WO1999007780A1 - Flammwidrige polycarbonat-abs-formmassen - Google Patents

Flammwidrige polycarbonat-abs-formmassen Download PDF

Info

Publication number
WO1999007780A1
WO1999007780A1 PCT/EP1998/004735 EP9804735W WO9907780A1 WO 1999007780 A1 WO1999007780 A1 WO 1999007780A1 EP 9804735 W EP9804735 W EP 9804735W WO 9907780 A1 WO9907780 A1 WO 9907780A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
molding compositions
compositions according
parts
phosphate
Prior art date
Application number
PCT/EP1998/004735
Other languages
English (en)
French (fr)
Inventor
Thomas Eckel
Dieter Wittman
Herbert Eichenauer
Heinrich Alberts
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7838570&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999007780(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to AU91569/98A priority Critical patent/AU9156998A/en
Priority to DE59812883T priority patent/DE59812883D1/de
Priority to US09/485,288 priority patent/US6753366B1/en
Priority to CA002300216A priority patent/CA2300216C/en
Priority to EP98943797A priority patent/EP1003809B1/de
Priority to KR1020007001365A priority patent/KR100543848B1/ko
Priority to JP2000506271A priority patent/JP2001512767A/ja
Priority to BR9811886-2A priority patent/BR9811886A/pt
Publication of WO1999007780A1 publication Critical patent/WO1999007780A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • C08L69/005Polyester-carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene

Definitions

  • the present invention relates to polycarbonate ABS molding compositions which are flame-retardant with phosphorus compounds and which have an excellent level of mechanical properties, in particular a significantly improved tensile strength and yield stress, and an outstanding tensile modulus of elasticity.
  • EP-A-0 363 608 describes polymer mixtures made from aromatic polycarbonate, styrene-containing copolymer or graft copolymer and oligomeric phosphates as flame retardant additives. For certain purposes this is mechanical
  • EP-A-0 704 488 describes molding compositions made from aromatic polycarbonate, styrene-containing copolymers and graft polymers with a special graft base in specific proportions. These molding compositions have a very good notched impact strength and can optionally be equipped with phosphorus compounds in a flame-retardant manner. The level of mechanical properties is not always sufficient for the production of moldings with increased elasticity.
  • the object of the present invention is therefore flame-retardant polycarbonate ABS
  • PC / AB S molding compositions which contain phosphorus compounds according to component D (see below) and graft polymer from a graft base of a certain particle size can be processed to give moldings with a very good mechanical property level, in particular also under increased elasticity .
  • the present invention therefore relates to flame-retardant thermoplastic
  • Containing molding compounds A 40 to 99, preferably . 60 to 98.5 parts by weight of aromatic polycarbonate or polyester carbonate
  • B.2 95 to 5, preferably 20 to 70% by weight of one or more graft bases with a glass transition temperature ⁇ 0 ° C, preferably ⁇ -20 ° C and an average particle size (d 50 value) of 0.20 to 0.35 ⁇ m, preferably 0.25 to 0.30 ⁇ m
  • thermoplastic vinyl (co) polymer C. 0 to 45, preferably 0 to 30, particularly preferably 2 to 25 parts by weight of thermoplastic vinyl (co) polymer
  • R 1 , R 2 , R 3 and R 4 independently of one another in each case optionally halogenated Ci to Cg alkyl, in each case optionally by alkyl, preferably and / or halogen, preferably chlorine, bromine, substituted C 5 to C 6 cycloalkyl, C 6 to C 2 o-aryl or C 7 to C 1 aralkyl, n independently of one another, 0 or 1
  • X is a mono- or polynuclear aromatic radical with 6 to 30 C atoms
  • Particularly preferred molding compositions are those in which the weight ratio of components B: C is between 2: 1 and 1: 4, preferably between 1: 1 and 1: 3.
  • component D is preferably in the form of a mixture of 10 to 90% by weight, preferably 12 to 40% by weight, of at least one monophosphorus compound of the formula (I) and 10 to 90% by weight, preferably 60 to 88% by weight. % o, in each case based on the total amount of the phosphorus compounds, of at least one oligophosphorus compound of the formula (I), the mixture having an average N of 0.3 to 20, preferably 0.5 to 10, particularly preferably 0.5 to 6 .
  • Aromatic polycarbonates and / or aromatic polyester carbonates according to component A which are suitable according to the invention are known from the literature or can be prepared by processes known from the literature (for the preparation of aromatic polycarobonates, see, for example, Schnell, "Chemistry and Physics of Polycarbonates", Interscience
  • phase interface method by reacting diphenols with carbonic acid halides, preferably phosgene and / or with aromatic dicarboxylic acid dihalides, preferably benzenedicarboxylic acid dihalogenides, by the phase interface method, optionally using chain terminators, for example monophenols and optionally using trifunctional or more than trifunctional or branching agents, for example triphenols Tetraphenols.
  • carbonic acid halides preferably phosgene and / or with aromatic dicarboxylic acid dihalides, preferably benzenedicarboxylic acid dihalogenides
  • Polyester carbonates are preferably those of the formula (II)
  • A is a single bond, -CC 5 alkylene, C 2 -C 5 alkylidene, C 5 -C 6 cycloalkylidene,
  • B each hydrogen, -CC 12 alkyl, preferably methyl, halogen, preferably chlorine and / or bromine
  • R 5 and R 6 can be selected individually for each X 1 , independently of one another hydrogen or
  • -C 6 alkyl preferably hydrogen, methyl or ethyl
  • n is an integer from 4 to 7, preferably 4 or 5, with the proviso that at least one atom X 1 , R 5 and R 6 are simultaneously alkyl.
  • Preferred diphenols are hydroquinone, resocin, dihydroxydiphenols, bis (hydroxyphenyl) -C 5 -C 5 alkanes, bis (hydroxyphenyl) -C 5 -C 6 cycloalkanes, bis (hydroxyphenyl) ether, bis (hydroxylphenyl) - sulfoxides, bis (hydroxyphenyl) ketones,
  • diphenols are 4,4'-dihydroxydiphenyl, bisphenol-A, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, l, l-bis (4-hydroxyphenyl) cyclohexane, 1, 1-
  • 2,2-Bis (4-hydroxyphenyl) propane (bisphenol-A) is particularly preferred.
  • the diphenols can be used individually or as any mixtures.
  • the diphenols are known from the literature or can be obtained by processes known from the literature.
  • thermoplastic, aromatic polycarbonates Suitable for the production of the thermoplastic, aromatic polycarbonates
  • Chain terminators for example phenol, p-chlorophenol, p-tert-butylphenol or 2,4,6-tribromophenol, but also long-chain alkylphenols, such as 4- (1,3-tetramethylbutyl) phenol according to DE-OS 2 842 005 or Monoalkylphenol or dialkylphenols with a total of 8 to 20 carbon atoms in the alkyl substituents, such as 3,5-di-tert-butylphenol, p-iso-octylphenol, p-tert.-octylphenol, p-dodecylphenol and 2- ( 3.5-
  • Dimethylheptyl) phenol and 4- (3,5-dimethylheptyl) phenol Dimethylheptyl) phenol and 4- (3,5-dimethylheptyl) phenol.
  • the amount of chain terminators to be used is generally between 0.5 mol% and 10 mol%, based on the molar sum of the diphenols used in each case.
  • thermoplastic, aromatic polycarbonates have average weight-average molecular weights (M w , measured, for example, by means of an ultracentrifuge or scattered light measurement) of 10,000 to 200,000, preferably 20,000 to 80,000.
  • thermoplastic, aromatic polycarbonates can be branched in a known manner, preferably by incorporating 0.05 to 2.0 mol%, based on the sum of the diphenols used, of trifunctional or more than trifunctional compounds, for example those with three and more phenolic groups.
  • copolycarbonates Both homopolycarbonates and copolycarbonates are suitable.
  • preferred polycarbonates are polystyrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene
  • Copolycarbonates of bisphenol-A with up to 15 mol%> based on the molar sum of diphenols, other than preferred or particularly preferred diphenols, in particular 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane
  • Aromatic dicarboxylic acid dihalides for the production of aromatic polyester carbonates are preferably the diacid dichlorides of isophthalic acid, terephthalic acid, diphenyl ether-4,4'-dicarboxylic acid and naphthalene-2,6-dicarboxylic acid
  • Mixtures of the diacid dichlorides of isophthalic acid and terephthalic acid in a ratio between 1 20 and 20: 1 are particularly preferred.
  • a carbonic acid halide preferably phosgene, is additionally used as the bifunctional acid derivative
  • the amount of chain terminators is in each case 0.1 to 10 mol%, based on moles of diphenols in the case of the phenolic chain terminators and on moles of dicarboxylic acid dichlorides in the case of monocarboxylic acid chloride chain terminators
  • the aromatic polyester carbonates can also contain aromatic hydroxycarboxylic acids
  • the aromatic polyester carbonates can be linear or branched in a known manner (see also DE-OS 2 940 024 and DE-OS 3 007 934).
  • 3- or polyfunctional carboxylic acid chlorides such as trimesic acid trichloride, cyanuric acid trichloride, 3,3 '-, 4,4'-benzophenonetetracarboxylic acid tetrachloride, 1,4,5, 8-naphthalenetetracarboxylic acid tetrachloride or pyromellitic acid tetrachloride
  • branching agents in amounts of 0 , 01 to 1.0 mol% (based on the dicarboxylic acid dichlorides used) or 3- or polyfunctional phenols, such as phloroglucin, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -heptene-2 , 4,4-dimethyl-2,4-6-tri- (4-hydroxyphenyl) -heptane, l, 3,5-tri- (4-hydroxyphenyl) -benzene, l, l, l-tri- (4- hydroxyphen
  • thermoplastic aromatic polyester carbonates
  • the proportion of carbonate groups is preferably up to 100 mol%, in particular up to 80 mol%, particularly preferably up to 50 mol%, based on the sum of ester groups and carbonate groups.
  • Both the ester and the carbonate content of the aromatic polyester carbonates can be in the form of blocks or statistically distributed in the polycondensation.
  • the relative solution viscosity ( ⁇ re ⁇ ) of the aromatic polyester carbonates is in the range 1.18 to 1.4, preferably 1.22 to 1.3 (measured on solutions of 0.5 g polyester carbonate in 100 ml methylene chloride solution at 25 ° C. ).
  • the thermoplastic, aromatic polycarbonates and polyester carbonates can be used alone or in any mixture with one another.
  • Component B comprises one or more graft copolymers of
  • Monomers B.1 are preferably mixtures of
  • Methacrylonitrile and / or (meth) acrylic acid (-CC 8 ) alkyl esters (such as
  • Methyl methacrylate, n-butyl acrylate, t-butyl acrylate) and / or derivatives (such as anhydrides and imides) of unsaturated carboxylic acids for example maleic anhydride and N-phenyl-maleimide.
  • Preferred monomers B1 are selected from at least one of the monomers styrene, ⁇ -methylstyrene and methyl methacrylate
  • preferred monomers B.1.2 are selected from at least one of the monomers acrylonitrile, maleic anhydride and methyl methacrylate.
  • Particularly preferred monomers are B.1.1 styrene and B.1.2 acrylonitrile.
  • Graft bases B.2 suitable for the graft polymers B. are, for example, diene rubbers, EP (D) M rubbers, ie those based on ethylene propylene and, if appropriate, diene, acrylate, polyurethane, silicone, chloroprene and ethylene / vinyl acetate rubbers .
  • Preferred graft bases B.2 are diene rubbers (for example based on butadiene, isoprene, etc.) or mixtures of diene rubbers or copolymers of diene rubbers or their mixtures with other copolymerizable monomers (for example according to B.1. L and B1), with the proviso that the glass transition temperature of component B.2 is below 0 ° C.
  • Pure polybutadiene rubber is particularly preferred.
  • the gel fraction of the graft base B.2 is at least 30% by weight, preferably at least 40% by weight (measured in toluene), the average particle diameter d 50 of the graft base B.2 is 0.20 to 0.35 ⁇ m, preferably 0. 25 to 0.30 ⁇ m.
  • the graft copolymers B. are obtained by radical polymerization, e.g. by emulsion, suspension, solution or bulk polymerization, preferably by
  • Particularly suitable graft rubbers are ABS polymers which are produced by redox initiation with an initiator system composed of organic hydroperoxide and ascorbic acid in accordance with US Pat. No. 4,937,285.
  • Suitable acrylate rubbers according to B.2 of the polymers B are preferably polymers made from acrylic acid alkyl esters, optionally with up to 40% by weight, gene on B.2 other polymerizable, ethylenically unsaturated monomers.
  • the preferred polymerizable acrylic acid esters include -CC 8 alkyl esters, for example methyl, ethyl, butyl, n-octyl and 2-ethylhexyl esters; Haloalkyl esters, preferably halogen-C ⁇ -Cs alkyl esters, such as chloroethyl acrylate and mixtures of these monomers.
  • Monomers with more than one polymerizable double bond can be copolymerized for crosslinking.
  • Preferred examples of crosslinking monomers are esters of unsaturated monocarboxylic acids with 3 to 8 C atoms and unsaturated monohydric alcohols with 3 to 12 C atoms, or saturated polyols with 2 to 4 OH
  • Groups and 2 to 20 carbon atoms e.g. Ethylene glycol dimethacrylate, allyl methacrylate; polyunsaturated heterocyclic compounds, e.g. Trivinyl and triallyl cyanurate; polyfunctional vinyl compounds, such as di- and trivinylbenzenes; but also triallyl phosphate and diallyl phthalate.
  • Preferred crosslinking monomers are allyl methacrylate, ethylene glycol dimethacrylate, diallyl phthalate and heterocyclic compounds which have at least 3 ethylenically unsaturated groups.
  • crosslinking monomers are the cyclic monomers triallyl cyanurate, triallyl isocyanurate, triacryloylhexahydro-s-triazine and triallylbenzenes.
  • the amount of crosslinked monomers is preferably 0.02 to 5, in particular 0.05 to 2% by weight, based on the graft base B.2.
  • Preferred "other" polymerizable, ethylenically unsaturated monomers which, in addition to the acrylic esters, can optionally be used to prepare the graft base B.2 are, for. B. acrylonitrile, styrene, ⁇ -methylstyrene, acrylamides, vinyl -CC 6 alkyl ether, methyl methacrylate, butadiene.
  • Preferred acrylate rubbers as graft base B.2 are emulsion polymers which have a gel content of at least 60% by weight.
  • graft bases according to B.2 are silicone rubbers with graft-active sites, as are described in DE-OS 3 704 657, DE-OS 3 704 655, DE-OS 3 631 540 and DE-OS 3 631 539.
  • the gel content of the graft base B.2 is determined at 25 ° C. in a suitable solvent (M. Hoffmann, H. Krömer, R. Kuhn, Polymeranalytik I and II, Georg Thieme-Verlag, Stuttgart 1977).
  • the average particle size dso is the diameter above and below which 50% by weight of the particles lie. It can be determined by means of ultracentrifuge measurement (W. Scholtan, H. Lange, Kolloid, Z. and Z. Polymer 250 (1972), 782-1796).
  • graft polymers B are also understood according to the invention to mean those products which are obtained by (co) polymerizing the graft monomers in the presence of the graft base and are also obtained in the working up.
  • Component C comprises one or more thermoplastic vinyl (co) polymers.
  • Suitable as (co) polymers C are polymers of at least one monomer from the group of vinyl aromatics, vinyl cyanides (unsaturated nitriles), (meth) acrylic acid (CC 8 ) alkyl esters, unsaturated carboxylic acids and derivatives (such as anhydrides and imides) of unsaturated carboxylic acids .
  • vinyl aromatics vinyl cyanides (unsaturated nitriles)
  • acrylic acid (CC 8 ) alkyl esters unsaturated carboxylic acids and derivatives (such as anhydrides and imides) of unsaturated carboxylic acids .
