WO1999019738A1 - Stent und mr-bildgebungsverfahren zur darstellung und positionsbestimmung eines stents - Google Patents

Stent und mr-bildgebungsverfahren zur darstellung und positionsbestimmung eines stents Download PDF

Info

Publication number
WO1999019738A1
WO1999019738A1 PCT/DE1998/003045 DE9803045W WO9919738A1 WO 1999019738 A1 WO1999019738 A1 WO 1999019738A1 DE 9803045 W DE9803045 W DE 9803045W WO 9919738 A1 WO9919738 A1 WO 9919738A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
resonant circuit
inductance
capacitance
stent according
Prior art date
Application number
PCT/DE1998/003045
Other languages
English (en)
French (fr)
Inventor
Andreas Melzer
Martin Busch
Original Assignee
Andreas Melzer
Martin Busch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andreas Melzer, Martin Busch filed Critical Andreas Melzer
Priority to AU13325/99A priority Critical patent/AU1332599A/en
Priority to DE59800900T priority patent/DE59800900D1/de
Priority to CA002306769A priority patent/CA2306769C/en
Priority to JP2000516237A priority patent/JP4271847B2/ja
Priority to EP98956813A priority patent/EP1023609B1/de
Publication of WO1999019738A1 publication Critical patent/WO1999019738A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/411Detecting or monitoring allergy or intolerance reactions to an allergenic agent or substance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/285Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/285Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR
    • G01R33/286Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR involving passive visualization of interventional instruments, i.e. making the instrument visible as part of the normal MR process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34053Solenoid coils; Toroidal coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34084Constructional details, e.g. resonators, specially adapted to MR implantable coils or coils being geometrically adaptable to the sample, e.g. flexible coils or coils comprising mutually movable parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4542Evaluating the mouth, e.g. the jaw
    • A61B5/4547Evaluating teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/005Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0058Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • A61F2230/0021Angular shapes square
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0058X-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0086Pyramidal, tetrahedral, or wedge-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0091Three-dimensional shapes helically-coiled or spirally-coiled, i.e. having a 2-D spiral cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0043Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in electric properties, e.g. in electrical conductivity, in galvanic properties
    • A61F2250/0045Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in electric properties, e.g. in electrical conductivity, in galvanic properties differing in electromagnetical properties

Definitions

  • Stent and MR imaging method for displaying and determining the position of a stent
  • the invention relates to an MR (magnetic resonance) imaging method for displaying and determining the position of a stent according to the preamble of claim 1 and a stent according to the preamble of claim 9.
  • MR magnetic resonance
  • MR imaging methods have been known for a long time. They are based on the resonance interaction between a high-frequency electromagnetic alternating field and certain atomic nuclei of an object to be examined, in particular a human or animal body, which is arranged in a strong external magnetic field.
  • the atomic nuclei precess in the magnetic field (BQ) with the so-called lamor frequency, which is proportional to the strength of the magnetic field.
  • BQ magnetic field
  • lamor frequency which is proportional to the strength of the magnetic field.
  • the magnetization of the individual spins is combined to form an overall magnetization. In its equilibrium position, this total magnetization is parallel to the external magnetic field and is called equilibrium agnetization.
  • the magnetization can be deflected by an angle a with respect to the magnetic field direction.
  • the angle o. Is proportional to the duration of the radiated RF pulse and the magnetic field strength (B ⁇ ) of the RF pulse.
  • B ⁇ magnetic field strength
  • the total magnetization precesses around the direction of the magnetic field.
  • the precessing magnetization can be recorded as a voltage signal with a coil that is oriented perpendicular to the direction of the magnetic field.
  • the strength of the voltage signal is proportional to sin (), proportional to the density of the spins in the signaling volume and inversely proportional to the temperature.
  • the maximum signal response of a given volume is therefore achieved after 90 ° excitation.
  • the recorded signal amplitude decreases exponentially with the relaxation time T 2 *, since the individual spins lose their phase relationship due to fluctuating magnetic fields.
  • the total magnetization in the direction of the magnetic field increases exponentially with the relaxation time T ⁇ _ towards the equilibrium magnetization.
  • the resonant circuit is excited in the event of radiation of electromagnetic radiation with the resonance frequency. This leads to an amplification of the alternating magnetic field within the inductance of the resonant circuit.
  • the increased alternating magnetic field component increases the angle of rotation of the protons within the inductance.
  • the protons experience an increased excitation angle within the inductance.
  • protons in the imaging volume are excited with a small angle of 1 ° - 10 °, whereas the protons within the inductance are excited with 90 °.
  • the signal from the compartment surrounded by the resonant circuit is significantly more intense than the signal from the other parts of the image. Since this signal boost is localized, it can be used to determine the position.
  • the MR response signals of the protons are amplified within the compartment (fiducial marker) surrounding the resonant circuit.
  • the inductance bundles the magnetic field lines, which originate from the spins inside the coil, so that more signal is emitted from the volume inside the inductor and is radiated into an assigned receiving coil. This amplification of the emitted and then received signals can be seen independently of an amplified excitation. Both effects lead to a changed signal response of the fiducial marker.
  • fiducial markers use separate signaling volumes that are one size for visibility in the MR image of at least a few cubic millimeters and must be placed in the object under examination or integrated into the systems that are placed in the object under examination. This is often not possible.
  • An active-invasive magnetic resonance system for generating selective MR angiograms is known from DE 195 10 194 AI, in which an invasive device is provided with an RF coil, with the aid of which locally the magnetic resonance magnetization of the in the vessel flowing blood is changed. With special MR image pulse sequences, only the blood that has an altered magnetic resonance magnetization is selectively acquired and displayed.
  • US Pat. No. 5,445,151 describes a method for measuring the flow of flowing liquids, in particular blood, in which at least two RF coils are provided on an invasive device, with a local change in the magnetic resonance magnetization generated by the one RF coil the other RF coil is detected and the delay time for determining the flow velocity is evaluated.
  • the invention is based on the object of providing an MR imaging method for displaying and determining the position of a stent inserted into an examination object and a stent which enable a clear and signal-intensive representation of a stent in the MR image and an improved flow measurement.
  • the solution according to the invention provides for an oscillating circuit to be integrated into the stent to be introduced into the examination object, which oscillation circuit generates a changed signal response in a locally limited area in or around the stent, which is displayed in a spatially resolved manner.
  • the resonance frequency of the resonant circuit is essentially the same as the resonance frequency of the radiated high-frequency radiation from the MR imaging system.
  • the position of the stent can be clearly determined via the area highlighted accordingly in the MR image, since this area directly adjoins the stent from the inside or outside. Since a changed signal response of the object to be examined is generated itself, only those artifacts occur that are generated by the material of the stent.
  • the clear representation of the stent in the MR image enables precise position determination. Because of the changed signal conditions, an improved flow measurement of the medium flowing through the stent or past the stent is also possible. This takes advantage of the fact that there is different excitation inside and outside the stent.
  • the solution according to the invention is based on the surprising finding that suitable resonant circuits can be designed or arranged on a stent itself.
  • the invention preferably provides for the inductance and capacitance forming the resonant circuit to be formed by the material of the stent, which creates an additional synergistic effect.
  • the signal response of the spins within the inductance is changed according to the invention. Two processes contribute to this.
  • the resonant circuit tuned to the resonance frequency is excited and the nuclear spins detected by the field of the resonant circuit experience increased excitation through local amplification of the changing magnetic field in or near the inductance.
  • protons detected by the field lines of the induced magnetic field are rotated through a larger angle than protons outside this induced magnetic field.
  • the signal response detected by a receiving coil and evaluated for image display can be amplified accordingly. It is also possible that only the spins within the inductor experience saturation and the signal is weakened from the environment. In both cases there is a change in the signal response.
  • the inductance bundles the magnetic field lines, which originate from the spins within the inductance, so that more signal is emitted and radiated into an associated receiving coil, which receives the amplified signals and forwards them to MR imaging.
  • a first embodiment of the invention characterized in that when the high-frequency radiation is irradiated, the resonant circuit is excited and, as a result, there is increased excitation of the nuclear spins of the examination object in the locally limited area.
  • the locally limited area in which the excitation of the nuclear spins is amplified preferably lies within the stent. This is naturally the case when the framework of the stent forms the inductance.
  • a second embodiment of the invention provides that when the high-frequency radiation is irradiated, the resonant circuit is detuned or the capacitance is short-circuited, so that there is no increased excitation of the nuclear spins in the locally limited area.
  • the detuning of the resonant circuit or the short-circuit of the capacitance is canceled again, so that the resonant circuit effects an amplification of the emitted MR response signals of the protons.
  • this variant in particular makes it possible to image the area in and around the stent with high quality, i.e. local imaging is available beyond a mere position determination.
  • improved statements about the structure etc. of the interior and / or the surroundings of the stent can be found in the MR image.
  • the resonant circuit on the stent is only formed or activated after the stent has been introduced into the examination object, in particular when the stent is unfolded during its application.
  • the inductance and / or the capacitance can advantageously be adjusted for resonant tuning of the resonant circuit. This is particularly useful in the event that the product of inductance and capacitance and thus the resonance frequency of the resonant circuit change after application or unfolding of the stent.
  • At least two resonant circuits formed or arranged on the stent are used, the coils of the respective inductors being in particular aligned perpendicular to one another or arranged one behind the other.
  • Coils arranged perpendicular to one another ensure that each time the stent is arranged in the external magnetic field, a component of the inductance runs perpendicular to the field direction of the external magnetic field, so that a changed signal response is ensured.
  • Coils arranged one behind the other are particularly suitable to additionally carry out a flow measurement (ie determination of speed) of the medium flowing through or flowing past the stent using suitable sequence techniques.
  • Any conventional system can be used for the MR imaging system.
  • the inductance is preferably formed by the material or structure of the stent. As a result, additional parts are avoided and the inductance is formed in a simple and automatic manner when the stent is unfolded during the application.
  • the stent preferably consists of a material which has at least one layer with good conductivity, which forms the inductance, and a further layer with poor conductivity, which forms the framework for the actual stent function.
  • the layer of good conductivity is cut through at suitable points, so that different regions of the framework, which are insulated from one another, are formed, which form an inductance.
  • the inductance of the resonant circuit is formed by a separate coil that is integrated in the stent structure.
  • the coil is woven, knitted, welded, soldered or glued into the framework of the stent.
  • the coil is preferably connected to the scaffold in such a way that when the stent is deployed, it folds together with the scaffold either self-expanding elastically, externally expanding plastic or thermally induced.
  • the structure of the stent is preferably in the form of a helix, a double or multiple helix, as a metal structure, or as a knitted, cut or etched sheet or tube.
  • the capacitance of the stent is preferably also at least partially formed from the stent material, in particular through parallel wires or surfaces of the inductor. Corresponding surfaces can be formed during the manufacture of the stent.
  • the capacitance can generally be formed by suitable arrangements of the conductive layers and a material such as the stent framework as a dielectric. With the corresponding geometry of the elements forming the capacitor, the implant tissue can also serve as a dielectric.
  • the capacitance of the stent is formed by a separately provided capacitor which is connected to the stent body.
  • the device according to the invention is advantageously designed such that when the geometry of the device changes as a result of the application, for example when a stent is expanded, the product of the inductance and capacitance of the resonant circuit remains essentially constant, in particular an increase in the inductance with a Reduction in capacity or vice versa. This ensures that the resonance frequency remains essentially unchanged.
  • Fig. 1 schematically a stent according to the invention, which forms a resonant circuit with an inductance and a capacitance;
  • FIG. 3 is a more detailed illustration of the scaffold of the stent of Figure 1;
  • FIG. 5 shows a section through the stent material of FIG. 4a
  • Fig. 6 schematically a stent according to the invention with an integrated coil
  • a stent according to the invention which has a second inductor, formed perpendicular to the first inductor, and
  • Fig. 8 - a stent according to the invention with two resonant circuits arranged one behind the other.
  • Figure 1 shows schematically a stent 1 according to the invention, which consists for example of metal such as platinum, titanium or titanium alloys and compounds, or of plastic or carbon fiber.
  • a stent 1 according to the invention, which consists for example of metal such as platinum, titanium or titanium alloys and compounds, or of plastic or carbon fiber.
  • the area of application of stents is in particular the bridging of narrow spaces caused by tumors or other conditions (e.g. gastrointestinal and bronchial tract) in internal organs, arterial and venous vasoconstrictions, peripheral and central vascular stenoses, especially in coronary heart disease. Further applications are the creation of new vascular pathways (shunts) in Organs, e.g. in the liver.
  • the stent leads to mechanical sealing and permanent enlargement of the affected region, leaves a smooth surface with improved blood flow, increases the vascular volume and reduces the reclosure, which occurs more frequently after conventional balloon dilatation.
  • stents The success rate of stents is limited, however, because re-closures, e.g. B. by ingrowth of tumor tissue or by blood clots, so-called thromboses, can arise, which close the lumen acutely. Excessive tissue touching the scaffold can create new arteriosclerotic deposits and narrow or close the lumen of the stent. Since clinical symptoms only develop when the narrowing is more severe, but depending on the degree of narrowness, there is an increasing risk of acute occlusion due to thrombosis, it is very important to check the stent function. To date, however, this is only possible with an invasive catheterization of the affected vessel, administration of allergenic contrast agents that damage the kidneys and X-rays.
  • Stents usually consist of metal frameworks, for example continuous metal wires or a type of braided hose, or are made of metal tubes using laser or spark erosion techniques.
  • the term "scaffold" is used in the context of this application for all these stent designs.
  • a stent is used for application for example placed on a balloon catheter, placed at the site of the implantation by means of the catheter and then deployed, the balloon enlarging the diameter of the stent and pressing it against the vessel wall.
  • self-expanding elastic or thermally expanding stents are known.
  • the known stents cannot be represented in an MR image, but rather form pronounced artifacts, so that exact placement and monitoring of the placement over time, as well as a functional control after placement when using magnetic resonance tomography as an imaging method, are not guaranteed are.
  • the stent 1 according to the invention according to FIG. 1 has an inductor 2 and a capacitance 3.
  • the inductance of the stent 1 is formed by the framework 2 of the stent 1.
  • the individual components of the framework 2 are isolated from one another, as will be shown in detail by way of example in FIG. 3.
  • the individual components of the framework can already be insulated during the manufacturing process, an insulating layer being applied to the framework already formed between the individual phases of manufacturing the stent from a metal tube.
  • the inductor 2 is electrically connected to a capacitor 3, the inductor 2 and capacitor 3 forming an oscillating circuit.
  • the capacitor 3 is formed in FIG. 1 as a plate capacitor with two plates 31, 32. However, any other capacitor can be used. It is also within the scope of the invention that the capacitor 3 does not constitute a separate component, but just as the inductor 2 consists of the material of the stent 1, for example is formed by parallel wires of the wire frame. It should be noted that the electrical connection between the capacitor plate 32 and the inductor 2 is not shown in FIG. 1 for clarity of illustration.
  • FIG. 2a shows the electrical circuit diagram of the resonant circuit 4 formed in the stent 1, consisting of inductance 2 and capacitance 3.
  • a switch 10 is additionally provided according to FIG. 2 b, which can be activated or deactivated mechanically, for example by a catheter used for application, electrically or magnetically.
  • the resonant circuit 4 can be designed in a wide variety of ways. According to FIG. 2c, it can have several inductors 2a to 2n connected in parallel and according to FIG. 2d several capacitors 3a to 3n connected in parallel. Furthermore, several inductors and / or capacitors can be connected in series. Provision can also be made to design a plurality of resonant circuits on a stent, each of which can have a switch and inductors and / or capacitors connected in series and / or in parallel. With several inductors connected in parallel or in series, flow measurements can be refined using suitable sequences.
  • the resonant circuit 4 has a resonance frequency which corresponds to the resonance frequency of the radiated high-frequency radiation of the MR imaging system in which the human body in which the stent is applied is arranged.
  • the resonant circuit 4 is emitted by the radiated high-frequency pulses of the MR system. stimulated since its resonance frequency corresponds to the frequency of the radiated RF pulses. This leads to an increase in the magnetic field in the inductance of the resonant circuit or in the vicinity of the inductance, which in turn can lead to an increased excitation of the protons in the corresponding area. If the cores outside the inductance are excited by an angle that is less than 90 °, cores within the inductance can experience an excitation of 90 ° and thus respond with maximum amplitude. The protons or nuclei arranged in the area of the inductance thus experience greater excitation than protons arranged outside the inductance.
  • the amplification of the angle of rotation within the inductance can be a factor of up to 45 compared to the protons outside the inductance. It is therefore possible to deflect the protons inside the inductor by an angle of 90 ° (maximum signal response), while the protons outside the inductor or outside of the magnetic field generated by the resonant circuit only have a small-angle excitation of approx. 2 ° to 10 ° Experienced.
  • the result of this is that the inner area of the stent can be displayed much brighter in an MR image than the rest of the surroundings. The location of the stent in the human body can therefore be determined precisely.
  • Various configurations of the resonant circuit 4 are possible for tuning the resonant frequency of the resonant circuit 4 to the frequency of the radiated RF pulses.
  • the quality of the resonant circuit is kept relatively low in order to implement a widest-band resonant circuit and to cover the largest possible range of resonance frequencies.
  • a second variant provides for the device to be designed in such a way that even after a change in the geometry, in the example under consideration after the stent has been deployed, the product of inductance and capacitance is constant. This can be done either by giving the stent a geometry which changes its properties as little as possible when the stent is deployed, that is to say in particular has a constant inductance and a constant capacitance. A widening of the stent at the site of the implantation therefore essentially does not change the resonant frequency of the resonant circuit.
  • the constancy of the product of inductance and capacitance can also be achieved by compensating the changing inductance by means of a correspondingly changing capacitance.
  • a capacitor area is arranged so that it can be displaced, so that the capacitance increases or decreases in accordance with the distance between the capacitor areas.
  • the displaceability of the capacitor plate 32 relative to the capacitor plate 31 and the adjustability of the capacitance is shown schematically in FIG. 1 by a double arrow.
  • a third variant provides that the resonant circuit is adapted in the magnetic field of the magnetic resonance tomograph by changing or adjusting the inductance and / or capacitance of the resonant circuit after it has been placed.
  • provision is made, for example, to change the capacitor area with the aid of the application instrument, such as a catheter, which is still in the body.
  • a reduction in the inductance and thus an adaptation of the resonant circuit to the resonance frequency in the magnetic resonance tomograph can be achieved, for example, by laser-induced, mechanical or electrolytic insulation of coil segments.
  • a change Capacity can also be achieved by laser-induced, mechanical or electrolytic isolation of capacities.
  • FIG. 3 schematically shows a possible embodiment of a stent according to FIG. 1.
  • the stent material here consists of two or more layers 81, 82 according to FIGS. 4a and 4b.
  • One layer 81 represents the material for the actual stent function poor conductivity and high stability and elasticity.
  • Nickel-titanium, plastic or carbon fibers are particularly suitable as materials.
  • Layer (s) 82 provide the material for forming the inductance.
  • the layer 82 has a very good conductivity.
  • Gold, silver or platinum are particularly suitable as materials, which are characterized not only by high conductivity but also by biocompatibility. When using less biocompatible electrical conductors such as copper, electrical insulation and biocompatibility can be achieved by a suitable plastic or ceramic coating.
  • the stent material according to FIGS. 4a, 4b is produced, for example, by coating a tube made of titanium or titanium alloys or compounds with the material for the formation of the inductance and then using known laser or spark erosion or water jet cutting techniques is cut.
  • a coil with the material of FIG. 4a is formed as follows according to FIG. 3.
  • the stent 1 consists of a two-layer material which forms a honeycomb structure 101 and is worked out from a tube, for example, by laser cutting techniques.
  • Fig. 3 shows the pipe unfolded. The right and left sides are therefore identical.
  • the conductive layer of the honeycomb structure is interrupted along lines 9. At the appropriate At 91, the conductive layer is cut through in the manufacture of the stent after the structure has been formed using a chemical, physical or mechanical method.
  • a point 91 at which the conductive layer 82 arranged on the actual stent material 81 is interrupted is shown schematically in FIG.
  • a current path through the conductive material 82 is defined by the separation points 91, which is indicated by arrows 11 in FIG. 3.
  • a coil arrangement 2 is formed, which represents the inductance of the stent 1.
  • the conductive material is to be selected such that the resistance through the conductor formed from the conductive material from one end of the stent to the other is lower than that given by the stent material
  • the inductance 2 is formed automatically when the stent material is unfolded during the application of the stent.
  • the conductive layer 82 is additionally coated on the outside with an insulating plastic such as a pyrene, in order to reliably prevent current flow through the adjacent blood, which would reduce the inductance of the coil.
  • an insulating plastic such as a pyrene
  • Pyrenes are suitable because they are biocompatible are and connect quite well with metal alloys.
  • the stent is, for example, kept in a bath with pyrenes or vapor-coated with pyrenes after it has been produced.
  • the capacitors and inductors required are estimated.
  • a plate capacitor is used and the coil is assumed to be a helix with a fixed number of turns.
  • the resonance frequency of a nuclear spin system is usually in the range between 2 MHz to 90 MHz.
  • the resonance frequency of the nuclear spin system is equal to the product of the magnetic field strength and the gyro-magnetic ratio g. With an average field strength of 1 Tesla, there is a resonance frequency of approx. 42 MHz.
  • the resonance frequency of the resonant circuit results from the Thomson vibration equation. It is inversely proportional to the root of the product of inductance and capacitance.
  • the product of capacitance and inductance is then 1.4 x 10 -19 S 2 .
  • an inductance of approximately 4 x 10 ⁇ 6 Vs / A results depending on the number of turns.
  • the resulting area of a plate capacitor with a relative dielectric constant of 2 and a distance of 0.1 mm between the individual plates of the plate capacitor is approximately 0.2 mm 2 .
  • Such a small area of a plate capacitor is easy to implement in a stent. At higher magnetic fields or frequencies, the resulting area of a plate capacitor can be further reduced to 0.014 mm 2 .
  • Figure 6 shows an alternative embodiment of a stent 1 ', which forms an inductor 2' and a capacitance 3 '.
  • the inductance 2 ' is here in the form of a Helical coil 5 executed, which is not formed by the stent structure 101 itself, but is woven into the stent structure 101 as an additional wire.
  • the stent function and the coil function are separate in this exemplary embodiment.
  • the coil 5 is in turn connected to form a resonant circuit with a capacitor 3 ', which either also represents a separate component, or alternatively is realized by adjacent coil loops or integrated surfaces of the stent.
  • the coil 5 When the stent is applied, the coil 5, together with the stent material 101 with a smaller radius, is wound onto an application instrument such as a cathether and then expands to the desired diameter together with the stent material 101 at the application site.
  • the wire or coil 5 preferably has a shape memory or the wire or coil 5 is pretensioned on the application instrument.
  • the overlap area or the distance between the two capacitor plates of the capacitor 3 ' is again designed to be adjustable in order to adapt the resonance frequency of the resonant circuit.
  • an adaptation to the resonance frequency takes place in a different way as described above.
  • the inductance 2 ′′ of the stent is shown schematically. It can either be formed from the stent material (FIG. 3) or be designed as an additional wire (FIG. 6). A separate capacitor is not provided in this embodiment. Rather, two loops 21, 22 of the inductance 2 ′′ form the capacitance, a dielectric 6 with a to increase the capacitance between the two loops 21, 22 highest possible dielectric constant is arranged.
  • a further inductor 7 is provided in the form of a pair of coils 7, the axis of which is perpendicular to the axis of the inductor 2 ′′.
  • the coil pair 7 is formed, for example, by two spiral coil arrangements which are integrated in the stent framework. This ensures that with each arrangement of the stent in the tissue there is a component perpendicular to the field direction of the homogeneous external magnet.
  • a further inductance is provided perpendicular to the two inductances shown. In this way, increased spin excitation in the area under consideration is ensured with each arrangement of the stent in the magnetic field.
  • FIGS. 2e and 2f Two further variants of the invention are shown using the circuit diagrams of FIGS. 2e and 2f.
  • the capacitor 3 '' ' is short-circuited during the excitation phase by two crossed diodes 12, which are included as additional elements in the framework of the stent.
  • the diodes 12 have a forward voltage which is approximately 1 volt, in any case below the voltage generated by the radiation of high-frequency radiation, which is usually more than 1 volt.
  • the diodes 12 thus conduct when the high-frequency radiation is irradiated, so that the capacitor 3 ′′ ′′ is short-circuited in the excitation phase and no oscillating circuit is formed.
  • the diodes 12 are designed such that the forward voltage is above the voltage generated by the spin signal response.
  • the capacitor 3 ''' is thus not short-circuited when the MR response signals from the atomic nuclei are emitted, and an oscillating circuit 4''' is created, which amplifies the emitted MR response signals of the protons and thereby changes the measured signal response.
  • the diodes 12 can be implemented in a variety of ways in the stent framework. In particular, separate components can be used or the diodes can be formed by or in cooperation with the stent material, for example as structures applied to the stent framework.
  • the capacitor 2 '' ' is basically not short-circuited with the same structure as in Fig. 2e, but the resonant circuit 4' '' is only detuned by switching on another capacitor 13 in the excitation phase, so that an increased excitation of the nuclear spins in only takes place to a limited extent.
  • the diodes 12 block, so that the oscillating circuit 4 ′′ ′′ is then present out of tune and the emitted MR response signals are amplified, which leads to a changed signal response which is shown in the MR image.
  • the resonant circuit 4 ′′ ′′ is not detuned by switching on a capacitor, but rather by switching on a coil 14 in the excitation phase.
  • Sequence techniques known per se are used for this. For example, saturation pulses are carried out in the area of the blood supplying tissue in front of the device, with a variation either in the location of the saturation pulses or in the time interval between saturation pulse and small-angle excitation, the calculation of the flux enable speed and thus functional statements about the status of the vessel. Any known methods of flow determination can be used in connection with the stent according to the invention. New sequence techniques can use the properties of the stent in a targeted manner, ie an increased excitation and an increased reception or only an increased reception of the area enclosed by the stent.
  • Fig. 8 shows a stent 1 '' '', which is preferably used for flow measurement.
  • the stent has two resonant circuits 4a, 4b arranged one behind the other, which are shown schematically.
  • the resonant circuits 4a, 4b can be formed from the stent material or by additional components, as described using the above exemplary embodiments.
  • One resonant circuit 4a has two crossed diodes corresponding to FIG. 2e, so that the capacitance is short-circuited when excited.
  • the other resonant circuit 4b is designed without diodes.
  • a catheter or balloon is equipped with a receiving coil device.
  • the catheter receives or Ballon the signal amplified by the stent and forwards it extracorporeally.
  • the catheter can have the same or similar arrangement of inductance, capacitance and diodes and amplify the signals of the stent and either extracorporeally transmit them to the tomograph via electrically conductive tracks or via optical coupling and glass fibers.
  • this variant is characterized by an improved signal detection.
  • the inductance of the stent itself is also used as a receiving coil for recording MR response signals, the inductance then being connected to extracorporeal functional components via a cable connection.
  • This makes it possible to actively use the inductance of the resonant circuit for imaging.
  • due to the need for a cable connection with extracorporeal functional components this will generally only be considered during the implantation of a stent.
  • the embodiment of the invention is not limited to the exemplary embodiments specified above. It is essential for the invention that the stent has at least one passive resonant circuit with an inductance and a capacitance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Immunology (AREA)
  • Human Computer Interaction (AREA)
  • Radiology & Medical Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

