WO1999012201A1 - Feuchtigkeitsschutz für boratglashalbleiterpassivierungsschichten - Google Patents
Feuchtigkeitsschutz für boratglashalbleiterpassivierungsschichten Download PDFInfo
- Publication number
- WO1999012201A1 WO1999012201A1 PCT/DE1998/002613 DE9802613W WO9912201A1 WO 1999012201 A1 WO1999012201 A1 WO 1999012201A1 DE 9802613 W DE9802613 W DE 9802613W WO 9912201 A1 WO9912201 A1 WO 9912201A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- borate glass
- layer
- zinc borate
- poly
- layers
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3157—Partial encapsulation or coating
- H01L23/3171—Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the invention relates to a method for producing moisture protection on borate glass semiconductor passivation layers, in particular on borate glass layers, in particular on zinc borate glass layers on power semiconductor components.
- borate glass layers are understood to mean glass layers which contain lead borates, zinc borates or lead-zinc borates. Such glass layers are described, for example, in US Pat. No. 4,251,595 and have been generally known for a long time.
- a passivation layer for semiconductor components is known from EP 0 709 882 A2, in which a first passivation layer made of silicon nitride is applied to a semiconductor substrate, to which layer a polyimide layer is applied. A benzocyclobutene polymer layer is applied to this polyimide layer.
- the semiconductor body described there in FIG. 2 accordingly has three layers as the passivation layer, namely a silicon nitride layer or silicon oxide layer (PSG or BPSG) and for
- Moisture protection a layer of benzocyclobutene a layer of benzocyclobutene.
- the introduction of a polyimide layer between the benzocyclobutene layer and the silicon nitride layer is recommended since the benzocyclobutene layer, which serves as the actual moisture protection there, adheres very poorly to the silicon oxide or to the silicon nitride.
- this object is achieved with a semiconductor component, which is characterized in that a borate glass layer is applied to the semiconductor body and a hydrophobic polymer film is deposited on the borate glass layer.
- the hydrophobic polymer film can be a poly-parylene film on the one hand, but it can also be a poly-benzocyclobutene film on the other hand.
- the borate glasses are preferably zinc borate, lead borate or zinc lead borate glass layers.
- Such borate glass layers have a high dielectric strength against electric field strengths. Furthermore, they have a high thermal load capacity, since the firing and transformation temperatures are significantly higher than the usual working temperature of semiconductor components and also of power semiconductor components. Since the borate glasses are amorphous (freedom from grain boundaries), they have no diffusion paths for impurities and therefore have a high long-term stability as a passivation layer. Furthermore, the thermal expansion coefficient of such borate glasses can be adjusted very precisely to the thermal expansion coefficient of the silicon semiconductor body underneath.
- BPSG boron phosphor silicate glasses
- PSG phosphor silicate glasses
- silicon nitride silicon nitride
- the borate glasses are also not “doped” but behave in an electrically neutral manner, which is advantageous for power semiconductors.
- these borate glasses are also easy to apply to the silicon semiconductor body. They are usually spun on, then planarized and finally baked.
- these glasses are not sufficiently moisture resistant. Accordingly, they also need moisture protection.
- the benzocyclobutenes or poly-para-xylylenes mentioned at the outset are suitable as moisture protection.
- the zinc borate glasses do not require an adhesion promoter made of polyimide.
- the inventive configuration of the passivation protection accordingly guarantees protection of the semiconductor body underneath which is considerably simpler and technically significantly better than in the prior art.
- the deterioration of the static blocking capacity manifests itself in an unstable "wandering" blocking characteristic, which has a clearly increased blocking current. If the semiconductor component is subjected to excessive stress, ie in the event of abrupt transitions from pass mode to blocking mode, this can lead to the destruction of the power semiconductor component, although the power semiconductor component was breakthrough-proof before storing in moisture.
- the hydrophobic polymer film is made by first under vacuum, i.e. As a rule, under vacuum, monomers are condensed onto the zinc borate glass layer and polymerized there. To generate the monomers, oligomers are evaporated and then decomposed optically and / or thermally and / or via a plasma.
- the particular advantages of the polymer film produced in this process are, on the one hand, hermetically sealed layers from a few micrometers thick.
- the hydrophobic polymer films are characterized by high flexibility and elongation and thus less susceptibility to cracking.
- the monomers can penetrate very fine cavities, particularly in the case of fine structuring of zinc borate glass passivation layers, since they are present in the gaseous intermediate stage. Effects from surface forces such as paints do not occur, ie there is no edge wetting or bridging.
- polymer films deposited from the gas phase also adhere very well to the zinc borate glass layers, so that no polyimide adhesion promoter is required.
- Polymer film deposited a poly-parylene film typically, these poly-parylene films are poly-para-xylylene films.