  • (Co) polymers C.1 50 to 99, preferably 60 to 80 parts by weight of vinyl aromatics and / or core-substituted vinyl aromatics such as styrene, ⁇ -methylstyrene, p-methylstyrene, p-chlorostyrene) and / or methacrylic acid (-C-C) alkyl esters such as eg methyl methacrylate, ethyl methacrylate), and
  • the (co) polymers C are resinous, thermoplastic and rubber-free.
  • copolymer of C.I. styrene and C. 2 acrylonitrile is particularly preferred.
  • the (co) polymers according to C are known and can be prepared by radical polymerization, in particular by emulsion, suspension, solution or bulk polymerization.
  • the (co) polymers according to component C preferably have molecular weights M w (weight average, determined by light scattering or sedimentation) between 15,000 and 200,000.
  • (Co) polymers according to component C frequently arise as by-products in the graft polymerization of component B, especially when large amounts of monomers B. 1 are grafted onto small amounts of rubber B.2.
  • the amount of C which may also be used according to the invention does not include these by-products of the graft polymerization of B.
  • component C should be present in the molding compositions according to the invention. If component C is present in the molding compositions, the weight ratio of components B: C should be between 2: 1 and 1: 4, preferably between 1: 1 and 1: 2, in order to achieve the desired mechanical level for certain purposes.
  • Component D is a mixture of at least one mono- and at least one oligomer-phosphorus compound of the formula (I)
  • R, R 2 , R 3 and R 4 have the meanings given above.
  • R 1 , R 2 , R 3 and R 4 are preferably independently of one another C 1 -C 4 alkyl, phenyl, naphthyl or phenyl-C j -C ⁇ alkyl.
  • the aromatic groups R 1 , R 2 , R 3 and R 4 can in turn be substituted with halogen and / or alkyl groups, preferably chlorine, bromine and / or C j -C ⁇ alkyl.
  • Particularly preferred aryl radicals are cresyl, phenyl, xylenyl, propylphenyl or butylphenyl and the corresponding brominated and chlorinated derivatives thereof.
  • X in formula (I) means a mono- or polynuclear aromatic radical
  • diphenols of the formula (II) are e.g. Diphenylphenol, bisphenol A, resorcinol or hydroquinone or their chlorinated or brominated derivatives.
  • n in the formula (I), independently of one another, can be 0 or 1, preferably n is 1.
  • N stands for values from 0 to 30, preferably for an average value of 0.3 to 20, particularly preferably 0.5 to 10, in particular 0.5 to 6.
  • Mixtures of preferably 10 to 90% by weight, preferably 12 to 40% by weight, of at least one monophosphorus compound of the formula (I) and at least one oligomeric phosphorus compound or a mixture of oligomeric phosphorus compounds in amounts of 10 to 90 are used as component D according to the invention % By weight, preferably 60 to 88% by weight, based on the total amount of phosphorus compounds.
  • Monophosphorus compounds of the formula (I) are, in particular, tributyl phosphate, tris (2-chloroethyl) phosphate, tris (2,3-dibromopropyl) phosphate, triphenyl phosphate, triscresyl phosphate, diphenylcresylphosphate, diphenyloctylphosphate, diphenyl-2-ethylcresylphosphate Tri- (isopropylphenyl) phosphate, halogen-substituted aryl phosphates, dimethyl methylphosphonate, diphenyl methylphosphate, diethyl phenylphosphate, triphenylphosphine oxide or tricresylphosphine oxide.
  • the mixtures of monomeric and oligomeric phosphorus compounds of the formula (I) have average N values of 0.3 to 20, preferably 0.5 to 10, in particular 0.5 to 6.
  • the phosphorus compounds according to component D are known (cf., for example, EP-A 363 608, EP-A 640 655) or can be prepared in an analogous manner by known methods (for example Ulimann's Encyclopedia of Industrial Chemistry, vol. 18, p. 301 ff. 1979; Houben-Weyl, Methods of Organic Chemistry, Vol. 12/1, p. 43;
  • the fluorinated polyolefins E) are of high molecular weight and have glass transition temperatures of above -30 ° C., generally above 100 ° C., fluorine contents, preferably from 65 to 76, in particular from 70 to 76% by weight, average particle diameter d 50 of 0.05 to 1,000, preferably 0.08 to 20 ⁇ m. In general, the fluorinated polyolefins E) have a density of 1.2 to 2.3 g / cm 3 .
  • Preferred fluorinated polyolefins E) are polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene (hexafluoropropylene and ethylene / tetrafluoroethylene copolymers.
  • the fluorinated polyolefins are known (cf. "Vinyl and Related Polymers" from Schildknecht, John Wiley & Sons, Inc.,
  • ком ⁇ онентs can be prepared by known processes, for example by polymerizing tetrafluoroethylene in an aqueous medium with a free radical-forming catalyst, for example sodium, potassium or ammonium peroxydisulfate at pressures from 7 to 71 kg / cm 2 and at temperatures from 0 to 200 ° C, preferably at temperatures of 20 to 100 ° C. (See U.S. Patent 2,393,967 for more details).
  • a free radical-forming catalyst for example sodium, potassium or ammonium peroxydisulfate
  • the density of these materials can be between 1.2 and 2.3 g / cm 3 , the average particle size between 0.5 and 1000 ⁇ m.
  • Fluorinated polyolefins E) preferred according to the invention are tetrafluoroethylene polymers with average particle diameters of 0.05 to 20 ⁇ m, preferably 0.08 to 10 ⁇ m, and a density of 1.2 to 1.9 g / cm and are preferably coagulated Mixture of emulsions of tetrafluoroethylene polymers E) with emulsions of graft polymers B) are used.
  • Suitable fluorinated polyolefins E) which can be used in powder form are tetrafluoroethylene polymers with average particle diameters of 100 to 1,000 ⁇ m and densities of 2.0 g / cm 3 to 2.3 g / cm 3 .
  • Suitable tetrafluoroethylene polymer emulsions usually have solids contents of 30 to 70% by weight, in particular 50 to 60% by weight, preferably 30 to 35% by weight.
  • the quantity in the description of component B can be the proportion of
  • graft polymer for the coagulated blend of graft polymer and fluorinated polyolefins.
  • the equilibrium ratio of graft polymer B to tetrafluoroethylene polymer E in the emulsion mixture is 95: 5 to 60:40.
  • Emulsion mixture coagulated in a known field for example by spray drying, freeze drying or coagulation by adding inorganic or organic salts, acids, bases or organic, water-miscible solvents, such as alcohols, ketones, preferably at temperatures from 20 to 150 ° C, in particular 50 up to 100 ° C. If necessary, drying can be carried out at 50 to 200 ° C., preferably 70 to 100 ° C.
  • Suitable tetrafluoroethylene polymer emulsions are commercial products and are offered for example by DuPont as Teflon ® 30N.
  • the molding compositions according to the invention can contain at least one of the customary additives, such as lubricants and mold release agents, nucleating agents, antistatic agents, stabilizers and dyes and pigments.
  • customary additives such as lubricants and mold release agents, nucleating agents, antistatic agents, stabilizers and dyes and pigments.
  • the molding compositions according to the invention may also contain very finely divided, inorganic powders in an amount of up to 50 parts by weight, preferably up to 20, in particular 0.5 to 10 parts by weight.
  • Very finely divided inorganic compounds consist of compounds of one or more metals of the 1st to 5th main group or 1st to 8th subgroup of the periodic table, preferably 2nd to 5th main group and 4th to 8th subgroup, particularly preferably 3rd to 5th Main group and 4th to 8th subgroup with at least one Element selected from the group oxygen, sulfur, boron, phosphorus, carbon, nitrogen, hydrogen and silicon.
  • Preferred compounds are, for example, oxides, hydroxides, water-containing oxides, sulfates, sulfites, sulfides, carbonates, carbides, nitrates, nitrites, nitrides, borates,
  • Silicates Silicates, phosphates, hydrides, phosphites or phosphonates.
  • Preferred very finely divided inorganic compounds are, for example, TiN, TiO 2 , SnO 2 , WC, ZnO, Al 2 O 3 , AIO (OH), ZrO 2 , Sb 2 O 3 , SiO 2 , iron oxides, Na 2 SO 4 BaSO 4 , vanadian oxides, Zinc borate, silicates such as Al silicates, Mg silicates, one, two, three-dimensional silicates, mixtures and doped compounds can also be used. Furthermore, these nanoscale particles can be surface-modified with organic molecules in order to achieve better compatibility with the polymers. In this way, hydrophobic or hydrophilic surfaces can be created.
  • the average particle diameters are less than or equal to 200 nm, preferably less than or equal to 150 nm, in particular 1 to 100 nm.
  • Particle size and particle diameter always mean the average particle diameter d5 Q , determined by ultracentrifuge measurements according to W. Scholtan et al.
  • the inorganic compounds can be present as powders, pastes, brine, dispersions or suspensions. Precipitation can result in powder being obtained from dispersions, brine or suspensions.
  • the powders can be incorporated into the thermoplastic materials by customary methods, for example by direct kneading or extruding the constituents of the molding composition and the very finely divided inorganic powders.
  • Preferred processes are the preparation of a masterbatch, for example in flame retardant additives, other additives, monomers, solvents, in component A or the co-precipitation of dispersions of the graft rubbers with dispersions, suspensions, pastes or sols of the very finely divided inorganic materials.
  • the molding compositions according to the invention can contain up to 35% by weight, based on the total molding composition, of a further flame retardant which may have a synergistic action.
  • Organic halogen compounds such as decabromobisphenyl ether, tetrabromobisphenol and inorganic are examples of other flame retardants
  • Halogen compounds such as ammonium bromide, nitrogen compounds such as melamine, melamine-formaldehyde resins, inorganic hydroxide compounds such as Mg, Al hydroxide, inorganic compounds such as antimony oxides, barium metaborate, hydroxoantimonate, zirconium oxide, zirconium hydroxide, molybdenum oxide, ammonium molybdate, zinc borate, ammonium borate and tin compounds .
  • inorganic hydroxide compounds such as Mg, Al hydroxide
  • inorganic compounds such as antimony oxides, barium metaborate, hydroxoantimonate, zirconium oxide, zirconium hydroxide, molybdenum oxide, ammonium molybdate, zinc borate, ammonium borate and tin compounds .
  • the molding compositions according to the invention containing components A) to E) and optionally other known additives such as stabilizers, dyes, pigments, lubricants and mold release agents, nucleating agents and antistatic agents are prepared by mixing the respective constituents in a known manner and at temperatures of 200 ° C. to 300 ° C. in conventional units such as internal kneaders, extruders and twin-screw extruders, melt-compounded and melt-extruded, component E) preferably being used in the form of the coagulated mixture already mentioned.
  • the individual constituents can be mixed in a known manner both successively and simultaneously, both at about 20 ° C. (room temperature) and at a higher temperature.
  • thermoplastic molding compositions according to the invention are suitable for the production of moldings of any type, in particular those with increased requirements
  • the molding compositions of the present invention can be used for the production of moldings of any kind.
  • moldings can be produced by injection molding.
  • Examples of moldings that can be produced are: housing parts of all kinds, for example for household appliances such as juicers, coffee machines, mixers, for office machines, or cover plates for the construction sector and parts for the motor vehicle sector. They can also be used in the field of electrical engineering because they have very good electrical properties.
  • Another form of processing is the production of molded articles by deep drawing from previously produced sheets or foils.
  • Another object of the present invention is therefore also the use of the molding compositions according to the invention for the production of moldings of any kind, preferably those mentioned above, and the molding from the molding compositions according to the invention.
  • Graft polymer of 45 parts by weight of a copolymer of styrene and acrylonitrile in a ratio of 72:28 to 55 parts by weight of particulate crosslinked polybutadiene rubber (average particle diameter d5Q 0.28 ⁇ m), produced by emulsion polymerization.
  • Styrene / acrylonitrile copolymer with a styrene / acrylonitrile weight ratio of 72:28 and an intrinsic viscosity of 0.55 dl / g (measurement in dimethylformamide at 20 ° C).
  • TPP Triphenyl phosphate
  • Tetrafluoroethylene polymer as a coagulated mixture of a SAN graft polymer emulsion according to component B mentioned above in water and a tetrafluoroethylene polymer emulsion in water.
  • the weight ratio of graft polymer B to tetrafluoroethylene polymer E in the mixture is 90% by weight to 10% by weight.
  • the tetrafluoroethylene polymer emulsion has a solids content of 60% by weight, the average particle diameter is between 0.05 and 0.5 ⁇ m.
  • the emulsion of the tetrafluoroethylene polymer (Teflon 30 N from DuPont) is mixed with the emulsion of the SAN graft polymer B and stabilized with 1.8% by weight, based on polymer solids, of phenolic antioxidants.
  • the mixture is coagulated with an aqueous solution of MgSO4 (Epsom salt) and acetic acid at pH 4 to 5, filtered and washed until practically free of electrolytes, then freed from the main amount of water by centrifugation and then at 100 ° C dried to a powder. This powder can then be compounded with the other components in the units described.
  • the components are mixed on a 3-1 kneader.
  • the moldings are produced on an Arburg 270 E injection molding machine at 260 ° C.
  • the heat resistance according to Vicat B is determined in accordance with DIN 53 460 (ISO 306) on rods measuring 80 x 10 x 4 mm 3 .
  • the tensile modulus of elasticity is determined in accordance with DIN 53 457 / ISO 527.
  • the yield stress is determined in accordance with ISO 527
  • the tensile strength (tensile test) is determined in accordance with ISO 527 / DN 53455

