mixed oxides also in part by a cation of an SE metal, for.
  • La +3 , Ce +4 , Ce +3 , Pr +2 , Tm +3 are replaced.
  • the ceramic alloy described, for. B. ZrO 2 with the addition of YNbO in an amount of at least 5 vol .-% with z. B. -Aluminum oxide or Al 2 0 3 -Cr 2 O 3 , mullite or titanium carbide are mixed.
  • the disadvantage of this known composition can be seen in the fact that, as a result of the mixed oxides containing Nb or Ta, a further grain boundary phase arises in the ceramic products produced and a softening point which is not yet high enough for many areas of application is established.
  • US Pat. No. 4,770,673 describes a ceramic cutting tool which consists of 20 to 45% of a zirconium dioxide alloy containing 1 to 4 mol% of a mixed metal oxide and 55 to 80% by weight of a hard ceramic Composition consists, wherein the mixed metal oxides from the group YNb0 4 , YTa0 4 , MNb0 4 , MTa0 and mixtures thereof, and M consists of a cation which is provided for the substitution of the yttrium cation and Mg +2 , Ca +2 , Sc +3 and rare earth metal ions is selected, consisting of the group La +3 , Ce +4 , Ce +3 , Pr +3 , Nd +3 , Sm +3 , Eu +3 , Gd +3 , Tb +3 , Dy +3 , HO +3 , Er +3 , Tm +3 , Yb +3 and Lu +3 and their mixtures.
  • US Pat. No. 4,316,964 relates to a composition of 95-5% by volume of aluminum oxide and 5-95% by volume of zirconium dioxide, also considered for the production of cutting inserts, with the addition of approx. % Yttrium oxide, 0.5 to 10 mol% cerium oxide, 0.4 to 4 mol% erbium oxide and 0.5 to 5 mol% lanthanum oxide, based on zirconium dioxide.
  • a sintered shaped body also provided for use as a cutting plate according to EP-A-282 879 consists of a whisker-containing matrix, which also contains particles of e.g. B. contains silicon carbide, silicon nitride, sialon, aluminum oxide and zirconium dioxide.
  • the whiskers can consist of the same materials as the particles.
  • zirconium dioxide is mentioned here as the matrix material.
  • the sintered molded body can also contain the usual sintering aids, such as. B. the oxides of magnesium, chromium or yttrium.
  • the oxides of lanthanum, samarium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium are mentioned as preferred.
  • Fracture toughness values of more than 10 MParn 1 ' 2 are given.
  • a ceramic of very high toughness and wear resistance for use as Cutting tool is known from DE-A-35 29 265.
  • the material composition provides 0.1 to 2% by weight of a sintering aid which consists of the group: MgO, CaO, Si0 2 , ZrO 2 , NiO , Th 2 O 3l AIN, TiO, Ti0 2 , Cr 2 0 3 and / or at least one rare earth oxide is selected.
  • the following are mentioned as rare earth oxides: Y 2 0 3 , Dy 2 0 3 , Er 2 0 3 , Ho 2 0 3 , Gd 0 3 and / or Tb 0 7 .
  • the sintering aids serve to prevent grain growth in the aluminum oxide and form a compound with it which promotes the sintering process of the ceramic.
  • a sintered body containing 40 to 99 mol% partially stabilized zirconium dioxide and 1 to 60 mol% aluminum oxide is known, which as a sintering aid also contains small amounts of the oxides of Mn, Fe, Co, Ni, Cu and Contains Zn to accelerate the sintering process.
  • the oxides of yttrium, magnesium, calcium or cerium are proposed for setting a tetragonal phase proportion of 65% or more.
  • the amount of yttrium oxide to be added is 1.3 to 4 mol%, which can be replaced in whole or in part by the remaining stabilizing oxides in an amount of 0.01 to 12 mol%.
  • EP-A-236 507 specifies a zirconium dioxide with more than 65% tetragonal phase, which is contained in a high-density ceramic body consisting of 60 to 99 mol% of aluminum oxide.
  • a zirconium dioxide with more than 65% tetragonal phase, which is contained in a high-density ceramic body consisting of 60 to 99 mol% of aluminum oxide.
  • the zirconium oxide less than 3 mol% of Y 2 O 3 , less than 12 mol% of MgO or CaO and less than 14 mol% of CeO 2 , based on the ceramic composition.
  • the material also contains transition metal oxides of Mn, Fe, Co, Ni, Cu and Zn, which as such or as hydroxides, nitrates, chlorides and the like. ⁇ .
  • the starting composition can be added.
  • a disadvantage of this known material is the hardness of max. Not yet sufficient for many areas of application, in particular for cutting tools for machining. 1,750 kg / mm
  • the amount of chromium oxide here is 5 to 25% by weight, preferably 16% by weight.
  • the porosity is in the range of approx. 14 to 15%, the addition of stabilizing oxides and the presence of the zirconium dioxide in a certain modification are not addressed.
  • WO 90/11980 relates to a ceramic in which platelet-shaped grains of strontium aluminate in a molar ratio of SrO / Al 2 0 3 between 0.02 and 0.2 in a matrix of Zr0 2 , Al 2 0 3 or predominantly one mixture of Zr0 2 consisting of Al 2 O 3 and ZrO 2 are embedded ("in situ" platelet reinforcement).
  • the hardness values achieved are relatively low even with higher proportions of aluminum oxide.
  • the object underlying the present invention was to improve the known materials and to provide sintered moldings which have a high level of strength and in which good fracture toughness is combined with high hardness.
  • the present invention provides a sintered molded body that meets and meets these requirements has a higher wear resistance due to its range of properties.
  • the sintered shaped body according to the invention is suitable as a cutting tool, in particular as a cutting plate, very particularly as a cutting plate for the machining of cast and steel materials.
  • the properties of the sintered shaped body according to the invention in particular also enable use as a cutting insert in an interrupted cut.
  • the sintered molding according to the invention can be used in other tribological applications.
  • x Cr x O ⁇ 7 - with the addition of alkaline earth oxides the corresponding alkaline earth AlI 12-x Cr x Oi 9 platelets are formed, with addition of CdO, PbO, HgO the corresponding (Cd, Pb or HgAI 12.
  • La 2 0 3 can also form the compound La 0.9 Al ⁇ 1 ⁇ 76 - ⁇ Cr x Oi 9 . Piatelets are formed even if the matrix does not contain Cr 2 0 3 .
  • the piatelets then formed correspond to the general formulas: AlkaliAlnO ⁇ 7 , ErdalkaliAI 12 0 19 , (Cd, Pb or HgAl ⁇ 2 0 19 ) or SeltenerdAl ⁇ 2 0 ⁇ 8 .
  • the solution according to the invention provides a shaped sintered body which has a very special composition as a component.
  • the invention provides that the matrix contains a mixed crystal of aluminum oxide / chromium oxide.
  • the invention provides that that which is embedded in the matrix Zirconium dioxide and the chromium oxide forming the mixed crystal together with the aluminum oxide are in a certain molar ratio to one another. This measure enables special hardness values to be achieved even with higher zirconium dioxide proportions, which may be necessary to obtain particularly good fracture toughness.
  • the zirconium dioxide content is low, relatively low chromium oxide contents can also be present, which counteracts embrittlement of the material.
  • One or more of the oxides of cerium, praseodymium and terbium and / or yttrium oxide can be used as stabilizing agents for the zirconium oxide.
  • the amount of stabilizing oxides added is chosen such that the zirconium dioxide is predominantly in the tetragonal modification and the proportion of cubic modification, based on zirconium dioxide, is 0 to 5% by volume.
  • the zirconium dioxide and chromium oxide containing the stabilizing oxides should be present in a certain molar ratio, results in certain ratios for the other components, since e.g. B. with a decreasing proportion of zirconium dioxide, the proportions of the stabilizing oxides, based on the sintered molded body, decrease, while on the other hand the proportion of aluminum oxide increases.
  • the chromium oxide is present in an amount by weight of 0.004 to 6.57% by weight, the chromium oxide and the zirconium dioxide containing the stabilizing oxides being in the stated molar ratio.
  • the matrix material contains an aluminum oxide / chromium oxide mixed crystal and a further mixed crystal according to one of the general formulas Me 1 Aln -x Cr x O ⁇ 7 , Me 2 AI 12 . x Cr x O ⁇ 9 , Me 2 ⁇ l ⁇ 2-x Cr x 0 19 or Me 3 AI 11-x Cr x 0 18 where Me 1 for an alkali metal, Me 2 for an alkaline earth metal, Me 2 ' for cadmium, lead or mercury and Me 3 stands for a rare earth metal.
  • Lao.gAln e-CrxOig can also be added to the matrix material as a mixed crystal.
  • x can assume values from 0.0007 to 0.045.
  • a sintered molded body with a matrix material is provided as an embodiment, which is characterized in that
  • a3) contain 0.8 to 32.9% by volume of a further mixed crystal which consists of at least one mixed crystal according to one of the general formulas
  • x Cr x O ⁇ 8 is selected, where Me 1 for an alkali metal, Me 2 for an alkaline earth metal, Me 2 ' for cadmium, lead or mercury and Me 3 for a rare earth metal and x corresponds to a value of 0.0007 to 0.045 and
  • the matrix material contains 2 to 40% by volume of stabilized zirconium dioxide.