Die Erfindung betrifft ein MR-Bildgebungsverfahren zur Darstellung und Positionsbestimmung eines in ein Untersuchungsobjekt eingeführten Stents sowie einen Stent. Erfindungsgemäß weist der Stent (1) mindestens einen passiven Schwingkreis (4) mit einer Induktivität (2) und einer Kapazität (3) auf, dessen Resonanzfrequenz im wesentlichen gleich der Resonanzfrequenz der eingestrahlten hochfrequenten Strahlung des MR-Systems ist. Dadurch wird in einem lokal begrenzten Bereich in oder um den Stent eine veränderte Signalantwort erzeugt, die ortsaufgelöst dargestellt wird.

Description

Stent und MR-Bildgebungsverfahren zur Darstellung und Positionsbestimmung eines Stents
Beschreibung
Die Erfindung betrifft ein MR (Magnetresonanz) -Bildgebungs- verfahren zur Darstellung und Positionsbestimmung eines Stents nach dem Oberbegriff des Anspruchs 1 und einen Stent nach dem Oberbegriff des Anspruchs 9.
Hintergrund der Erfindung
MR-Bildgebungsverfahren sind seit längerem bekannt. Sie beruhen auf der Resonanz-Wechselwirkung zwischen einem hochfrequenten elektromagnetischen Wechselfeld und bestimmten Atomkernen eines zu untersuchenden Objektes, insbesondere eines menschlichen oder tierischen Körpers, das in einem starken äußeren Magnetfeld angeordnet ist. Die Atomkerne präzedieren im Magnetfeld (BQ) mit der sogenannten Lamorfre- quenz, die proportional zur Stärke des Magnetfeldes ist. Bei Einstrahlen eines elektromagnetischen Wechselfelds, dessen magnetische Wechselkomponente (Bi) senkrecht zur Richtung des starken Magnetfelds (BQ) ist, werden die Spins der Atomkerne zum Umklappen gebracht und können damit zusammenhängende Relaxationszeiten gemessen werden.
Für die Beschreibung in einem wissenschaftlichen Modell wird die Magnetisierung der einzelnen Spins zu einer Gesamtmagnetisierung zusammengefaßt. Diese Gesamtmagnetisierung ist in ihrer Gleichgewichtslage parallel zum äußeren Magnetfeld und wird Gleichgewichts agnetisierung genannt. Durch einen mit der Lamorfrequenz (Resonanzfrequenz) eingestrahlten HF-Impuls kann die Magnetisierung um einen Winkel a in Bezug auf die Magnetfeldrichtung ausgelenkt werden. Der Winkel o. ist proportional zur Dauer des eingestrahlten HF-Impulses und zur Magnetfeldstärke (B^) des HF-Impulses. Nach einer Anregung um den Winkel o. präzediert die Gesamtmagnetisierung um die Richtung des Magnetfeldes. Die präzedie- rende Magnetisierung kann mit einer Spule, die senkrecht zur Richtung des Magnetfeldes orientiert ist, als ein Spannungssignal aufgezeichnet werden. Die Stärke des Spannungssignals ist proportional zu sin( ) , proportional zur Dichte der Spins im signalgebenden Volumen und umgekehrt proportional zur Temperatur.
Die maximale Signalantwort eines gegebenen Volumens wird daher nach einer 90° Anregung erreicht. Die aufgezeichnete Signalamplitude nimmt exponentiell mit der Relaxationszeit T2* ab, da die einzelnen Spins auf Grund von fluktuierenden Magnetfeldern ihre Phasenbeziehung verlieren. Gleichzeitig nimmt die Gesamtmagnetisierung in Richtung des Magnetfeldes wieder exponentiell mit der Relaxationszeit Tη_ auf die Gleichgewichtsmagnetisierung hin zu. Mit Hilfe von zu richtigen Zeitpunkten geschalteten magnetischen Gradientenfeldern ist es möglich, unterschiedliche Kombinationen aus der Spindichte und den beiden Relaxationszeiten ortsaufge- löst in einem grauwertkodierten Bild darzustellen.
Weiter ist es bekannt, mit Hilfe eines Schwingkreises lokal eine Verstärkung der Anregung von Kernspins herbeizuführen. Hierzu sind sogenannte "Fiducial Markers" bekannt, die spezielle, mit signalintensiven Flüssigkeiten gefüllte Kompartments aufweisen, die von einem Schwingkreis umgeben sind (Burl et al.: "Tuned Fiducial Markers to Identify Body Locations with Minimal Perturbation of Tissue Magnetizati- on" , in: Journal of Magnetic Resonance in Medicine 1996, 491-493) . Der Schwingkreis besitzt dabei die Resonanzfre- quenz des MR-Systems.
Wird ein solcher Fiducial Marker in das bildgebende Volumen eines Kernspintomographen eingebracht, so wird im Falle der Einstrahlung von elektromagnetischer Strahlung mit der Resonanzfrequenz der Schwingkreis angeregt. Dies führt zu einer Verstärkung des magnetischen Wechselfeldes innerhalb der Induktivität des Schwingkreises. Die erhöhte magnetische Wechselfeldkomponente vergrößert den Drehwinkel der Protonen innerhalb der Induktivität. Bei einem kleinen Anregungswinkel ( < 90°) der Protonen durch das Kernspinsystem erfahren die Protonen innerhalb der Induktivität einen vergrößerten Anregungswinkel. Im Idealfall werden Protonen im bildgebenden Volumen mit einem kleinen Winkel von 1° - 10° angeregt, wogegen die Protonen innerhalb der Induk- tivtät mit 90° angeregt werden. Selbst bei identischen Relaxationszeiten und bei einer identischen Spindichte ist das Signal des vom Schwingkreis umgebenen Kompartments deutlich intensiver als das Signal der anderen Bildanteile. Da diese Signalanhebung lokalisiert ist, kann sie zur Positionsbestimmung verwandt werden.
Ebenso gilt nach dem Reziprozitätsgesetz, daß die MR-Ant- wortsignale der Protonen innerhalb des vom Schwingkreis umgebenden Kompartments (Fiducial Markers) verstärkt werden. Durch die Induktivität werden die Magnetfeldlinien, die von den Spins innerhalb der Spule herrühren, gebündelt, so daß mehr Signal aus dem Volumen innerhalb der Induktivität abgestrahlt und in eine zugeordneten Empfangsspule eingestrahlt wird. Diese Verstärkung der abgestrahlten und dann empfangenen Signale ist unabhängig von einer verstärkten Anregung zu sehen. Beide Effekte führen zu einer veränderten Signalantwort des Fiducial Markers.
Nachteilig verwenden "Fiducial Markers" gesonderte signalgebende Volumina, die zur Sichtbarkeit im MR-Bild eine Größe von zumindest einigen Kubikmillimetern aufweisen und im Untersuchungsobjekt extra plaziert oder in die Systeme integriert werden müssen, die im Untersuchungsobjekt plaziert werden. Dies ist häufig nicht möglich.
Mit Einführung offener Magnete und neuer Techniken bei geschlossenen MR-Systemen ist es inzwischen möglich, interventioneile und minimalinvasive Techniken wie Punktion, Ka- theterisierung und operative Verfahren unter MR-tomographi- scher Kontrolle durchzuführen. Dabei führen ferromagneti- sche oder paramagnetische Metalle oder Verunreinigungen anderer Werkstoffe zu Artefakten in der Bilddarstellung.
Bei den für interventioneile und minimalinvasive Techniken verwendeten Geräten ergeben sich dabei insofern Probleme, als sie meist aus einem ferromagnetischen oder paramagnetischen Material bestehen und/oder derart klein sind, daß sie in der Größenordnung der Pixelgröße (ca. 1mm) der MR-Bilder liegen. Insbesondere Stents aus Metall oder Kunststoffen sind wegen ihrer feinen Struktur im MR-Bild kaum sichtbar und höchstens durch Artefakte lokalisierbar. Sofern im MR-Bild nicht sichtbare Stoffe verwendet werden, sind diese nur als "Schatten" erkennbar. Diese Nachteile führen dazu, daß eine MR-Überwachung häufig nur unbefriedigend ist und stattdessen eine röntgenologisches Verfahren zur Bilddarstellung verwendet wird, mit den bekannten Nachteilen derartiger Verfahren.
Aus der DE 195 10 194 AI ist ein aktiv-invasives Magnetreso- nanzsystem zur Erzeugung selektiver MR-Angiogra me bekannt, bei dem ein Invasiv-Gerät mit einer HF-Spule versehen ist, mit deren Hilfe lokal die Kernspin-Magnetisierung des in dem Gefäß fließenden Blutes verändert wird. Mit speziellen MR-Bildimpulssequenzen wird selektiv nur das Blut erfaßt und dargestellt, das eine veränderte Kernspin-Magnetisierung aufweist. Die US-PS 5,445,151 beschreibt ein Verfahren zur Flußmessung strömender Flüssigkeiten, insbesondere von Blut, bei dem an einem Invasiv-Gerät mindestens zwei HF-Spulen verge- sehen sind, wobei eine von der einen HF-Spule erzeugte lokale Veränderung der Kernspin-Magnetisierung an der anderen HF-Spule erfaßt und die Verzögerungszeit zur Bestimmung der Flußgeschwindigkeit ausgewertet wird.
Die beiden vorgenannten Druckschriften betreffen nicht die Darstellung in einen Körper eingebrachter medizinischer Vorrichtungen. Des weiteren haben sie den Nachteil, daß sie aktive Systeme darstellen, bei denen die eingeführten Geräte ständig über Kabelverbindungen mit extrakorporalen Komponenten in Verbindung stehen.
Die DE 195 07 617 AI beschreibt ein MR-Verfahren, bei dem in ein Untersuchungsobjekt ein chirurgisches Instrument, etwa ein Katheter, eingeführt wird, an dessen Spitze eine Mikrospule befestigt ist. Die Position der Mikrospule wird unter Verwendung bestimmter Sequenztechniken bestimmt.
Aufgabe der Erfindung
Der Erfindung liegt die Aufgabe zu Grunde, ein MR-Bildgebungsverfahren zur Darstellung und Positionsbestimmung eines in ein Untersuchungsobjekt eingeführten Stents sowie einen Stent zur Verfügung zu stellen, die eine deutliche und signalintensive Darstellung eines Stents im MR-Bild sowie eine verbesserte Flußmessung ermöglichen.
Zusammenfassung der Erfindung
Diese Aufgabe wird erfindungsgemäß durch ein MR-Bildgebungsverfahren mit den Merkmalen des Anspruchs 1 und einen Stent mit den Merkmalen des Anspruchs 9 gelöst. Vorteilhafte und bevorzugte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Die erfindungsgemäße Lösung sieht vor, in den in das Unter- suchungsobjekt einzuführenden Stent einen Schwingkreis zu integrieren, der in einem lokal begrenzten Bereich in oder um den Stent eine veränderte Signalantwort erzeugt, die ortsaufgelöst dargestellt wird. Die Resonanzfrequenz des Schwingkreises ist dabei im wesentlichen gleich der Resonanzfrequenz der eingestrahlten hochfrequenten Strahlung des MR-Bildgebungssystems. Über den im MR-Bild entsprechend hervorgehobenen Bereich ist die Position des Stents deutlich feststellbar, da dieser Bereich unmittelbar von innen oder außen an den Stent angrenzt. Da eine veränderte Signalantwort des zu untersuchenden Objekts selbst erzeugt wird, treten dabei nur solche Artefakte auf, wie sie durch das Material des Stents erzeugt werden.
Durch die deutliche Darstellung des Stents im MR-Bild ist eine genaue Positionsbestimmung möglich. Aufgrund der veränderten Signalverhältnisse ist darüber hinaus auch eine verbesserte Flußmessung des durch den Stent oder am Stent vorbei strömenden Mediums möglich. Dabei wird ausgenutzt, daß innerhalb und außerhalb des Stents eine unterschiedliche Anregung vorliegt.
Die erfindungsgemäße Lösung beruht auf der überraschenden Erkenntnis, daß geeignete Schwingkreise an einem Stent selbst ausgebildet oder angeordnet werden können. Die Erfindung sieht dabei bevorzugt vor, daß die den Schwingkreis bildende Induktivität und Kapazität durch das Material des Stents ausgebildet wird, wodurch ein zusätzlicher synergistischer Effekt entsteht. Es liegt jedoch ebenfalls im Rahmen der Erfindung, Induktivität und Kapazität als gesonderte Bauteile am Stent anzuordnen. Die Signalantwort der Spins innerhalb der Induktivität wird erfindungsgemäß verändert. Hierzu tragen zwei Vorgänge bei. Zum einen wird bei Einstrahlung der hochfrequenten Strahlung der auf die Resonanzfrequenz abgestimmte Schwingkreis angeregt und erfahren die vom Feld des Schwingkreises erfaßten Kernspins eine verstärkte Anregung durch eine lokale Verstärkung des wechselnden magnetischen Feldes in oder in der Nähe der Induktivität. Mit anderen Worten werden von den Feldlinien des induzierten Magnetfeldes erfaßte Protonen um einen größeren Winkel gedreht als Protonen außerhalb dieses induzierten Magnetfeldes. Es erfolgt ein verstärktes Umkippen der Kernspins. Entsprechend kann die von einer Empfangsspule erfaßte und zur Bilddarstellung ausgewertete Signalantwort verstärkt sein. Ebenfalls ist möglich, daß nur die Spins innerhalb der Induktivität eine Sättigung erfahren und das Signal gegenüber der Umgebung abgeschwächt ist. In beiden Fällen liegt eine Änderung der Signalantwort vor.
Zum anderen werden - unabhängig von einer verstärkten Anregung - die MR-Antwortsignale der Protonen innerhalb der Induktivität verstärkt. So werden durch die Induktivität die Magnetfeldlinien, die von den Spins innerhalb der Induktivität herrühren, gebündelt, so daß mehr Signal abgestrahlt und in eine zugeordneten Empfangsspule eingestrahlt wird, die die verstärkten Signale empfängt und zur MR-Bild- gebung weiterleitet. Dieser Effekt ist in der Veröffentlichung J. Tanttu: "Floating Surface Coils", in: XIV ICMBE AND VII ICMP, Espoo, Finland 1985" beschrieben.
Diese beiden Effekte können bei dem erfindungsgemäßen Verfahren beide zur Veränderung der Signalantwort genutzt werden. Es kann jedoch auch allein der zweite Effekt, d.h. eine Verstärkung der MR-Antwortsignale, ausgewertet werden.
Dementsprechend ist eine erste Ausgestaltung der Erfindung dadurch gekennzeichnet, daß bei Einstrahlung der hochfrequenten Strahlung der Schwingkreis angeregt und dadurch in dem lokal begrenzten Bereich eine verstärkte Anregung der Kernspins des Untersuchungsobjekts erfolgt. Bevorzugt liegt der lokal begrenzte Bereich, in dem eine Verstärkung der Anregung der Kernspins erfolgt, dabei innerhalb des Stents. Dies ist natürlicherweise der Fall, wenn das Gerüst des Stents die Induktivität ausbildet.
Eine zweite Ausgestaltung der Erfindung sieht dagegen vor, daß bei Einstrahlung der hochfrequenten Strahlung der Schwingkreis verstimmt oder die Kapazität kurzgeschlossen wird, so daß keine verstärkte Anregung der Kernspins in dem lokal begrenzten Bereich erfolgt. Bei Messung der Signalantwort des lokal begrenzten Bereichs wird die Verstimmung des Schwingkreises bzw. der Kurzschluß der Kapazität jedoch wieder aufgehoben, so daß der Schwingkreis eine Verstärkung der abgestrahlten MR-Antwortsignale der Protonen bewirkt. Es hat sich gezeigt, daß insbesondere diese Variante es ermöglicht, mit hoher Qualität den Bereich in und um den Stent abzubilden, d.h. über eine reine Positionsbestimmung hinaus eine lokale Bildgebung zur Verfügung stellt. Neben der Position des Stents sind dem MR-Bild verbesserte Aussagen über die Struktur etc. des Inneren und/oder der Umgebung des Stents zu entnehmen.