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Thermoplatische flammwidrige Formmassen enthaltend A) 40 bis 99 Gew.-Teile thermoplastisches Polycarbonat oder Polyestercarbonat, B) 0,5 bis 60 Gew.-Teile Pfropfpolymerisat von B.1) 5 bis 95 Gew.-% eines oder mehrerer Vinylmonomeren auf B.2) 95 bis 5 Gew.-% einer oder mehrerer Pfropfgrundlagen mit Glasübergangstemperaturen < 0 °C und eine mittlere Teilchengröße (d50-Wert) von 0,20 bis 0,35 νm, C) 0 bis 45 Gew.-Teile thermoplastiches Vinyl(co)polymerisat, D) 0,5 bis 20 Gew.-Teile Phosphorverbindung, E) 0,05 bis 5 Gew.-Teile fluoriertes Polyolefin.

Description

Flammwidrige Polycarbonat-ABS-Formmassen
Die vorliegende Erfindung betrifft mit Phosphorverbindungen flammwidrig ausgerüstete Polycarbonat-ABS-Formmassen, die ein ausgezeichnetes mechanisches Eigen- Schaftsniveau, insbesondere eine deutlich verbesserte Reißfestigkeit und Streckspannung sowie einen herausragenden Zug-E-Modul aufweisen.
In EP-A-0 363 608 werden Polymermischungen aus aromatischem Polycarbonat, styrolhaltigem Copolymer oder Pfropfcopolymer sowie oligomeren Phosphaten als Flammschutzadditive beschrieben. Für bestimmte Einsatzzwecke ist das mechanische
Eigenschaftsniveau dieser Mischungen oft nicht ausreichend.
In der EP-A-0 704 488 werden Formmassen aus aromatischem Polycarbonat, styrol- haltigen Copolymerisaten und Pfropfpolymerisaten mit einer speziellen Pfropfbasis in bestimmten Mengenverhältnissen beschrieben. Diese Formmassen weisen eine sehr gute Kerbschlagzähigkeit auf und können gegebenenfalls mit Phosphorverbindungen flammwidrig ausgerüstet werden. Für die Herstellung von Formkörpern mit erhöhter Elastizitatsbeanspruchung reicht das mechanische Eigenschaftsniveau nicht immer aus.
Aufgabe der vorliegenden Erfindung ist daher, flammwidrige Polycarbonat-ABS-
Formmassen bereitzustellen, die eine ausgezeichnete Reißfestigkeit und einen ausgezeichneten Zug-E-Modul neben der erforderlichen hohen Flammwidrigkeit aufweisen.
Es wurde nun gefunden, daß PC/AB S-Formmassen, die Phosphorverbindungen ge- maß Komponente D (s.u.) und Pfropfpolymerisat aus einer Pfropfgrundlage bestimmter Teilchengröße enthalten, zu Formkörper mit einem sehr guten mechanischen Eigenschaftsniveau, insbesondere auch unter erhöhter Elastizitatsbeanspruchung, verarbeitet werden können.
Gegenstand der vorliegenden Erfindung sind daher flammwidrige thermoplastische
Formmassen enthaltend A. 40 bis 99, vorzugsweise .60 bis 98,5 Gew.-Teile aromatisches Polycarbonat oder Polyestercarbonat
B. 0,5 bis 60, vorzugsweise 1 bis 40, insbesondere 2 bis 25 Gew.-Teile Pfropf- polymerisat von
B. l 5 bis 95, vorzugsweise 30 bis 80 Gew.-% eines oder mehrerer Vinylmonomeren auf
B.2 95 bis 5, vorzugsweise 20 bis 70 Gew.% einer oder mehrerer Pfropfgrundlagen mit einer Glasumwandlungstemperatur < 0°C, vorzugsweise <-20°C und einer mittleren Teilchengröße (d50-Wert) von 0,20 bis 0,35 μm, vorzugsweise 0,25 bis 0,30 μm
C. 0 bis 45, vorzugsweise 0 bis 30, besonders bevorzugt 2 bis 25 Gew.-Teile thermoplastisches Vinyl(co)polymerisat
D. 0,5 bis 20 Gew.-Teile, vorzugsweise 1 bis 18 Gew.-Teile, besonders bevorzugt 2 bis 15 Gew.-Teile, aus wenigstens einer Mono- und wenigstens einer Oligo-Phosphorverbindung der allgemeinen Formel (I)
(0
Figure imgf000004_0001
worin
R1, R2, R3 und R4, unabhängig voneinander jeweils gegebenenfalls halogeniertes Ci- bis Cg-Alkyl, jeweils gegebenenfalls durch Alkyl, vorzugsweise
Figure imgf000004_0002
und/oder Halogen, vorzugsweise Chlor, Brom, substituiertes C5- bis Cg- Cycloalkyl, C6- bis C2o-Aryl oder C7- bis C1 -Aralkyl, n unabhängig voneinander, 0 oder 1
N 0 bis 30 und
X einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C- Atomen bedeuten,
E. 0,05 bis 5 Gew.-Teile, vorzugsweise 0,1 bis 1 Gew.-Teile, besonders bevorzugt 0,1 bis 0,5 Gew.-Teile fluoriertes Polyolefin,
wobei die Summe aller Gewichtsteile A+B+C+D+E 100 ergibt.
Besonders bevorzugte Formmassen sind solche, bei denen das Gewichtsverhältnis der Komponenten B :C zwischen 2: 1 und 1 :4, vorzugsweise zwischen 1 : 1 und 1 :3 liegt.
In den erfindungsgemäßen Formmassen liegt die Komponente D vorzugsweise als eine Mischung von 10 bis 90 Gew.%, vorzugsweise 12 bis 40 Gew.%, wenigstens einer Monophosphorverbindung der Formel (I) und 10 bis 90 Gew.%, vorzugsweise 60 bis 88 Gew.%o, jeweils bezogen auf die Gesamtmenge der Phosphorverbindungen, wenigstens einer Oligophosphorverbindung der Formel (I) vor, wobei die Mischung ein durchschnittliches N von 0,3 bis 20, vorzugsweise 0,5 bis 10, besonders bevorzugt 0,5 bis 6, aufweist.
Komponente A
Erfindungsgemäß geeignete aromatische Polycarbonate und/oder aromatische Poly- estercarbonate gemäß Komponente A sind literaturbekannt oder nach literaturbekannten Verfahren herstellbar (zur Herstellung aromatischer Polycarobonate siehe beispielsweise Schnell, "Chemistry and Physics of Polycarbonates", Interscience
Publishers, 1964 sowie die DE-AS 1 495 626, DE-OS 2 232 877, DE-OS 2 703 376, DE-OS 2 714 544, DE-OS 3 000 610, DE-OS 3 832 396; zur Herstellung aromatischer Polyestercarbonate z. B. DE-OS 3 077 934). Die Herstellung aromatischer Polycarbonate erfolgt z. B. durch Umsetzung von Diphenolen mit Kohlensäurehalogeniden, vorzugsweise Phosgen und/oder mit aromatischen Dicarbonsäuredihalogeniden, vorzugsweise Benzoldicarbonsäuredihalo- geniden, nach dem Phasengrenzflächenverfahren, gegebenenfalls unter Verwendung von Kettenabbrechern, beispielseise Monophenolen und gegebenenfalls unter Verwendung von trifunktionellen oder mehr als trifunktionellen Verzweigern, beispielsweise Triphenolen oder Tetraphenolen.
Diphenole zur Herstellung der aromatischen Polycarbonate und/oder aromatischen
Polyestercarbonate sind vorzugsweise solche der Formel (II)
Figure imgf000006_0001
wobei
A eine Einfachbindung, Cι-C5-Alkylen, C2-C5-Alkyliden, C5-C6-Cycloalkyliden,
-O-, -SO-, -CO-, -S-, -SO2-, C6-C12-Arylen, an das weitere aromatische gegebenenfalls Heteroatome enthaltende Ringe kondensiert sein können,
oder ein Rest der Formel (III) oder (IV)
Figure imgf000006_0002
Figure imgf000007_0001
B jeweils Wasserstoff, Cι-C12-Alkyl, vorzugsweise Methyl, Halogen, vorzugsweise Chlor und/oder Brom
x jeweils unabhängig voneinander 0, 1 oder 2,
p 1 oder 0 sind, und
R5 und R6 für jedes X1 individuell wählbar, unabhängig voneinander Wasserstoff oder
Cι-C6-Alkyl, vorzugsweise Wasserstoff, Methyl oder Ethyl,
X1 Kohlenstoffund
m eine ganze Zahl von 4 bis 7, bevorzugt 4 oder 5 bedeuten, mit der Maßgabe, daß an mindestens einen Atom X1, R5 und R6 gleichzeitig Alkyl sind.
Bevorzugte Diphenole sind Hydrochinon, Resocin, Dihydroxydiphenole, Bis- (hydroxyphenyl)-Cι-C5-alkane, Bis-(hydroxyphenyl)-C5-C6-cycloalkane, Bis- (hydroxyphenyl)-ether, Bis-(hydroxylphenyl)-sulfoxide, Bis-(hydroxyphenyl)-ketone,
Bis-(hydroxyphenyl)-sulfone und α,α-Bis-(hydroxyphenyl)-diisopropyl-benzole sowie deren kernbromierte und/oder kernchlorierte Derivate.
Besonders bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, Bisphenol-A, 2,4- Bis(4-hydroxyphenyl)-2-methylbutan, l,l-Bis-(4-hydroxyphenyl)-cyclohexan, 1, 1-
Bis-(4-hydroxyphenyl)-3.3.5-trimethylcyclohexan, 4,4'-Dihydroxydiphenylsulfid, 4,4'- Dihydroxydiphenyl-sulfon sowie deren di- und tetrabromierten oder chlorierten Derviate wie beispielsweise 2,2-Bis(3-Chlor-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5- dichlor-4-hydroxyphenyl)-propan oder 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)- propan.
Insbesondere bevorzugt ist 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol- A).
Es können die Diphenole einzeln oder als beliebige Mischungen eingesetzt werden.
Die Diphenole sind literaturbekannt oder nach literaturbekannten Verfahren erhältlich.
Für die Herstellung der thermoplastischen, aromatischen Polycarbonate sind geeignete
Kettenabbrecher beispielsweise Phenol, p-Chlorphenol, p-tert.-Butylphenol oder 2,4,6-Tribromphenol, aber auch langkettige Alkylphenole, wie 4-(l,3-Tetramethyl- butyl)-phenol gemäß DE-OS 2 842 005 oder Monoalkylphenol bzw. Dialkylphenole mit insgesamt 8 bis 20 C-Atomen in den Alkylsubstituenten, wie 3,5-di-tert.-Butyl- phenol, p-iso-Octylphenol, p-tert.-Octylphenol, p-Dodecylphenol und 2-(3,5-
Dimethylheptyl)-phenol und 4-(3,5-Dimethylheptyl)-phenol. Die Menge an einzusetzenden Kettenabbrechern beträgt im allgemeinen zwischen 0,5 Mol-%, und 10 Mol-%), bezogen auf die Molsumme der jeweils eingesetzten Diphenole.
Die thermoplastischen, aromatischen Polycarbonate haben mittlere Gewichtsmittelmolekulargewichte (Mw, gemessen z. B. durch Ultrazentrifuge oder Streulichtmessung) von 10 000 bis 200 000, vorzugsweise 20 000 bis 80 000.
Die thermoplastischen, aromatischen Polycarbonate können in bekannter Weise verzweigt sein, und zwar vorzugsweise durch den Einbau von 0,05 bis 2,0 Mol-%, bezogen auf die Summe der eingesetzten Diphenole, an dreifunktionellen oder mehr als dreifunktionellen Verbindungen, beispielsweise solchen mit drei und mehr phenolischen Gruppen.
Geeignet sind sowohl Homopolycarbonate als auch Copolycarbonate. Zur Herstellung erfindungsgemäßer Copolycarbonate gemäß Komponente A) können auch 1 bis 25 Gew.-%, vorzugsweise 2,5 bis 25 Gew.%> (bezogen auf die Gesamtmenge an einzusetzenden Diphenolen) Polydiorganosiloxane mit Hydroxy-aryloxy-Endgruppen eingesetzt werden. Diese sind bekannt (s beispielseise US-Patent 3 419 634) bzw nach literaturbekannten Verfahren herstellbar Die Herstellung Polydiorganosiloxan- haltiger Copolycarbonate wird z B. in DE-OS 3 334 782 beschrieben
Bevorzugte Polycarbonate sind neben den Bisphenol-A-Homopolycarbonaten die
Copolycarbonate von Bisphenol-A mit bis zu 15 Mol-%>, bezogen auf die Molsummen an Diphenolen, anderen als bevorzugt bzw besonders bevorzugt genannten Diphenole, insbesondere 2,2-Bis(3 , 5 -dibrom-4-hydroxyphenyl)-propan
Aromatische Dicarbonsauredihalogenide zur Herstellung von aromatischen Polyester- carbonate sind vorzugsweise die Disauredichloride der Isophthalsaure, Terephthal- saure, Dιphenylether-4,4'-dicarbonsaure und der Naphthalin-2,6-dιcarbonsaure
Besonders bevorzugt sind Gemische der Disauredichloride der Isophthalsaure und der Terephthalsaure im Verhältnis zwischen 1 20 und 20: 1.
Bei der Herstellung von Polyestercarbonaen wird zusatzlich ein Kohlensaurehalo- genid, vorzugsweise Phosgen als bifunktionelles Saurederivat mitverwendet
Als Kettenabbrecher für die Herstellung der aromatischen Polyestercarbonate kommen außer den bereits genannten Monophenolen noch deren Chlorkohlensaureester sowie die Saurechloride von aromatischen Monocarbonsauren, die gegebenenfalls durch Cι-C22-Alkylgruppen oder durch Halogenatome substituiert sein können, sowie aliphatische C2-C22-Monocarbonsaurechloride in Betracht
Die Menge an Kettenabbrechern betragt jeweils 0,1 bis 10 Mol-%>, bezogen im Falle der phenolischen Kettenabbrecher auf Mole Diphenole und Falle von Monocarbon- saurechlorid-Kettenabbrecher auf Mole Dicarbonsauredichloride
Die aromatischen Polyestercarbonate können auch aromatische Hydroxycarbonsauren eingebaut enthalten Die aromatischen Polyestercarbonate können sowohl linear als auch in bekannter Weise verzweigt sein (siehe dazu ebenfalls DE-OS 2 940 024 und DE-OS 3 007 934).
Als Verzweigungsmittel können beispielsweise 3- oder mehrfunktionelle Carbonsäu- rechloride, wie Trimesinsäuretrichlorid, Cyanursäuretrichlorid, 3,3'-,4,4'-Benzophe- non-tetracarbonsäuretetrachlorid, 1,4,5, 8-Napthalintetracarbonsäuretetrachlorid oder Pyromellithsäuretetrachlorid, in Mengen von 0,01 bis 1,0 Mol-% (bezogen auf eingesetzte Dicarbonsäuredichloride) oder 3- oder mehrfunktionelle Phenole, wie Phloro- glucin, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hepten-2,4,4-Dimethyl-2,4-6-tri-(4- hydroxyphenyl)-heptan, l,3,5-Tri-(4-hydroxyphenyl)-benzol, l,l,l-Tri-(4-hydroxy- phenyl)-ethan, Tri-(4-hydroxyphenyl)-phenylmethan, 2,2-Bis[4,4-bis(4-hydroxy- phenyl)-cyclohexyl]-propan, 2,4-Bis(4-hydroxyphenyl-isopropyl)-phenol, Tetra-(4- hydroxyphenyl)-methan, 2, 6-Bis(2-hydroxy-5-methyl-benzyl)-4-methyl-phenol, 2-(4- Hydroxyphenyl)-2-(2,4-dihydroxyphenyl)-propan, Tetra-(4-[4-hydroxyphenyl-isopro- pyl]-phenoxy)-methan, l,4-Bis[4,4'-dihydroxytri-phenyl)-methyl]-benzol, in Mengen von 0,01 bis 1,0 Mol-% bezogen auf eingesetzte Diphenole verwendet werden. Phenolische Verzweigungsmittel können mit den Diphenolen vorgelegt, Säurechlorid- Verzweigungsmittel können zusammen mit den Säuredichloriden eingetragen werden.
