WO1999018676A1 - Vorrichtung zur übertragung amplitudengetasteter mikrowellensignale - Google Patents

Vorrichtung zur übertragung amplitudengetasteter mikrowellensignale Download PDF

Info

Publication number
WO1999018676A1
WO1999018676A1 PCT/DE1998/002945 DE9802945W WO9918676A1 WO 1999018676 A1 WO1999018676 A1 WO 1999018676A1 DE 9802945 W DE9802945 W DE 9802945W WO 9918676 A1 WO9918676 A1 WO 9918676A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
frequency components
signal
frequency
carrier
Prior art date
Application number
PCT/DE1998/002945
Other languages
English (en)
French (fr)
Inventor
Jens Kurrat
Original Assignee
Jens Kurrat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jens Kurrat filed Critical Jens Kurrat
Publication of WO1999018676A1 publication Critical patent/WO1999018676A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/084Equal gain combining, only phase adjustments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity

Definitions

  • the invention relates to a device for transmitting amplitude-sampled microwave signals.
  • Field of application of the invention is the transmission of data such as Audio data for wireless digital headphones or speakers.
  • data such as Audio data for wireless digital headphones or speakers.
  • such a device requires low costs, low power consumption in battery-operated receivers and a small space requirement. With the bandwidth required for data rates of a few Mbit / s, one is in the
  • Multipath fading is a known problem, particularly in the UHF and microwave range, with the radio field strength being subject to strong local fluctuations, caused by the destructive superimposition of reflected high-frequency components.
  • Known components solve the problem by the presence of at least two antennas (antenna diversity), one of which is selected depending on certain evaluation criteria and thus a switchover takes place.
  • Other solutions provide the use of controllable phase shifters for a constructive superimposition of the signals or a switchable attenuation / amplification of one antenna and superimposition of the signals, one of the signals thus gaining dominance, e.g. described in DE-PS 4310256.
  • a known possibility for receiving continuous data is the use of several data processing units, which each switch between several antennas.
  • the method has the disadvantage that only one antenna is active per data processing unit, and it can happen in the microwave range that fading occurs almost simultaneously on both active antennas when using only two data processing units and thus it there is a temporary loss of data.
  • a complete RF reception branch must also be provided for each of the additional data processing units.
  • phase shifters is usually quite complex, especially when using more than two antennas.
  • a further possibility is the simultaneous transmission of the signal on several frequencies (frequency diversity), with the receiver being switched to a frequency with a higher reception field strength when the field strength falls below a minimum.
  • this method is analogous to the antenna diversity method and has the same disadvantage of short-term data loss when the antenna is switched over, which makes this method not suitable for continuous data transmission. It is an object of the invention to provide a device for transmitting data in the microwave range which, in the interest of low costs, enables the simplest possible circuitry and signal processing implementation and ensures continuous reception with high robustness.
  • FIG. 1 shows an exemplary embodiment of the receiver as a straight-line receiver
  • FIG. 2a shows two exemplary embodiments of the transmitter, in which additional high-frequency components are generated by modulating the carrier.
  • FIG. 3 shows an exemplary embodiment of the transmitter in which the high-frequency components generated by modulating the carrier with different differential frequency signals are emitted via different antennas
  • FIG. 4 shows an exemplary embodiment of the receiver in which modulating individual signals additional high-frequency components are generated
  • Fig. 5 an embodiment of the receiver in which the detection signals of several mutually independent receiving branches are superimposed
  • Fig. 6 an embodiment of the receiver analogous to Fig. 1, but which additionally has a local oscillator
  • Fig. 7 An embodiment of the receiver analogous to FIG. 4, but which also has a local oscillator.
  • 1 shows an embodiment of the receiver. In this example it is designed as a straight-ahead receiver. This saves costs and power consumption associated with the generation of a local oscillator signal and mixing of the received signal.
  • the lack of a local oscillator means that complex high-frequency shielding can be dispensed with in order to meet the usually strict local regulations regarding the maximum high-frequency radiation by the receiver.
  • the transmission signal is received by the antenna 1, filtered by a bandpass filter 2 and amplified by the amplifier 8.
  • the amplified received signal is now detected by the detector stage 10, consisting of at least one non-linear element.
  • the detection signal is then filtered by the low-pass filter 1 1 and amplified by the baseband amplifier 12.
  • the data can be recovered from the amplified baseband signal by sampling.
  • the bandpass filter 2 is to be designed such that the pass band comprises all high-frequency components of the transmission signal.
  • a line resonator filter which consists of a number of coupled ⁇ / 2 line resonators is proposed as an inexpensive filter.
  • Commercially available detector diodes can be used as the non-linear elements of the detector stage 10.
  • Equation (1) describes a received signal U E (I) which contains two high-frequency components at the frequencies ⁇ i and ⁇ 2 . It is assumed that both
  • f (t) is the baseband signal and m describes the degree of modulation:
  • the detector voltage is approximately proportional to the square of the envelope in the case of nonlinear detection.
  • u D (t) with a small degree of modulation m follows:
  • the detection signal thus also contains frequency components at the difference frequency ⁇ 2 - ⁇ .
  • these components are removed by the low-pass filter 11.
  • the baseband amplifier 12 often already shows low-pass behavior.
  • a separate low-pass filter 1 1 can be dispensed with in order to reduce costs. The further apart the high-frequency components are, the easier it is to implement low-pass filtering. It can be shown that if the two high-frequency components have different strengths in the above case, the signal components decrease at the difference frequency in relation to the useful signal.