Eine Verstärkung der Anregung der Kernspins wird beispielsweise dadurch unterdrückt, daß der Kondensator des Schwingkreises durch gekreuzte Dioden bei der Anregung kurzgeschlossen wird. Die Verstärkung der abgestrahlten Signale wird dadurch nicht beeinflußt, da die geringe induzierte Spannung durch die innerhalb der Induktivität befindlichen Spins bei der Abstrahlung unterhalb der Durchlaßspannung der Dioden liegt. Es wird allgemein darauf hingewiesen, daß die erfindungsgemäße Änderung der Signalantwort meist eine Verstärkung der Signalantwort sein wird. Dies hängt jedoch von zahlreichen Faktoren ab, insbesondere den verwendeten Anregungssequenzen. Beispielsweise kann bei schnell aufeinanderfolgenden Sequenzen eine Sättigung der Anregung der Spins innerhalb der Induktivität vorliegen, so daß dort kein Signal erzeugt wird. In dem Bereich außerhalb der Induktivität, in dem eine geringere Anregung der Kernspins erfolgt, liegt dagegen keine Sättigung vor, so daß hier ein Signal erzeugt wird. Entsprechend erfolgt bei diesem Beispiel eine Verminderung der Signalanwort im vom Feld der Induktivität erfaßten Bereich.
In einer bevorzugten Ausgestaltung der Erfindung ist vorgesehen, daß der Schwingkreis am Stent erst nach Einbringen des Stents in das Untersuchungsobjekt ausgebildet oder aktiviert wird, insbesondere bei Auffalten des Stents während dessen Applikation. Mit Vorteil sind dabei zur reso- nanten Abstimmung des Schwingkreises die Induktivität und/oder die Kapazität einstellbar. Dies ist insbesondere für den Fall sinnvoll, daß sich nach Applikation bzw. Auffalten des Stents das Produkt von Induktivität und Kapazität und somit die Resonanzfrequenz des Schwingkreises ändern.
In einer vorteilhaften Ausführungsform der Erfindung werden mindestens zwei am Stent ausgebildete oder angeordnete Schwingkreise verwendet, wobei die Spulen der jeweiligen Induktivitäten insbesondere senkrecht zueinander ausgerichtet oder hintereinander angeordnet sind. Durch senkrecht zueinander angeordnete Spulen wird sichergestellt, das bei jeder Anordnung des Stents im äußeren Magnetfeld eine Komponente der Induktivität senkrecht zur Feldrichtung des äußeren Magnetfelds verläuft, so daß eine veränderte Signalantwort sichergestellt wird. Hintereinander angeordnete Spulen sind besonders geeignet, unter Verwendung geeigneter Sequenztechniken zusätzlich eine Flußmessung (d.h. Geschwindigkeitsbestimmung) des den Stent durchfließenden oder an diesem vor- beiströmenden Mediums durchzuführen.
Für das MR-Bildgebungssystem können beliebige konventionelle Systeme verwendet werden.
Bei dem erfindungsgemäßen Stent wird die Induktivität bevorzugt durch das Material bzw. Gerüst des Stents ausgebildet. Hierdurch werden zusätzliche Teile vermieden und wird die Induktivität auf einfache Weise und automatisch bei Auffalten des Stents während der Applikation ausgebildet.
Der Stent besteht dazu bevorzugt aus einem Material, das mindestens eine Schicht mit guter Leitfähigkeit aufweist, die die Induktivität ausbildet, und eine weitere Schicht mit schlechter Leitfähigkeit, die das Gerüst für die eigentliche Stentfunktion bildet. Die Schicht guter Leitfähigkeit ist an geeigneten Stellen durchtrennt, so daß verschiedene gegeneinander isolierte Bereiche des Gerüsts entstehen, die eine Induktivität ausbilden.
Alternativ wird die Induktivität des Schwingkreises durch eine gesonderte Spule gebildet, die in den Stentaufbau integriert ist. Beispielsweise ist die Spule in das Gerüst des Stents gewebt, gestrickt, geschweißt, gelötet oder geklebt. Die Spule ist dabei bevorzugt derart mit dem Gerüst verbunden, daß sie sich beim Entfalten des Stents zusammen mit dem Gerüst entweder selbstexpandierend elastisch, fremdexpandierend plastisch oder thermisch induziert auffaltet.
Das Gerüst des Stents liegt bevorzugt in Form einer Helix, einer Doppel- oder Mehrfachhelix, als Metallgerüst, oder als gestricktes, geschnittenes oder geäztes Blech oder Rohr vor.
Die Kapazität des Stents ist bevorzugt zumindest teilweise ebenfalls aus dem Stent-Material gebildet, insbesondere durch parallele Drähte oder Flächen der Induktivität. Entsprechende Flächen können bei der Herstellung des Stents ausgebildet werden. Die Kapazität kann allgemein durch geeignete Anordnungen der leitenden Schichten und einem Material wie dem Stentgerust als Dielekrikum gebildet werden. Bei entsprechender Geometrie der den Kondensator bildenden Elemente kann auch das Implantatgewebe als Dielektrikum dienen.
Alternativ ist vorgesehen, die Kapazität des Stents durch einen gesondert vorgesehenen Kondensator zu bilden, der mit dem Stentkörper verbunden ist.
Mit Vorteil ist die erfindungsgemäße Vorrichtung derart ausgebildet ist, daß bei einer Veränderung der Geometrie der der Vorrichtung durch die Applikation, etwa bei einer Aufweitung eines Stents, das Produkt aus Induktivität und Kapazität des Schwingkreises im wesentlichen konstant bleibt, insbesondere eine Erhöhung des Induktivität mit einer Verringerung der Kapazität oder umgekehrt einhergeht. Hierdurch wird gewährleistet, daß die Resonanzfrequenz im wesentlichen unverändert bleibt.
Beschreibung mehrerer Ausführungsbeispiele
Die Erfindung wird nachfolgend unter Bezugnahme auf die Figuren der Zeichnung an mehreren Ausführungsbeispielen näher erläutert. Es zeigen: Fig. 1 - schematisch einen erfindungsgemäßen Stent, der einen Schwingkreis mit einer Induktivität und einer Kapazität ausbildet;
Fig. 2a-2g - verschiedene elektrische Schaltbilder einer erfindungsgemäßen Vorrichtung;
Fig. 3 - eine genauere Darstellung des Gerüsts des Stents der Fig. 1;
Fig. 4a-4b - zwei Beispiele für den Aufbau des Stentmateri- als;
Fig. 5 - einen Schnitt durch das Stentmaterial der Fig. 4a;
Fig. 6 - schematisch einen erfindungsgemäßen Stent mit integrierter Spule;
Fig. 7 - einen erfindungsgemäßen Stent, der eine zweite, senkrecht zur ersten Induktivität ausgebildete Induktivität aufweist und
Fig. 8 - einen erfindungsgemäßen Stent mit zwei hintereinander angeordneten Schwingkreisen.
Figur 1 zeigt schematisch einen erfindungsgemäßen Stent 1, der beispielsweise aus Metall wie Platin, Titan oder Titan- Legierungen und -Verbindungen, oder aus Kunststoff oder Kohlenstoffaser besteht. Das Einsatzgebiet von Stents liegt insbesondere in der Überbrückung von tumor- oder anders bedingten Engstellen (z.B. Gastrointestional und Bronchialtrakt) bei inneren Organen, arteriellen und venösen Gefäßverengungen, peripheren und zentralen Gefäßstenosen, insbesondere bei der koronaren Herzerkrankung. Weitere Anwendungen sind die Schaffung neuer Gefäßwege (Shunts) in Organen, z.B. in der Leber.
Der Stent führt dabei zu einer mechanischen Versiegelung und dauerhaften Erweiterung der betroffenen Region, hinterläßt eine glatte Fläche mit verbesserter Blutströmung, vergrößert das Gefäßvolumen und vermindert den Wiederverschluß, der nach einer konventionellen Ballondilatation häufiger auftritt.
Die Erfolgsquote von Stents ist jedoch eingeschränkt, da im Bereich des Gerüstes Wiederverschlüsse, z. B. durch Einwachsen von Tumorgewebe oder durch Blutgerinsel, sogenannte Thrombosen, entstehen können, die das Lumen akut verschließen. Durch wucherndes, das Gerüst berührendes Gewebe können neue arteriosklerotische Ablagerungen entstehen und das Lumen des Stents wiederverengen oder verschließen. Da klinische Symptome erst bei höhergradigen Verengungen entstehen, die aber je nach Grad der Enge ein immer höheres Risiko des akuten Verschlusses durch Thrombosen haben, ist die Nachkontrolle der Stentfunktion sehr wichtig. Dies ist bis heute jedoch nur mit einer invasiven Katheterisierung des betroffenen Gefäßes, Gabe von allergenem nierenbelasten- den Kontrasmitteln und der Röntgenstrahlung möglich. Aufgrund der ausgeprägten Suszeptibilitätsartefakte von herkömmlichen Stents ist eine MR Kontrolle kaum möglich. Ultraschalluntersuchungen sind durch das ausgeprägte Schallechobildung an dem Stentgerust ebenfalls sehr eingeschränkt. Das Innere des Stentes entzieht sich bisher jeder Form von medizinisch diagnostischer Bildgebung.
Stents bestehen üblicherweise aus Metallgerüsten, z.B. fortlaufenden Metalldrähten oder einer Art Geflechtschlauch oder werden aus Metallrohren unter Verwendung von Laseroder Funkenerosionstechniken hergestellt. Es wird im Rahmen dieser Anmeldung für alle diese Stentausgestaltungen der Begriff "Gerüst" verwendet. Zur Applikation wird ein Stent beispielsweise auf einen Ballon-Katheder aufgelegt, mittels des Katheters am Ort der Implantation plaziert und dann entfaltet, wobei der Ballon den Durchmesser des Stents vergrößert und sich dieser gegen die Gefäßwand drückt. Neben ballonexpandierenden plastisch verformbaren Stents sind selbstexpandierende elastische oder thermisch expandierende Stents bekannt.
Die bekannten Stents sind aufgrund ihrer metallischen Struktur in einem MR-Bild nicht darstellbar, sondern bilden teilweise ausgeprägte Artefakte, so daß eine genaue Plazierung und Überwachung der Plazierung im zeitlichen Verlauf sowie eine funktionelle Kontrolle nach der Plazierung bei Verwendung der Magnetresonanztomographie als bildgebendem Verfahren nicht gewährleistet sind.
Für eine verbesserte Darstellung und Funktionskontrolle des Stents im MR-Bild weist der erfindungsgemäße Stent 1 gemäß Figur 1 eine Induktivität 2 und eine Kapazität 3 auf. Die Induktivität des Stents 1 wird dabei durch das Gerüst 2 des Stents 1 gebildet. Hierzu ist vorgesehen, daß die einzelnen Komponenten des Gerüsts 2 zueinander isoliert werden, wie anhand der Figur 3 noch im einzelnen beispielhaft aufgezeigt werden wird. Eine Isolierung der einzelnen Komponenten des Gerüstes kann dabei bereits während des Herstellungsverfahrens erfolgen, wobei zwischen den einzelnen Phasen der Herstellung des Stents aus einem Metallrohr jeweils eine Isolierschicht auf das bereits ausgebildete Gerüst aufgetragen wird.
Die Induktivität 2 ist mit einer Kapazität 3 elektrisch verbunden, wobei Induktivität 2 und Kapazität 3 einen Schwingkreis bilden. Der Kondensator 3 ist in Figur 1 als Platten- kondensator mit zwei Platten 31, 32 ausgebildet. Es kann jedoch auch ein beliebig anderer Kondensator verwendet werden. Dabei liegt es auch im Rahmen der Erfindung, daß der Kondensator 3 kein eigenes Bauelement darstellt, sondern ebenso wie die Induktivität 2 aus dem Material des Stents 1 besteht, beispielsweise durch parallele Drähte des Drahtgerüsts gebildet wird. Es sei angemerkt, daß die elektrische Verbindung zwischen der Kondensatorplatte 32 und der Induktivität 2 in Figur 1 für eine bessere Übersichtlichkeit der Darstellung nicht dargestellt ist.
In Figur 2a ist das elektrische Schaltbild des im Stent 1 ausgebildeten Schwingkreises 4 , bestehend aus Induktivität 2 und Kapazität 3, dargestellt. Optional ist gemäß Fig. 2b zusätzlich ein Schalter 10 vorgesehen, der mechanisch, etwa durch einen zur Applikation dienenden Katheder, elektrisch oder magnetisch aktivierbar bzw. deaktivierbar ist.
Der Schwingkreis 4 kann auf vielfältigste Weise ausgebildet sein. Gemäß Fig. 2c kann er mehrere parallel geschaltete Induktivitäten 2a bis 2n und gemäß Fig. 2d mehrere parallel geschaltete Kapazitäten 3a bis 3n aufweisen. Des weiteren können mehrere Induktivitäten und/oder Kapazitäten seriell geschaltet sein. Auch kann vorgesehen sein, an einem Stent mehrere Schwingkreise auszubilden, die jeweils einen Schalter und seriell und/oder parallel geschaltete Induktivitäten und/oder Kapazitäten aufweisen können. Speziell bei mehreren parallel oder seriell geschalteten Induktivitäten können mit Hilfe geeigneter Sequenzen Flußmessungen verfeinert werden.
Der Schwingkreis 4 weist eine Resonanzfrequenz auf, die der Resonanzfrequenz der eingestrahlten hochfrequenten Strahlung des MR-Bildungsgebungssystems entspricht, in dem der menschliche Körper, in den der Stent appliziert wird, angeordnet ist.
Bei dem erfindungsgemäßen Stent 1 wird der Schwingkreis 4 durch die eingestrahlten hochfrequenten Pulse des MR-Sy- stems angeregt, da seine Resonanzfrequenz der Frequenz der eingestrahlten HF-Pulse entspricht. Dies führt zu einer Verstärkung des Magnetfeldes in der Induktivität des Schwingkreises oder in der Nähe der Induktivität, was wiederum zu einer verstärkten Anregung der Protonen im entsprechenden Bereich führen kann. Bei einer Anregung der Kerne außerhalb der Induktivität um einen Winkel, der kleiner als 90° ist, können Kerne innerhalb der Induktivität eine Anregung von 90° erfahren und so mit maximaler Amplitude antworten. Die im Bereich der Induktivität angeordneten Protonen bzw. Kerne erfahren somit eine stärkere Anregung, als außerhalb der Induktivität angeordneten Protonen.
Die Verstärkung des Drehwinkels innerhalb der Induktivität kann gegenüber den Protonen außerhalb der Induktivität einen Faktor von bis zu 45 betragen. Es ist daher möglich, die Protonen im Inneren der Induktivität um einen Winkel von 90° auszulenken (maximale Signalantwort) , während die Protonen außerhalb der Induktivität bzw. außerhalb des durch den Schwingkreis erzeugten magnetischen Feldes lediglich eine Kleinwinkelanregung von ca. 2° bis 10° erfahren. Dies führt dazu, daß der innere Bereich des Stents in einem MR-Bild wesentlich heller dargestellt werden kann als die restliche Umgebung. Es kann daher die Lokalisation des Stents im menschlichen Körper genau bestimmt werden.
Zur Abstimmung der Resonanzfrequenz des Schwingkreises 4 auf die Frequenz der eingestrahlten HF-Pulse sind verschiedene Gestaltungen des Schwingkreises 4 möglich.
In einer Variante ist vorgesehen, daß die Güte des Schwingkreises relativ gering gehalten wird, um einen möglichst breitbandigen Schwingkreis zu realisieren und einen möglichst großen Bereich von Resonanzfrequenzen abzudecken. Eine zweite Variante sieht vor, die Vorrichtung so auszubilden, daß auch nach einer Änderung der Geometrie, im betrachteten Beispiel nach dem Entfalten des Stents, das Produkt aus Induktivität und Kapazität konstant ist. Dies kann entweder dadurch erfolgen, daß dem Stent eine Geometrie gegeben wird, die bei einer Entfaltung des Stents ihre Eigenschaften möglichst wenig ändert, also insbesondere eine konstante Induktivität und eine konstante Kapazität aufweist. Eine AufWeitung des Stents am Ort der Implatierung bewirkt somit im wesentlichen keine Änderung der Resonanzfrequenz des Schwingkreises.
Eine Konstanz des Produktes von Induktivität und Kapazität kann zum anderen durch eine Kompensierung der sich ändernden Induktivität durch eine sich entsprechend ändernde Kapazität verwirklicht werden. Zur Kompensierung einer sich ändernden Induktivität durch eine sich entsprechend ändernde Kapazität ist beispielsweise vorgesehen, daß eine Konden- satorflache verschiebbar angeordnet ist, so daß die Kapazität sich entsprechend dem Abstand der Kondensatorflachen vergrößert bzw. verkleinert. Die Verschiebbarkeit der Kondensatorplatte 32 gegenüber der Kondensatorplatte 31 und Einεtellbarkeit der Kapazität ist in Figur 1 durch einen Doppelpfeil schematisch dargestellt.