In den thermoplastischen, aromatischen Polyestercarbonaten kann der Anteil an
Carbonatstruktureinheiten beliebig variieren. Vorzugsweise beträgt der Anteil an Carbonatgruppen bis zu 100 Mol-%>, insbesondere bis zu 80 Mol-%, besonders bevorzugt bis zu 50 Mol-%, bezogen auf die Summe an Estergruppen und Carbonatgruppen. Sowohl der Ester- als auch der Carbonatanteil der aromatischen Polyestercarbonate kann in Form von Blöcken oder statistisch verteilt im Polykonden- sat vorliegen.
Die relative Lösungsviskosität (ηreι) der aromatischen Polyestercarbonate liegt im Bereich 1,18 bis 1,4, vorzugsweise 1,22 bis 1,3 (gemessen an Lösungen von 0,5 g Polyestercarbonat in 100 ml Methylenchlorid-Lösung bei 25°C). Die thermoplastischen, aromatischen Polycarbonate und Polyestercarbonate können allein oder im beliebigen Gemisch untereinander eingesetzt werden.
Komponente B
Die Komponente B umfaßt ein oder mehrere Pfropfcopolymerisate von
B. l 5 bis 95, vorzugsweise 30 bis 80 Gew.-%> eines oder mehrerer Vinylmonomeren auf
B.2 5 bis 95, vorzugsweise 20 bis 70 Gew.-% einer oder mehrerer Pfropfgrundlagen mit Glasübergangstemperaturen < 0°C, vorzugsweise < -20°C, und mit einer mittleren Teilchengröße (d5o-Wert) von 0,20 bis 0,35 μm.
Monomere B.1 sind vorzugsweise Gemische aus
Bl. l 50 bis 99 Gew. -Teilen Vinylaromaten und/oder kernsubstituierten Vinylaro- maten (wie beispielsweise Styrol, α-Methylstyrol, p-Methylstyrol, p-Chlor- styrol) und/oder Methacrylsäure-(Cι-C )-Alkylester (wie z.B. Methylmeth- acrylat, Ethylmethacrylat) und
B1.2 1 bis 50 Gew. -Teilen Vinylcyanide (ungesättigte Nitrile wie Acrylnitril und
Methacrylnitril) und/oder (Meth)Acrylsäure-(Cι-C8)-Alkylester (wie z.B.
Methylmethacrylat, n-Butylacrylat, t-Butylacrylat) und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren (beispielsweise Malein- säureanhydrid und N-Phenyl-Maleinimid).
Bevorzugte Monomere B.l.1 sind ausgewählt aus mindestens einem der Monomere Styrol, α-Methylstyrol und Methylmethacrylat, bevorzugte Monomere B.1.2 sind ausgewählt aus mindestens einem der Monomere Acrylnitril, Maleinsäureanhydrid und Methylmethacrylat. Besonders bevorzugte Monomere sind B.1.1 Styrol und B.1.2 Acrylnitril.
Für die Pfropfpolymerisate B. geeignete Pfropfgrundlagen B.2 sind beispielsweise Dienkautschuke, EP(D)M-Kautschuke, also solche auf Basis Ethylen Propylen und gegebenenfalls Dien, Acrylat-, Polyurethan-, Silikon-, Chloropren und Ethylen/Vi- nylacetat-Kautschuke.
Bevorzugte Pfropfgrundlagen B.2 sind Dienkautschuke (z. B. auf Basis Butadien, Isopren etc.) oder Gemische von Dienkautschuken oder Copolymerisate von Dienkau- tschuken oder deren Gemischen mit weiteren copolymerisierbaren Monomeren (z.B. gemäß B. l. l und B.l.2), mit der Maßgabe, daß die Glasübergangstemperatur der Komponente B.2 unterhalb 0°C liegt.
Besonders bevorzugt ist reiner Polybutadienkautschuk.
Besonders bevorzugte Polymerisate B. sind z.B. ABS-Polymerisate (Emulsions-, Masse- und Suspensions-ABS), wie sie z. B. in der DE-OS 2 035 390 (=US-PS 3 644 574) oder in der DE-OS 2 248 242 (=GB-PS 1 409 275) bzw. in Ullmann, Enzyklopädie der Technischen Chemie, Bd. 19 (1980), S. 280 ff. beschrieben sind. Der Gelanteil der Pfropfgrundlage B.2 beträgt mindestens 30 Gew.-%, vorzugsweise mindestens 40 Gew.-% (in Toluol gemessen), der mittlere Teilchendurchmesser d50 der Pfropfgrundlage B.2 0,20 bis 0,35 μm, vorzugsweise 0,25 bis 0,30μm.
Die Pfropfcopolymerisate B. werden durch radikalische Polymerisation, z.B. durch Emulsions-, Suspensions-, Lösungs- oder Massepolymerisation, vorzugsweise durch
Emulsionspolymerisation hergestellt.
Besonders geeignete Pfropfkautschuke sind ABS-Polymerisate, die durch Redox- Initiierung mit einem Initiatorsystem aus organischem Hydroperoxid und Ascorbin- säure gemäß US-P 4 937 285 hergestellt werden.
Geeignete Acrylatkautschuke gemäß B.2 der Polymerisate B sind vorzugsweise Polymerisate aus Acrylsäurealkylestern, gegebenenfalls mit bis zu 40 Gew.-%>, bezo- gen auf B.2 anderen polymerisierbaren, ethylenisch ungesättigten Monomeren. Zu den bevorzugten polymerisierbaren Acrylsäureestern gehören Cι-C8-Alkylester, beispielsweise Methyl-, Ethyl-, Butyl-, n-Octyl- und 2-Ethylhexylester; Halogenalkylester, vorzugsweise Halogen-Cϊ-Cs-alkyl-ester, wie Chlorethylacrylat sowie Mischungen dieser Monomeren.
Zur Vernetzung können Monomere mit mehr als einer polymerisierbaren Doppelbindung copolymerisiert werden. Bevorzugte Beispiele für vernetzende Monomere sind Ester ungesättigter Monocarbonsäuren mit 3 bis 8 C-Atomen und ungesättigter einwertiger Alkohole mit 3 bis 12 C-Atomen, oder gesättigter Polyole mit 2 bis 4 OH-
Gruppen und 2 bis 20 C-Atomen, wie z.B. Ethylenglykoldimethacrylat, Allyl- methacrylat; mehrfach ungesättigte heterocyclische Verbindungen, wie z.B. Trivinyl- und Triallylcyanurat; polyfunktionelle Vinylverbindungen, wie Di- und Trivinyl- benzole; aber auch Triallylphosphat und Diallylphthalat.
Bevorzugte vernetzende Monomere sind Allylmethacrylat, Ethylenglykoldimethacrylat, Diallylphthalat und heterocyclische Verbindungen, die mindestens 3 ethylenisch ungesättigte Gruppen aufweisen.
Besonders bevorzugte vernetzende Monomere sind die cyclischen Monomere Triallylcyanurat, Triallylisocyanurat, Triacryloylhexahydro-s-triazin, Triallylbenzole. Die Menge der vernetzten Monomere beträgt vorzugsweise 0,02 bis 5, insbesondere 0,05 bis 2 Gew.-%>, bezogen auf die Pfropfgrundlage B.2.
Bei cyclischen vernetzenden Monomeren mit mindestens 3 ethylenisch ungesättigten
Gruppen ist es vorteilhaft, die Menge auf unter 1 Gew.-%> der Pfropfgrundlage B.2 zu beschränken.
Bevorzugte "andere" polymerisierbare, ethylenisch ungesättigte Monomere, die neben den Acrylsäureestern gegebenenfalls zur Herstellung der Pfropfgrundlage B.2 dienen können, sind z. B. Acrylnitril, Styrol, α-Methylstyrol, Acrylamide, Vinyl-Cι-C6-alkyl- ether, Methylmethacrylat, Butadien. Bevorzugte Acrylatkautschuke als Pfropfgrund- läge B.2 sind Emulsionspolymerisate, die einen Gelgehalt von mindestens 60 Gew.-%> aufweisen.
Weitere geeignete Pfropgrundlagen gemäß B.2 sind Silikonkautschuke mit pfropfak- tiven Stellen, wie sie in den DE-OS 3 704 657, DE-OS 3 704 655, DE-OS 3 631 540 und DE-OS 3 631 539 beschrieben werden.
Der Gelgehalt der Pfropfgrundlage B.2 wird bei 25 °C in einem geeigneten Lösungsmittel bestimmt (M. Hoffmann, H. Krömer, R. Kuhn, Polymeranalytik I und II, Georg Thieme- Verlag, Stuttgart 1977).
Die mittlere Teilchengröße dso ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-%> der Teilchen liegen. Er kann mittels Ultrazentrifugenmessung (W. Scholtan, H. Lange, Kolloid, Z. und Z. Polymere 250 (1972), 782-1796) bestimmt werden.
Da bei der Pfropfreaktion die Pfropfmonomeren bekanntlich nicht unbedingt vollständig auf die Pfropfgrundlage aufgepfropft werden, werden erfindungsgemäß unter Pfropfpolymerisaten B auch solche Produkte verstanden, die durch (Co)Polymerisa- tion der Pfropfmonomere in Gegenwart der Pfropfgrundlage gewonnen werden und bei der Aufarbeitung mit anfallen.
Komponente C
Die Komponente C umfaßt ein oder mehrere thermoplastische Vinyl (co)polymerisate.
Geeignet sind als (Co)Polymerisate C Polymerisate von mindestens einem Monomeren aus der Gruppe der Vinylaromaten, Vinylcyanide (ungesättigte Nitrile), (Meth)- Acrylsäure-(C C8)-Alkylester, ungesättigte Carbonsäuren sowie Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren. Insbesondere geeignet sind
(Co)Polymerisate aus C.1 50 bis 99, vorzugsweise 60 bis 80 Gew. -Teilen Vinylaromaten und/oder kernsubstituierten Vinylaromaten wie beispielsweise Styrol, α-Methylstyrol, p- Methylstyrol, p-Chlorstyrol) und/oder Methacrylsäure-(Cι-C )-Alkylester wie z.B. Methylmethacrylat, Ethylmethacrylat), und
C.2 1 bis 50, vorzugsweise 20 bis 40 Gew. -Teilen Vinylcyanide (ungesättigte Nitrile) wie Acrylnitril und Methacrylnitril und/oder (Meth)Acrylsäure-(Cι- C8)-Alkylester (wie z.B. Methylmethacrylat, n-Butylacrylat, t-Butylacrylat) und/oder ungesättigte Carbonsäuren (wie Maleinsäure) und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren (beispielsweise
Maleinsäureanhydrid und N-Phenyl-Maleinimid).
Die (Co)Polymerisate C sind harzartig, thermoplastisch und kautschukfrei.
Besonders bevorzugt ist das Copolymerisat aus C.l Styrol und C.2 Acrylnitril.
Die (Co)Polymerisate gemäß C sind bekannt und lassen sich durch radikalische Polymerisation, insbesondere durch Emulsions-, Suspensions-, Lösungs- oder Massepolymerisation herstellen. Die (Co)Polymerisae gemäß Komponente C besitzen vor- zugsweise Molekulargewichte Mw (Gewichtsmittel, ermittelt durch Lichtstreuung oder Sedimentation) zwischen 15 000 und 200 000.
(Co)Polymerisate gemäß Komponente C entstehen häufig bei der Pfropfpolymerisation der Komponente B als Nebenprodukte, besonders dann, wenn große Mengen Monomere B. l auf kleine Mengen Kautschuk B.2 gepfropft werden. Die gegebenenfalls erfindungsgemäß auch einzusetzende Menge an C bezieht diese Nebenprodukte der Pfropfpolymerisation von B nicht ein.
Für bestimmte Einsatzzwecke sollte jedoch die Komponente C in den erfindungs- gemäßen Formmassen vorliegen. Liegt die Komponente C in den Formmassen vor, so sollte das Gewichtsverhältnis der Komponenten B:C zwischen 2:1 und 1 :4, vorzugsweise zwischen 1 : 1 und 1 :2, liegen, um für bestimmte Einsatzzwecke das gewünschte mechanische Werteniveau zu erreichen.
Komponente D
Die Komponente D ist eine Mischung aus wenigstens einer Mono- und wenigstens einer Oligomeren-Phosphorverbindung der Formel (I)
(I)
Figure imgf000016_0001
In der Formel haben R , R2, R3 und R4, die oben angegebenen Bedeutungen. Bevorzugt stehen R1, R2, R3 und R4 unabhängig voneinander für C1-C4-Alkyl, Phenyl, Naphthyl oder Phenyl-Cj-C^alkyl. Die aromatischen Gruppen R1, R2, R3 und R4 können ihrerseits mit Halogen- und/oder Alkylgruppen, vorzugsweise Chlor, Brom und/oder Cj-C^Alkyl substituiert sein. Besonders bevorzugte Aryl-Reste sind Kresyl, Phenyl, Xylenyl, Propylphenyl oder Butylphenyl sowie die entsprechenden bromierten und chlorierten Derivate davon.
X in der Formel (I) bedeutet einen ein- oder mehrkernigen aromatischen Rest mit
6 bis 30 C-Atomen. Dieser leitet sich von Diphenolen der Formel (II) ab. Bevorzugte Diphenole sind z.B. Diphenylphenol, Bisphenol A, Resorcin oder Hydrochinon oder deren chlorierten oder bromierten Derivaten.
n in der Formel (I) kann, unabhängig voneinander, 0 oder 1 sein, vorzugsweise ist n gleich 1. N steht für Werte von 0 bis 30, vorzugsweise für einen durchschnittlichen Wert von 0,3 bis 20 , besonders bevorzugt 0,5 bis 10, insbesondere 0,5 bis 6.
Als erfindungsgemäße Komponente D werden Mischungen aus vorzugsweise 10 bis 90 Gew.-%, vorzugsweise 12 bis 40 Gew.-%, wenigstens einer Monophosphorverbindung der Formel (I) und wenigstens einer oligomeren Phosphorverbindung beziehungsweise eines Gemisches von Oligomeren Phosphorverbindungen in Mengen von 10 bis 90 Gew.-%>, vorzugsweise 60 bis 88 Gew.-%>, bezogen auf die Gesamtmenge an Phosphorverbindungen, eingesetzt.
Monophosphorverbindungen der Formel (I) sind insbesondere Tributylphosphat, Tris- (2-chlorethyl)-phosphat, Tris-(2,3-dibromprobyl)-phosphat, Triphenylphosphat, Tri- kresylphosphat, Diphenylkresylphosphat, Diphenyloctylphosphat, Diphenyl-2-ethyl- kresylphosphat, Tri-(isopropylphenyl)-phosphat, halogensubstituierte Arylphosphate, Methylphosphonsäuredimethylester, Methylphosphensäurediphenylester, Phenylphos- phonsäurediethylester, Triphenylphosphinoxid oder Trikresylphosphinoxid.
Die Mischungen aus monomeren und oligomeren Phosphorverbindungen der Formel (I) weisen durchschnittliche N-Werte von 0,3 bis 20, bevorzugt 0,5 bis 10, insbe- sondere von 0,5 bis 6 auf.
Die Phosphorverbindungen gemäß Komponente D sind bekannt (vgl. z.B. EP-A 363 608, EP-A 640 655) oder lassen sich nach bekannten Methoden in analoger Weise herstellen (z.B. Ulimanns Encyklopädie der technischen Chemie, Bd. 18, S. 301 ff. 1979; Houben-Weyl, Methoden der organischen Chemie, Bd. 12/1, S. 43;