  • the individual high-frequency components can be generated either in the transmitter, in the receiver or combined in the transmitter and receiver.
  • 2a and 2b show two possibilities for generating additional high-frequency components in the transmitter.
  • a carrier oscillation is generated by a VCO 13. This is modulated in Fig. 2a by the modulator stage 14 with the baseband signal.
  • the modulated carrier signal is then modulated by an amplitude modulator 15 with a differential frequency signal, the frequency of which corresponds to the distance between the high-frequency components. This is then amplified by the antenna amplifier 16 and radiated via the transmission antenna 17.
  • amplitude modulation with the differential frequency signal the following results as a transmission signal:
  • the center carrier phase-shifted by 180 degrees, damped by 3 dB, can be superimposed with the modulated signal, so that in equation (3) all three high-frequency components have the factor I A.
  • the high-frequency components can also be generated by mixing (e.g. using a ring mixer).
  • the frequency of the modulation signal is now half the distance between the high-frequency components:
  • the differential frequency signal If a signal with higher harmonics is used as the differential frequency signal, additional high-frequency components result. Another possibility for generating additional high-frequency components is the superimposition of several differential frequency signals of different frequencies at the input of the modulator 15.
  • the high-frequency components are first obtained from the carrier generated by the VCO 13 by the amplitude modulator stage 15, which then with the baseband signal in the modulator stage 14 can be modulated.
  • 3 shows a further possible embodiment of the transmitter.
  • the carrier modulated with different differential frequency signals is emitted via different antennas 17.
  • Fig. 4 shows an embodiment of such a receiver.
  • a receiver is again considered in straight-ahead mode.
  • the transmission signal is received by several antennas 1, filtered by a bandpass filter 2 and amplified by the antenna amplifier 3.
  • the received signal of at least one antenna is then amplitude modulated with the aid of a modulator 4.
  • the individual signals are superimposed and the superimposed signal is amplified by the amplifier 8 and detected by the detector stage 10.
  • the detection signal is then low-pass filtered by the low-pass filter 1 1 and amplified by the baseband amplifier 12.
  • modulation signals M 1 (t) and M 2 (t) of the two modulated reception branches in the present example are proposed as modulation signals M 1 (t) and M 2 (t) of the two modulated reception branches in the present example:
  • the modulation signals are chosen so that a linear independence of the individual high-frequency components is achieved. This is to be explained with the aid of the present example in FIG. 4 with three antennas.
  • modulation signals given in equation (5) can also be represented as follows:
  • the conversion matrix in equation (7) is derived from this for the modulation and superimposition of the signals.
  • the complex signals are shown as pointers.
  • u a , u b and u c are the three antenna receive signals.
  • u_ is the resulting one High frequency component at the frequency ⁇ - ⁇ ⁇ , u the component at the frequency ⁇ and u + the component at the frequency ⁇ + ⁇ o.
  • the row vectors are linearly independent of one another. This means that regardless of the phase of the received signals, the high-frequency components u., U and u + can only become zero if the amplitude of the antenna reception signals of all antennas is zero.
  • additional high-frequency components can also be generated in the receiver by using modulation signals which have higher harmonics.
  • modulation signals which have higher harmonics.
  • FIG. 5 shows a further possibility for increasing the robustness of reception.
  • Several reception branches 9 are operated.
  • the detection signals of the detector stages 10 of the individual mutually independent reception branches are superimposed and finally low-pass filtered by the low-pass filter 11 and amplified by the baseband amplifier 12.
  • the outputs of the two detector stages 10 are decoupled in terms of radio frequency. Adequate decoupling can be achieved, for example, by the resistors Ri and R 2 .
  • a particular advantage of the arrangement in FIG. 5 is that the effective noise figure of the overall system is reduced by superimposing the detection signals. Thus, a greater range can be achieved with such a device than with known systems.
  • FIG. 6 shows an exemplary embodiment of the receiver with a receiving branch, which rather is not operated in straight-line mode, but, in contrast to the receiver in FIG. 1, has a local oscillator 6.
  • the intermediate frequency signal u ⁇ F (t) is generated from the received signal by the mixer 5. This is filtered by a bandpass filter 7, which passes through all the high-frequency components of the intermediate-frequency signal of interest. sits. If such a bandpass filter 7 is not available, then alternatively a plurality of bandpass filters can also be operated in parallel, each having a pass band for each high-frequency component of the intermediate-frequency signal of interest.
  • FIG. 7 shows a further exemplary embodiment of the receiver, which has a local oscillator 6 analogously to FIG. 6, but, as in FIG. 4, generates additional high-frequency components by the modulator stage 4.
  • the bandpass filter 7 has pass bands for all of the resulting high-frequency components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Übertragung amplitudengetasteter Mikrowellensignale. Um das Problem starker lokaler Unterschiede der Empfangsfeldstärke auf kostengünstige Art zu lösen, erfolgt die Basisbandrückgewinnung durch Detektion (10) und Tiefpaßfilterung (11) mehrerer Hochfrequenzkomponenten, welche wahlweise durch Modulation (15) des amplitudengetasteten Trägers (13) im Sender oder durch Modulation (4) der Empfangssignale mehrerer Antennen (1) im Empfänger erzeugt werden. Außerdem kann die Empfangsrobustheit durch die Überlagerung mehrerer Detektionssignale erhöht werden. Die Erfindung erlaubt den Bau kostengünstiger und stromsparender Systeme zur Übertragung von Daten wie z.B. Audiodaten für drahtlose digitale Kopfhörer oder Lautsprecher.