Eine dritte Variante sieht vor, daß eine Anpassung des Schwingkreises im Magnetfeld des Kernspintomographen durch eine Veränderung bzw. Einstellung der Induktivität und/oder Kapazität des Schwingkreises nach deren Plazierung erfolgt. Hierzu ist beispielsweise vorgesehen, die Kondensatorfläche mit Hilfe des noch im Körper befindlichen Applikationsin- struments, etwa Katheters, zu verändern. Eine Verminderung der Induktivität und damit eine Anpassung des Schwingkreises auf die Resonanzfrequenz im Kernspintomographen kann etwa durch eine laserinduzierte, mechanische oder elektroly- tische Isolierung von Spulensegmenten erfolgen. Eine Ände- rung der Kapazität kann ebenso durch eine laserinduzierte, mechanische oder elektrolytische Isolierung von Kapazitäten erfolgen.
Fig. 3 zeigt schematisch eine mögliche Ausgestaltung eines Stents gemäß der Figur 1. Das Stentmaterial besteht dabei gemäß Fig. 4a und 4b aus zwei oder mehr Schichten 81, 82. Die eine Schicht 81 stellt das Material für die eigentliche Stentfunktion dar. Sie weist eine schlechte Leitfähigkeit und eine hohe Stabilität und Elastizität auf. Als Materialien kommen insbesondere Nickel-Titan, Kunststoff oder Kohlenstofffasern in Frage. Die Schicht (en) 82 stellen das Material zur Ausbildung der Induktivität zur Verfügung. Die Schicht 82 weist hierzu eine sehr gute Leitfähigkeit auf. Als Materialen kommen insbesondere Gold, Silber oder Platin in Frage, die sich neben einer hohen Leitfähigkeit durch Biokompatibilität auszeichnen. Bei Verwendung weniger biokompatibler elektrischer Leiter wie Kupfer kann durch eine geeignete Kunststoff- oder Keramikbeschichtung elektrische Isolation und Biokompatibilität erreicht werden.
Die Herstellung des Stentmaterials gemäß Figuren 4a, 4b erfolgt zum Beispiel dadurch, daß ein Rohr aus Titan oder Titan-Legierungen oder -Verbindungen mit dem Material für die Ausbildung der Induktivität beschichtet und anschließend durch an sich bekannte Laser- oder Funkenerosion- oder Wasserstrahl-Schneidetechniken geschnitten wird.
Eine Spule mit dem Material der Fig. 4a wird gemäß Fig. 3 wie folgt ausgebildet. Der Stent 1 besteht aus einem zweila- gigen Material, das eine wabenförmige Struktur 101 ausbildet und etwa aus einem Rohr durch Laser-Schneidetechniken herausgearbeitet wird. Fig. 3 zeigt das Rohr auseinandergeklappt. Die rechte und linke Seite sind daher identisch. Die leitfähige Schicht der wabenförmigen Struktur ist entlang der Linien 9 unterbrochen. An den entsprechenden Stellen 91 wird die leitfähige Schicht hierzu bei der Herstellung des Stents nach Ausbildung der Struktur mit Hilfe eines chemischen, physikalischen oder mechanischen Verfahrens durchtrennt. Eine Stelle 91, in der die auf dem eigentlichen Stentmaterial 81 angeordnete leitfähige Schicht 82 unterbrochen ist, ist in Figur 5 schematisch dargestellt.
Durch die Trennstellen 91 wird ein Stromweg durch das leitfähige Material 82 definiert, der in Fig. 3 durch Pfeile 11 angedeutet ist. Es entsteht eine Spulenanordnung 2, die die Induktivität des Stents 1 darstellt. Zur Spulenfunktion ist das leitfähige Material derart zu wählen, daß der Widerstand durch den aus dem leitfähigen Material gebildeten Leiter von einem Ende des Stents zum anderen geringer ist als der durch das Stentmaterial vorgegebene
1
Widerstand.
Die Induktivität 2 bildet sich bei einem Auffalten des Stentmaterials während der Applikation des Stents automatisch aus.
Bei Verwendung eines dreilagigen Materials entsprechend Figur 4b erfolgt die Ausbildung einer Induktivität in entsprechender Weise, wobei dann beide Schichten des leitfähigen Materials Trennstellen zur Ausbildung eines Stromwegs aufweisen. Die Verwendung zweier leitfähiger Schichten weist den Vorteil auf, daß sich der Querschnitt der Leiterbahnen effektiv verdoppelt.
In einer Weiterbildung des Ausführungsbeispiels der Fig. 3 bis 5 ist die leitfähige Schicht 82 jeweils zusätzlich nach außen mit einem isolierenden Kunststoff wie einem Pyrolen beschichtet, um einen Stromfluß durch das angrenzende Blut sicher zu verhindern, der die Induktivität der Spule herabsetzen würde. Pyrolene sind geeignet, da sie biokompatibel sind und sich recht gut mit Metall-Legierungen verbinden. Zum Beschichten mit Pyrolenen wird der Stent nach seiner Herstellung beispielsweise in ein Bad mit Pyrolenen gehalten oder mit Pyrolenen bedampft.
Es folgt zur weiteren Veranschaulichung der Erfindung eine Abschätzung der erforderlichen Kapazitäten und Induktivitäten. In dem Beispiel wird ein Plattenkondensator verwendet und die Spule wird als Helix mit einer festen Windungszahl angenommen. Die Resonanzfrequenz eines Kernspinsystems liegt üblicherweise im Bereich zwischen 2 MHz bis 90 MHz. Die Resonanzfrequenz des Kernspinsystems ist dabei gleich dem Produkt aus der magnetischen Feldstärke und dem gyro a- gnetischen Verhältnis g. Bei einer mittleren Feldstärke von 1 Tesla ergibt sich eine Resonanzfrequenz von ca. 42 MHz. Die Resonanzfrequenz des Schwingkreises ergibt sich aus der Thomsonschen Schwingungsgleichung. Sie ist umgekehrt proportional zur Wurzel aus dem Produkt der Induktivität und der Kapazität.
Das Produkt aus Kapazität und Induktivität ist dann gleich 1,4 x 10-19 S2 ist. Bei einem angenommenen Durchmesser des Stents von 8 mm und einer Länge von 40 mm ergibt sich je nach Windungszahl eine Induktivität von etwa 4 x 10~6 Vs/A. Die sich daraus ergebende resultierende Fläche eines Plat- tenkondensators bei einer relativen Dielektrizitätskonstanten von 2 und einem Abstand von 0,1 mm der einzelnen Platten des Plattenkondensators beträgt etwa 0 , 2 mm2. Eine derart kleine Fläche eines Plattenkondensators ist in einem Stent leicht zu verwirklichen. Bei höheren Magnetfeldern bzw. Frequenzen läßt sich die resultierende Fläche eines Plattenkondensators auf 0,014 mm2 weiter reduzieren.
Figur 6 zeigt ein alternatives Ausführungsbeispiel eines Stents 1', der eine Induktivität 2 ' und eine Kapazität 3' ausbildet. Die Induktivität 2 ' ist hier in Form einer helixförmigen Spule 5 ausgeführt, die nicht durch das Stentgerust 101 selbst gebildet wird, sondern in das Stentgerust 101 als zusätzlicher Draht hineingewebt ist. Die Stentfunktion und die Spulenfunktion sind bei diesem Ausführungsbeispiel getrennt.
Die Spule 5 ist zur Ausbildung eines Schwingkreises wiederum mit einem Kondensator 3' verbunden, der entweder ebenfalls ein gesondertes Bauelement darstellt, oder alternativ durch benachbarte Spulenschleifen oder integrierte Flächen des Stents verwirklicht wird.
Bei Applikation des Stents ist die Spule 5 zusammen mit dem Stentmaterial 101 mit kleinerem Radius auf ein Applikati- onsinstrument wie einen Kathether aufgewickelt und dehnt sich dann am Ort der Applikation zusammen mit dem Stentmaterial 101 auf den gewünschten Durchmesser auf. Hierzu weist der Draht bzw. die Spule 5 bevorzugt ein Formgedächtnis auf oder wird der Draht bzw. die Spule 5 auf dem Applikationsin- strument vorgespannt.
Die Überschneidungsflache oder der Abstand der beiden Kon- densatorplatten des Kondensators 3 ' ist zu einer Anpassung der Resonanzfrequenz des Schwingkreises wiederum verschiebbar ausgebildet. Es liegt jedoch durchaus im Rahmen der Erfindung, daß eine Anpassung an die Resonanzfrequenz auf eine andere Art und Weise wie oben beschrieben erfolgt.
Bei dem Ausführungsbeispiel der Figur 7 ist die Induktivität 2 ' ' des Stents schematisch dargestellt. Sie kann entweder aus dem Stentmaterial gebildet (Fig. 3) oder als zusätzlicher Draht ausgeführt sein (Fig. 6) . Ein eigener Kondensator ist bei dieser Ausführungsform nicht vorgesehen. Vielmehr bilden zwei Schlaufen 21, 22 der Induktivität 2 ' ' die Kapazität aus, wobei zur Erhöhung der Kapazität zwischen den beiden Schlaufen 21, 22 ein Dielektrikum 6 mit einer möglichst hohen Dielektrizitätskonstante angeordnet ist.
Zusätzlich zu der Induktivität 2 ' ' ist eine weitere Induktivität 7 in Form von einem Spulenpaar 7 vorgesehen, dessen Achse senkrecht zur Achse der Induktivität 2 ' ' liegt. Das Spulenpaar 7 wird beispielsweise durch zwei spiralförmige Spulenanordnungen gebildet, die in das Stentgerust integriert sind. Hierdurch wird gewährleistet, daß bei jeder Anordnung des Stents im Gewebe eine Komponente senkrecht zur Feldrichtung des homogenen äußeren Magneten vorliegt. Alternativ ist hierzu eine weitere Induktivität senkrecht zu den beiden dargestellten Induktivitäten vorgesehen. Auf diese Weise wird bei jeder Anordnung des Stents im Magnetfeld eine verstärkte Spinanregung im betrachteten Bereich gewährleistet.
Zwei weitere Varianten der Erfindung sind anhand der Schaltbilder der Figuren 2e und 2f dargestellt. In Figur 2e wird der Kondensator 3 ' ' ' durch zwei gekreuzte Dioden 12 , die als zusätzliche Elemente im Gerüst des Stents enthalten sind, während der Anregungsphase kurzgeschlossen. Die Dioden 12 weisen eine Durchlaßspannung auf, die etwa bei 1 Volt, jedenfalls unterhalb der bei der Einstrahlung hochfrequenter Strahlung erzeugten Spannung liegt, die üblicherweise mehr als 1 Volt beträgt. Die Dioden 12 leiten somit bei Einstrahlung der hochfrequenten Strahlung, so daß der Kondensator 3' ' ' in der Anregungsphase kurzgeschlossen wird und sich kein Schwinkreis ausbildet.
Dies bedeutet, daß bei Einstrahlung der hochfrequenten Strahlung anders als bei den bisherigen Ausführungsbeispie- len keine verstärkte lokale Anregung der Kernspins erfolgt. Allerdings wird bei Messung der Signalantwort des von der Induktivität 2 ' ' ' erfaßten Bereiches der Kurzschluß der Kapazität 3' ' ' wieder aufgehoben. Hierzu sind die Dioden 12 derart ausgestaltet, daß die Durchlaßspannung oberhalb der bei der Spin-Signalantwort erzeugten Spannung liegt. Der Kondensator 3 ' ' ' wird somit bei Abstrahlung der MR-Antwortsignale der Atomkerne nicht kurzgeschlossen und es entsteht ein Schwingkreis 4 ' ' ' , der eine Verstärkung der abgestrahlten MR-Antwortsignale der Protonen bewirkt und dadurch die gemessene Signalantwort verändert.
Die Dioden 12 können auf vielfältige Art im Stentgerust verwirklicht werden. Insbesondere können gesonderte Bauelemente verwendet oder die Dioden durch oder in Zusammenwirkung mit dem Stentmaterial gebildet werden, etwa als auf das Stentgerust aufgebrachte Strukturen.
In Fig. 2f wird der Kondensator 2 ' ' ' bei prinzipiell gleichem Aufbau wie in Fig. 2e nicht kurzgeschlossen, sondern der Schwingkreis 4 ' ' ' durch Zuschalten eines weiteren Kondensators 13 in der Anregungsphase lediglich verstimmt, so daß eine verstärkte Anregung der Kernspins in nur begrenztem Maße erfolgt. Bei Abstrahlung der MR-Antwortsignale sperren die Dioden 12 , so daß der Schwinkreis 4 ' ' ' dann unverstimmt vorliegt und eine Verstärkung der abgestrahlten MR-Antwortsignale erfolgt, was zu einer veränderten Signalantwort führt, die im MR-Bild dargestellt wird.
In Fig. 2g wird in der Anregungsphase der Schwingkreis 4' ' ' nicht durch Zuschalten eines Kondensators, sondern durch Zuschalten einer Spule 14 verstimmt.
In einer Weiterbildung der Erfindung ist es möglich, auch die Geschwindigkeit des die Vorrichtung durchfließenden Blutes zu bestimmen. Hierzu werden an sich bekannte Sequenztechniken verwendet. Beispielsweise werden im Bereich des blutzuführenden Gewebes vor der Vorrichtung Sättigungsimpulse vorgenommen, wobei eine Variation entweder des Ortes der Sättigungsimpulse oder des Zeitabstandes zwischen Sättigungspuls und Kleinwinkelanregung die Berechnung der Flußge- schwindigkeit und damit funktionelle Aussagen über den Status des Gefäßes ermöglichen. Beliebige bekannte Methoden der Flußbestimmung sind in Verbindung mit dem erfindungsgemäßen Stent einsetzbar. Neue Sequenztechniken können die Eigenschaften des Stents dabei gezielt ausnutzen, d.h. eine verstärkte Anregung und einen verstärkten Empfang oder lediglich einen verstärkten Empfang des vom Stent umschlossenen Bereichs.
Fig. 8 zeigt einen Stent 1' ' ' ' , der bevorzugt zur Flußmessung eingesetzt wird. Der Stent weist zwei hintereinander angeordnete Schwingkreise 4a, 4b auf, die schematisch dargestellt sind. Die Schwingkreise 4a, 4b können aus dem Stentmaterial oder durch zusätzliche Bauelemente gebildet sein, wie anhand der obigen Ausführungsbeispiele beschrieben ist. Der eine Schwingkreis 4a weist zwei gekreuzte Dioden entsprechend Figur 2e auf, so daß die Kapazität bei der Anregung kurzgeschlossen wird. Der andere Schwingkreis 4b ist ohne Dioden ausgebildet.
Dies führt dazu, daß bei Einstrahlung hochfrequenter MR-An- regungsimpulse in einem Teilbereich des Stents, nämlich dem Teilbereich, der von dem Schwingkreis 4b ohne Dioden umgeben ist, eine verstärkte Anregung stattfindet. Jedoch liegt auch in dem anderen Teilbereich, der von dem Schwingkreis 4a umgeben ist, eine gegenüber dem umgebenden Gewebe veränderte Signalantwort vor, wie anhand der Figur 2e erläutert wurde. Eine derartige Anordnung ist bei Verwendung geeigneter Sequenztechniken besonders gut zur Flußbe- stimmung und damit zur funktioneilen Kontrolle des Stents geeignet.
In einer Weiterbildung der Erfindung (nicht dargestellt) ist ein Katheter oder Ballon mit einer Empfangspuleneinrichtung ausgerüstet. Statt oder ergänzend zu einer externen Empfangsspule des MR-Systems empfängt der Katheter oder Ballon das vom Stent verstärkte Signal und leitet es extrakorporal weiter. Der Katheter kann hierbei über die gleiche oder ähnliche Anordnung von Induktivität, Kapazität und Dioden verfügen und die Signale des Stentes verstärken und entweder über elektrisch leitende Bahnen oder über optische Koppelung und Glasfasern extrakorporal an den Tomographen weiterleiten. Gegenüber der Verwendung externer Empfangsspu- len zeichnet sich diese Variante durch eine verbesserte Signaldetektion aus.
In einer anderen Weiterbildung (nicht dargestellt) der Erfindung ist vorgesehen, daß die Induktivität des Stents auch selbst als Empfangsspule zur Erfassung von MR-Antwort- signalen verwendet wird, wobei die Induktivität dann über eine Kabelverbindung mit extrakorporalen Funktionskomponenten verbunden ist. Hierdurch wird ermöglicht, die Induktivität des Schwingkreises ergänzend aktiv zur Bildgebung zu verwenden. Aufgrund der Notwendigkeit einer Kabelverbindung mit extrakorporalen Funktionskomponenten wird dies jedoch im allgemeinen nur während der Implantation eines Stents in Frage kommen.
Die Erfindung beschränkt sich in ihrer Ausführung nicht auf die vorstehend angegebenen Ausführungsbeispiele. Wesentlich für die Erfindung ist allein, daß der Stent mindestens einen passiven Schwingkreis mit einer Induktivität und einer Kapazität aufweist.
* * * * *