Beilstein Bd. 6, S. 177).
Komponente E
Die fluorierten Polyolefine E) sind hochmolekular und besitzen Glasübergangstemperaturen von über -30°C, in der Regel von über 100°C, Fluorgehalte, vorzugsweise von 65 bis 76, insbesondere von 70 bis 76 Gew.-%, mittlere Teilchendurchmesser d50 von 0,05 bis 1 000, vorzugsweise 0,08 bis 20 μm. Im allgemeinen haben die fluorierten Polyolefine E) eine Dichte von 1,2 bis 2,3 g/cm3. Bevorzugte fluorierte Polyolefine E) sind Polytetrafluorethylen, Polyvinylidenfluorid, Tetrafluorethylen(Hexafluorpropylen- und Ethylen/Tetrafluorethylen-Copolymerisate. Die fluorierten Polyolefin sind be- kannt (vgl. "Vinyl and Related Polymers" von Schildknecht, John Wiley & Sons, Inc.,
New York, 1962, Seite 484-494; "Fluorpolymers" von Wall, Wiley-Interscience, John Wiley & Sons, Inc., New York, Band 13, 1970, Seite 623-654; "Modern Plastics ^ Encyclopedia", 1970-1971, Band 47, Nr. 10 A, Oktober 1970, Mc Graw-Hill, Inc., New York, Seite 134 und 774; "Modern Plastica Encyclopedia", 1975-1976, Oktober 1975, Band 52, Nr. 10 A, Mc Graw-Hill, Inc., New York, Seite 27, 28 und 472 und
US-PS 3 671 487, 3 723 373 und 3 838 092).
Sie können nach bekannten Verfahren hergestellt werden, so beispielsweise durch Polymerisation von Tetrafluorethylen in wäßrigem Medium mit einem freie Radikale bildenden Katalysator, beispielseise Natrium-, Kalium- oder Ammoniumperoxidisulfat bei Drucken von 7 bis 71 kg/cm2 und bei Temperaturen von 0 bis 200°C, vorzugsweise bei Temperaturen von 20 bis 100°C. (Nähere Einzelheiten s. z. B. US-Patent 2 393 967). Je nach Einsatzform kann die Dichte dieser Materialien zwischen 1,2 und 2,3 g/cm3, die mittlere Teilchengröße zwischen 0,5 und 1 000 μm liegen.
Erfindungsgemäß bevorzugte fluorierte Polyolefine E) sind Tetrafluorethylenpolyme- risate mit mittleren Teilchendurchmesser von 0,05 bis 20 μm, vorzugsweise 0,08 bis 10 μm, und eine Dichte von 1,2 bis 1,9 g/cm und werden vorzugsweise in Form einer koagulierten Mischung von Emulsionen der Tetrafluorethylenpolymerisate E) mit Emulsionen der Pfropfpolymerisate B) eingesetzt.
Geeignete, in Pulverform einsetzbare fluorierte Polyolefine E) sind Tetrafluorethylenpolymerisate mit mittleren Teilchendurchmesser von 100 bis 1 000 μm und Dichten von 2,0 g/cm3 bis 2,3 g/cm3.
Zur Herstellung einer koagulierten Mischung aus B) und E) wird zuerst eine wäßrige Emulsion (Latex) eines Pfropfpolymerisates B) mit einer feinteiligen Emulsion eines Tetraethylenpolymerisates E) vermischt; geeignete Tetrafluorethylenpolymerisat- Emulsionen besitzen üblicherweise Feststoffgehalte von 30 bis 70 Gew-.%, insbesondere von 50 bis 60 Gew.-%, vorzugsweise von 30 bis 35 Gew.-%.
Die Mengenangabe bei der Beschreibung der Komponente B kann den Anteil des
Pfropfpolymerisats für die koagulierte Mischung aus Pfropfpolymerisat und fluoriertem Polyolefinen einschließen.
In der Emulsionsmischung liegt das Gleichgewichtsverhältnis Pfropfpolymerisat B zum Tetrafluorethylenpolymerisat E bei 95:5 bis 60:40. Anschließend wird die
Emulsionsmischung in bekannter Wiese koaguliert, beispielsweise durch Sprühtrocknen, Gefriertrocknung oder Koagulation mittels Zusatz von anorganischen oder organischen Salzen, Säuren, Basen oder organischen, mit Wasser mischbaren Lösemitteln, wie Alkoholen, Ketonen, vorzugsweise bei Temperaturen von 20 bis 150°C, insbesondere von 50 bis 100°C. Falls erforderlich, kann bei 50 bis 200°C, bevorzugt 70 bis 100°C, getrocknet werden.
Geeignete Tetrafluorethylenpolymerisat-Emulsionen sind handlsübliche Produkte und werden beispielsweise von der Firma DuPont als Teflon® 30 N angeboten.
Die erfindungsgemäßen Formmassen können weingstens eines der üblichen Additive, wie Gleit- und Entformungsmittel, Nukleiermittel, Anmtistatika, Stabilisatoren sowie Farbstoffe und Pigmente enthalten.
Die erfindungsgemäßen Formmassen können darüberbinaus noch feinstteilige, anorganische Pulver in einer Menge bis zu 50 Gew.-Teilen, vorzugsweise bis zu 20, insbesondere 0,5 bis 10 Gew.-Teilen, enthalten.
Feinstteilige anorganische Verbindungen bestehen aus Verbindungen eines oder meh- rerer Metalle der 1. bis 5. Hauptgruppe oder 1. bis 8. Nebengruppe des Periodensystems, bevorzugt 2. bis 5. Hauptgruppe und 4. bis 8. Nebengruppe, besonders bevorzugt 3. bis 5. Hauptgruppe und 4. bis 8. Nebengruppe mit mindestens einem Element ausgewählt aus der Gruppe Sauerstoff, Schwefel, Bor, Phosphor, Kohlenstoff, Stickstoff, Wasserstoff und Silicium.
Bevorzugte Verbindungen sind beispielsweise Oxide, Hydroxide, wasserhaltige Oxide, Sulfate, Sulfite, Sulfide, Carbonate, Carbide, Nitrate, Nitrite, Nitride, Borate,
Silikate, Phosphate, Hydride, Phospite oder Phosphonate.
Bevorzugte feinstteilige anorganischen Verbindungen sind beispielsweise TiN, TiO2, SnO2,WC, ZnO, Al2O3, AIO(OH), ZrO2, Sb2O3, SiO2, Eisenoxide, Na2SO4 BaSO4, Vanadianoxide, Zinkborat, Silicate wie AI-Silikate, Mg-Silikate, ein, zwei, dreidimensionale Silikate, Mischungen und dotierte Verbindungen sind ebenfalls verwendbar. Desweiteren können diese nanoskaligen Partikel mit organischen Molekülen oberflächenmodifiziert sein, um eine bessere Verträglichkeit mit den Polymeren zu erzielen. Auf diese Weise lassen sich hydrophobe oder hydrophile Oberflächen erzeugen.
Die durchschnittlichen Teilchendurchmesser sind kleiner gleich 200 nm, bevorzugt kleiner gleich 150 nm, insbesondere 1 bis 100 nm.
Teilchengröße und Teilchendurchmesser bedeutet immer den mittleren Teilchendurch- messer d5Q, ermittelt durch Ultrazentrifugenmessungen nach W. Scholtan et al.
Kolloid-Z. und Z. Polymere 250 (1972), S. 782 bis 796.
Die anorganischen Verbindungen können als Pulver, Pasten, Sole, Dispersionen oder Suspensionen vorliegen. Durch Ausfällen können aus Dispersionen, Sole oder Sus- pensionen Pulver erhalten werden.
Die Pulver können nach üblichen Verfahren in die thermoplastischen Kunststoffe eingearbeitet werden, beispielsweise durch direktes Kneten oder Extrudieren der Bestandteile der Formmasse und den feinstteiligen anorganischen Pulvern. Bevorzugte Verfahren stellen die Herstellung eines Masterbatch, z.B. in Flammschutzadditiven, anderen Additiven, Monomeren, Lösungsmitteln, in Komponente A oder die Cofäl- lung von Dispersionen der Pfropfkautschuke mit Dispersionen, Suspensionen, Pasten oder Solen der feinstteiligen anorganischen Materialien dar. Die erfindungsgemäßen Formmassen können bis zu 35 Gew.-%, bezogen auf die Gesamt-Formmasse, eines weiteren, gegebenenfalls synergistisch wirkenden Flammschutzmittels enthalten. Beispielhaft werden als weitere Flammschutzmittel organische Halogenverbindugen wie Decabrombisphenylether, Tetrabrombisphenol, anorganische
Halogenverbindungen wie Ammoniumbromid, Stickstofϊverbindungen, wie Melamin, Melaminformaldehyd-Harze, anorganische Hydroxidverbindungen wie Mg-, Al- Hydroxid, anorganische Verbindungen wie Antimonoxide, Bariummetaborat, Hydroxoantimonat, Zirkonoxid, Zirkonhydroxid, Molybdenoxid, Ammoniummo- lybdat, Zinkborat, Ammoniumborat und Zinnoxid sowie Siloxanverbindungen genannt.
Die erfindungsgemäßen Formmassen enthaltend die Komponenten A) bis E) und gegebenenfalls weiteren bekannten Zusätzen wie Stabilisatoren, Farbstoffen, Pig- menten, Gleit- und Entformungsmitteln, Nukleiermittel sowie Antistatika, werden hergestellt, indem man die jeweiligen Bestandteile in bekannter Weise vermischt und bei Temperatuern von 200°C bis 300°C in üblichen Aggregaten wie Innenknetern, Extrudern und Doppelwellenschnecken schmelzcompoundiert und schmelzextrudiert, wobei die Komponente E) vorzugsweise in Form der bereits erwähnten koagulierten Mischung eingesetzt wird.
Die Vermischung der einzelnen Bestandteile kann in bekannter Weise sowohl sukzessive als auch simultan erfolgen, und zwar sowohl bei etwa 20°C (Raumtemperatur) als auch bei höherer Temperatur.
Die erfindungsgemäßen thermoplastischen Formmassen eignen sich aufgrund ihrer ausgezeichneten Flammfestigkeit, ihrer sehr guten Verarbeitungseigenschaft und ihrer sehr guten Verarbeitungseigenschaft und ihrer sehr guten mechanischen Eigenschaften, insbesondere ihrer herausragenden Steifigkeit, zur Herstellung von Form- körpern jeglicher Art, insbesondere solchen mit erhöhten Anforderungen an
Bruchbeständigkeit. Die Formmassen der vorliegenden Erfindung können zur Herstellung von Formkörpern jeder Art verwendet werden. Insbesondere können Formkörper durch Spritzguß hergestellt werden. Beispiele für herstellbare Formkörper sind: Gehäuseteile jeder Art, z.B. für Haushaltsgeräte wie Saftpressen, Kaffeemaschinen, Mixer, für Büro- maschinen, oder Abdeckplatten für den Bausektor und Teile für den Kfz-Sektor. Sie sind außerdem auf dem Gebiet der Elektrotechnik einsetzbar, weil sie sehr gute elektrische Eigenschafte haben.
Eine weitere Form der Verarbeitung ist die Herstellung von Formkörpern durch Tiefziehen aus vorher hergestellten Platten oder Folien.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher auch die Verwendung der erfindungsgemäßen Formmassen zur Herstellung von Formkörpern jeglicher Art, vorzugsweise der oben genannten, sowie die Formkörper aus den erfindungsgemäßen Formmassen.
Beispiele
Komponente A
Lineares Polycarbonat auf Basis Bisphenol A mit einer relativen Lösungsviskositäf von 1,252, gemessen in CH2CI2 als Lösungsmittel bei 25°C und einer Konzentration von 0,5 g/ 100 ml.
Komponente B
Pfropfpolymerisat von 45 Gew.-Teilen eines Copolymerisats aus Styrol und Acrylnitril im Verhältnis von 72:28 auf 55 Gew.-Teile teilchenförmigen vernetzten Polybutadien- kautschuk (mittlerer Teilchendurchmesser d5Q = 0,28 μm), hergestellt durch Emulsionspolymerisation.
Komponente C
Styrol/Acrylnitril-Copolymerisat mit einem Styrol/Acrylnitril-Gewichtsverhältnis von 72:28 und einer Grenzviskosität von 0,55 dl/g (Messung in Dimethylformamid bei 20°C).
Komponente D.l
Mischung aus m-Phenylen-bis(di-phenyl-phosphat) (Fyrolflex RDP der Firma Akzo) und Triphenylphosphat (TPP) im Gewichtsverhältnis 3: 1.
Komponente D.2
Triphenylphosphat (TPP) als Vergleich. Komponente E
Tetrafluorethylenpolymerisat als koagulierte Mischung aus einer SAN-Pfropfpolyme- risat-Emulsion gemäß o.g. Komponente B in Wasser und einer Tetrafluorethylenpoly- merisat-Emulsion in Wasser. Das Gewichtsverhältnis Pfropfpolymerisat B zum Tetrafluorethylenpolymerisat E in der Mischung ist 90 Gew.-% zu 10 Gew.-%. Die Tetra- fluorethylenpolyermisat-Emulsion besitzt einen Feststoffgehalt von 60 Gew.-%, der mittlere Teilchendurchmesser liegt zwischen 0,05 und 0,5 μm. Die SAN-Pfropfpoly- merisat-Emulsion besitzt einen Feststoffgehalt von 34 Gew.-% und einen mittleren Latexteilchendurchmesser von d5Q = 0,28 μm.
Herstellung von E
Die Emulsion des Tetrafluorethylenpolymerisats (Teflon 30 N der Fa. DuPont) wird mit der Emulsion des SAN-Pfropfpolymerisats B vermischt und mit 1,8 Gew.-%, bezogen auf Polymerfeststoff, phenolischer Antioxidantien stabilisiert. Bei 85 bis 95°C wird die Mischung mit einer wäßrigen Lösung von MgSθ4 (Bittersalz) und Essigsäure bei pH 4 bis 5 koaguliert, filtriert und bis zur praktischen Elektrolytfreiheit gewaschen, anschließend durch Zentrifugation von der Hauptmenge Wasser befreit und _ danach bei 100°C zu einem Pulver getrocknet. Dieses Pulver kann dann mit den weiteren Komponenten in den beschriebenen Aggregaten compoundiert werden.
Herstellung und Prüfung der erfindungsgemäßen Formmassen
Das Mischen der Komponenten erfolgt auf einem 3-1-Innenkneter. Die Formkörper werden auf einer Spritzgießmaschine Typ Arburg 270 E bei 260°C hergestellt.
Die Bestimmung der Wärmeformbeständigkeit nach Vicat B erfolgt gemäß DIN 53 460 (ISO 306) an Stäben der Abmessung 80 x 10 x 4 mm3.
Die Bestimmung des Zug E-Moduls erfolgt nach DIN 53 457/ISO 527.
Die Bestimmung der Streckspannung erfolgt nach ISO 527 Die Bestimmung der Reißfestigkeit (Zugversuch) erfolgt nach ISO 527/DN 53455
Tabelle 1
Zusammensetzung und Eigenschaften der Polycarbonat-ABS-Formmassen
Beispiel 1 (Vergleich) 2
Komponenten [Gew.-Teile] A 83,8 83,8
B 4,3 4,3
C 2,7 2,7
D l - 6,8
D.2 6,8 -
E 2,4 2,4
Eigenschaften: Vicat B [°C] 107 1 10
Reißfestigkeit 47,2 49,7 [N/mm2]
Streckspannung 58,0 61, 1 [N/mm2]
Zug-E-Modul [N/mm2] 2628 2651