  • the zirconium dioxide embedded in the mixed crystal matrix has a toughness-increasing effect, while the addition of chromium counteracts a decrease in hardness values with increasing zirconium dioxide content.
  • the mixed crystal of the above formulas additionally formed by the addition of the above-mentioned metal oxides has the effect that it gives the sintered shaped body a further improved toughness even at a higher temperature.
  • the wear resistance of these sintered moldings under the influence of elevated temperature is therefore also improved.
  • the wear resistance of the sintered shaped bodies can also be increased by the incorporation of 2 to 25 vol - be improved in these.
  • the proportion of these hard materials is preferably 6 to 15% by volume. Titanium nitride, titanium carbide and titanium carbonitride are particularly suitable.
  • the molar ratio of the zirconium dioxide to chromium oxide containing the stabilizing oxides is adjusted in dependence on the zirconium dioxide content present in the sintered molding so that small amounts of chromium oxide are also present in the case of low zirconium dioxide proportions. Setting the molar ratio of zirconium dioxide: chromium oxide in the range of
  • the setting of a grain size of the zirconium dioxide not exceeding 2 ⁇ m is recommended according to the invention.
  • small amounts of the monoclinic modification may also be present, but these should also be an amount of max.
  • the sintered shaped body according to the invention contains, in addition to the specified components, only inevitably entrained impurities which, according to a further preferred embodiment of the invention, do not amount to more than 0.5% by volume.
  • the sintered molded body consists only of the aluminum oxide-chromium oxide mixed crystal and one of the mixed crystals of the formulas Me 1 Al 11-x Cr x O 7 , Me 2 Al 12-x Cr x O 9 , Me 2 ⁇ l 12-x Cr x 0 19 or Me 3 Aln. x Cr x Oi 8 and from the zirconium dioxide containing the stabilizing oxides and embedded in the matrix from the aforementioned mixed crystals.
  • Other phases such as B.
  • grain boundary phases which are formed when aluminum oxide and magnesium oxide are used together, or other crystalline phases, such as those formed in the addition of substances known from the prior art, such as YNb0 4 or YTa0 4 , and which do not have a sufficiently high softening point not in this particularly preferred embodiment of the sintered molding according to the invention.
  • the oxides of Mn, Cu, Fe known from the prior art which likewise lead to the formation of further phases, bring about a lowered softening point and result in low edge strength. The use of these materials is therefore excluded in this particularly preferred embodiment.
  • the zirconium dioxide is preferably present in an amount of not more than 30% by volume but also not in an amount of less than 15% by volume. If there is between 15 and 30% by volume of zirconium dioxide, the molar ratio between the zirconium dioxide and chromium oxide containing the stabilizing oxides is very particularly preferably between 40: 1 and 25: 1.
  • the proportion of the zirconium dioxide present in a tetragonal modification is more than 95% by volume. It is very particularly preferred to maintain a grain size of the incorporated zirconium dioxide in the range from 0.2 to 1.5 ⁇ m. In contrast, a The average grain size of the aluminum oxide / chromium oxide mixed crystal in the range from 0.6 to 1.5 ⁇ m has proven to be particularly suitable. If carbides, nitrides and carbonitrides of the metals of the 4th and 5th subgroups of the PSE are also used, these are used in a grain size of 0.5 to 3 ⁇ m.
  • the grains of the mixed crystals of the formulas Me 1 AI 11-x Cr x O ⁇ 7 , Me 2 AI 12-x Cr x O ⁇ 9 , Me 2 ' AI 12 . x Cr x 0i 9 or Me 3 AlnCr x O ⁇ 8 have a length / thickness ratio in the range from 5: 1 to 15: 1. Their maximum length is 12 ⁇ m, their maximum thickness is 1.5 ⁇ m.
  • the Vickers hardness of the sintered moldings according to the invention is greater than 1,750 [HV 0,5], but is preferably more than 1,800 [HV 0, 5].
  • the microstructure of the sintered shaped bodies according to the invention is free from microcracks and has a degree of porosity of not more than 1.0%.
  • the sintered molded body can also contain whiskers, but not made of silicon carbide.
  • the sintered shaped body preferably does not contain any of the substances frequently used as grain growth inhibitors, such as, for. B. magnesium oxide.
  • the inventively provided "in situ" -Plateletverstärkung also occurs when the matrix is not a Cr 2 0 3 contains. This is according to the invention provided when a drop in the hardness values does not interfere.
  • the without Cr 2 0 3 forming Piatelets then correspond to the general Formulas Me 1 Aln0 17 , Me 2 Al ⁇ 2 0 ⁇ 9 , Me 2 Al ⁇ 2 0 ⁇ 9 and Me 3 Al ⁇ 2 0 ⁇ 8.
  • the same preferred embodiments can also be provided with these sintered shaped bodies as with the sintered shaped bodies, the Cr 2 0 3 in the matrix material contained. in that regard, take the statements made for the sintered shaped body with Cr 2 0 3 in the matrix material earlier in analogous manner to the sintered bodies without Cr 2 0 3 in the matrix material to.
  • the stabilizer oxides dissolve in the Zr0 2 grid and stabilize it tetragonal modification.
  • Highly pure raw materials ie aluminum oxide and zirconium dioxide with a purity of more than 99%, are preferably used to produce the sintered shaped bodies and to achieve a structure which is free of further undesirable phases.
  • the degree of contamination is preferably still significantly lower.
  • An exception to this regulation is the unavoidable presence of hafnium oxide in a small amount of up to 2% by weight within the zirconium dioxide.
  • the sintered molded body according to the invention is produced by pressure-free sintering or hot pressing of a mixture of aluminum oxide / zirconium dioxide / chromium oxide and stabilizing oxides or a mixture of these components, which additionally contains an alkali oxide, an alkaline earth metal oxide, CdO, PbO, HgO, a rare earth oxide or La 2 0 3 and / or one or more nitrides, carbides and carbonitrides of the 4th and 5th subgroup of the Periodic Table of the Elements (PSE) are added. Exemplary offsets are given in Table 1.
  • yttrium oxide and chromium oxide can also take place in the form of yttrium chromium oxide (YCr0 3 ), while the alkali, alkaline earth, cadmium, lead, mercury, rare earth oxides or the lanthanum oxide are preferably added in the form of their salts, in particular as carbonates can.
  • YCr0 3 yttrium chromium oxide
  • the alkali, alkaline earth, cadmium, lead, mercury, rare earth oxides or the lanthanum oxide are preferably added in the form of their salts, in particular as carbonates can.
  • temporary compounds that decompose and rearrange during sintering Various ceramic mixtures were made by mixed grinding. A temporary binder was added to the ground mixtures and the mixtures were then spray dried. Green bodies were pressed from the spray-dried mixtures and these were sintered under standard conditions.
  • the mixture with a solids content of more than 50% by volume is ground in an aqueous suspension.
  • the pH of the mixture is 4 -
  • pressure-less sintering includes both sintering under atmospheric conditions and under protective gas or in a vacuum.
  • the shaped body is preferably first sintered without pressure to 90 to 95% theoretical density and then post-compressed by hot isostatic pressing or gas pressure sintering. The theoretical density can thereby be increased to a value of more than 99.5%.
  • the dispersion and grinding can have a particular influence on the properties of the ceramic according to the invention.
  • the grinding process and the grinding unit itself can affect the result.
  • the solids content of the grinding suspension used can also contribute to the dispersion.
  • test V5 A 60% by weight slip was used for experiments V1-V4.
  • the solids content was reduced to 55% by weight.
  • a vibratory mill was used to carry out test V1.
  • Tests V2 and V3 were carried out on a laboratory attritor mill; V2 was milled for 1 h, the milling time for V3 was 2 h. In experiment V4, an amount of 30 kg was treated in a continuous attritor mill.
  • Test V5 was carried out in the laboratory attritor with a milling time of 2 hours.
  • the sintered moldings according to the invention are preferably used in their use as cutting tools for cutting paper, textile goods and films, but the use as is particularly preferred Cutting plate for machining cast iron or steel materials, especially in interrupted cuts. This is to be understood to mean that many small, smooth cuts are carried out in succession on the workpiece, the cutting plate being strongly heated during the engagement with the workpiece to be machined and briefly cooling before the next intervention, so that the cutting insert is subjected to alternating thermal loads.
  • a particularly preferred area of application is the use of the sintered shaped bodies according to the invention as artificial prostheses in medical technology.