Claims

Ansprüche
1. MR-Bildgebungsverfahren zur Darstellung und Positionsbestimmung eines in ein Untersuchungsobjekt eingeführten Stents, bei dem
a) das Untersuchungsobjekt in einem äußeren Magnetfeld angeordnet,
b) durch Einstrahlung hochfrequenter Strahlung einer bestimmten Resonanzfrequenz Übergänge zwischen Spin-Energieniveaus der Atomkerne des Untersuchungsobjekts angeregt und
c) dabei erzeugte MR-Signale als Signalantwort detek- tiert, ausgewertet und ortsaufgelöst dargestellt werden,
dadurch gekennzeichnet,
daß in einem lokal begrenzten Bereich in oder um den Stent eine veränderte Signalantwort erzeugt wird, indem der Stent mindestens einen passiven Schwingkreis mit einer Induktivität und einer Kapazität ausbildet oder aufweist, dessen Resonanzfrequenz im wesentlichen gleich der Resonanzfrequenz der eingestrahlten hochfrequenten Strahlung ist, und der Bereich mit veränderter Signalantwort ortsaufgelöst dargestellt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei Einstrahlung der hochfrequenten Strahlung der Schwingkreis angeregt und dadurch in dem lokal begrenzten Bereich eine verstärkte Anregung der Kernspins des Untersuchungsobjekts erfolgt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der lokal begrenzte Bereich, in dem eine Verstärkung der Anregung der Kernspins erfolgt, innerhalb des Stents (1) liegt.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei Einstrahlung der hochfrequenten Strahlung der Schwingkreis verstimmt oder die Kapazität kurzgeschlossen wird, so daß keine verstärkte Anregung der Kernspins in dem lokal begrenzten Bereich erfolgt, bei Messung der Signalantwort des lokal begrenzten Bereichs die Verstimmung des Schwinkreises bzw. der Kurzschluß der Kapazität jedoch aufgehoben wird, was zu einer Veränderung der Signalantwort führt.
5. Verfahren nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Schwingkreis am Stent erst nach Einbringen des Stents in das Untersu- chungsobjekt ausgebildet oder aktiviert wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Schwingkreis bei Auffalten des Stents während dessen Applikation ausgebildet wird.
7. Verfahren nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß zur resonanten Abstimmung des Schwingkreises die Induktivität und/oder die Kapazität eingestellt werden.
8. Verfahren nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß mindestens zwei am Stent ausgebildete oder angeordnete Schwingkreise verwendet werden, wobei die Spulen der jeweiligen Induktivitäten unterschiedlich, insbesondere senkrecht zueinander ausgerichtet oder hintereinander angeordnet sind.
9. Stent mit einem auffaltbaren Gerüst
gekennzeichnet durch
mindestens einen passiven Schwingkreis (4, 4''') mit einer Induktivität (2, 2 ' , 2 ' ' , 2 ' ' ' ) und einer Kapazität (3, 3', 3 ' 1 ' ) , dessen Resonanzfrequenz im wesentlichen gleich der Resonanzfrequenz der eingestrahlten hochfrequenten Strahlung eines MR-Bildgebungssystems ist.
10. Stent nach Anspruch 9, dadurch gekennzeichnet, daß das Gerüst des Stents die Induktivität (2) ausbildet.
11. Stent nach Anspruch 10, dadurch gekennzeichnet, daß das Gerüst aus einem Material besteht, das mindestens eine Schicht (82) mit guter Leitfähigkeit aufweist, die die Induktivität ausbildet.
12. Stent nach Anspruch 11, dadurch gekennzeichnet, daß das Stentmaterial mindestens zwei Schichten (81, 82) aufweist, mindestens eine Schicht (82) mit guter Leitfähigkeit und eine Schicht (81) mit schlechter Leitfähigkeit, die das Material für die eigentliche Stentfunkti- on bildet.
13. Stent nach Anspruch 11 oder 12, dadurch gekennzeichnet, das die Schicht (82) guter Leitfähigkeit an geeigneten Stellen (91) durchtrennt ist, so daß verschiedene gegeneinander isolierte Bereiche des Gerüsts derart vorliegen, daß eine Induktivität gebildet wird.
14. Stent nach Anspruch 13, dadurch gekennzeichnet, daß das Gerüst eine wabenförmige Struktur (101) aufweist, deren leitfähige Schicht zur Ausbildung einer Spulenanordnung regelmäßig oberhalb und unterhalb von Kreuzungspunkten der wabenförmigen Struktur (101) durchtrennt ist.
15. Stent nach mindestens einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, daß das Gerüst (2, 2 ' , 2 ' ' ) des Stents in Form einer Helix, einer Doppel- oder einer Mehrfachhelix ausgebildet ist.
16. Stent nach Anspruch 9, dadurch gekennzeichnet, daß die Induktivität ( 2 ' ) des Schwingkreises durch eine gesonderte Spule (5) gebildet wird, die in den Stent integriert ist.
17. Stent nach Anspruch 16, dadurch gekennzeichnet, daß die Spule (5) in das Gerüst (101) des Stents gewebt ist.
18. Stent nach Anspruch 17, dadurch gekennzeichnet, daß die Spule (5) derart mit dem Gerüst verbunden ist, daß sie sich beim Entfalten des Stents zusammen mit dem Gerüst auffaltet.
19. Stent nach mindestens einem der Ansprüche 9 bis 18, dadurch gekennzeichnet, daß die Kapazität des Stents zumindest teilweise aus dem Stent-Material gebildet ist, insbesondere durch parallele Leiter (21, 22) oder Flächen der Induktivität ( 2 ' ' ) .
20. Stent nach mindestens einem der Ansprüche 9 bis 18, dadurch gekennzeichnet, daß die Kapazität des Stents durch einen gesondert vorgesehenen Kondensator, insbesondere Plattenkondensator oder Zylinderkondensator gebildet ist.
21. Stent nach mindestens einem der Ansprüche 9 bis 20, dadurch gekennzeichnet, daß der Stent Mittel (13) zur Verstimmung des Schwingkreises bei Einstrahlung der hochfrequenten Strahlung aufweist.
22. Stent nach Anspruch 21, dadurch gekennzeichnet, daß die
Mittel zur Verstimmung des Schwingkreises einen Kondensator (13) aufweisen, der bei Einstrahlung der hochfrequenten Strahlung parallel zur Kapazität (3''') des Schwingkreises geschaltet wird.
23. Stent nach Anspruch 21, dadurch gekennzeichnet, daß die Mittel zur Verstimmung des Schwingkreises eine Spule
(14) aufweisen, die bei Einstrahlung der hochfrequenten Strahlung parallel zur Induktivität ( 2 ' ' ' ) des Schwingkreises geschaltet wird.
24. Stent nach mindestens einem der Ansprüche 9 bis 20, dadurch gekennzeichnet, daß der Stent Mittel (12) zum Kurzschließen der Kapazität ( 2 ' ' ' ) bei Einstrahlung der hochfrequenten Strahlung aufweist.
25. Stent nach Anspruch 24, dadurch gekennzeichnet, daß die Mittel zum Kurzschließen der Kapazität zwei gekreuzte Dioden (12) aufweisen, die parallel zur Kapazität geschaltet (3''') sind.
26. Stent nach mindestens einem der Ansprüche 9 bis 25, dadurch gekennzeichnet, daß ein Schalter (10) vorgesehen ist, durch den der mindestens eine Schwingkreis aktivierbar bzw. deaktivierbar ist.
27. Stent nach mindestens einem der Ansprüche 9 bis 26, dadurch gekennzeichnet, daß die Induktivität (2) und/ oder die Kapazität (3) des Schwingkreises zur Abstimmung auf die Resonanzfrequenz des MR-Systems verstellbar sind.
28. Stent nach mindestens einem der Ansprüche 9 bis 27, dadurch gekennzeichnet, daß die Stent derart ausgebildet ist, daß bei einer Änderung der Geometrie des Stents bei dessen Applikation das Produkt aus Induktivität und Kapazität des Schwingkreises im wesentlichen konstant bleibt, insbesondere eine Erhöhung des Induktivität mit einer Verringerung der Kapazität einhergeht.
29. Stent nach mindestens einem der Ansprüche 9 bis 28, dadurch gekennzeichnet, daß die Güte des Schwingkreises (4) relativ gering ist.
30. Stent nach mindestens einem der Ansprüche 9 bis 29, dadurch gekennzeichnet, daß der Schwingkreis (4) mehrere parallel oder seriell geschaltete Induktivitäten (2a, 2n) und/oder Kapazitäten (3a, 3n) aufweist.
31. Stent nach mindestens einem der Ansprüche 9 bis 30, dadurch gekennzeichnet, daß der Stent mehrere Schwingkreise (2'', 7; 4a, 4b) mit mehreren Induktivitäten aufweist, die unterschiedlich, insbesondere senkrecht zueinander ausgerichtet oder hintereinander angeordnet sind .
* * * * *
PCT/DE1998/003045 1997-10-13 1998-10-13 Stent und mr-bildgebungsverfahren zur darstellung und positionsbestimmung eines stents WO1999019738A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU13325/99A AU1332599A (en) 1997-10-13 1998-10-13 Stent and mr imaging method for representing and determining the position of a stent
DE59800900T DE59800900D1 (de) 1997-10-13 1998-10-13 Stent und mr-bildgebungsverfahren zur darstellung und positionsbestimmung eines stents
CA002306769A CA2306769C (en) 1997-10-13 1998-10-13 Stent and mr imaging method for representing and determining the position of a stent
JP2000516237A JP4271847B2 (ja) 1997-10-13 1998-10-13 ステントの位置を表示し決定するためのmr画像化システムと、同mr画像化システムに用いられるステント
EP98956813A EP1023609B1 (de) 1997-10-13 1998-10-13 Stent und mr-bildgebungsverfahren zur darstellung und positionsbestimmung eines stents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19746735.0 1997-10-13
DE19746735A DE19746735C2 (de) 1997-10-13 1997-10-13 NMR-Bildgebungsverfahren zur Darstellung, Positionsbestimmung oder funktionellen Kontrolle einer in ein Untersuchungsobjekt eingeführten Vorrichtung und Vorrichtung zur Verwendung in einem derartigen Verfahren

Publications (1)

Publication Number Publication Date
WO1999019738A1 true WO1999019738A1 (de) 1999-04-22

Family

ID=7846328

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/DE1998/003046 WO1999019739A1 (de) 1997-10-13 1998-10-13 Mr-bildgebungsverfahren und medizinische vorrichtung zur verwendung in dem verfahren
PCT/DE1998/003045 WO1999019738A1 (de) 1997-10-13 1998-10-13 Stent und mr-bildgebungsverfahren zur darstellung und positionsbestimmung eines stents

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/003046 WO1999019739A1 (de) 1997-10-13 1998-10-13 Mr-bildgebungsverfahren und medizinische vorrichtung zur verwendung in dem verfahren

Country Status (8)

Country Link
US (2) US6280385B1 (de)
EP (3) EP1021730B1 (de)
JP (2) JP4271847B2 (de)
AU (2) AU1432999A (de)
CA (2) CA2306769C (de)
DE (3) DE19746735C2 (de)
ES (2) ES2196626T3 (de)
WO (2) WO1999019739A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015662A1 (de) 2001-08-08 2003-02-27 Buecker Arno Magnetresonanzkompatible metallische endoprothese
EP1304581A2 (de) * 2001-10-19 2003-04-23 Philips Corporate Intellectual Property GmbH Verfahren zum Lokalisieren eines Gegenstandes in einer MR-Apparatur sowie Katheter und MR-Apparatur zur Durchführung des Verfahrens
WO2007018611A1 (en) * 2005-08-08 2007-02-15 Boston Scientific Limited Mri resonator system with stent implant
EP1485044B1 (de) * 2002-03-14 2007-12-05 Angiomed GmbH & Co. Medizintechnik KG Mri-kompatibler stent sowie verfahren zu seiner herstellung
JP2008529588A (ja) * 2005-02-04 2008-08-07 ボストン サイエンティフィック リミティド 医療装置用共鳴器