Claims

Patentansprüche
1. Thermoplastische flammwirdrige Formmassen enthaltend
A. 40 bis 99 Gew.-Teile thermoplastisches Polycarbonat oder Polyester- carbonat
B. 0,5 bis 60 Gew.-Teile Pfropfpolymerisat von
B.l 5 bis 95 Gew.-% eines oder mehrerer Vinylmonomeren auf
B.2 95 bis 5 Gew.-%> einer oder mehrerer Pfropfgrundlagen mit Glasübergangstemperaturen < 0°C und eine mittlere Teilchengröße (d5o- Wert) von 0,20 bis 0,35 μm,
C. 0 bis 45 Gew.-Teile thermoplastisches Vinylcopolymerisat,
D. 0,5 bis 20 Gew.-Teile einer Mischung aus wenigstens einer Mono- und wenigstens einer Oligo-Phosphorverbindung der Formel (I)
(l)
Figure imgf000026_0001
worin
R1, R2, R3 und R4, unabhängig voneinander jeweils gegebenenfalls halogeniertes
Figure imgf000026_0002
bis Cg-Alkyl, jeweils gegebenenfalls durch Halogen und/oder Alkyl substituiertes C5- bis Cg-Cycloalkyl, C6- bis C20-Aryl oder Cη- bis C12-Aralkyl, n unabhängig voneinander, 0 oder 1
N 0 bis 30 und
X einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C-
Atomen bedeuten, und
E. 0,05 bis 5 Gew.-Teile fluoriertes Polyolefin.
2. Formmassen nach Anspruch 1, welche 1 bis 40 Gew.-Teile der Komponente B und 0 bis 30 Gew.-Teile der Komponente C enthalten.
3. Formmassen nach einem der Ansprüche 1 und 2, wobei mittlere Teilchenmesser d^o der Komponente B 0,25 bis 0,30 μm beträgt.
4 Formmassen nach einem der vorhergehenden Ansprüche, wobei das Gewichtsverhältnis der Komponente B:C zwischen 2:1 und 1 :4 beträgt.
5. Formmassen nach einem der vorhergehenden Ansprüche, welche 10 bis 90 Gew.-%, wenigstens einer Monophosphatverbindung der Formel (I) und 90 bis 10 Gew.-%, (jeweils bezogen auf die Gesamtmenge der Phosphorverbindungen) wenigstens einer Oligophosphorverbindung der Formel (I) enthalten.
6. Formmassen nach einem der vorhergehenden Ansprüche, wobei in Formel (I)
N einen durchschnittlichen Wert von 0,3 bis 20 aufweist.
7. Formmassen nach einem der vorhergehenden Ansprüche welche als Monophosphorverbindung der Formel (I) Tributylphosphat, Tris-(2-chlorethyl)- phosphat, Tris-(2,3-dibrompropyl)-phosphat, Triphenylphosphat, Trikresyl- phosphat, Diphenylkresylphosphat, Diphenyloctylphosphat, Diphenyl-2-ethy kresylphosphat, Tri-(isopropylphenyl)-phosphat, halogensubstituierte Aryl- phosphate, Methylphosphonsäuredimethylester, Methylphosphonsäurediphe- nylester, Phenylphosphonsäurediethylester, Triphenylphosphinoxid und/oder Trikresylphosphinoxid enthalten.
8. Formmassen nach einem der vorhergehenden Ansprüchen welche bis zu 35 Gew.%o, bezogen auf die Gesamtformmasse, wenigstens eines Flammschutzmittels verschieden von Komponente D enthalten.
9. Formmassen nach einem der vorhergehenden Ansprüche welche 1 bis 18 Gew.-Teile der Komponente D enthalten.
10. Formmassen nach einem der vorhergehenden Ansprüche wobei die Pfropfgrundlage B.2 ein Dienkautschuk, Acrylatkautschuk, Silikonkautschuk oder Ethylen-Propylen-Dien-Kautschuk ist.
11. Formmassen gemäß einem der vorhergehenden Ansprüche, enthaltend eine feinstteilige Verbindung der 1. bis 5. Hauptgruppe oder der 1. bis 8. Nebengruppe des Periodensystems mit mindestens einem Element ausgewählt aus der Gruppe bestehend aus Sauerstoff, Schwefel, Bor, Kohlenstoff, Phosphor, Stickstoff, Wasserstoff und Silicium.
12. Formmassen nach einem der vohergehenden Ansprüche welche mindestens einen Zusatz aus der Gruppe der Stabilisatoren, Pigmente, Entformungsmittel, Fließhilfsmittel und/oder Antistatika enthalten.
13. Verwendung der Formmassen nach einem der vorhergehenden Ansprüche zur
Herstellung von Formkörpern.
14. Formkörper, hergestellt aus Formmassen nach einem der vorhergehenden Ansprüche .
PCT/EP1998/004735 1997-08-11 1998-07-29 Flammwidrige polycarbonat-abs-formmassen WO1999007780A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU91569/98A AU9156998A (en) 1997-08-11 1998-07-29 Flame resistant abs polycarbonate mouldable materials
DE59812883T DE59812883D1 (de) 1997-08-11 1998-07-29 Flammwidrige polycarbonat-abs-formmassen
US09/485,288 US6753366B1 (en) 1997-08-11 1998-07-29 Flame resistant ABS polycarbonate mouldable materials
CA002300216A CA2300216C (en) 1997-08-11 1998-07-29 Flame-retardant polycarbonate-abs moulding compositions
EP98943797A EP1003809B1 (de) 1997-08-11 1998-07-29 Flammwidrige polycarbonat-abs-formmassen
KR1020007001365A KR100543848B1 (ko) 1997-08-11 1998-07-29 난연성 abs 폴리카르보네이트 성형 조성물
JP2000506271A JP2001512767A (ja) 1997-08-11 1998-07-29 難燃性ポリカーボネート−abs成形組成物
BR9811886-2A BR9811886A (pt) 1997-08-11 1998-07-29 Massas de moldagem abs de policarbonato antichamas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19734659A DE19734659A1 (de) 1997-08-11 1997-08-11 Flammwidrige Polycarbonat-ABS-Formmassen
DE19734659.6 1997-08-11

Publications (1)

Publication Number Publication Date
WO1999007780A1 true WO1999007780A1 (de) 1999-02-18

Family

ID=7838570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/004735 WO1999007780A1 (de) 1997-08-11 1998-07-29 Flammwidrige polycarbonat-abs-formmassen

Country Status (12)

Country Link
US (1) US6753366B1 (de)
EP (1) EP1003809B1 (de)
JP (2) JP2001512767A (de)
KR (1) KR100543848B1 (de)
CN (1) CN1153804C (de)
AU (1) AU9156998A (de)
BR (1) BR9811886A (de)
CA (1) CA2300216C (de)
DE (2) DE19734659A1 (de)
ES (1) ES2244080T3 (de)
TW (1) TWI251607B (de)
WO (1) WO1999007780A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316580A (ja) * 2000-05-02 2001-11-16 Mitsubishi Rayon Co Ltd 難燃性樹脂組成物
JP2003508618A (ja) * 1999-09-02 2003-03-04 バイエル アクチェンゲゼルシャフト 耐燃性ポリカーボネート成形用組成物
JP2003509523A (ja) * 1999-09-02 2003-03-11 バイエル アクチェンゲゼルシャフト 耐燃性ポリカーボネートブレンド
JP2003526717A (ja) * 2000-03-06 2003-09-09 バイエル アクチェンゲゼルシャフト 押出成形用途のための耐燃性ポリカーボネート成形用組成物
WO2004076546A1 (en) * 2003-02-24 2004-09-10 Dow Global Technologies Inc. Ignition resistant polymer compositions

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590016B2 (en) * 2000-02-24 2003-07-08 Techno Polymer Co., Ltd. Flame retardant thermoplastic resin composition
KR100560151B1 (ko) * 2004-12-30 2006-03-10 제일모직주식회사 난연성 폴리카보네이트 수지 조성물
JP4912594B2 (ja) * 2005-01-12 2012-04-11 ユーエムジー・エービーエス株式会社 熱可塑性樹脂組成物および成形品
JP5283817B2 (ja) * 2005-01-12 2013-09-04 ユーエムジー・エービーエス株式会社 熱可塑性樹脂組成物および成形品
CN101024720B (zh) * 2006-02-24 2010-09-22 佛山市顺德区汉达精密电子科技有限公司 由pc(聚碳酸酯)次料改性的pc/abs合金
US20070254991A1 (en) * 2006-04-28 2007-11-01 Saadat Hussain Phosphorus-containing tetrabromobisphenol A
JP5592046B2 (ja) * 2006-05-16 2014-09-17 帝人株式会社 帯電防止性に優れた難燃性ポリカーボネート樹脂組成物
US7799848B2 (en) * 2007-11-30 2010-09-21 Bayer Materialscience Llc Impact resistant, flame retardant thermoplastic molding composition
CN101724219B (zh) * 2008-10-17 2011-11-16 金发科技股份有限公司 一种热塑性阻燃合金及其制备方法
KR101701395B1 (ko) 2008-12-22 2017-02-01 아이씨엘-아이피 아메리카 아이엔씨. 비스포스페이트를 정제하기 위한 수용성 용매 기반 정제 방법
TW201137033A (en) 2010-03-02 2011-11-01 Styron Europe Gmbh Improved flow ignition resistant carbonate polymer composition
TWI521051B (zh) 2010-03-11 2016-02-11 盛禧奧歐洲有限責任公司 經衝擊改質之抗引燃性碳酸酯聚合物組成物
DE102010018234A1 (de) 2010-04-23 2012-03-29 Bayer Materialscience Aktiengesellschaft Leichtfließende Polycarbonat/ABS-Formmassen mit guten mechanischen Eigenschaften und guter Oberfläche
DE102010041388A1 (de) 2010-09-24 2012-03-29 Bayer Materialscience Aktiengesellschaft Flammgeschützte schlagzähmodifizierte Batteriegehäuse auf Polycarbonatbasis II
CN101993586B (zh) * 2010-11-30 2012-10-10 金发科技股份有限公司 一种阻燃的聚碳酸酯/abs材料
KR101293789B1 (ko) 2010-12-28 2013-08-06 제일모직주식회사 난연성 열가소성 수지 조성물
CN102532846B (zh) * 2010-12-31 2015-09-23 第一毛织株式会社 阻燃热塑性树脂组合物
JP5758649B2 (ja) * 2011-02-22 2015-08-05 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及び成形体
CN102268182A (zh) * 2011-06-01 2011-12-07 金发科技股份有限公司 聚碳酸酯-abs阻燃组合物及其制备方法
EP2657298A1 (de) * 2012-04-27 2013-10-30 Bayer MaterialScience AG PC/ABS-Zusammensetzungen mit guter thermischer und chemischer Beständigkeit
TWI513760B (zh) * 2013-12-27 2015-12-21 Chi Mei Corp 聚碳酸酯組成物及其製造方法及成型品
CN112679935A (zh) * 2020-12-25 2021-04-20 青岛中新华美塑料有限公司 高光挤出无卤阻燃pc/abs合金材料及其制备方法和所得产品
CN113497271B (zh) * 2021-07-26 2022-08-05 清华大学深圳国际研究生院 改性聚偏氟乙烯系聚合物、固态电解质及制备方法和电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594021A2 (de) * 1992-10-22 1994-04-27 Bayer Ag Flammwidrige Formmassen
EP0640655A2 (de) * 1993-08-26 1995-03-01 Bayer Ag Flammwidrige, spannungsrissbeständige Polycarbonat-ABS-Formmassen
EP0761746A1 (de) * 1995-08-17 1997-03-12 Bayer Ag Feinsteilige anorganische Pulver als Flammschutzmittel in thermoplastischen Formmassen

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1341A (en) * 1839-09-25 Sgraper for excavating and reiiioving earth
US4172103A (en) * 1973-06-09 1979-10-23 Bayer Aktiengesellschaft Polycarbonate moulding compounds
US5205394A (en) 1991-02-22 1993-04-27 Natec, Reich, Summer Gmbh & Co. Kg. Device for the perpendicular change in the direction of conveyance of a foodstuff, in particular cheese, sausage and similar product in slice form
JP2743720B2 (ja) * 1992-07-03 1998-04-22 トヨタ自動車株式会社 TiB2 分散TiAl基複合材料の製造方法
WO1994003535A1 (en) * 1992-08-06 1994-02-17 Asahi Kasei Kogyo Kabushiki Kaisha Resin composition
DE69427665T2 (de) * 1993-02-24 2001-10-31 Ibiden Co. Ltd., Ogaki Harzzusammensetzungen und Verfahren für Ihre Herstellung
JP3769758B2 (ja) * 1993-06-28 2006-04-26 三菱化学株式会社 難燃性熱可塑性樹脂組成物
TW377367B (en) * 1994-06-21 1999-12-21 Asahi Kasei Corp Aromatic polycarbonate-styrene polymer resin composition
DE4429319A1 (de) * 1994-08-18 1996-02-22 Bayer Ag Flammgeschützte thermoplastische Polycarbonat-Formmassen
DE4434965A1 (de) * 1994-09-30 1996-04-04 Bayer Ag Polycarbonat-Formmassen mit verbesserter Zähigkeit
DE4436776A1 (de) * 1994-10-14 1996-04-18 Bayer Ag Flammgeschützte, thermoplastische Polycarbonat-Formmassen
US6066686A (en) * 1996-07-05 2000-05-23 Daicel Chemical Industries, Ltd. Polycarbonate compositions
JPH0952955A (ja) * 1995-08-11 1997-02-25 Daikin Ind Ltd 変性ポリテトラフルオロエチレン粒状粉末の製法
KR0150766B1 (ko) * 1995-08-19 1998-10-15 유현식 난연성을 갖는 열가소성 수지 조성물
DE19547884A1 (de) * 1995-12-21 1997-06-26 Basf Ag Formmassen auf der Basis von Polycarbonaten

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594021A2 (de) * 1992-10-22 1994-04-27 Bayer Ag Flammwidrige Formmassen
EP0640655A2 (de) * 1993-08-26 1995-03-01 Bayer Ag Flammwidrige, spannungsrissbeständige Polycarbonat-ABS-Formmassen
EP0761746A1 (de) * 1995-08-17 1997-03-12 Bayer Ag Feinsteilige anorganische Pulver als Flammschutzmittel in thermoplastischen Formmassen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508618A (ja) * 1999-09-02 2003-03-04 バイエル アクチェンゲゼルシャフト 耐燃性ポリカーボネート成形用組成物
JP2003509523A (ja) * 1999-09-02 2003-03-11 バイエル アクチェンゲゼルシャフト 耐燃性ポリカーボネートブレンド
JP2003526717A (ja) * 2000-03-06 2003-09-09 バイエル アクチェンゲゼルシャフト 押出成形用途のための耐燃性ポリカーボネート成形用組成物
JP4776135B2 (ja) * 2000-03-06 2011-09-21 バイエル アクチェンゲゼルシャフト 押出成形用途のための耐燃性ポリカーボネート成形用組成物
JP2001316580A (ja) * 2000-05-02 2001-11-16 Mitsubishi Rayon Co Ltd 難燃性樹脂組成物
WO2004076546A1 (en) * 2003-02-24 2004-09-10 Dow Global Technologies Inc. Ignition resistant polymer compositions

Also Published As

Publication number Publication date
CN1266449A (zh) 2000-09-13
JP5841372B2 (ja) 2016-01-13
KR20010022765A (ko) 2001-03-26
TWI251607B (en) 2006-03-21
ES2244080T3 (es) 2005-12-01
JP2011246723A (ja) 2011-12-08
JP2001512767A (ja) 2001-08-28
AU9156998A (en) 1999-03-01
EP1003809B1 (de) 2005-06-22
DE19734659A1 (de) 1999-02-18
KR100543848B1 (ko) 2006-01-23
CN1153804C (zh) 2004-06-16
US6753366B1 (en) 2004-06-22
DE59812883D1 (de) 2005-07-28
BR9811886A (pt) 2000-08-22
EP1003809A1 (de) 2000-05-31
CA2300216A1 (en) 1999-02-18
CA2300216C (en) 2007-10-02

Similar Documents

Publication Publication Date Title
EP1003809B1 (de) Flammwidrige polycarbonat-abs-formmassen
EP1003808B1 (de) Flammwidrige wärmeformbeständige polycarbonat-abs-formmassen
EP1047728B1 (de) Flammwidrige polycarbonat-abs-formmassen
EP1144511B1 (de) Flammwidrige polycarbonat-abs-formmassen
EP1095100B1 (de) Flammwidrige polycarbonat/abs-formmassen
EP1095099B1 (de) Flammwidrige polycarbonat-abs-formmassen
EP1003807B1 (de) Flammwidrige, verstärkte polycarbonat-abs-formmassen
EP1003810A1 (de) Flammwidrige, spannungsrissbeständige polycarbonat abs-formmassen
EP1165680A1 (de) Flammwidrige, schlagzähmodifizierte polycarbonat-formmassen
EP1047724B1 (de) Polycarbonat-abs-formmassen
EP1137710B1 (de) Polycarbonat-formmassen mit verbesserten mechanischen eigenschaften
EP1003817B1 (de) Flammwidrige polycarbonat abs-formmassen
EP1530612B1 (de) Flammwidrige mit pfropfpolymerisat modifizierte polycarbonat-formmassen
EP1341848A1 (de) Polycarbonat-zusammensetzungen
EP1214380B1 (de) Flammwidrige polycarbonat-blends
WO2000058395A1 (de) Flammwidrige mit pfropfpolymerisat modifizierte polycarbonat-formmassen
WO2001018106A1 (de) Flammwidrige polycarbonat-formmassen
DE10027341A1 (de) Flammwidrige transluzente Polycarbonat-Formmassen
WO2001018118A2 (de) Flammwidrige polycarbonat-blends

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98808061.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998943797

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09485288

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2300216

Country of ref document: CA

Ref document number: 2300216

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/001444

Country of ref document: MX

Ref document number: 1020007001365

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1998943797

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020007001365

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998943797

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007001365

Country of ref document: KR