Description

Vorrichtung zur Übertragung amplitudengetasteter Mikrowellensignale
Beschreibung
Die Erfindung betrifft eine Vorrichtung zur Übertragung amplitudengetasteter Mikrowellensignale. Einsatzgebiet der Erfindung ist die Übertragung von Daten wie z.B. Audiodaten für drahtlose digitale Kopfhörer oder Lautsprecher. Besonders im Consumerbe- reich kommt es bei einer derartigen Vorrichtung an auf geringe Kosten, geringen Stromverbrauch bei batteriebetriebenen Empfängern sowie geringen Platzbedarf. Bei der bei Datenraten von einigen Mbit/s erforderlichen Bandbreite wird man in den
Fällen, wo z.B. kein ständiger Sichtkontakt wie bei einer Infrarotübertragung vorhanden ist, eine Übertragung im Mikrowellenbereich vornehmen, wo geeignete Frequenzbänder mit der notwendigen Bandbreite existieren.
Ein bekanntes Problem stellt besonders im UHF- und Mikrowellenbereich das Mehr- wegefading dar, wobei die Funkfeldstärke starken lokalen Schwankungen unterliegt, hervorgerufen durch die destruktive Überlagerung reflektierter Hochfrequenzkomponenten. Bekannte Komponenten lösen das Problem durch das Vorhandensein von mindestens zwei Antennen (Antennendiversity), von denen jeweils eine in Abhängigkeit von bestimmten Bewertungskriterien ausgewählt wird und somit ein Umschalten stattfindet. Andere Lösungen sehen die Verwendung von regelbaren Phasenschiebern für eine konstruktive Überlagerung der Signale vor oder eine schaltbare Dämpfung/ Verstärkung jeweils einer Antenne und Überlagerung der Signale, wobei eines der Signale somit die Dominanz erhält, wie z.B. in der DE-PS 4310256 beschrieben.
Der Nachteil der Verfahren, welche eine Umschaltung durchführen, ist insbesondere die kurzzeitig sehr hohe Bitfehlerrate während der Umschaltung. Deshalb eignen sich diese Systeme zwar für datenpaketorientierte Dienste und für stationäre Sender/ Empfänger, nicht jedoch aber für kontinuierliche Datenströme, wie z.B. Audio- oder Videodaten. Ein weiterer Nachteil dieser Verfahren ist, daß meist erst bei Erreichen einer unteren Schwelle umgeschaltet wird und somit oft von einer Antenne empfangen wird, welche das schlechtere Signal liefert.
Eine bekannte Möglichkeit zum Empfang kontinuierlicher Daten ist die Verwendung mehrerer Datenverarbeitungseinheiten, die jeweils zwischen mehreren Antennen umschalten. Neben dem hohen signalverarbeitungstechnischen Aufwand, welcher dieses Verfahren für den Consumerbereich ungeeignet macht, hat das Verfahren den Nachteil, daß pro Datenverarbeitungseinheit immer nur eine Antenne aktiv ist, wobei es gerade im Mikrowellenbereich passieren kann, daß bei Verwendung von nur zwei Datenverarbeitungseinheiten an beiden aktiven Antennen nahezu gleichzeitig ein Fading auftritt und es somit zu einem kurzzeitigen Datenverlust kommt. Für jede der zusätzlichen Datenverarbeitungseinheiten ist bei diesem Verfahren auch ein kompletter HF-Empfangszweig vorzusehen.
Alle diese Verfahren benötigen eine Auswertelogik, welche die Qualität der Empfangssignale beurteilt sowie eine Steuerlogik, welche die Antennenumschalter bzw. die Phasenschieber steuert. Diese stellen oft einen nicht unerheblichen Kostenfaktor dar.
Weiterhin ist die Realisierung von Phasenschiebern in der Regel recht aufwendig, besonders bei Verwendung von mehr als zwei Antennen.
Eine weitere Möglichkeit ist die gleichzeitige Übertragung des Signals auf mehreren Frequenzen (Frequenzdiversity), wobei bei Unterschreiten einer minimalen Feldstärke ein Umschalten des Empfängers auf eine Frequenz mit höherer Empfangsfeldstärke erfolgt. Dieses Verfahren ist im Frequenzbereich analog zum Antennendiversity- Verfahren und hat den gleichen Nachteil des kurzzeitigen Datenverlustes bei Antennenumschaltung, was dieses Verfahren nicht für die kontinuierliche Datenübertragung geeignet macht. Es ist Aufgabe der Erfindung, eine Vorrichtung zur Übertragung von Daten im Mi- krowellenbereich anzugeben, welche im Interesse geringer Kosten eine möglichst einfache schaltungstechnische und signalverarbeitungstechnische Realisierung ermöglicht und einen kontinuierlichen Empfang mit hoher Robustheit gewährleistet.