Families Citing this family (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19746735C2 (de) * 1997-10-13 2003-11-06 Simag Gmbh Systeme Und Instr F NMR-Bildgebungsverfahren zur Darstellung, Positionsbestimmung oder funktionellen Kontrolle einer in ein Untersuchungsobjekt eingeführten Vorrichtung und Vorrichtung zur Verwendung in einem derartigen Verfahren
DE19800471A1 (de) * 1998-01-09 1999-07-15 Philips Patentverwaltung MR-Verfahren mit im Untersuchungsbereich befindlichen Mikrospulen
DE19844767C2 (de) * 1998-09-29 2002-11-21 Simag Gmbh Systeme Und Instr F Betriebsverfahren für ein Kernspintomographiegerät zur Ermittlung der Position eines Instruments und zur Durchführung des Verfahrens
US9061139B2 (en) * 1998-11-04 2015-06-23 Greatbatch Ltd. Implantable lead with a band stop filter having a capacitor in parallel with an inductor embedded in a dielectric body
US7945322B2 (en) * 2005-11-11 2011-05-17 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility
US6701176B1 (en) 1998-11-04 2004-03-02 Johns Hopkins University School Of Medicine Magnetic-resonance-guided imaging, electrophysiology, and ablation
US8244370B2 (en) * 2001-04-13 2012-08-14 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
DE19921088C2 (de) * 1999-04-30 2003-08-07 Magforce Applic Gmbh Stent zur Offenhaltung gangartiger Strukturen
DE19956595A1 (de) * 1999-11-25 2001-05-31 Philips Corp Intellectual Pty MR-Verfahren zur Anregung der Kernmagnetisierung in einem begrenzten räumlichen Bereich
ATE285709T1 (de) * 2000-03-06 2005-01-15 Medos Sa Implantierbares kernresonanz-spektrometer
US6487437B1 (en) * 2000-03-21 2002-11-26 Image-Guided Neurologies, Inc. Device for high gain and uniformly localized magnetic resonance imaging
AU2001251078A1 (en) * 2000-03-30 2001-10-15 Case Western Reserve University Wireless detuning of a resonant circuit in an mr imaging system
DE10055686A1 (de) 2000-11-03 2002-05-08 Biotronik Mess & Therapieg Vorrichtung zur Beeinflussung von Zellproliferationsmechanismen in Gefäßen des menschlichen oder tierischen Körpers
US8372139B2 (en) * 2001-02-14 2013-02-12 Advanced Bio Prosthetic Surfaces, Ltd. In vivo sensor and method of making same
US6574497B1 (en) 2000-12-22 2003-06-03 Advanced Cardiovascular Systems, Inc. MRI medical device markers utilizing fluorine-19
US6767360B1 (en) 2001-02-08 2004-07-27 Inflow Dynamics Inc. Vascular stent with composite structure for magnetic reasonance imaging capabilities
US20070168005A1 (en) * 2001-02-20 2007-07-19 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050283214A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20070168006A1 (en) * 2001-02-20 2007-07-19 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288753A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050283167A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US6829509B1 (en) * 2001-02-20 2004-12-07 Biophan Technologies, Inc. Electromagnetic interference immune tissue invasive system
US6949929B2 (en) * 2003-06-24 2005-09-27 Biophan Technologies, Inc. Magnetic resonance imaging interference immune device
US20070173911A1 (en) * 2001-02-20 2007-07-26 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288750A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US8989870B2 (en) * 2001-04-13 2015-03-24 Greatbatch Ltd. Tuned energy balanced system for minimizing heating and/or to provide EMI protection of implanted leads in a high power electromagnetic field environment
US8219208B2 (en) 2001-04-13 2012-07-10 Greatbatch Ltd. Frequency selective passive component networks for active implantable medical devices utilizing an energy dissipating surface
US8509913B2 (en) * 2001-04-13 2013-08-13 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US20070088416A1 (en) * 2001-04-13 2007-04-19 Surgi-Vision, Inc. Mri compatible medical leads
US7787958B2 (en) 2001-04-13 2010-08-31 Greatbatch Ltd. RFID detection and identification system for implantable medical lead systems
US7899551B2 (en) * 2001-04-13 2011-03-01 Greatbatch Ltd. Medical lead system utilizing electromagnetic bandstop filters
US8977355B2 (en) 2001-04-13 2015-03-10 Greatbatch Ltd. EMI filter employing a capacitor and an inductor tank circuit having optimum component values
US9295828B2 (en) 2001-04-13 2016-03-29 Greatbatch Ltd. Self-resonant inductor wound portion of an implantable lead for enhanced MRI compatibility of active implantable medical devices
US7853325B2 (en) * 2001-04-13 2010-12-14 Greatbatch Ltd. Cylindrical bandstop filters for medical lead systems
US8712544B2 (en) 2001-04-13 2014-04-29 Greatbatch Ltd. Electromagnetic shield for a passive electronic component in an active medical device implantable lead
WO2002083016A1 (en) 2001-04-13 2002-10-24 Surgi-Vision, Inc. Systems and methods for magnetic-resonance-guided interventional procedures
US8457760B2 (en) 2001-04-13 2013-06-04 Greatbatch Ltd. Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment
US6712844B2 (en) 2001-06-06 2004-03-30 Advanced Cardiovascular Systems, Inc. MRI compatible stent
DE10127850B4 (de) * 2001-06-08 2006-04-13 Lars Dr.med. Grenacher Vorrichtung zum Durchführen Kernresonanzspektroskopischer Untersuchungen im Inneren organischer Körper
AU2002345328A1 (en) 2001-06-27 2003-03-03 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
FR2826760B1 (fr) * 2001-06-29 2004-01-09 Ge Med Sys Global Tech Co Llc Procede de visualisation du deploiement d'une prothese endo-vasculaire
US6702847B2 (en) * 2001-06-29 2004-03-09 Scimed Life Systems, Inc. Endoluminal device with indicator member for remote detection of endoleaks and/or changes in device morphology
US20050178584A1 (en) * 2002-01-22 2005-08-18 Xingwu Wang Coated stent and MR imaging thereof
DE10203372A1 (de) * 2002-01-29 2003-09-04 Siemens Ag Medizinisches Untersuchungs- und/oder Behandlungssystem
DE10203371A1 (de) * 2002-01-29 2003-08-07 Siemens Ag Katheter, insbesondere intravaskulärer Katheter
AU2003249665B2 (en) 2002-05-29 2008-04-03 Surgi-Vision, Inc. Magnetic resonance probes
US7725160B2 (en) * 2002-08-12 2010-05-25 Boston Scientific Scimed, Inc. Tunable MRI enhancing device
US7331986B2 (en) * 2002-10-09 2008-02-19 Boston Scientific Scimed, Inc. Intraluminal medical device having improved visibility
DE10258708A1 (de) * 2002-12-12 2004-07-08 Simag GmbH Systeme und Instrumente für die Magnetresonanztomographie Gefäßfilter
CN100516921C (zh) * 2002-12-13 2009-07-22 皇家飞利浦电子股份有限公司 确定磁共振设备中物体的位置的方法和装置
US7972371B2 (en) * 2003-01-31 2011-07-05 Koninklijke Philips Electronics N.V. Magnetic resonance compatible stent
US7172624B2 (en) * 2003-02-06 2007-02-06 Boston Scientific Scimed, Inc. Medical device with magnetic resonance visibility enhancing structure
US7792568B2 (en) * 2003-03-17 2010-09-07 Boston Scientific Scimed, Inc. MRI-visible medical devices
DE10321119A1 (de) * 2003-05-09 2004-11-25 Phytis Medical Devices Gmbh Marker zur Kennzeichnung von funktionellen Stellen bei Implantaten
US20040230290A1 (en) * 2003-05-15 2004-11-18 Jan Weber Medical devices and methods of making the same
US7388378B2 (en) * 2003-06-24 2008-06-17 Medtronic, Inc. Magnetic resonance imaging interference immune device
US7839146B2 (en) * 2003-06-24 2010-11-23 Medtronic, Inc. Magnetic resonance imaging interference immune device
US7479157B2 (en) * 2003-08-07 2009-01-20 Boston Scientific Scimed, Inc. Stent designs which enable the visibility of the inside of the stent during MRI
US8721710B2 (en) * 2003-08-11 2014-05-13 Hdh Medical Ltd. Anastomosis system and method
US20050038497A1 (en) * 2003-08-11 2005-02-17 Scimed Life Systems, Inc. Deformation medical device without material deformation
US20050043786A1 (en) * 2003-08-18 2005-02-24 Medtronic Ave, Inc. Methods and apparatus for treatment of aneurysmal tissue
US20050050042A1 (en) * 2003-08-20 2005-03-03 Marvin Elder Natural language database querying
US20050288751A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050283213A1 (en) * 2003-08-25 2005-12-22 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288752A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US8868212B2 (en) * 2003-08-25 2014-10-21 Medtronic, Inc. Medical device with an electrically conductive anti-antenna member
US20050288755A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288754A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US20050288756A1 (en) * 2003-08-25 2005-12-29 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
US7344559B2 (en) * 2003-08-25 2008-03-18 Biophan Technologies, Inc. Electromagnetic radiation transparent device and method of making thereof
CN1849521B (zh) * 2003-09-09 2010-06-16 皇家飞利浦电子股份有限公司 由磁共振成像监测的介入过程的导管尖端跟踪
JP4846582B2 (ja) * 2003-09-12 2011-12-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マイクロコイルを備える医療機器の位置を突きとめるための方法
US20050065437A1 (en) * 2003-09-24 2005-03-24 Scimed Life Systems, Inc. Medical device with markers for magnetic resonance visibility
US20050085895A1 (en) * 2003-10-15 2005-04-21 Scimed Life Systems, Inc. RF-based markers for MRI visualization of medical devices
US7367970B2 (en) * 2003-11-11 2008-05-06 Biosense Webster Inc. Externally applied RF for pulmonary vein isolation
DE10355986A1 (de) * 2003-11-27 2005-06-30 Forschungszentrum Karlsruhe Gmbh Kompressionsmanschette
DE10357334A1 (de) * 2003-12-05 2005-07-07 Grönemeyer, Dietrich H. W., Prof. Dr.med. MR-kompatibles medizinisches Implantat
US7538554B2 (en) * 2003-12-08 2009-05-26 Koninlijke Philips Electronics N.V. Circuit arrangement for detuning a resonant circuit of an MR apparatus
GB0400571D0 (en) * 2004-01-12 2004-02-11 Angiomed Gmbh & Co Implant
US8620406B2 (en) 2004-01-23 2013-12-31 Boston Scientific Scimed, Inc. Medical devices visible by magnetic resonance imaging
BE1015916A3 (nl) * 2004-02-25 2005-11-08 Clerck Rene De Werkwijze en markeerelement voor het bepalen van de positie van een dentaal implantaat.
US7761138B2 (en) * 2004-03-12 2010-07-20 Boston Scientific Scimed, Inc. MRI and X-ray visualization
US7483732B2 (en) * 2004-04-15 2009-01-27 Boston Scientific Scimed, Inc. Magnetic resonance imaging of a medical device and proximate body tissue
WO2005103748A1 (en) 2004-04-23 2005-11-03 Koninklijke Philips Electronics N.V. Magnetic resonance imaging system provided with an electrical accessory device
US20050278017A1 (en) * 2004-06-09 2005-12-15 Scimed Life Systems, Inc. Overlapped stents for scaffolding, flexibility and MRI compatibility
CN1977179A (zh) 2004-06-28 2007-06-06 皇家飞利浦电子股份有限公司 在rf场中使用的传输线
WO2006023700A2 (en) * 2004-08-20 2006-03-02 Biophan Technologies, Inc. Magnetic resonance imaging interference immune device
US8442623B2 (en) * 2004-10-13 2013-05-14 Suros Surgical Systems, Inc. Site marker visible under multiple modalities
US20060079805A1 (en) * 2004-10-13 2006-04-13 Miller Michael E Site marker visable under multiple modalities
US8060183B2 (en) * 2004-10-13 2011-11-15 Suros Surgical Systems, Inc. Site marker visible under multiple modalities
US8280486B2 (en) 2004-10-13 2012-10-02 Suros Surgical Systems, Inc. Site marker visable under multiple modalities
US20060105016A1 (en) * 2004-11-12 2006-05-18 Gray Robert W Device compatible with magnetic resonance imaging
US8048141B2 (en) * 2004-12-07 2011-11-01 Boston Scientific Scimed, Inc. Medical device that signals lumen loss
CN101080198B (zh) * 2004-12-17 2010-12-08 奥林巴斯株式会社 位置检测系统、引导系统、位置检测方法、医用装置、和医用磁感应及位置检测系统
CN101084450B (zh) 2004-12-20 2010-10-06 皇家飞利浦电子股份有限公司 用在rf场中的传输路径、电附属设备以及磁共振成像系统
DE102004062269A1 (de) * 2004-12-23 2006-07-13 Siemens Ag Verfahren und Vorrichtung zum sicheren Betrieb eines Schaltgerätes
EP1681017A1 (de) * 2005-01-13 2006-07-19 DKFZ Deutsches Krebsforschungszentrum Implantierbare Kammer, Bildgebungsverfahren und Vorrichtung für die Magnetresonanzbildgebung
US20100104849A1 (en) * 2005-05-03 2010-04-29 Lashmore David S Carbon composite materials and methods of manufacturing same
US20080286546A1 (en) * 2005-05-03 2008-11-20 Nanocomp Technologies, Inc. Continuous glassy carbon composite materials reinforced with carbon nanotubes and methods of manufacturing same
US20060265049A1 (en) * 2005-05-19 2006-11-23 Gray Robert W Stent and MR imaging process and device
WO2006125086A2 (en) * 2005-05-19 2006-11-23 Isoflux, Inc. Multi-layer coating system and method
US20070010739A1 (en) * 2005-05-19 2007-01-11 Biophan Technologies, Inc. Electromagnetic resonant circuit sleeve for implantable medical device
US7595469B2 (en) * 2005-05-24 2009-09-29 Boston Scientific Scimed, Inc. Resonator for medical device
US7279664B2 (en) * 2005-07-26 2007-10-09 Boston Scientific Scimed, Inc. Resonator for medical device
DE102005034838B4 (de) 2005-07-26 2018-03-29 Karsten König Vorrichtung zur NMR-Untersuchung intrakorporaler Köperbereiche
JP4763439B2 (ja) * 2005-08-08 2011-08-31 オリンパス株式会社 医療装置磁気誘導・位置検出システム
US7304277B2 (en) * 2005-08-23 2007-12-04 Boston Scientific Scimed, Inc Resonator with adjustable capacitor for medical device
US7524282B2 (en) * 2005-08-29 2009-04-28 Boston Scientific Scimed, Inc. Cardiac sleeve apparatus, system and method of use
DE102005044009A1 (de) 2005-09-14 2007-03-22 Biophan Europe Gmbh Biologische oder künstliche Klappenprothese zur Verwendung im menschlichen und/oder tierischen Körper zum Einsatz einer Organklappe oder Gefäßklappe
DE102005047235A1 (de) 2005-10-01 2007-04-05 Grönemeyer, Dietrich H. W., Prof. Dr.med. MR-kompatible Gefäßendoprothese
US7423496B2 (en) 2005-11-09 2008-09-09 Boston Scientific Scimed, Inc. Resonator with adjustable capacitance for medical device
US7853324B2 (en) * 2005-11-11 2010-12-14 Greatbatch Ltd. Tank filters utilizing very low K materials, in series with lead wires or circuits of active medical devices to enhance MRI compatibility
US8224462B2 (en) 2005-11-11 2012-07-17 Greatbatch Ltd. Medical lead system utilizing electromagnetic bandstop filters
JP4757021B2 (ja) * 2005-12-28 2011-08-24 オリンパス株式会社 位置検出システム
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US20070224244A1 (en) * 2006-03-22 2007-09-27 Jan Weber Corrosion resistant coatings for biodegradable metallic implants
US20070239256A1 (en) * 2006-03-22 2007-10-11 Jan Weber Medical devices having electrical circuits with multilayer regions
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
DE102006036649A1 (de) * 2006-04-27 2007-10-31 Biophan Europe Gmbh Okkluder