- Parylene is the general term for a family of organic polymers that form on surfaces that are treated with the diluted active glass under negative pressure. This creates linear, crystalline polymers that have excellent physical properties in relation to the layer thickness and are extremely inert to chemicals and non-porous. They also have high dielectric capacities and offer optimal protection against moisture and gases.
- benzocyclobutene films are very suitable. These benzocobutene films are in a monomeric solution. They are spun on, planarized, then baked and can be structured using standard photo steps in order to expose metallizations if necessary. The polymers are then cured to cure. It has been shown that a curing process at approximately 200 ° C. for 60 minutes under a protective gas atmosphere is sufficient.
- the investigated power diode has a zinc borate glass passivation layer on its surface.
- a solution of benzocyclobutene monomers was spun onto this zinc borate glass passivation layer.
- the benzocyclobutene layer was then planarized and subjected to a so-called prebake step at approximately 90 ° C. for one minute.
- the layer was then patterned with a photo-step so that the metallization was exposed and finally the benzocyclobutene layer was cured to harden.
- the annealing step was carried out at about 200 ° C for 60 minutes under a nitrogen atmosphere.
- This poly-para-xylylene film is deposited on the zinc borate glass surface from the gas phase.
- the coating process begins with the heating of powder forms of di-para-xylylene dimers, as a result of which they change directly into the gaseous state, i.e. sublimate.
- a temperature of approximately 150 ° C. and a pressure of approximately 1 torr have proven to be particularly suitable as process parameters. Thereafter, the gaseous di-para-xylylene dimers are thermally decomposed to para-xylylene monomers at a temperature of approximately 690 ° C. and a pressure of approximately 0.5 Torr (pyrolysis).
- the gaseous para-xylylene monomers are then passed into a process chamber, usually a vacuum chamber, where they are distributed uniformly and condense on the surfaces of the zinc borate glass layers of the semiconductor components to be treated.
- the thickness of the polymer film can be adjusted by adding para-xylylene monomers.
- the resulting poly-para-xylylene film has a melting point of greater than 275 ° C., temperature-stable moisture protection is created, so that the semiconductor body coated in this way in its later housing also meets the requirements of various soldering processes. The same applies to the benzocyclobutene film mentioned at the beginning.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98952548A EP1018158A1 (de) | 1997-09-03 | 1998-09-03 | Feuchtigkeitsschutz für boratglashalbleiterpassivierungsschichten |
JP2000509112A JP3307918B2 (ja) | 1997-09-03 | 1998-09-03 | ホウ酸ガラス不動態化層のための防湿層 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19738547 | 1997-09-03 | ||
DE19738547.8 | 1997-09-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999012201A1 true WO1999012201A1 (de) | 1999-03-11 |
Family
ID=7841091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1998/002613 WO1999012201A1 (de) | 1997-09-03 | 1998-09-03 | Feuchtigkeitsschutz für boratglashalbleiterpassivierungsschichten |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1018158A1 (de) |
JP (1) | JP3307918B2 (de) |
WO (1) | WO1999012201A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103031539A (zh) * | 2012-12-24 | 2013-04-10 | 中国电子科技集团公司第十八研究所 | 温差电致冷组件表面三防膜的固封方法 |
CN220651999U (zh) | 2020-11-05 | 2024-03-22 | 日立能源有限公司 | 具有超疏水保护层的功率半导体器件及功率模块 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1288058A (de) * | 1968-12-09 | 1972-09-06 | ||
US3751306A (en) * | 1968-12-04 | 1973-08-07 | Siemens Ag | Semiconductor element |
US3752701A (en) * | 1970-07-27 | 1973-08-14 | Gen Instrument Corp | Glass for coating semiconductors, and semiconductor coated therewith |
US4173664A (en) * | 1978-01-20 | 1979-11-06 | Union Carbide Corporation | Parylene stabilization |
US4251595A (en) * | 1979-09-10 | 1981-02-17 | Technology Glass Corporation | Low temperature sealing glasses |
US4542105A (en) * | 1982-01-21 | 1985-09-17 | Tokyo Shibaura Denki Kabushiki Kaisha | Glass composition for covering semiconductor element |
EP0709882A2 (de) * | 1994-10-27 | 1996-05-01 | Nec Corporation | Halbleiterbauelement mit Passivierungsschicht aus einem Benzocycobuten-Polymer und Siliziumpulver |