Das Problem wird gelöst durch Verwendung einer Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 6. Im folgenden wird die Erfindung anhand mehrerer Ausführungsbeispiele unter Zuhilfenahme der beiliegenden Zeichnungen weiter erläutert. Es zeigen: Fig.l : ein Ausführungsbeispiel des Empfängers als Geradeausemfänger, Fig. 2a, zwei Ausführungsbeispiele des Senders, in welchem durch Modulation des Trägers Fig. 2b: zusätzliche Hochfrequenzkomponenten erzeugt werden,
Fig. 3: ein Ausführungsbeispiel des Senders, in dem die durch Modulation des Trägers mit unterschiedlichen Differenzfrequenzsignalen erzeugten Hochfrequenzkomponenten über unterschiedliche Antennen abgestrahlt werden, Fig. 4: ein Ausführungsbeispiel des Empfängers, in dem durch Modulation einzelner Emp- fangssignale zusätzliche Hochfrequenzkomponenten erzeugt werden, Fig. 5: ein Ausführungsbeispiel des Empfängers, in dem die Detektionssignale mehrerer voneinander unabhängiger Empfangszweige überlagert werden, Fig. 6: ein Ausführungsbeispiel des Empfängers analog zu Fig. 1 , welcher jedoch zusätzlich einen Lokaloszillator besitzt, Fig. 7: ein Ausführungsbeispiel des Empfängers analog zu Fig. 4, welcher jedoch zusätzlich einen Lokaloszillator besitzt. In Fig. 1 ist eine Ausführungsmöglichkeit des Empfängers dargestellt. Dieser ist in diesem Beispiel als Geradeausempfänger konzipiert. Hierdurch werden Kosten und Stromverbrauch verbunden mit der Erzeugung eines Lokaloszillatorsignals sowie Mischung des Empfangssignals eingespart. Weiterhin kann durch das Fehlen eines Lokalos- zillators auf eine aufwendige Hochfrequenzabschirmung verzichtet werden, um die meist strengen örtlichen Vorschriften bezüglich der maximalen Hochfrequenzabstrahlung durch den Empfänger zu erfüllen.
Das Sendesignal wird von der Antenne 1 empfangen, durch ein Bandpaßfilter 2 gefiltert und durch den Verstärker 8 verstärkt. Das verstärkte Empfangssignal wird nun von der Detektorstufe 10, bestehend aus mindestens einem nichtlinearen Element, detektiert. Das Detektionssignal wird anschließend durch das Tiefpaßfilter 1 1 gefiltert und durch den Basisbandverstärker 12 verstärkt. Aus dem verstärkten Basisbandsignal können die Daten durch Abtastung rückgewonnen werden.
Das Bandpaßfilter 2 ist so auszulegen, daß der Durchlaßbereich sämtliche Hochfre- quenzkomponenten des Sendesignals umfaßt. Als kostengünstiges Filter wird ein Leitungsresonatorfilter vorgeschlagen, welches aus einer Anzahl gekoppelter λ/2-Leitungs- resonatoren besteht. Als nichtlineare Elemente der Detektorstufe 10 können handelsübliche Detektordioden eingesetzt werden.
Gleichung (1) beschreibt ein Empfangssignal UE(I), welches zwei Hochfrequenzkom- ponenten bei den Frequenzen ωi und ω2 enthält. Dabei sei angenommen, daß beide
Komponenten die gleiche Stärke haben. Weiterhin werden der Einfachheit halber im folgenden ausschließlich normierte Gleichungen angegeben. f(t) ist das Basisbandsignal und m beschreibt den Modulationsgrad:
uE(t) (1)
Figure imgf000005_0001
Es ergibt sich somit ein Signal mit der Mittenfrequenz (ωι+ω2)/2, welches als Einhüllende ein Produkt des eigentlichen Modulationssignals [l+m-f(t)] und der Schwe- bungsschwingung cos((ω -α>ι)/2)t besitzt.
Im Kleinsignalfall ist bei nichtlinearer Detektion die Detektorspannung näherungsweise proportional dem Quadrat der Einhüllenden. Somit folgt für die Detektorspannung uD(t) bei kleinem Modulationsgrad m:
Figure imgf000006_0001
Neben dem eigentlichen Modulationssignal enthält das Detektionssignal somit noch Frequenzanteile bei der Differenzfrequenz ω2-ωι . Erfindungsgemäß werden diese Anteile durch das Tiefpaßfilter 11 entfernt. Oft zeigt der Basisbandverstärker 12 bereits Tiefpaßverhalten. In diesem Fall kann zur Kostenreduzierung auf ein separates Tiefpaßfilter 1 1 verzichtet werden. Je weiter die Hochfrequenzkomponenten auseinanderliegen, desto einfacher läßt sich die Tiefpaßfilterung realisieren. Es kann gezeigt werden, daß wenn im obigen Fall die beiden Hochfrequenzkomponenten unterschiedlich stark sind, die Signalanteile bei der Differenzfrequenz im Verhältnis zum Nutzsignal abnehmen.