WO2007140389A2 (en) * 2006-05-30 2007-12-06 Biophan Technologies, Inc. Magnetic resonance imaging stent having inter-luminal compatibility with magnetic resonance imaging
US8116862B2 (en) 2006-06-08 2012-02-14 Greatbatch Ltd. Tank filters placed in series with the lead wires or circuits of active medical devices to enhance MRI compatibility
US7702387B2 (en) 2006-06-08 2010-04-20 Greatbatch Ltd. Tank filters adaptable for placement with a guide wire, in series with the lead wires or circuits of active medical devices to enhance MRI compatibility
US8903505B2 (en) 2006-06-08 2014-12-02 Greatbatch Ltd. Implantable lead bandstop filter employing an inductive coil with parasitic capacitance to enhance MRI compatibility of active medical devices
US9042999B2 (en) * 2006-06-08 2015-05-26 Greatbatch Ltd. Low loss band pass filter for RF distance telemetry pin antennas of active implantable medical devices
EP2054537A2 (de) * 2006-08-02 2009-05-06 Boston Scientific Scimed, Inc. Endoprothese mit dreidimensionaler desintegrationssteuerung
US8414637B2 (en) * 2006-09-08 2013-04-09 Boston Scientific Scimed, Inc. Stent
ATE517590T1 (de) 2006-09-15 2011-08-15 Boston Scient Ltd Biologisch erodierbare endoprothesen
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
JP2010503490A (ja) * 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド 調整可能な表面特徴を備えた内部人工器官
JP2010503485A (ja) * 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド 医療用デバイスおよび同デバイスの製造方法
EP2399616A1 (de) * 2006-09-15 2011-12-28 Boston Scientific Scimed, Inc. Biologisch erodierbare Endoprothese mit biostabilen anorganischen Schichten
JP2010503486A (ja) * 2006-09-18 2010-02-04 ボストン サイエンティフィック リミテッド 内部人工器官
CA2663762A1 (en) 2006-09-18 2008-03-27 Boston Scientific Limited Endoprostheses
US20080097577A1 (en) * 2006-10-20 2008-04-24 Boston Scientific Scimed, Inc. Medical device hydrogen surface treatment by electrochemical reduction
US9468750B2 (en) 2006-11-09 2016-10-18 Greatbatch Ltd. Multilayer planar spiral inductor filter for medical therapeutic or diagnostic applications
US9031670B2 (en) 2006-11-09 2015-05-12 Greatbatch Ltd. Electromagnetic shield for a passive electronic component in an active medical device implantable lead
US20080139915A1 (en) * 2006-12-07 2008-06-12 Medtronic Vascular, Inc. Vascular Position Locating and/or Mapping Apparatus and Methods
US20080140180A1 (en) * 2006-12-07 2008-06-12 Medtronic Vascular, Inc. Vascular Position Locating Apparatus and Method
US8768486B2 (en) * 2006-12-11 2014-07-01 Medtronic, Inc. Medical leads with frequency independent magnetic resonance imaging protection
US20080147173A1 (en) * 2006-12-18 2008-06-19 Medtronic Vascular, Inc. Prosthesis Deployment Apparatus and Methods
ATE488259T1 (de) 2006-12-28 2010-12-15 Boston Scient Ltd Bioerodierbare endoprothesen und herstellungsverfahren dafür
US20080172119A1 (en) * 2007-01-12 2008-07-17 Medtronic Vascular, Inc. Prosthesis Deployment Apparatus and Methods
US8473030B2 (en) * 2007-01-12 2013-06-25 Medtronic Vascular, Inc. Vessel position and configuration imaging apparatus and methods
US20080188921A1 (en) * 2007-02-02 2008-08-07 Medtronic Vascular, Inc. Prosthesis Deployment Apparatus and Methods
EP2151009B1 (de) * 2007-04-27 2016-07-13 Koninklijke Philips N.V. Einsetzbare vorrichtung mit antennensystem in abgesicherter betriebsart
US20080272776A1 (en) * 2007-05-03 2008-11-06 Edelman Robert R Magnetic resonance image acquisition with suppression of background tissues and rf water excitation at offset frequency
US20100201361A1 (en) * 2007-05-03 2010-08-12 Edelman Robert R System and method for passive catheter tracking with magnetic resonance imaging
DE102007021692A1 (de) 2007-05-09 2008-11-13 Biotronik Vi Patent Ag Medizinisches Implantat, insbesondere Stent zum Einsatz in Körperlumen
US7810223B2 (en) * 2007-05-16 2010-10-12 Boston Scientific Scimed, Inc. Method of attaching radiopaque markers to intraluminal medical devices, and devices formed using the same
JP5269348B2 (ja) * 2007-05-21 2013-08-21 オリンパス株式会社 位置検出システム及び位置検出システムの作動方法
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US20090143855A1 (en) * 2007-11-29 2009-06-04 Boston Scientific Scimed, Inc. Medical Device Including Drug-Loaded Fibers
EP2231216B1 (de) * 2007-12-14 2012-08-08 Boston Scientific Scimed, Inc. Arzneimittel freisetzende endoprothese
US20090179716A1 (en) * 2008-01-09 2009-07-16 Anaren, Inc. RF Filter Device
US8343076B2 (en) * 2008-01-23 2013-01-01 MediGuide, Ltd. Sensor mounted flexible guidewire
US9095685B2 (en) 2008-01-23 2015-08-04 Mediguide Ltd. Sensor mounted flexible guidewire
DE102008010190A1 (de) * 2008-02-20 2009-09-03 Piazolo, Pius, Dipl.-Ing. Elektrisches Stromerzeugungselement
US10080889B2 (en) 2009-03-19 2018-09-25 Greatbatch Ltd. Low inductance and low resistance hermetically sealed filtered feedthrough for an AIMD
US9108066B2 (en) 2008-03-20 2015-08-18 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US20090259296A1 (en) * 2008-04-10 2009-10-15 Medtronic Vascular, Inc. Gate Cannulation Apparatus and Methods
US20090259284A1 (en) * 2008-04-10 2009-10-15 Medtronic Vascular, Inc. Resonating Stent or Stent Element
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) * 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US20100030319A1 (en) * 2008-07-31 2010-02-04 Boston Scientific Scimed, Inc. Coils for vascular implants or other uses
WO2010053609A2 (en) * 2008-07-31 2010-05-14 The Trustees Of Dartmouth College System and method using coupler-resonators for electron paramagnetic resonance spectroscopy
US8382824B2 (en) * 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
EP2349453A4 (de) 2008-10-30 2015-07-01 Greatbatch Ltd Physikalisch seriell angeordnete kondensator- sowie induktorelemente mit parallel geschalteten konzentrierten parametern zur formung eines kerbfilters
US8644951B1 (en) 2009-12-02 2014-02-04 University Of Central Florida Research Foundation, Inc. Medical devices having MRI compatible metal alloys
US8447414B2 (en) 2008-12-17 2013-05-21 Greatbatch Ltd. Switched safety protection circuit for an AIMD system during exposure to high power electromagnetic fields
CN101782635A (zh) * 2009-01-20 2010-07-21 西门子迈迪特(深圳)磁共振有限公司 磁共振信号的接收器和接收方法
US8267992B2 (en) * 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US9259290B2 (en) 2009-06-08 2016-02-16 MRI Interventions, Inc. MRI-guided surgical systems with proximity alerts
DE102009026897A1 (de) * 2009-06-10 2010-12-16 Sirona Dental Systems Gmbh Sensor sowie Magnetfeldeinheit zur Verwendung innerhalb eines Magnetresonanztomographie-Systems oder eines Magnetresonanzspektroskopie-Systems
WO2010148088A2 (en) 2009-06-16 2010-12-23 Surgivision, Inc. Mri-guided devices and mri-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
US20110022158A1 (en) * 2009-07-22 2011-01-27 Boston Scientific Scimed, Inc. Bioerodible Medical Implants
JP2013500058A (ja) * 2009-07-24 2013-01-07 ボストン サイエンティフィック サイムド,インコーポレイテッド 原子層堆積によって形成された無機物コーティング層を有する医療装置
DE102009050532A1 (de) 2009-10-23 2011-04-28 Rheinisch-Westfälische Technische Hochschule Aachen Positionsbestimmungsvorrichtung
WO2011062971A2 (en) 2009-11-17 2011-05-26 Brigham And Women's Hospital, Inc. Catheter device with local magnetic resonance imaging coil and methods for use thereof
WO2011119573A1 (en) 2010-03-23 2011-09-29 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US9427596B2 (en) 2013-01-16 2016-08-30 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US9931514B2 (en) 2013-06-30 2018-04-03 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10350421B2 (en) 2013-06-30 2019-07-16 Greatbatch Ltd. Metallurgically bonded gold pocket pad for grounding an EMI filter to a hermetic terminal for an active implantable medical device
US11198014B2 (en) 2011-03-01 2021-12-14 Greatbatch Ltd. Hermetically sealed filtered feedthrough assembly having a capacitor with an oxide resistant electrical connection to an active implantable medical device housing
US10596369B2 (en) 2011-03-01 2020-03-24 Greatbatch Ltd. Low equivalent series resistance RF filter for an active implantable medical device
US10272252B2 (en) 2016-11-08 2019-04-30 Greatbatch Ltd. Hermetic terminal for an AIMD having a composite brazed conductive lead
WO2012119037A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Stent with reduced profile
US8663313B2 (en) 2011-03-03 2014-03-04 Boston Scientific Scimed, Inc. Low strain high strength stent
EP2549284A1 (de) * 2011-07-21 2013-01-23 Koninklijke Philips Electronics N.V. Positionsmarker zur Verwendungen bei einer Magnetresonanzbildgebungsvorrichtung
KR101286055B1 (ko) 2011-11-02 2013-07-18 연세대학교 산학협력단 이미지 제공 시스템 및 방법
USRE46699E1 (en) 2013-01-16 2018-02-06 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
EP2972442B1 (de) 2013-03-14 2021-06-23 Demir, Hilmi Volkan Verbesserung einer magnetresonanzbildauflösung mittels einer biokompatiblen passiven resonatorhardware
US9737259B2 (en) 2013-03-27 2017-08-22 Industry-Academic Cooperation Foundation, Yonsei University System and method for determining neointima thickness of a blood vessel
WO2017083498A1 (en) * 2015-11-11 2017-05-18 University Of Utah Research Foundation Endoenteric balloon coil
US10849521B2 (en) * 2015-12-23 2020-12-01 Biosense Webster (Israel) Ltd. Multi-layered catheter shaft construction with embedded single axial sensors, and related methods
US11490975B2 (en) * 2016-06-24 2022-11-08 Versitech Limited Robotic catheter system for MRI-guided cardiovascular interventions
US10249415B2 (en) 2017-01-06 2019-04-02 Greatbatch Ltd. Process for manufacturing a leadless feedthrough for an active implantable medical device
DE102017122820A1 (de) * 2017-09-29 2019-04-04 Biotronik Ag Implantat mit Sensoranordnung
EP3761872B1 (de) * 2018-03-09 2024-03-27 The University of Hong Kong Entwurf einer mrt-verfolgungsvorrichtung, herstellung und verfahren zur verwendung für mrt-gesteuertes robotersystem
US10905888B2 (en) 2018-03-22 2021-02-02 Greatbatch Ltd. Electrical connection for an AIMD EMI filter utilizing an anisotropic conductive layer
US10912945B2 (en) 2018-03-22 2021-02-09 Greatbatch Ltd. Hermetic terminal for an active implantable medical device having a feedthrough capacitor partially overhanging a ferrule for high effective capacitance area
EP3911273A1 (de) * 2019-01-16 2021-11-24 Half Moon Medical, Inc. Implantierbare coaptationsunterstützungsvorrichtungen mit sensoren und zugehörigen systemen und verfahren
KR102433470B1 (ko) * 2020-12-09 2022-08-18 한양대학교 산학협력단 혈관용 마이크로 코일
EP4434490A1 (de) * 2023-03-20 2024-09-25 Koninklijke Philips N.V. Perkutaner gefässfilter mit induktivitätsembolusnachweisfähigkeit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170789A (en) * 1987-06-17 1992-12-15 Perinchery Narayan Insertable NMR coil probe
WO1996038083A1 (en) * 1995-06-01 1996-12-05 The Johns Hopkins University School Of Medicine Method of internal magnetic resonance imaging and spectroscopic analysis and associated apparatus
EP0768539A2 (de) * 1995-10-13 1997-04-16 Gec-Marconi Limited Verfahren und Gerät für die magnetische Resonanz
EP0775500A1 (de) * 1995-11-23 1997-05-28 Cordis Corporation Medizinische Vorrichtung sichtbar während des Gebrauchs einer magnetischen Resonanz-Bilderzeugung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731184A (en) 1948-12-21 1973-05-01 H Goldberg Deformable pick up coil and cooperating magnet for measuring physical quantities, with means for rendering coil output independent of orientation
GB1596298A (en) 1977-04-07 1981-08-26 Morgan Ltd P K Method of and apparatus for detecting or measuring changes in the cross-sectional area of a non-magnetic object
US4960106A (en) 1987-04-28 1990-10-02 Olympus Optical Co., Ltd. Endoscope apparatus
DE69023153T2 (de) 1989-02-27 1996-04-18 Medrad, Inc., Pittsburgh, Pa. Sonde für Körperhöhlen und Schnittstelleneinrichtung für Magnetresonanzdarstellung und Spektroskopie.
US5057095A (en) * 1989-11-16 1991-10-15 Fabian Carl E Surgical implement detector utilizing a resonant marker
DE4008202A1 (de) * 1990-03-15 1991-09-19 Philips Patentverwaltung Anordnung zur erzeugung resonanzueberhoehter hochfrequenz-magnetfelder in einem kernspinuntersuchungsgeraet
NL9201965A (nl) 1992-11-10 1994-06-01 Draeger Med Electronics Bv Invasieve MRI transducer.
DE4238831A1 (de) * 1992-11-17 1994-05-19 Siemens Ag Hochfrequenzeinrichtung einer Anlage zur Kernspintomographie mit einer Oberflächenspule
US5555884A (en) 1992-12-16 1996-09-17 Kabushiki Kaisha Egawa Measuring method by using resonance of a resonance medium
ES2114626T3 (es) 1994-03-18 1998-06-01 Schneider Europ Ag Sistema de visualizacion de resonancias magneticas para localizar un instrumento medico.
US5447156A (en) * 1994-04-04 1995-09-05 General Electric Company Magnetic resonance (MR) active invasive devices for the generation of selective MR angiograms
US5445151A (en) * 1994-06-23 1995-08-29 General Electric Company Method for blood flow acceleration and velocity measurement using MR catheters
DE19507617A1 (de) 1995-03-04 1996-09-05 Philips Patentverwaltung MR-Verfahren und MR-Gerät zur Durchführung des Verfahrens
US5744958A (en) 1995-11-07 1998-04-28 Iti Medical Technologies, Inc. Instrument having ultra-thin conductive coating and method for magnetic resonance imaging of such instrument
US5727552A (en) * 1996-01-11 1998-03-17 Medtronic, Inc. Catheter and electrical lead location system
US5964705A (en) 1997-08-22 1999-10-12 Image-Guided Drug Delivery System, Inc. MR-compatible medical devices
DE19746735C2 (de) * 1997-10-13 2003-11-06 Simag Gmbh Systeme Und Instr F NMR-Bildgebungsverfahren zur Darstellung, Positionsbestimmung oder funktionellen Kontrolle einer in ein Untersuchungsobjekt eingeführten Vorrichtung und Vorrichtung zur Verwendung in einem derartigen Verfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170789A (en) * 1987-06-17 1992-12-15 Perinchery Narayan Insertable NMR coil probe
WO1996038083A1 (en) * 1995-06-01 1996-12-05 The Johns Hopkins University School Of Medicine Method of internal magnetic resonance imaging and spectroscopic analysis and associated apparatus
EP0768539A2 (de) * 1995-10-13 1997-04-16 Gec-Marconi Limited Verfahren und Gerät für die magnetische Resonanz
EP0775500A1 (de) * 1995-11-23 1997-05-28 Cordis Corporation Medizinische Vorrichtung sichtbar während des Gebrauchs einer magnetischen Resonanz-Bilderzeugung

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015662A1 (de) 2001-08-08 2003-02-27 Buecker Arno Magnetresonanzkompatible metallische endoprothese
EP1304581A2 (de) * 2001-10-19 2003-04-23 Philips Corporate Intellectual Property GmbH Verfahren zum Lokalisieren eines Gegenstandes in einer MR-Apparatur sowie Katheter und MR-Apparatur zur Durchführung des Verfahrens
EP1304581A3 (de) * 2001-10-19 2004-05-19 Philips Intellectual Property & Standards GmbH Verfahren zum Lokalisieren eines Gegenstandes in einer MR-Apparatur sowie Katheter und MR-Apparatur zur Durchführung des Verfahrens
EP1485044B1 (de) * 2002-03-14 2007-12-05 Angiomed GmbH & Co. Medizintechnik KG Mri-kompatibler stent sowie verfahren zu seiner herstellung
US7789906B2 (en) 2002-03-14 2010-09-07 C. R. Bard, Inc. Metal structure compatible with MRI imaging, and method of manufacturing such a structure
JP2008529588A (ja) * 2005-02-04 2008-08-07 ボストン サイエンティフィック リミティド 医療装置用共鳴器
WO2007018611A1 (en) * 2005-08-08 2007-02-15 Boston Scientific Limited Mri resonator system with stent implant
US7778684B2 (en) 2005-08-08 2010-08-17 Boston Scientific Scimed, Inc. MRI resonator system with stent implant

Also Published As

Publication number Publication date
JP4271847B2 (ja) 2009-06-03
DE19746735A1 (de) 1999-04-15
US6280385B1 (en) 2001-08-28
DE59800900D1 (de) 2001-07-26
DE19746735C2 (de) 2003-11-06
EP1092985A2 (de) 2001-04-18
DE59807762D1 (de) 2003-05-08
CA2306769A1 (en) 1999-04-22
CA2306124A1 (en) 1999-04-22
CA2306124C (en) 2008-12-30
AU1332599A (en) 1999-05-03
JP2001520058A (ja) 2001-10-30
EP1023609B1 (de) 2001-06-20
EP1021730B1 (de) 2003-04-02
JP2001520057A (ja) 2001-10-30
EP1021730A1 (de) 2000-07-26
US6847837B1 (en) 2005-01-25
ES2196626T3 (es) 2003-12-16
EP1023609A1 (de) 2000-08-02
EP1092985A3 (de) 2001-06-27
JP4309043B2 (ja) 2009-08-05
WO1999019739A1 (de) 1999-04-22
CA2306769C (en) 2004-01-06
ES2161554T3 (es) 2001-12-01
AU1432999A (en) 1999-05-03

Similar Documents

Publication Publication Date Title
EP1023609B1 (de) Stent und mr-bildgebungsverfahren zur darstellung und positionsbestimmung eines stents
EP1648344B1 (de) Mr-kompatibles medizinisches implantat
DE60035829T2 (de) RF-Körperspule für ein offenes System zur Bilderzeugung mittels magnetischer Resonanz
EP0619498B1 (de) MR-Abbildungsverfahren und Anordnung zur Durchführung des Verfahrens
EP1414374B1 (de) Magnetresonanzkompatible metallische endoprothese
DE69736826T2 (de) Radiofrequenzspulen für Kernresonanz
DE69634035T2 (de) System zur bilderzeugung durch magnetische resonanz und katheter für eingriffsverfahren
DE69838876T2 (de) Magnetisch ausrichtbare fernleitanordnungen und anwendungsverfahren
DE60317883T2 (de) Mri-kompatibler stent sowie verfahren zu seiner herstellung
EP1304542B1 (de) Verfahren zur Ermittlung der räumlichen Verteilung magnetischer Partikel
EP1570284B1 (de) Gefässfilter für mr-bildgebungsverfahren
DE69608181T2 (de) Verfahren und Gerät für die magnetische Resonanz
DE10202459A1 (de) Vorrichtung, insbesondere Stent, zur Verwendung in Verbindung mit einem NMR-Bildgebungssystem
DE69631008T2 (de) Verfahren und Gerät für die magnetische Resonanz
DE102006040574B4 (de) Trennwand zur Abgrenzung von einer Antennenstruktur eines Magnetresonanztomographen
DE60320376T2 (de) Spulensystem für eine mr-vorrichtung und mit einem solchen spulensystem ausgestattete mr-vorrichtung
EP1089792B1 (de) Vorrichtung zur behandlung mit magnetischen feldern
DE112010000844B4 (de) Übertragungsleitung
DE4324021C2 (de) Therapietomograph
DE3724962A1 (de) Vorrichtung und verfahren zum entkoppeln einer mri-hochfrequenzspule von gewaehlten koerperteilen unter verwendung passiver elemente
DE102005047235A1 (de) MR-kompatible Gefäßendoprothese
DE10127850B4 (de) Vorrichtung zum Durchführen Kernresonanzspektroskopischer Untersuchungen im Inneren organischer Körper
EP1122552A2 (de) MR- Gerät mit einer Gradientenspulen-Anordnung
EP3499258A1 (de) Vorrichtung und verfahren zur bestimmung einer lokalen eigenschaft eines biologischen gewebes mit einem nmr sensor
DE20301086U1 (de) Transparenter Stent zur Verwendung in der Medizintechnik

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998956813

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2306769

Country of ref document: CA

Ref country code: CA

Ref document number: 2306769

Kind code of ref document: A

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: KR

WWP Wipo information: published in national office

Ref document number: 1998956813

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998956813

Country of ref document: EP