-
1998
- 1998-09-03 WO PCT/DE1998/002613 patent/WO1999012201A1/de not_active Application Discontinuation
- 1998-09-03 EP EP98952548A patent/EP1018158A1/de not_active Withdrawn
- 1998-09-03 JP JP2000509112A patent/JP3307918B2/ja not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3751306A (en) * | 1968-12-04 | 1973-08-07 | Siemens Ag | Semiconductor element |
GB1288058A (de) * | 1968-12-09 | 1972-09-06 | ||
US3752701A (en) * | 1970-07-27 | 1973-08-14 | Gen Instrument Corp | Glass for coating semiconductors, and semiconductor coated therewith |
US4173664A (en) * | 1978-01-20 | 1979-11-06 | Union Carbide Corporation | Parylene stabilization |
US4251595A (en) * | 1979-09-10 | 1981-02-17 | Technology Glass Corporation | Low temperature sealing glasses |
US4542105A (en) * | 1982-01-21 | 1985-09-17 | Tokyo Shibaura Denki Kabushiki Kaisha | Glass composition for covering semiconductor element |
EP0709882A2 (de) * | 1994-10-27 | 1996-05-01 | Nec Corporation | Halbleiterbauelement mit Passivierungsschicht aus einem Benzocycobuten-Polymer und Siliziumpulver |
Non-Patent Citations (1)
Title |
---|
"LEAD ZINC BOROSILICATE GLASS FOR PROTECTING INTEGRATED CIRCUIT PACKAGE METALLURGY", IBM TECHNICAL DISCLOSURE BULLETIN., vol. 18, no. 5, October 1975 (1975-10-01), NEW YORK US, pages 1429, XP002091812 * |
Also Published As
Publication number | Publication date |
---|---|
EP1018158A1 (de) | 2000-07-12 |
JP3307918B2 (ja) | 2002-07-29 |
JP2001515271A (ja) | 2001-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0489826B1 (de) | Verwendung eines quellfähigen kunststoffes, sowie verfahren zur herstellung eines resistiven feuchtigkeitssensors | |
DE69635745T2 (de) | Elektrostatische Haltevorrichtung und Herstellungsverfahren derselben | |
DE69305318T2 (de) | Verfahren zur Herstellung eines Siliziumoxid-Filmes | |
DE69637166T2 (de) | Verfahren zur Härtung eines Wasserstoff-Silsesquioxanharzes mittels Elektronenstrahlen zur Umwandlung in eine Silika enthaltende Keramikbeschichtung | |
EP1502293B1 (de) | Verfahren zur herstellung strukturierter schichten auf substraten | |
DE69214683T2 (de) | Halbleiterbauelement mit einem auf TEOS-Basis aufgeschleuderten Glas und Verfahren zu dessen Herstellung | |
DE69016134T2 (de) | Verfahren zur Herstellung einer Polyimid Dünnschicht sowie Verfahren zur Herstellung einer Flüssigkristallorientierungsschicht aus Poyimid. | |
DE2931032A1 (de) | Halbleiteranordnung | |
DE2638799B2 (de) | Verfahren zur Verbesserung der Haftung von metallischen Leiterzügen auf Polyimidschichten in integrierten Schaltungen | |
DE69525501T2 (de) | Halbleiterbauelement mit Passivierungsschicht aus einem Benzocycobuten-Polymer und Siliziumpulver | |
DE2641387B2 (de) | Verfahren zum Abscheiden einer Glasschicht | |
DE2716143A1 (de) | Lichtemittierendes halbleiterbauelement | |
DE2805152A1 (de) | Aus einem organischen polymerisat bestehendes dielektrikum und verfahren zu seiner herstellung | |
EP0146160B1 (de) | Verfahren zum Herstellen eines geodätischen Bauelements und integrierte optische Anordnung die dieses Element enthält | |
EP0445527B1 (de) | Optisches Wellenleiterbauelement und Verfahren zum Herstellen eines optischen Wellenleiterbauelementes | |
EP1018158A1 (de) | Feuchtigkeitsschutz für boratglashalbleiterpassivierungsschichten | |
DE69620587T2 (de) | Herstellung eines glasüberzogenen artikels und produkt | |
DE4013449C2 (de) | Verfahren zur Herstellung von Isolierschichten auf einem Halbleitersubstrat | |
DE102019122078A1 (de) | Verfahren zur Herstellung einer Aluminiumschicht und optisches Element | |
DE69601284T2 (de) | Verfahren zum Verkleben von Siliziumdioxid auf Gold | |
DE4435120C2 (de) | Schutzschicht für Wafer und Verfahren zu deren Herstellung | |
WO1998008246A1 (de) | Halbleiterbauelement mit durch ionenimplantation eingebrachten fremdatomen und verfahren zu dessen herstellung________________ | |
DE2323988C2 (de) | Verfahren zum Metallisieren eines nichtleitenden Substrats | |
DE102018125335B4 (de) | Verfahren zur Herstellung eines optischen Schichtsystems mit einer 2D-Schicht und optisches Schichtsystem | |
WO1991003735A1 (de) | Verfahren zur herstellung eines feuchtesensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1998952548 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09486770 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1998952548 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1998952548 Country of ref document: EP |