Die einzelnen Hochfrequenzkomponenten können wahlweise im Sender, im Empfänger oder kombiniert in Sender und Empfänger erzeugt werden. Fig. 2a und Fig. 2b zeigen zwei Möglichkeiten zur Erzeugung von zusätzlichen Hochfrequenzkomponenten im Sender. Von einem VCO 13 wird eine Trägerschwingung erzeugt. Diese wird in Fig. 2a durch die Modulatorstufe 14 mit dem Basisbandsignal moduliert. Anschließend wird das modulierte Trägersignal durch einen Amplitudenmodulator 15 mit einem Differenzfrequenzsignal moduliert, dessen Frequenz dem Abstand der Hochfrequenzkomponenten entspricht. Dieses wird anschließend durch den Antennenverstärker 16 verstärkt und über die Sendeantenne 17 abgestrahlt. Bei der Amplitudenmodulation mit dem Differenzfrequenzsignal ergibt sich als Sendesignal:
us(t) = [l + m - /(t)]sin ωt - [l + cosωDt] (3)
= — [l + m ■ /(t)]sin(ω - ωD )t + [l + m ■ /(t)]sin ωt + — [l + m /(t)]sin(ω + ωD )t
Sollen sämtliche Träger die gleiche Stärke aufweisen, so kann der um 180 Grad pha- senverschobene Mittenträger, um 3dB gedämpft, mit dem modulierten Signal überlagert werden, womit in Gleichung (3) alle drei Hochfrequenzkomponenten den Faktor lA haben.
Alternativ zur Amplitudenmodulation können die Hochfrequenzkomponenten auch durch Mischung (z.B. mittels eines Ringmischers) erzeugt werden. Jedoch beträgt die Frequenz des Modulationssignals nunmehr dem halben Abstand der Hochfrequenzkomponenten:
ωr
. (t) = [l + m (t)]sinωt - cos— -t (4) ω ω
[l + m - /(f)]sin ω - t + -[l + - /(t)]ssiin ω + -
2 ' 2
Sofern als Differenzfrequenzsignal ein Signal mit höheren Harmonischen verwendet wird, so ergeben sich zusätzliche Hochfrequenzkomponenten. Eine weitere Möglichkeit zur Erzeugung zusätzlicher Hochfrequenzkomponenten ist die Überlagerung mehrerer Differenzfrequenzsignale unterschiedlicher Frequenzen am Eingang des Modulators 15. In Fig. 2b werden aus dem durch den VCO 13 erzeugten Träger zunächst die Hochfrequenzkomponenten durch die Amplitudenmodulatorstufe 15 gewonnen, welche anschließend mit dem Basisbandsignal in der Modulatorstufe 14 moduliert werden. Fig. 3 zeigt eine weitere Ausführungsmöglichkeit des Senders. Hierbei wird der mit verschiedenen Differenzfrequenzsignalen modulierte Träger über verschiedene Antennen 17 abgestrahlt. Im Fall von zwei Antennen und zwei Differenzfrequenzsignalen ergibt sich eine gute örtliche Dekorrelation der einzelnen Hochfrequenzkomponenten, da die Seitenträgerkomponenten einer bestimmten Frequenz jeweils nur von einer Antenne ab- gestrahlt werden, der Hauptträger erfindungsgemäß jedoch von beiden Antennen abgestrahlt wird. Weiterhin liegen die Hochfrequenzkomponenten einer Antenne jeweils links und rechts neben dem Hauptträger und sind somit aufgrund des hohen Frequenzabstandes räumlich gegenseitig gut dekorreliert. Deshalb ist es unwahrscheinlich, daß sämtliche empfangene Hochfrequenzkomponenten beim Empfänger gleichzeitig durch Fading gestört sind. Neben der Erzeugung zusätzlicher Hochfrequenzkomponenten beim Sender können diese auch beim Empfänger generiert werden. Dies ist z.B. in den Fällen nützlich, wenn nicht genügend Bandbreite für die Übertragung einer hohen Anzahl an Hochfrequenzkomponenten zur Verfügung steht.
Fig. 4 zeigt ein Ausführungsbeispiel solch eines Empfängers. Analog zu Fig. 1 wird wieder ein Empfänger im Geradeausbetrieb betrachtet. Das Sendesignal wird von mehreren Antennen 1 empfangen, durch jeweils ein Bandpaßfilter 2 gefiltert und vom Antennenverstärker 3 verstärkt. Anschließend wird das Empfangssignal mindestens einer Antenne mit Hilfe eines Modulators 4 amplitudenmoduliert. Die einzelnen Signale werden überlagert und das überlagerte Signal durch den Verstärker 8 verstärkt und durch die Detektorstufe 10 detektiert. Das Detektionssignal wird anschließend durch das Tiefpaßfilter 1 1 tiefpaßgefiltert und durch den Basisbandverstärker 12 verstärkt.