Abstract

Die vorliegende Erfindung beschreibt einen Sinterformkörper mit einem Matrixwerkstoff, der neben einem Aluminiumoxid-/Chromoxid-Mischkristall einen weiteren Mischkristall enthält, der aus mindestens einem Mischkristall gemäß einer der allgemeinen Formeln La0,9Al11,76-xCrxO19, Me1Al11-xCrxO17, Me2Al12-xCrxO19, Me2'Al12-xCrxO19 und/oder Me3Al11-xCrxO18 ausgewählt ist, wobei Me1 für ein Alkalimetall, Me2 für ein Erdalkalimetall, Me2' für Cadmium, Blei oder Quecksilber und Me3 für ein Seltenerdmetall steht und x einem Wert von 0,0007 bis 0,045 entspricht.

Description

Plateletverstärkter Sinterformkörper
Gegenstand der vorliegenden Erfindung ist ein Sinterformkörper aus einem Ma- trixwerkstoff, der einen Aluminiumoxid-/Chromoxid-Mischkristall enthält und „in situ" plateletverstärkt ist.
In der DE-A-36 08 854 ist die Verwendung eines Oxidkeramik-Werkstoffes für Preßwerkzeuge zum Ausformen von Bauteilen aus Glas oder glashaltiger Keramik angegeben. Als Matrixwerkstoffe werden neben kubischem und tetragonalem Zirkoniumdioxid auch Aluminiumoxid, Chromoxid, Spinell und ein hinsichtlich seiner mengenmäßigen Zusammensetzung nicht definiertes Al-Cr-Mischoxid (AICr203) angegeben. Die einzelnen Vorschläge für die Matrixkomponenten stehen dabei gleichberechtigt nebeneinander, so daß zur Auswahl einer besonderen Matrixkomponente wie auch zum Anteil der in die Matrix einzulagernden Menge an z. B. Zirkoniumdioxid keine Lehre vermittelt wird. Neben den vorstehend genannten Komponenten können noch stabilisierende Oxide wie z. B. Yttriumoxid (Y203) in einer Menge von 3,5 bis 12, vorzugsweise 8 bis 10 oder Magnesiumoxid (MgO) in einer Menge von 6,0 bis 16, vorzugsweise 8 bis 14 Mol-% und Ceroxid (Ce02) in einer Menge von 3,5 bis 12 Mol.%, vorzugsweise von 8 bis 10 Mol.%, bezogen auf den Oxidkeramik-Werkstoff, vorliegen. Als Partikelgröße für die in eine polykristalline Matrix eingelagerten Teilchen wird eine Größe zwischen 5 und 5000 nm entsprechend 0,005 bis 5 μm genannt.
Ein weiterer Vorschlag zu einer sogenannten „umwandlungsverstärkten" Keramikzusammensetzung, bei der eine feinverteilte feste Lösung aus Zr02-Hf02 in einer festen Lösung aus entweder Chromoxid enthaltendem Aluminiumoxid oder Chromoxid enthaltendem Mullit angegeben ist, findet sich in der WO 85/01936 und wird dort für Hochtemperaturanwendungsbereiche, wie z. B. für Dieselmotoren und Gasturbinen vorgeschlagen. Der in Erwägung gezogene Chromoxidanteil zwischen 3 und 30 Mol.%, insbesondere ein Anteil von 20 Mol-% Chromoxid im Zusammenwirken mit einem Anteil von 10 bis 20 Mol-% Hafniumdioxid, soll zur Verbesserung der Härte und zur Einstellung einer niedrigen Wärmeleitfähigkeit dienen. Steigende Anteile an Chrom- und Hafniumdioxid führen zu einer Abnahme der Wärmeleitfähigkeit. Merkliche Härtesteigerungen werden erst bei relativ hohen Chromoxid-Konzentrationen gefunden - ca. 20 Mol.%, bezogen auf 20 Mol-% Hf02. Zu der Korngröße der eingelagerten Zr02-Hf02-Phase wird in den Beispielen dieser Schrift eine Größenordnung von 5 μm angegeben, und der Nichterhalt der tetragonalen Modifikation darauf zurückgeführt, daß es nicht gelungen ist, die dispergierte Zr02-Hf02-feste Lösung in ausreichender Feinheit zu erhalten. Der Zusatz stabilisierender Oxide ist in dieser Schrift nicht erwähnt. Die erzielten Bruchzähigkeitswerte liegen im Bereich zwischen 5 und ca. 6,5 MPavm.
Die EP-A- 199 459 betrifft keramische Zusammensetzungen hoher Zähigkeit und sieht ein Zusammenwirken von Zirkoniumdioxid, teilstabilisiertem Zirkoniumdioxid, festen Lösungen von Zirkoniumdioxid/Hafniumdioxid, festen Lösungen von teilstabilisiertem Zirkoniumdioxid/Hafniumdioxid, teilstabilisiertem Hafniumdioxid und Hafniumdioxid mit Mischungen von Metalloxiden, insbesondere von Yttriumnioboxid (YNb0 ) oder Yttriumtantaloxid (YTa04) vor, wobei das Yttriumion der Mischoxide auch zum Teil durch ein Kation eines SE-Metalls, z. B. La+3, Ce+4, Ce+3, Pr+2, Tm+3 ersetzt sind. Gemäß einer weiteren Variante dieser Schrift kann die beschriebene keramische Legierung, also z. B. ZrO2 unter Zusatz von YNbO in einer Menge von wenigstens 5 Vol.-% mit z. B. -Aluminiumoxid oder auch AI203-Cr2O3, Mullit oder Titaniumcarbid, abgemischt werden. Der Nachteil dieser bekannten Zusammensetzung ist darin zu sehen, daß in Folge der Nb oder Ta enthaltenden Mischoxide bei den hergestellten Keramikprodukten eine weitere Korngrenzenphase entsteht und sich ein für viele Anwendungsbereiche noch nicht ausreichend hoher Erweichungspunkt einstellt.
In ähnlicher Weise beschreibt die US-PS 47 70 673 ein keramisches Schneidwerk- zeug, das zu 20 bis 45 % aus einer 1 bis 4 Mol-% eines gemischten Metalloxids enthaltenden Zirkoniumdioxid-Legierung und 55 bis 80 Gew.% einer Hartkeramik- Zusammensetzung besteht, wobei die gemischten Metalloxide aus der Gruppe YNb04, YTa04, MNb04, MTa0 und deren Mischungen bestehen, und M aus einem Kation besteht, das zur Substitution des Yttriumkations vorgesehen ist und aus Mg+2, Ca+2, Sc+3 und Seltenerdmetallionen ausgewählt ist, bestehend aus der Gruppe La+3 ,Ce+4, Ce+3 , Pr+3, Nd+3, Sm+3, Eu+3, Gd+3, Tb+3, Dy+3, HO+3, Er+3, Tm+3, Yb+3 und Lu+3 und deren Mischungen besteht. Als Hartkeramik kommt neben Aluminiumoxid und z. B. Sialon, SiC, Si3N4 auch Al203-Cr203 in Betracht, wobei ein Cr203-Anteil bis zu ungefähr 5 Mol-% vorgesehen ist. Auch hier besteht wiederum der Nachteil, daß sich durch die dem Zr02 zugefügten Legierungsbestandteile in Form der Niob bzw. Tantal enthaltenden Mischoxide in der Keramik ein zu niedriger Erweichungsbereich ergibt.
Die US-PS 43 16 964 betrifft eine auch zur Herstellung von Schneidplatten in Erwägung gezogene Zusammensetzung aus 95 - 5 Vol.-% Aluminiumoxid und 5 - 95 Vol.-% Zirkoniumdioxid unter Zusatz von ca. 0,5 - 5,5 Mol-% Yttriumoxid, 0,5 bis 10 Mol-% Ceroxid, 0,4 bis 4 Mol-% Erbiumoxid und 0,5 bis 5 Mol-% Lanthanoxid, bezogen auf Zirkoniumdioxid.
Ein gemäß der EP-A-282 879 auch zur Verwendung als Schneidplatte vorgese- hener Sinterformkörper besteht aus einer Whisker enthaltenden Matrix, die außerdem noch Partikel aus z. B. Siliziumkarbid, Siliziumnitrid, Sialon, Aluminiumoxid und Zirkoniumdioxid enthält. Die Whisker können aus den gleichen Werkstoffen wie die Partikel bestehen. Zirkoniumdioxid wird hier neben Mullit und Aluminiumoxid als Matrixwerkstoff genannt. Außerdem kann der Sinterformkörper noch die üblichen Sinterhilfsmittel enthalten, wie z. B. die Oxide des Magnesiums, Chroms oder Yttriums. Von den seltenen Erdoxiden werden als bevorzugt geeignet die Oxide des Lanthans, Samariums, Gadoliniums, Dysprosiums, Holmiums, Erbiums, Thuliums, Ytterbiums und Lutetiums genannt. Es werden Bruchzähigkeiten von mehr als 10 MParn1'2 angegeben.
Eine Keramik sehr hoher Zähigkeit und Verschleißfestigkeit zur Verwendung als spanabhebendes Schneidwerkzeug ist aus der DE-A-35 29 265 bekannt. Die stoffliche Zusammensetzung sieht neben 20 bis 50 Gew.% Titankarbid und 18 bis 79,9 Gew.% Aluminiumoxid 0,1 bis 2 Gew.% eines Sinterhilfsmittels vor, das aus der Gruppe: MgO, CaO, Si02, ZrO2, NiO, Th2O3l AIN, TiO, Ti02, Cr203 und/oder zumindestens einem Oxid der seltenen Erden ausgewählt ist. Als seltene Erdoxide werden genannt: Y203, Dy203, Er203, Ho203, Gd 03 und/oder Tb 07. Die Sinterhilfsmittel dienen zur Verhinderung des Kornwachstums beim Aluminiumoxid und gehen mit diesem eine Verbindung ein, die den Sintervorgang der Keramik fördert.
Aus der EP-A-214 291 ist ein zu 40 bis 99 Mol-% teilstabilisiertes Zirkoniumdioxid und 1 bis 60 Mol-% Aluminiumoxid enthaltender Sinterkörper bekannt, der als Sinterhilfsmittel ferner geringe Mengen der Oxide von Mn, Fe, Co, Ni, Cu und Zn zur Beschleunigung des Sintervorganges enthält. Zur Einstellung eines tetrago- nalen Phasenanteils von 65 % oder mehr werden die Oxide des Yttriums, Magnesiums, Calciums oder Cers vorgeschlagen. Als zuzusetzende Menge des Yttriumoxids werden 1 ,3 bis 4 Mol-% genannt, die ganz oder teilweise durch die übrigen stabilisierenden Oxide in einer Menge von 0,01 bis 12 Mol-% ersetzt sein können.
In der EP-A-236 507 ist ein Zirkoniumdioxid mit mehr als 65 % tetragonaler Phase angegeben, das in einem zu 60 bis 99 Mol-% aus Aluminiumoxid bestehenden hochdichten Keramikkörper enthalten ist. Zur Stabilisierung des Zirkoniumoxids werden weniger als 3 Mol-% Y2O3, weniger als 12 Mol-% MgO oder CaO und weniger als 14 Mol-% Ce02, bezogen auf die keramische Zusammensetzung, vorge- schlagen. Zur Verbesserung der Sinterfähigkeit und zur Unterdrückung des Kornwachstums und damit zur Erzielung einer besonders hohen Dichte enthält der Werkstoff noch Übergangsmetalloxide von Mn, Fe, Co, Ni, Cu und Zn, die als solche oder als Hydroxide, Nitrate, Chloride u. ä. der Ausgangszusammensetzung zugegeben werden können. Nachteilig bei diesem bekannten Material ist die für viele Anwendungsbereiche, insbesondere bei Schneidwerkzeugen für die spanabhebende Bearbeitung noch nicht ausreichende Härte von max. 1.750 kg/mm2.
Der Zusatz von Chromoxid zu Aluminiumoxid, wobei mindestens 10 Gew.% Chromoxid zum Einsatz kommen, wurde für die Herstellung eines feuerfesten Materials in der US-A-4 823 359 vorgeschlagen. Alternativ kann statt des Aluminiumoxids auch eine aus Aluminiumoxid/Zirkoniumdioxid bestehende Mischung zum Einsatz kommen. Aus der bis zu 50 μm zugelassenen Größe der Körner vor dem Sintern ist auf die für Feuerfestartikel gewünschte relativ hohe Porosität und eine geringe Bruchzähigkeit zu schließen. Die Verwendung von stabilisierenden Oxiden und das Vorliegen des ggf. eingesetzten Zirkoniumdioxids in einer bestimmten Modifikation ist nicht erwähnt. Auch gemäß der US-A-4 792 538 wird Chromoxid zusammen mit Aluminiumoxid und Zirkoniumdioxid zur Herstellung von Feuerfestartikeln eingesetzt. Die Chromoxidmenge liegt hier bei 5 bis 25 Gew.%, vorzugsweise werden 16 Gew.% eingesetzt. Die Porosität liegt hier im Bereich von ca. 14 bis 15 %, der Zusatz von stabilisierenden Oxiden und das Vorliegen des Zirkoniumdioxids in einer bestimmten Modifikation ist nicht angesprochen.
Die WO 90/11980 betrifft eine Keramik, in der plättchenförmige Körner aus Stron- tiumaluminat in einem molaren Verhältnis von SrO/AI203 zwischen 0,02 und 0,2 in eine Matrix aus Zr02, Al203 oder eine überwiegend aus Zr02 bestehende Mischung aus AI2O3 und ZrO2 eingelagert sind („in situ" Plateletverstärkung). Die erreichten Härtewerte sind auch bei höheren Alumiumoxidanteilen relativ niedrig.
Die „in situ"-Plateletverstärkung von oxidischen Werkstoffen mit Chromoxid dotier- ten SrAI120i9 -Platelets ist ebenfalls in der EP 0 542 815 beschrieben.
Die der vorliegenden Erfindung zugrundeliegende Aufgabe bestand darin, die bekannten Werkstoffe zu verbessern und Sinterformkörper zur Verfügung zu stellen, die ein hohes Festigkeitsniveau aufweisen und bei denen eine gute Bruchzähigkeit mit gleichzeitig hoher Härte kombiniert ist. Die vorliegende Erfindung stellt einen Sinterformkörper bereit, der diese Anforderungen erfüllt und infolge seines Eigenschaftsspektrums über eine höhere Verschleißfestigkeit verfügt. Der erfindungsgemäße Sinterformkörper ist als Schneidwerkzeug, insbesondere als Schneidplatte, ganz besonders als Schneidplatte für die spanabhebende Bearbeitung von Guß- und Stahlwerkstoffen geeignet. Die Eigenschaften des erfindungsgemäßen Sinterformkörpers ermöglichen insbesondere auch den Einsatz als Schneidplatte im unterbrochenen Schnitt. Weiterhin kann der erfinduπgsgemäße Sinterformkörper in anderen tribologischen Anwendungen zum Einsatz kommen.
Überraschenderweise wurde festgestellt, daß nicht nur, wie im Stand der Technik, beispielsweise in der EP-A 0 542 815 beschrieben mit Strontiumoxid, sondern auch mit bestimmten anderen Oxiden entsprechende Piatelets im Gefüge erzeugt werden können. Voraussetzung für die Plateletbildung ist die Ausbildung einer hexagonalen Kristallstruktur der „in situ" zu bildenden Piatelets. Verwendet man als Matrix das Stoffsystem AI2θ3-Cr203-Zr02-Y2θ3 (Ce02), so können mit den unterschiedlichsten Oxiden die folgenden Piatelets „in situ" gebildet werden. Bei Zulegierung von Alkalioxiden bilden sich die entsprechenden AlkaliAln.xCrx7-, bei Zulegierung von Erdalkalioxiden bilden sich die entsprechenden ErdalkaliAI12-xCrxOi9-Platelets, bei Zulegierung von CdO, PbO, HgO die entsprechenden (Cd, Pb oder HgAI12.xCrx9)- Platelets und bei Zulegierung von Seltenerdoxiden die entsprechenden SeltenerdAI1 -xCrxOi8-Platelets. La203 kann außerdem die Verbindung La0,9Alι1ι76-χCrxOi9 bilden. Piatelets bilden sich auch dann, wenn die Matrix kein Cr203 enthält. Die sich dann bildenden Piatelets entsprechen den allgemeinen Formeln: AlkaliAlnOι7, ErdalkaliAI12019, (Cd, Pb oder HgAlι2019) bzw. SeltenerdAlι28.
Die erfindungsgemäße Lösung sieht einen Sinterformkörper vor, der als Bestandteil eine ganz spezielle Zusammensetzung aufweist. Neben der Umwandlungsverstärkung, die durch die Einlagerung eines stabilisierende Oxide enthaltenden Zirkoniumdioxids in einer Keramikmatrix erzielt wird, sieht die Erfindung vor, daß die Matrix einen Mischkristall aus Aluminiumoxid/Chromoxid enthält. Desweiteren sieht die Erfindung vor, daß das in die Matrix eingelagerte Zirkoniumdioxid und das zusammen mit dem Aluminiumoxid den Mischkristall bildende Chromoxid in einem bestimmten molaren Verhältnis zueinander stehen. Diese Maßnahme ermöglicht es, daß auch bei höheren Zirkoniumdioxidanteilen, die zum Erhalt einer besonders guten Bruchzähigkeit erforderlich sein können, besondere Härtewerte erzielt werden. Andererseits können bei niedrigen Zirkoniumdioxidanteilen auch relativ geringe Chromoxidgehalte vorliegen, womit einer Versprödung des Werkstoffes entgegengewirkt wird.
Als Stabilisierungsmittel für das Zirkoniumoxid können eines oder mehrerer der Oxide von Cer, Praseodym und Terbium und/oder Yttriumoxid eingesetzt werden. Vorzugsweise werden von den Oxiden des Cer, Praseodym und Terbium 10 bis 15 Mol-% und/oder von Yttriumoxid 0,2 bis 3,5 Mol-%, bezogen auf die Mischung aus Zirkoniumdioxid und stabilisierenden Oxiden eingesetzt.