Als Modulationssignale Mι(t) und M2(t) der beiden modulierten Empfangszweige werden im vorliegenden Beispiel folgende Signale vorgeschlagen:
M, (t) = sin ωDt, M2(t) = cosωDt (5)
Erfindungsgemäß werden die Modulationssignale dabei so gewählt, daß eine lineare Unabhängigkeit der einzelnen Hochfrequenzkomponenten erreicht wird. Dies soll anhand des vorliegenden Beispiels in Fig. 4 mit drei Antennen erläutert werden.
Die in Gleichung (5) angegebenen Modulationssignale lassen sich auch folgendermaßen darstellen:
M.(t) = -^[je-°' - jAω°'] (6) MAt) = -[e-ιω"' + eιωD']
Daraus leitet sich die Konversionsmatrix in Gleichung (7) bei der Modulation und Überlagerung der Signale ab. Hierbei sind die komplexen Signale in Zeigerdarstellung angegeben. ua, ub und uc sind die drei Antennen-Empfangssignale. u_ ist die sich ergebene Hochfrequenzkomponente bei der Frequenz ω-ω^, u die Komponente bei der Frequenz ω und u+ die Komponente bei der Frequenz ω+ωo.
Figure imgf000009_0001
In der Konversionsmatrix ist zu erkennen, daß die Zeilenvektoren voneinander linear unabhängig sind. Das bedeutet, daß unabhängig von der Phase der empfangenen Signale die Hochfrequenzanteile u., u und u+ nur dann alle Null werden können, wenn die Amplitude der Antennen-Empfangssignale aller Antennen Null ist.
Analog zum Sender können auch im Empfänger durch Verwendung von Modulationssignalen, welche höhere Harmonische besitzen, zusätzliche Hochfrequenzkomponenten erzeugt werden. Dadurch können bei Auswertung der Frequenzanteile, welche sich bei ω±n- >o mit n>2 befinden, pro Empfangszweig auch mehr als drei Antennen verwendet werden.
Fig. 5 zeigt eine weitere Möglichkeit zur Erhöhung der Empfangsrobustheit. Dabei werden mehrere Empfangszweige 9 betrieben. Die Detektionssignale der Detektorstufen 10 der einzelnen voneinander unabhängigen Empfangszweige werden überlagert und schließlich durch das Tiefpaßfilter 1 1 tiefpaßgefiltert und durch den Basisbandverstärker 12 verstärkt. Dabei ist zu beachten, daß die Ausgänge der beiden Detektorstufen 10 hochfrequenzmäßig entkoppelt sind. Eine ausreichende Entkopplung kann beispielsweise durch die Widerstände Ri und R2 erreicht werden. Ein besonderer Vorteil der Anordnung in Fig. 5 ist, daß sich durch die Überlagerung der Detektionssignale die effektive Rauschzahl des Gesamtsystems verringert. Somit kann mit einer solchen Vorrichtung eine höhere Reichweite als mit bekannten Systemen erzielt werden.
Fig. 6 zeigt ein Ausführungsbeispiel des Empfängers mit einem Empfangszweig, wel- eher nicht im Geradeausbetrieb betrieben wird, sondern im Gegensatz zum Empfänger in Fig. 1 einen Lokaloszillator 6 besitzt.
Aus dem Empfangssignal wird durch die Mischstufe 5 das Zwischenfrequenzsignal uιF(t) erzeugt. Dieses wird durch ein Bandpaßfilter 7 gefiltert, welches Durchlaßbereiche bei allen interessierenden Hochfrequenzkomponenten des Zwischenfrequenzsignals be- sitzt. Steht solch ein Bandpaßfilter 7 nicht zur Verfügung, so können alternativ auch mehrere Bandpaßfilter parallel betrieben werden, welche jeweils ein Durchlaßband für jede interessierende Hochfrequenzkomponente des Zwischenfrequenzsignals besitzen.
Fig. 7 zeigt ein weiteres Ausführungsbeispiel des Empfängers, welcher analog zu Fig. 6 einen Lokaloszillator 6 besitzt, jedoch wie in Fig. 4 zusätzliche Hochfrequenzkomponenten durch die Modulatorstufe 4 erzeugt.
Sofern sowohl durch den Sender als auch durch den Empfänger zusätzliche Hochfrequenzkomponenten erzeugt werden, so ist in Fig. 7 darauf zu achten, daß das Bandpaßfilter 7 Durchlaßbereiche für sämtliche der resultierenden Hochfrequenzkomponenten besitzt.
Durch die Möglichkeit der flexiblen Konfiguration der Vorrichtung kann ein Optimum bezüglich Kosten, Reichweite, Übertragungsbandbreite und Stromverbrauch erzielt werden.

Claims

Patentansprüche
1. Vorrichtung zur Übertragung amplitudengetasteter Mikrowellensignale, dadurch gekennzeichnet, daß mehrere mit dem Modulationssignal amplitudengetastete Hochfre- quenzkomponenten im Empfänger durch mindestens ein nichtlineares Element detektiert werden und das Basisbandsignal schließlich durch Tiefpaßfilterung und Verstärkung des Detektionssignals gewonnen wird.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß im Sender zusätzliche Hochfrequenzkomponenten durch Modulation eines Trägers mit einem Differenzfre- quenzsignal erzeugt werden.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß im Sender zusätzliche Hochfrequenzkomponenten durch Amplitudenmodulation eines Trägers mit einem Differenzfrequenzsignal und Überlagerung des modulierten Trägers mit dem um 180 Grad phasenverschobenen und gedämpften unmodulierten Träger erzeugt werden.
4. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß im Sender zusätzliche Hochfrequenzkomponenten durch Modulation eines Trägers mit der Überlagerung verschiedener Differenzfrequenzsignale erzeugt werden.
5. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß im Sender unterschiedliche Hochfrequenzkomponenten, welche durch Modulation eines Trägers mit unterschiedlichen Differenzfrequenzsignalen erzeugt werden, über verschiedene Antennen abgestrahlt werden.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß im Empfänger zusätzliche Hochfrequenzkomponenten durch Amplitudenmodulation der Empfangssignale mindestens einer Antenne erzeugt werden, wobei im Falle der Modula- tion mehrerer Empfangssignale pro Empfangszweig diese mit unterschiedlichen Modulationssignalen moduliert werden.
7. Vorrichtung zur Übertragung amplitudengetasteter Mikrowellensignale, insbesondere nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß im Empfänger das Sendesignal durch mehrere unabhängige Empfangszweige empfangen, durch jeweils mindestens ein nichtlineares Element detektiert und die Detektionssignale anschließend überlagert werden.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Empfangssignal vor der Detektion in eine Zwischenfrequenz gewandelt wird und von einem Bandpaß gefiltert wird, welcher Durchlaßbereiche bei allen interessierenden Hochfrequenzkomponenten besitzt.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß als Daten Audiodaten an einen digitalen Kopfhörer übertragen werden, welcher mittels Di- gital-Analog-Wandlung analoge Audiosignale generiert.
10. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß als Daten Audiodaten an digitale Lautsprecher übertragen werden, welche mittels Digital- Analog-Wandlung analoge Audiosignale generieren.
PCT/DE1998/002945 1997-10-01 1998-09-28 Vorrichtung zur übertragung amplitudengetasteter mikrowellensignale WO1999018676A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19744128 1997-10-01
DE19800834 1998-01-06

Publications (1)

Publication Number Publication Date
WO1999018676A1 true WO1999018676A1 (de) 1999-04-15

Family

ID=26040632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/002945 WO1999018676A1 (de) 1997-10-01 1998-09-28 Vorrichtung zur übertragung amplitudengetasteter mikrowellensignale