Die Zugabemenge der stabilisierenden Oxide wird dabei so gewählt, daß das Zirkoniumdioxid überwiegend in der tetragonalen Modifikation vorliegt und der Anteil an kubischer Modifikation, bezogen auf Zirkoniumdioxid, bei 0 bis 5 Vol.-% liegt.
Die Angabe, daß das die stabilisierenden Oxide enthaltende Zirkoniumdioxid und Chromoxid in einem bestimmten molaren Verhältnis vorliegen sollen, ergibt bestimmte Verhältnisse für die übrigen Komponenten, da z. B. mit sinkendem Anteil an Zirkoniumdioxid auch die Anteile der stabilisierenden Oxide, bezogen auf den Sinterformkörper, abnehmen, während andererseits der Anteil des Aluminiumoxids ansteigt. Bezogen auf das Aluminiumoxid des Sinterformkörpers liegt das Chromoxid in einer Gewichtsmenge von 0,004 bis 6,57 Gew.% vor, wobei das Chromoxid und das die stabilisierenden Oxide enthaltende Zirkoniumdioxid in dem angegebenen molaren Verhältnis stehen.
Erfindungsgemäß enthält der Matrixwerkstoff einen Aluminiumoxid-/Chromoxid- Mischkristall und einen weiteren Mischkristall gemäß einer der allgemeinen Formeln Me1Aln-xCrx7, Me2AI12.xCrx9, Me2Αlι2-xCrx019 oder Me3AI11-xCrx018 wobei Me1 für ein Alkalimetall, Me2 für ein Erdalkalimetall, Me2' für Cadmium, Blei oder Quecksilber und Me3 für ein Seltenerdmetall steht. Ebenfalls dem Matrixwerkstoff zugesetzt werden kann als Mischkristall Lao.gAln e- CrxOig. x kann dabei Werte von 0,0007 bis 0,045 annehmen.
Erfindungsgemäß ist als eine Ausführungsform ein Sinterformkörper mit einem Matrixwerkstoff vorgesehen, der dadurch gekennzeichnet ist, daß
a1 ) 60 bis 98 Vol.-% des Matrixwerkstoffes
a2) 67, 1 bis 99,2 Vol.-% eines Aluminiumoxid-/Chromoxid-Mischkristalls und
a3) 0,8 bis 32,9 Vol.-% eines weiteren Mischkristalls enthalten, der aus mindestens einem Mischkristall gemäß einer der allgemeinen Formeln
La0,9Alιι,76-χCrxO19, Me1Aln.xCrx017, Me2AI12-xCrx9, Me2Αl12-xCrx9 und/oder Me3Aln.xCrx8 ausgewählt ist, wobei Me1 für ein Alkalimetall, Me2 für ein Erdalkalimetall, Me2' für Cadmium, Blei oder Quecksilber und Me3 für ein Seltenerdmetall steht und x einem Wert von 0,0007 bis 0,045 entspricht und
b) der Matrixwerkstoff 2 bis 40 Vol.-% stabilisiertes Zirkoniumdioxid enthält.
Von dem in die Mischkristall-Matrix eingelagerten Zirkoniumdioxid geht eine zähig- keitssteigernde Wirkung aus, während der Chromzusatz bei steigendem Zirkoniumdioxidanteil einem Abfall der Härtewerte entgegenwirkt. Der durch den Zusatz der obengenannten Metalloxide zusätzlich gebildete Mischkristall der obengenannten Formeln bewirkt, daß er dem Sinterformkörper auch bei höherer Temperatur eine weiter verbesserte Zähigkeit verleiht. Die Verschleißfestigkeit dieser Sinterformkörper unter Einfluß erhöhter Temperatur ist daher ebenfalls verbessert. Gemäß einer weiteren Ausführungsform kann die Verschleißfestigkeit der Sinterformkörper noch durch die Einlagerung von 2 bis 25 Vol.-% eines oder mehrerer Karbide, Nitride oder Karbonitride der Metalle der 4. und 5. Nebengruppe des pe- riodischen Systems der Elemente - bezogen auf den Matrixwerkstoff - in diesen verbessert werden. Vorzugsweise liegt der Anteil dieser Hartstoffe bei 6 bis 15 Vol.%. Insbesondere sind Titannitrid, Titankarbid und Titankarbonitrid geeignet.
Gemäß einer besonders bevorzugten weiteren Ausführungsform der Erfindung wird das molare Verhältnis des die stabilisierenden Oxide enthaltenden Zirkoniumdioxids zu Chromoxid in Abhängigkeit des im Sinterformkörper vorliegenden Zirkoniumdioxidanteils so eingestellt, daß bei niedrigen Zirkoniumdioxidanteilen auch geringe Chromoxidmengen vorliegen. Ganz besonders hat sich dabei eine Einstellung des molaren Verhältnisses Zirkoniumdioxid : Chromoxid erwiesen, die im Bereich von
2 - 5 Vol.-% Zirkoniumdioxid 1.000 1 bis 100
> 5 - 15 Vol. -% Zirkoniumdioxid 200 1 bis 40
> 15 - 30 Vol.-% Zirkoniumdioxid 100 1 bis 20
> 30 - 40 Vol.-% Zirkoniumdioxid 40 1 bis 20
beträgt.
Um das Zirkoniumdioxid überwiegend in der tetragonalen Modifikation zu erhalten, wird erfindungsgemäß die Einstellung einer 2 μm nicht überschreitenden Korngröße des Zirkoniumdioxids empfohlen. Außer den bis zu einer Menge von 5 Vol.-% möglichen Anteilen von Zirkoniumdioxid in kubischer Modifikation können auch noch geringe Mengen der monoklinen Modifikation anwesend sein, diese sollen aber ebenfalls eine Menge von max. 10 Vol.-% nicht überschreiten und liegen vorzugsweise bei weniger als 5 Vol.%, ganz besonders bevorzugt sogar bei weniger als 2 Vol.%. In einer bevorzugten Ausführungsform enthält der erfindungsgemäße Sinterformkörper außer den angegebenen Komponenten lediglich noch in unvermeidbarer Weise eingeschleppte Verunreinigungen, die gemäß einer weiteren vorzugsweisen Ausführungsform der Erfindung nicht mehr als 0,5 Vol.-% betragen. In einer besonders bevorzugten Ausführungsform besteht der Sinterformkörper lediglich aus dem Aluminiumoxid-Chromoxid-Mischkristall und einem der Mischkristalle der Formeln Me1AI11-xCrx7, Me2AI12-xCrx9, Me2Αl12-xCrx019 oder Me3Aln.xCrxOi8 sowie aus dem die stabilisierenden Oxide enthaltenden und in die Matrix aus den genannten Mischkristallen eingelagertem Zirkoniumdioxid. Weitere Phasen, wie z. B. Korngrenzphasen, die beim gemeinsamen Einsatz von Aluminiumoxid und Magnesiumoxid gebildet werden oder weitere kristalline Phasen, wie sie bei den aus dem Stand der Technik bekannten Zusätzen von Stoffen, wie YNb04 oder YTa04 entstehen und die einen nicht ausreichend hohen Erweichungspunkt aufweisen, liegen in dieser besonders bevorzugten Ausführungsform des erfindungsgemäßen Sinterformkörpers nicht vor. Auch die aus dem Stand der Technik bekannten Oxide von Mn, Cu, Fe, die ebenfalls zur Ausbildung weiterer Phasen führen, bewirken einen erniedrigten Erweichungspunkt und haben eine geringe Kantenfestigkeit zur Folge. Der Einsatz dieser Werkstoffe ist daher bei dieser besonders bevorzugten Ausführungsform ausgeschlossen.
Vorzugsweise liegt das Zirkoniumdioxid in einer Menge von nicht mehr als 30 Vol.- % aber auch nicht in einer Menge von weniger als 15 Vol.-% vor. Liegen zwischen 15 und 30 Vol.-% Zirkoniumdioxid vor, liegt das molare Verhältnis zwischen dem die stabilisierenden Oxide enthaltenden Zirkoniumdioxid und Chromoxid ganz besonders bevorzugt zwischen 40 : 1 und 25 : 1.
Gemäß einer weiteren bevorzugten Ausführungsform liegt der Anteil des in tetragonaler Modifikation vorliegenden Zirkoniumdioxids bei mehr als 95 Vol.%. Ganz besonders bevorzugt ist die Einhaltung einer Korngröße des eingelagerten Zirkoniumdioxids im Bereich von 0,2 bis 1 ,5 μm. Demgegenüber hat sich eine durch- schnittliche Korngröße des Aluminiumoxid-/Chromoxid-Mischkristalls im Bereich von 0,6 bis 1 ,5 μm als besonders geeignet erwiesen. Kommen zusätzlich noch Karbide, Nitride und Karbonitride der Metalle der 4. und 5. Nebengruppe des PSE zum Einsatz, werden diese in einer Korngröße von 0,5 bis 3 μm eingesetzt. Die Körner der Mischkristalle der Formeln Me1AI11-xCrx7, Me2AI12-xCrx9, Me2'AI12.xCrx0i9 oder Me3AlnCrx8 weisen ein Längen/Dickenverhältnis im Bereich von 5 : 1 bis 15 : 1 auf. Ihre Maximallänge beträgt dabei 12 μm, ihre Maximaldicke 1 ,5 μm.
Die Vickershärte der erfindungsgemäßen Sinterformkörper ist größer als 1.750 [HV0,5], liegt aber vorzugsweise bei mehr als 1.800 [HV0,5].
Die MikroStruktur der erfindungsgemäßen Sinterformkörper ist frei von Mikrorissen und weist einen Porositätsgrad von nicht mehr als 1 ,0 % auf. Der Sinterformkörper kann ferner noch Whisker, jedoch nicht aus Siliziumkarbid, enthalten.
Der Sinterformkörper enthält vorzugsweise keine der vielfach als Kornwachstumshemmer verwendeten Substanzen, wie z. B. Magnesiumoxid.
Die erfindungsgemäß vorgesehene „in situ"-Plateletverstärkung tritt auch ein, wenn die Matrix kein Cr203 enthält. Dies wird erfindungsgemäß dann vorgesehen, wenn ein Abfall der Härtewerte nicht stört. Die sich ohne Cr203 bildenden Piatelets entsprechen dann den allgemeinen Formeln Me1Aln017, Me2Alι29, Me2Alι29 bzw. Me3Alι28. Auch mit diesen Sinterformkörpern lassen sich im Prinzip die gleichen vorzugsweisen Ausführungsformen bereitstellen, wie mit den Sinterformkörpern, die Cr203 im Matrixwerkstoff enthalten. Insoweit treffen die für die Sinterformkörper mit Cr203 im Matrixwerkstoff weiter oben gemachten Ausführungen in analoger Weise auf die Sinterformkörper ohne Cr203 im Matrixwerkstoff zu.
Beim Sintern lösen sich die Stabilisatoroxide im Zr02-Gitter und stabilisieren dessen tetragonale Modifikation. Zur Herstellung der Sinterformkörper und zur Erzielung einer von weiteren unerwünschten Phasen freien Gefügestruktur werden vorzugsweise hochreine Rohstoffe eingesetzt, d. h. Aluminiumoxid und Zirkoniumdioxid mit einer Reinheit von mehr als 99 %. Vorzugsweise ist der Grad der Verunreinigungen noch wesentlich geringer. Insbesondere sind Si02-Anteile von mehr als 0,5 Vol.%, bezogen auf den fertigen Sinterformkörper, unerwünscht. Ausgenommen von dieser Regelung ist das unvermeidbare Vorliegen von Hafniumoxid in geringer Menge von bis zu 2 Gew.% innerhalb des Zirkoniumdioxids.
Die Herstellung des erfindungsgemäßen Sinterformkörpers erfolgt durch druckloses Sintern oder Heißpressen einer Mischung aus Aluminiumoxid/Zirkoniumdioxid/Chromoxid und stabilisierenden Oxiden bzw. einer Mischung dieser Komponenten, der zusätzlich noch ein Alkalioxid, ein Erdalkalioxid, CdO, PbO, HgO, ein Seltenerdoxid oder La203 und/oder eines oder mehrere Nitride, Karbide und Karbonitride der 4. und 5. Nebengruppe des Periodensystems der Elemente (PSE) zugefügt sind. Beispielhafte Versätze sind in Tabelle 1 angegeben. Die Zugabe von Yttriumoxid und Chromoxid kann auch in Form von Yttriumchromoxid (YCr03) erfolgen, während die Alkali-, Erdalkali-, Cadmium-, Blei-, Quecksilber-, Seltenerdoxide oder das Lanthanoxid vorzugsweise in Form ihrer Salze, insbesondere als Carbonate zugegeben werden können. Aber auch die Zugabe von temären Verbindungen, die sich während des Sinterns zersetzen und umlagern, ist möglich. Verschiedene keramische Mischungen wurden durch Mischmahlung hergestellt. Den gemahlenenen Mischungen wurde ein temporäres Bindemittel zugegeben und die Mischungen anschließend sprühgetrocknet. Aus den sprühgetrockneten Mischungen wurden Grünkörper gepreßt und diese unter Standardbedingungen gesintert.
Eine alternative Art zur Herstellung der Grünkörper wird direkt aus der Suspension erreicht. Dazu wird die Mischung mit einem Feststoffgehalt von über 50 Vol-% in einer wässrigen Suspension gemahlen. Der pH-Wert der Mischung ist dabei auf 4 -
4,5 einzustellen. Nach der Mahlung wird Harnstoff und eine Menge des Enzyms Urease hinzugefügt, die geeignet ist, den Harnstoff abzubauen, bevor diese Suspension in eine Form abgegossen wird. Durch die enzymkatalysierte Harnstoffzersetzung verschiebt sich der pH-Wert der Suspension nach 9, wobei die Suspension koaguliert. Der so hergestellte Grünkörper wird nach der Entformung getrocknet und gesintert. Der Sinterprozeß kann drucklos erfolgen, aber auch das Vorsintern, gefolgt von anschließender heißisostatischer Nachverdichtung, ist möglich. Weitere Einzelheiten zu diesem Verfahren (DCC-Verfahren) sind in der WO 94/02429 und in der WO 94/24064 offenbart, auf die ausdrücklich Bezug genommen wird.
Der Begriff druckloses Sintern umfaßt dabei sowohl ein Sintern unter atmosphärischen Bedingungen, als auch unter Schutzgas oder im Vakuum. Vorzugsweise wird der geformte Körper zunächst auf 90 bis 95 % theoretischer Dichte drucklos vorgesintert und anschließend durch heißisostatisches Pressen oder Gasdruck- sintern nachverdichtet. Die theoretische Dichte kann dadurch bis auf einen Wert von mehr als 99,5 % gesteigert werden.
Bei der Herstellung der Keramiken auf Basis der genannten Mehrkomponentensysteme können eine Reihe von Faktoren eine wesentliche Bedeutung erlangen. Insbesondere bei der Aufbereitung der Pulvergemische kann die Dispergierung und Mahlung besonderen Einfluß auf die Eigenschaften der erfindungsgemäßen Keramik nehmen. Dabei kann sich das Mahlverfahren und das Mahlaggregat selbst auf das Ergebnis auswirken. Auch der Feststoffgehalt der eingesetzten Mahlsuspension kann zusätzlich mit zur Dispergierung beitragen.
In den nachfolgenden Beispielen werden die Einflußparameter und deren Wirkung auf die mechanischen Eigenschaften näher dargestellt. Für die einzelnen Versuche ist die folgende Feststoffkombination verwendet worden: Al203 73,1 1 Gew %
Zr02 23,57 Gew.%
La203 2,48 Gew %
YCr03 0,84 Gew %
Für die Versuche V1 - V4 ist ein 60 Gew.-%iger Schlicker eingesetzt worden. Im Versuch V5 wurde der Feststoffgehalt auf 55 Gew.-% reduziert. Zur Durchführung des Versuches V1 wurde eine Schwingmühle eingesetzt. Die Versuche V2 und V3 sind auf einer Labor-Attritormühle durchgeführt worden; bei V2 wurde 1 h gemahlen, die Mahldauer bei V3 lag bei 2 h. Im Versuch V4 ist eine Menge von 30 kg in einer Durchlaufattritormühle behandelt worden. Der Versuch V5 ist im Labor-Attritor bei einer Mahldauer von 2 h durchgeführt worden.
Nachfolgend sind die Ergebnisse aus den Festigkeitsuntersuchungen für die einzelnen Versuche dargestellt:
Figure imgf000016_0001
Vorzugsweise Anwendungsbereiche der erfindungsgemäßen Sinterformkörper liegen in ihrer Verwendung als Schneidwerkzeug zum Schneiden von Papier, Textilgut und von Folien, besonders bevorzugt ist jedoch die Verwendung als Schneidplatte für die spanabhebende Bearbeitung von Gußeisen oder von Stahlwerkstoffen, insbesondere im unterbrochenen Schnitt. Darunter ist zu verstehen, daß am Werkstück viele kleine glatte Schnitte zeitlich aufeinanderfolgend durchgeführt werden, wobei die Schneidplatte während des Eingriffs mit dem zu bearbeitenden Werkstück stark erhitzt wird und vor dem nächstfolgenden Eingriff kurz abkühlt, so daß eine thermische Wechselbelastung der Schneidplatte erfolgt. Einen besonders bevorzugten Anwendungsbereich stellt die Verwendung der erfindungsgemäßen Sinterformkörper als künstliche Prothesen in der Medizintechnik dar.
Tabelle 1
Figure imgf000018_0001
La203; **Er203; ***BaO; ****Dy203

Claims

Patentansprüche
1. Sinterformkörper mit einem Matrixwerkstoff, dadurch gekennzeichnet, daß
a1 ) 60 bis 98 Vol.-% des Matrixwerkstoffes
a2) 67,1 bis 99,2 Vol.-% eines Aluminiumoxid-/Chromoxid-Mischkristalls und
a3) 0,8 bis 32,9 VoL-% eines weiteren Mischkristalls enthalten, der aus mindestens einem Mischkristall gemäß einer der allgemeinen Formeln La0l9Aln.76-χCrxO18I Me1AI11-xCrx7, Me2AI12-xCrx9, Me2Αl12-xCrx019 und/oder Me3Aln.xCrx018 ausgewählt ist, wobei Me1 für ein Alkalimetall, Me2 für ein Erdalkalimetall, Me2' für Cadmium, Blei oder Quecksilber und Me3 für ein Seltenerdmetall steht und x einem Wert von 0,0007 bis 0,045 entspricht und
b) der Matrixwerkstoff 2 bis 40 Vol.-% tetragonal stabilisiertes Zirkoniumdioxid enthält.
2. Sinterformkörper nach Anspruch 1 , dadurch gekennzeichnet, daß als Stabilisierungsmittel für das Zirkoniumoxid 2 bis 15 Mol-% eines oder mehrerer der Oxide von Cer, Praseodym und Terbium und/oder 0,2 bis 3,5 Mol-% Yttriumoxid, bezogen auf die Mischung aus Zirkoniumdioxid und stabi- lisierenden Oxiden eingesetzt wird, wobei die Zugabemenge der stabilisierenden Oxide so gewählt ist, daß das Zirkoniumdioxid überwiegend in der tetragonalen Modifikation vorliegt und der Anteil an kubischer Modifikation, bezogen auf Zirkoniumdioxid, bei 0 bis 5 Vol.-% liegt.
3. Sinterformkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das molare Verhältnis zwischen dem die stabilisierenden Oxide enthaltenden Zirkoniumdioxid und Chromoxid 1.000 : 1 bis 20 : 1 beträgt und das Zirkoniumdioxid eine 2 μm nicht überschreitende Korngröße aufweist.
4. Sinterformkörper aus einem Matrixwerkstoff, dadurch gekennzeichnet, daß
a1 ) 60 bis 98 Vol.-% des Matrixwerkstoffes zu
a2) 67,1 bis 99,2 Vol.-% aus einem Aluminiumoxid-/Chromoxid-Mischkristall
a3) zu 0,8 bis 32,9 Vol.-% aus einem Mischkristall, ausgewählt aus einem Mischkristall gemäß einer der allgemeinen Formeln La0,9AI11 ]76.xCrxO19, Me1Aln.xCrx7, Me2AI12.xCrx019, Me2Αl12.xCrx9 oder Me3AI11-xCrx018 besteht, wobei Me1 für ein Alkalimetall, Me2 für ein Erdalkalimetall, Me2' für Cadmium, Blei oder Quecksilber und Me3 für ein Seltenerdmetall steht, wobei x einem Wert von 0,0007 bis 0,045 entspricht,
b) 2 bis 40 Vol.-% in den Matrixwerkstoff eingelagertem Zirkoniumdioxid, das
c) als stabilisierende Oxide mehr als 2 bis 15 Mol-% eines oder mehrerer der Oxide von Cer, Praseodym und Terbium und/oder 0,2 bis 3,5 Mol-% Yttriumoxid, bezogen auf die Mischung aus Zirkoniumdioxid und stabilisierenden Oxiden enthält, wobei
d) die Zugabemenge der stabilisierenden Oxide so gewählt ist, daß das Zirkoniumdioxid überwiegend in der tetragonalen Modifikation vorliegt und der Anteil an kubischer Modifikation, bezogen auf Zirkoniumdioxid, bei 0 bis 5 Vol.-% liegt,
e) das molare Verhältnis zwischen dem die stabilisierenden Oxide enthaltenden Zirkoniumdioxid und Chromoxid 1.000 : 1 bis 20 : 1 beträgt, f) sich die Anteile der Komponenten zu 100 Vol.-% des Sinterformkörpers ergänzen und
g) das Zirkoniumdioxid eine 2 μm nicht überschreitende Korngröße aufweist.
5. Sinterformkörper nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Matrixwerkstoff zusätzlich noch 2 bis 25 Vol.-% eines oder mehrere der Karbide, Nitride und Carbonitride der Metalle der vierten und fünften Nebengruppe des PSE - bezogen auf den Matrixwerkstoff - enthält.
6. Sinterformkörper nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das molare Verhältnis des die stabilisierenden Oxide enthaltenden Zirkoniumdioxids zu Chromoxid im Bereich von
2 - 5 Vol.-% Zirkoniumdioxid 1.000 1 bis 100
> 5 - 15 Vol. -% Zirkoniumdioxid 200 1 bis 40
> 15 - 30 Vol.-% Zirkoniumdioxid 100 1 bis 20
> 30 - 40 Vol. -% Zirkoniumdioxid 40 1 bis 20
liegt.
7. Sinterformkörper nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß nicht mehr als 30 Vol.-% Zirkoniumdioxid enthalten sind.
8. Sinterformkörper nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Zirkoniumdioxid zu mindestens 90 Vol.-% die tetragonale Modifikation aufweist.
9. Sinterformkörper nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die durchschnittliche Korngröße des Aluminiumoxid-/Chromoxid-Mischkristalls 0,6 bis 1 ,5 μm beträgt.
10. Sinterformkörper nach einem oder mehreren der Ansprüche 1 bis 9, daurch gekennzeichnet, daß die Körngröße des Zirkoniumdioxids zwischen 0,2 und 1 ,5 μm liegt.
11. Sinterformkörper nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß nicht mehr als 0,5 Vol.-% unvermeidbarer Verunreinigungen, bezogen auf den Sinterformkörper, enthalten sind.
12. Sinterformkörper nach einem oder mehreren der Ansprüche 1 bis 11 , dadurch gekennzeichnet, daß die Vickers-Härte [ Hv0,5 ] > 1 -800 ist.
13. Verfahren zur Herstellung eines Sinterformkörpers gemäß einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß eine Mischung, die Aluminiumoxid, Zirkoniumdioxid, Chromoxid, tetragonales Zirkoniumoxid stabilisierende Oxide und mindestens ein Oxid aus der Gruppe der Alkalioxide, Erdalkalioxide, CdO, PbO, HgO, Seltenerdoxide und/oder La203 enthält, gemahlen, der gemahlenen Mischung ein temporäres Bindemittel zugegeben, diese Mischung sprühgetrocknet wird, aus dieser Mischung Grünkörper gepreßt werden und diese unter Standardbedingungen gesintert werden.
14. Verfahren zur Herstellung eines Sinterformkörpers gemäß einem oder mehreren der Ansprüche 1 bis 12 dadurch gekennzeichnet, daß der Grünkörper auf eine Dichte von 90 - 95 % drucklos vorgesintert wird und anschließend einer heißisostatischen Nachverdichtung unterzogen wird.
15. Verfahren zur Herstellung eines Sinterformkörpers gemäß einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß eine Mischung, die Aluminiumoxid, Chromoxid, tetragonales Zirkoniumoxid, gegebenenfalls stabilisierende Oxide und mindestens ein Oxid aus der Gruppe der Alkalioxide, Erdalkalioxide, CdO, PbO, HgO, Seltenerdoxide und/oder La203 enthält, in wässriger Suspension mit einem Feststoffgehalt von mehr als 50 Vol-% bei Einhaltung eines pH-Wertes von 4 bis 4,5 gemahlen wird, anschließend mit Harnstoff und Urease versetzt wird, in eine Form abgegossen wird und nach einer sich anschließenden Koagulation entformt und gesintert bzw. vorgesintert und heißisostatisch nachverdichtet wird.
16. Verwendung eines Sinterformkörpers nach einem oder mehreren der Ansprüche 1 bis 12 als Schneidwerkzeug zum Schneiden von Papier, Textilgut und von Folien.
17. Verwendung eines Sinterformkörpers nach einem oder mehreren der Ansprüche 1 bis 12 als Schneidplatte für die spanabhebende Bearbeitung von Gußeisen oder von Stahlwerkstoffen.
18. Verwendung eines Sinterformkörpers nach einem oder mehreren der Ansprüche 1 bis 12 als Schneidplatte für den unterbrochenen Schnitt von Gußeisen und Stahlwerkstoffen.
19. Verwendung eines Sinterformkörpers nach einem oder mehreren der Ansprüche 1 bis 12 als Komponente für künstliche Prothesen in der Medizintechnik.
20. Sinterformkörper mit einem Matrixwerkstoff, dadurch gekennzeichnet, daß der Matrixwerkstoff mindestens eines der Piatelets gemäß einer der allgemeinen Formeln Me1AlnOι7l Me2Alι29, Me2Αlι29 und/oder Me3Alι2018 enthält, wobei Me1 für ein Alkalimetall, Me2 für ein Erdalkalimetall, Me2' für Cadmium, Blei oder
Quecksilber und Me3 für ein Seltenerdmetall steht und der Matrixwerkstoff tetragonal stabilisiertes Zirkoniumdioxid enthält.
PCT/EP1998/006914 1997-10-31 1998-11-02 Plateletverstärkter sinterformkörper WO1999023048A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98963407A EP1028928A1 (de) 1997-10-31 1998-11-02 Plateletverstärkter sinterformkörper
JP2000518926A JP2001521874A (ja) 1997-10-31 1998-11-02 プレートレット強化された焼結成形体
KR1020007004735A KR100635675B1 (ko) 1997-10-31 1998-11-02 소형판이 보강된 소결체
US09/509,839 US6452957B1 (en) 1997-10-31 1998-11-02 Sintered shaped body reinforced with platelets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19748232 1997-10-31
DE19748232.5 1997-10-31

Publications (1)

Publication Number Publication Date
WO1999023048A1 true WO1999023048A1 (de) 1999-05-14

Family

ID=7847274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/006914 WO1999023048A1 (de) 1997-10-31 1998-11-02 Plateletverstärkter sinterformkörper

Country Status (6)

Country Link
US (1) US6452957B1 (de)
EP (1) EP1028928A1 (de)
JP (1) JP2001521874A (de)
KR (1) KR100635675B1 (de)
DE (1) DE19850366B4 (de)
WO (1) WO1999023048A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541112B1 (en) * 2000-06-07 2003-04-01 Dmc2 Degussa Metals Catalysts Cerdec Ag Rare earth manganese oxide pigments
DE60307777T2 (de) * 2003-01-28 2007-08-23 Sandvik Intellectual Property Ab Werkzeugeinsatz und zugehöriges Herstellungsverfahren
DE10316916B4 (de) * 2003-04-12 2005-09-08 Forschungszentrum Karlsruhe Gmbh Schneidwerkzeug und seine Verwendung
US8173564B2 (en) * 2005-03-15 2012-05-08 Saint-Gobain Centre De Recherches Et D'etudes Europeen Gasifier reactor internal coating
ES2560081T3 (es) * 2005-04-07 2016-02-17 Oerlikon Metco Ag, Wohlen Compresor con una capa superficial de un material cerámico y el procedimiento para su fabricación
DE102005040582A1 (de) * 2005-08-22 2007-03-01 Itn Nanovation Gmbh Hochtemperaturstabile keramische Schichten und Formkörper
US7700508B1 (en) 2005-08-26 2010-04-20 The United States Of Americas As Represented By The Secretary Of The Army Low conductivity and high toughness tetragonal phase structured ceramic thermal barrier coatings
US20070154713A1 (en) * 2005-12-30 2007-07-05 3M Innovative Properties Company Ceramic cutting tools and cutting tool inserts, and methods of making the same
JP5459927B2 (ja) * 2006-07-07 2014-04-02 株式会社キャタラー 排ガス浄化用触媒
WO2008132157A2 (de) * 2007-04-27 2008-11-06 Ceramtec Ag Keramischer werkstoff
DE102007020471A1 (de) * 2007-04-27 2008-11-06 Ceramtec Ag Innovative Ceramic Engineering Sinterformkörper
DE102007020473B4 (de) * 2007-04-27 2016-03-03 Ceramtec Gmbh Keramischer Werkstoff, seine Verwendung und Sinterformkörper
US9237955B2 (en) * 2008-07-03 2016-01-19 Ceramtec Gmbh Intervertebral disc endoprosthesis
JP5762397B2 (ja) * 2009-04-01 2015-08-12 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH セラミック製カッティングテンプレート
US20120035672A1 (en) * 2009-04-01 2012-02-09 Roman Preuss Ceramic cutting template
CN102858714A (zh) * 2009-12-16 2013-01-02 陶瓷技术有限责任公司 由主成分氧化铝和氧化锆组成的陶瓷复合材料
CA2784692C (en) * 2009-12-16 2018-09-18 Ceramtec Gmbh Ceramic composite material consisting of aluminium oxide and zirconium oxide as the main constituents, and a dispersoid phase
FR2996843B1 (fr) * 2012-10-15 2020-01-03 Saint-Gobain Centre De Recherches Et D'etudes Europeen Produit d'oxyde de chrome.
US9353010B2 (en) 2013-03-14 2016-05-31 Amedica Corporation Alumina-zirconia ceramic implants and related materials, apparatus, and methods
US9353012B2 (en) 2013-03-15 2016-05-31 Amedica Corporation Charge-compensating dopant stabilized alumina-zirconia ceramic materials and related materials, apparatus, and methods
DE102014113416B4 (de) 2013-11-21 2017-09-28 Oximatec Gmbh Oxide Material Technologies Keramikwerkstoff
EP2947061B1 (de) 2014-05-19 2020-02-19 BBL Technology Transfer GmbH & Co. KG Biokeramische Komponente
KR102081622B1 (ko) * 2017-05-17 2020-02-26 한국세라믹기술원 고온에서 높은 비저항을 갖는 질화알루미늄 소결체 및 그 제조방법
CN108727001B (zh) * 2018-07-04 2021-03-16 广东工业大学 一种二氧化锆增韧板片状氧化铝基复合陶瓷及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990011980A1 (en) * 1989-04-07 1990-10-18 Ceramatec, Inc. Ceramics with high toughness, strength and hardness
WO1992002470A1 (de) * 1990-08-06 1992-02-20 Stora Feldmühle Aktiengesellschaft Sinterformkörper und seine verwendung
WO1994002429A1 (de) * 1992-07-28 1994-02-03 Gauckler Ludwig J Verfahren zur herstellung keramischer grünkörper

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316964A (en) 1980-07-14 1982-02-23 Rockwell International Corporation Al2 O3 /ZrO2 ceramic
US4533647A (en) 1983-10-27 1985-08-06 The Board Of Regents Acting For And On Behalf Of The University Of Michigan Ceramic compositions
DE3529265A1 (de) 1984-08-22 1986-02-27 Ngk Spark Plug Co., Ltd., Nagoya, Aichi Keramik mit sehr hoher zaehigkeit und verfahren zur herstellung derselben
DE3585883D1 (de) 1985-03-07 1992-05-21 Nippon Soda Co Gesintertes zirkon und dessen herstellung.
EP0199459B1 (de) 1985-04-11 1992-01-15 Corning Glass Works Keramische Legierung hoher Zähigkeit
CA1259080A (en) 1985-09-06 1989-09-05 Nobuo Kimura High density alumina zirconia ceramics and a process for production thereof
DE3608854A1 (de) 1986-03-17 1987-09-24 Leitz Ernst Gmbh Verwendung eines oxidkeramik-werkstoffs fuer presswerkzeuge zum ausformen von bauteilen aus glas oder einer glashaltigen keramik hoher oberflaechenguete und massgenauigkeit
US4823359A (en) 1986-04-25 1989-04-18 Norton Company Furnance having dense refractory oxide liner
DE3856206T2 (de) 1987-03-16 1999-03-11 Hitachi Ltd Gesinterter Keramikkörper und Verfahren zu seiner Herstellung
US4792538A (en) 1987-09-30 1988-12-20 Dresser Industries, Inc. Spall resistant chrome-alumina refractory brick
US4770673A (en) 1987-10-09 1988-09-13 Corning Glass Works Ceramic cutting tool inserts
US5830816A (en) 1990-08-06 1998-11-03 Cerasiv Gmbh Innovatives Keramik-Engineering Sintered molding
DE4116008A1 (de) * 1991-05-16 1992-11-19 Feldmuehle Ag Stora Sinterformkoerper und seine verwendung
CH685493A5 (de) 1993-04-08 1995-07-31 Thomas Graule Prof Dr Ludwig G Verfahren zur Herstellung keramischer Grünkörper durch Doppelschicht-Kompression.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990011980A1 (en) * 1989-04-07 1990-10-18 Ceramatec, Inc. Ceramics with high toughness, strength and hardness
WO1992002470A1 (de) * 1990-08-06 1992-02-20 Stora Feldmühle Aktiengesellschaft Sinterformkörper und seine verwendung
WO1994002429A1 (de) * 1992-07-28 1994-02-03 Gauckler Ludwig J Verfahren zur herstellung keramischer grünkörper

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BURGER W: "Umwandlungs- und plateletverstärkte Aluminiumoxidmatrixwerkstoffe (Teil 1)", KERAMISCHE ZEITSCHRIFT, vol. 49, no. 12, December 1997 (1997-12-01), pages 1067 - 1070, XP002098038 *
BURGER W: "Umwandlungs- und plateletverstärkte Aluminiumoxidmatrixwerkstoffe (Teil 2)", KERAMISCHE ZEITSCHRIFT, vol. 50, no. 1, January 1999 (1999-01-01), pages 18 - 22, XP002098039 *

Also Published As

Publication number Publication date
DE19850366B4 (de) 2016-12-15
US6452957B1 (en) 2002-09-17
DE19850366A1 (de) 1999-05-06
EP1028928A1 (de) 2000-08-23
JP2001521874A (ja) 2001-11-13
KR100635675B1 (ko) 2006-10-17
KR20010031676A (ko) 2001-04-16

Similar Documents

Publication Publication Date Title
DE19850366B4 (de) Plateletverstärkter Sinterformkörper, dessen Verwendung und Verfahren zu seiner Herstellung
DE3610041C2 (de) Keramik auf Zirkoniumdioxidbasis mit Aluminiumoxid, Spinell, Mullit oder Spinell und Mullit und mit verbesserter hydrothermaler und thermischer Stabilität
DE3022213C2 (de) Keramischer Formkörper mit eutektischen Gefügebestandteilen und Verfahren zu seiner Herstellung
DE4331877C2 (de) Verbundmaterial auf der Basis von Zirconiumdioxid und Verfahren zu dessen Herstellung
EP0490245A1 (de) ZrO2-haltiger Keramikformkörper
EP1435346B1 (de) Fräskeramiken aus Metalloxid-Pulvern mit bimodaler Korngrössenverteilung
DE2741295C2 (de) Keramischer Formkörper
EP0163143B1 (de) Hochfester und temperaturbeständiger Formkörper aus Zirkoniumdioxid (Zr02) und Verfahren zu seiner Herstellung
DE3027401C2 (de)
EP0542815B1 (de) Sinterformkörper und seine verwendung
DE102006013746A1 (de) Gesinterter verschleißbeständiger Werkstoff, sinterfähige Pulvermischung, Verfahren zur Herstellung des Werkstoffs und dessen Verwendung
EP2413816A1 (de) Schnittschablone aus keramik
DE60208464T2 (de) Ceriumoxid enthaltende Festelektrolyte
EP2349114A2 (de) Bandscheibenendoprothese
EP0497156B1 (de) Verfahren zur Herstellung eines Werkstoffes auf Siliciumnitrid-Basis.
DE4217721C1 (de) Gesintertes verbundschleifkorn, verfahren zu seiner herstellung sowie seine verwendung
DE60006358T2 (de) Magnesiumoxid-teilstabilisiertes zirkonoxid hoher festigkeit
DE3840573C2 (de) Whisker-verstärkte Keramik
EP0247528B1 (de) Polykristalline Sinterkörper auf Basis von Siliciumnitrid mit hoher Bruchzähigkeit und Härte
EP0200954B1 (de) Sinterformkörper, Verfahren zu seiner Herstellung und seine Verwendung
DE4116008A1 (de) Sinterformkoerper und seine verwendung
DE4024877C2 (de) Sinterformkörper, Verfahren zu seiner Herstellung und seine Verwendung
EP0797554B1 (de) Verfahren zur herstellung eines aluminiumoxid enthaltenden gesinterten materials
DE3530103A1 (de) Polykristalline sinterkoerper auf basis von siliciumnitrid mit hoher bruchzaehigkeit und haerte
WO1998021161A1 (de) HARTSTOFFVERSTÄRKTE Al2O3-SINTERKERAMIKEN UND VERFAHREN ZU DEREN HERSTELLUNG

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007004735

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998963407

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09509839

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998963407

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007004735

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007004735

Country of ref document: KR