Country Status (1)

Country Link
WO (1) WO1999018676A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2346778A (en) * 1998-11-24 2000-08-16 Jens Kurrat Digital wireless audio transmission system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2951152A (en) * 1956-02-14 1960-08-30 Itt Radio diversity receiving system
US3831095A (en) * 1973-03-26 1974-08-20 G Mounce Receiver system having multiple contributing channels
US5204979A (en) * 1987-10-31 1993-04-20 Richard Hirschmann Gmbh & Co. Diversity receiving method and apparatus for combining a plurality of rapidly changing signals
EP0704984A2 (de) * 1994-09-29 1996-04-03 Delco Electronics Corporation FM-Emfänger mit mehreren Antennen
US5542107A (en) * 1993-04-17 1996-07-30 Hughes Aircraft Company Cellular system employing base station transit diversity according to transmission quality level
EP0783209A1 (de) * 1995-12-29 1997-07-09 THOMSON multimedia Verfahren und Vorrichtung zur drahtloser Übertragung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2951152A (en) * 1956-02-14 1960-08-30 Itt Radio diversity receiving system
US3831095A (en) * 1973-03-26 1974-08-20 G Mounce Receiver system having multiple contributing channels
US5204979A (en) * 1987-10-31 1993-04-20 Richard Hirschmann Gmbh & Co. Diversity receiving method and apparatus for combining a plurality of rapidly changing signals
US5542107A (en) * 1993-04-17 1996-07-30 Hughes Aircraft Company Cellular system employing base station transit diversity according to transmission quality level
EP0704984A2 (de) * 1994-09-29 1996-04-03 Delco Electronics Corporation FM-Emfänger mit mehreren Antennen
EP0783209A1 (de) * 1995-12-29 1997-07-09 THOMSON multimedia Verfahren und Vorrichtung zur drahtloser Übertragung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LÜKE, H. D.: "Signalübertragung", 1985, SPRINGER-VERLAG, HEIDELBERG, XP002095144 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2346778A (en) * 1998-11-24 2000-08-16 Jens Kurrat Digital wireless audio transmission system
DE19855292C1 (de) * 1998-11-24 2000-10-05 Jens Kurrat Digitales Funkkopfhöhrersystem
GB2346778B (en) * 1998-11-24 2001-04-18 Jens Kurrat Digital wireless audio transmission system

Similar Documents

Publication Publication Date Title
EP0806849B1 (de) Schaltungsanordnung zur Funktionsprüfung mobiler Rundfunkempfangsanlagen
DE3836046C2 (de)
DE4129830C2 (de)
DE2902952C2 (de) Direktmischendes Empfangssystem
DE4191766C2 (de) Frequenzsteuerschaltkreis für einen einstellbaren Empfänger-Oszillator
DE69735335T2 (de) Wegnahme des DC-Offsets und Unterdrückung von verfälschten AM-Signalen in einem Direktumwandlungsempfänger
DE10148462C1 (de) Übertragungsverfahren für ein analoges Magnetresonanzsignal und hiermit korrespondierende Einrichtungen
DE69829835T2 (de) Funksender und Funkempfänger
DE3903262A1 (de) Empfangssystem fuer ein satellitenrundfunksystem
EP0134417A1 (de) Übertragungssystem für TV-Signale in Richtfunkstrecken
DE19855292C1 (de) Digitales Funkkopfhöhrersystem
DE4204490B4 (de) Schaltungsanordnung zur Unterdrückung von Umschaltstörungen bei Antennendiversity
DE10304463B4 (de) System und Verfahren zur Fernübertragung
WO1999018676A1 (de) Vorrichtung zur übertragung amplitudengetasteter mikrowellensignale
DE69215737T2 (de) Radioempfangssysteme
EP0499827B1 (de) Autoradio mit einer Schaltungsanordnung zur Analog/Digital-Wandlung eines Zwischenfrequenzsignals
EP0662267A1 (de) Zf-filteranordnung für fm-empfangssignale
DE3200560A1 (de) "verfahren zur unterdrueckung von spiegelwellen- und intermodulationsstoerungen"
DE69827922T2 (de) Filter für ein Mobilfunktelefon
DE3412191A1 (de) Integrierbare empfaengerschaltung
DE4222309A1 (de) Schaltungsanordnung zur Erkennung und Unterdrückung von Nachbarkanalstörungen
DE19925868B4 (de) Diversity-TV-Empfangssystem
DE2850414A1 (de) Funkuebertragungssystem
DE880326C (de) Gemeinschafts-Rundfunk-Empfangsanlage
DE3324959A1 (de) Empfangsschaltung fuer ein raumdiversity-verfahren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WPC Withdrawal of priority claims after completion of the technical preparations for international publication
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase