WO1999006862A1 - Element optique, unite d'imagerie, appareil d'imagerie detecteur d'image radiante et analyseur d'empreintes digitales l'utilisant - Google Patents

Element optique, unite d'imagerie, appareil d'imagerie detecteur d'image radiante et analyseur d'empreintes digitales l'utilisant Download PDF

Info

Publication number
WO1999006862A1
WO1999006862A1 PCT/JP1998/003394 JP9803394W WO9906862A1 WO 1999006862 A1 WO1999006862 A1 WO 1999006862A1 JP 9803394 W JP9803394 W JP 9803394W WO 9906862 A1 WO9906862 A1 WO 9906862A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical member
optical
angle
axis
incident
Prior art date
Application number
PCT/JP1998/003394
Other languages
English (en)
French (fr)
Inventor
Takeo Sugawara
Makoto Suzuki
Masayoshi Kato
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to EP98935280A priority Critical patent/EP1001284B1/en
Priority to DE69805416T priority patent/DE69805416T2/de
Priority to AU84604/98A priority patent/AU8460498A/en
Publication of WO1999006862A1 publication Critical patent/WO1999006862A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • G02B6/08Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images with fibre bundle in form of plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers

Definitions

  • the present invention relates to an optical element and an imaging unit, an imaging device, a radiation image sensor, and a fingerprint matching device using the same.
  • an optical member for transmitting an optical image an optical member in which a plurality of optical fibers are arranged in parallel with each other and integrally formed is known. Also, an optical element for transmitting an optical image by reducing or enlarging an optical image to an arbitrary magnification using the two optical members having an end surface cut obliquely with respect to the optical axis and an end surface cut vertically.
  • an optical element for transmitting an optical image by reducing or enlarging an optical image to an arbitrary magnification using the two optical members having an end surface cut obliquely with respect to the optical axis and an end surface cut vertically.
  • an object of the present invention is to provide an optical element having good optical image transmission efficiency.
  • the optical element of the present invention is integrally formed by arranging a plurality of optical fibers parallel to each other, the optical axis 1 1, respectively hii 5 1
  • a first optical member 1 having a first entrance surface 1a and a first exit surface 1b that intersect at an angle of, and a plurality of light transmission paths arranged in parallel with each other; Collection 1 that intersects with 2 at an angle of 2
  • An intermediate optical member 2 having an end face 2a and a second end face 2b, and a plurality of optical fibers are arranged in parallel with each other and integrally formed, and intersects with an optical axis 13 at angles of 2 and? 2 , respectively.
  • a second optical member 3 having a second entrance surface 3a and a second exit surface 3b, a first exit surface 1b, a first end surface 2a, and a second end surface 2b.
  • the second incident surfaces 3a are in contact with each other, and the optical axis 1 of the first optical member 1
  • 0 3> 0 have and, 0 3> 0 by 2 to, it is possible to reduce the transmission loss of light due to bending of the transmission path. As a result, the light image incident on the first incident surface 1a can be efficiently transmitted to the second exit surface 3b.
  • the optical element of the present invention has a first incidence surface and a first emission surface each of which is formed by integrally arranging a plurality of optical fibers in parallel with each other and which intersects the optical axis at an angle of? I.
  • One optical member, n intermediate optical members from the first to the n-th (n is an integer of 2 or more), and a plurality of optical fibers are integrally formed by arranging them in parallel with each other.
  • FIG. 1 is an exploded view of the optical element.
  • FIG. 2 is a perspective view of the optical element.
  • FIG. 3 is a schematic sectional view of the optical element.
  • FIG. 4 is a diagram illustrating the use of an optical element.
  • FIG. 5 is an explanatory diagram showing propagation of light in an optical element.
  • FIG. 6 is an explanatory diagram showing light propagation in an optical element.
  • FIG. 7 is an explanatory diagram showing light propagation in an optical element.
  • FIG. 8 is a perspective view of the imaging unit.
  • FIG. 9 is a perspective view of the imaging device.
  • FIG. 10 is a perspective view of the radiation image sensor.
  • FIG. 11 is a schematic sectional view of a radiation image sensor.
  • FIG. 12 is an explanatory diagram showing the incidence of radiation on the radiation image sensor.
  • FIG. 13 is an explanatory diagram showing the incidence of radiation on the radiation image sensor.
  • FIG. 14 is a configuration diagram of the fingerprint matching device.
  • FIG. 15 is a perspective view of the optical element.
  • FIG. 16 is a schematic sectional view of an optical element.
  • FIG. 17 is a perspective view of the optical element.
  • FIG. 18 is a schematic sectional view of the optical element.
  • FIG. 19 is a perspective view of the optical element.
  • FIG. 20 is a schematic sectional view of the optical element.
  • FIG. 21 is an explanatory diagram showing light propagation in an optical element.
  • FIG. 22 is an explanatory diagram illustrating light propagation in the optical element.
  • FIG. 23 is a perspective view of the optical element.
  • FIG. 24 is a schematic cross-sectional view of the optical element.
  • FIG. 25 is a perspective view of the optical element.
  • FIG. 26 is a schematic sectional view of the optical element.
  • FIG. 27 is a schematic sectional view of the optical element.
  • FIG. 28 is a schematic sectional view of the optical element.
  • FIG. 29 is a schematic sectional view of the optical element.
  • FIG. 30 is a schematic sectional view of the optical element.
  • FIG. 31 is a schematic sectional view of an optical element.
  • FIG. 32 is a schematic sectional view of the optical element.
  • FIG. 33 is a schematic sectional view of the optical element.
  • FIG. 34 is a perspective view of the optical element.
  • FIG. 35 is a perspective view of the intermediate optical member.
  • FIG. 36 is a partially enlarged perspective view of the intermediate optical member.
  • FIG. 37 is a schematic sectional view of the intermediate optical member.
  • FIG. 38 is a partially enlarged schematic cross-sectional view of the intermediate optical member.
  • FIG. 39 is a schematic sectional view of the optical element.
  • FIG. 40 is an explanatory diagram showing propagation of light in the optical element.
  • FIG. 41 is an explanatory diagram showing propagation of light in an optical element.
  • -Fig. 42 is a perspective view of the optical element.
  • FIG. 43 is a schematic sectional view of the optical element.
  • FIG. 44 is a perspective view of the optical element.
  • FIG. 45 is a schematic sectional view of the optical element.
  • FIG. 46 is a perspective view of the intermediate optical member.
  • FIG. 47 is a partially enlarged perspective view of the intermediate optical member.
  • FIG. 48 is a schematic sectional view of the intermediate optical member.
  • FIG. 49 is a partially enlarged schematic cross-sectional view of the intermediate optical member.
  • FIG. 50 is a perspective view of the intermediate optical member.
  • FIG. 51 is a partially enlarged perspective view of the intermediate optical member.
  • FIG. 52 is a schematic sectional view of the intermediate optical member.
  • FIG. 53 is a partially enlarged schematic cross-sectional view of the intermediate optical member.
  • FIG. 54 is a perspective view of the optical element.
  • FIG. 55 is a schematic sectional view of the optical element.
  • FIG. 56 is a perspective view of the imaging device.
  • FIG. 57 is a perspective view of the imaging device.
  • FIG. 58 is a perspective view of the imaging device.
  • FIG. 59 is a perspective view of the imaging device.
  • FIG. 60 is a perspective view of the imaging device.
  • FIG. 61 is a perspective view of the imaging device.
  • FIG. 62 is a perspective view of the radiation image sensor.
  • FIG. 63 is a schematic cross-sectional view of the radiation image sensor.
  • FIG. 64 is a schematic sectional view of the radiation image sensor.
  • FIG. 65 is a schematic cross-sectional view of the radiation image sensor.
  • FIG. 66 is a schematic cross-sectional view of the radiation image sensor.
  • FIG. 67 is a schematic cross-sectional view of the radiation image sensor.
  • -Fig. 68 is a schematic sectional view of a radiation image sensor.
  • FIG. 69 is a schematic cross-sectional view of the radiation image sensor.
  • the optical element 10 includes an input optical member 11, an intermediate optical member 12, and an output optical member 13.
  • the input optical member 11, the intermediate optical member 12, and the output optical member 13 are integrally formed by arranging a number of optical fibers 14 in parallel with each other.
  • Table 1 shows the refractive index of the core 14a, the refractive index of the clad 14b, and the numerical aperture of the optical fiber 14 constituting each optical member.
  • the gap between the optical fibers 14 constituting each optical member is filled with a light absorbing material 15.
  • the input optical member 11 has an incident surface 11 a that is obliquely cut at an angle of 31 ° with respect to the optical axis (the optical axis of the optical fiber constituting the optical member), and a perpendicular to the optical axis. It has a cut out facet of 1 lb, and can reduce the light image incident on the incident face 1 la in one specific direction and output it to the output face of 1 lb. Also, the angle (31 °) between the optical axis and the incident surface 11a is such that the light incident on the incident surface 1la from the air is entirely within the optical fiber 14 constituting the input optical member 11. The angle does not satisfy the reflection conditions.
  • the intermediate optical member 12 is obliquely inclined at an angle of 66 ° with respect to the optical axis.
  • the incident surface 12a and the exit surface 12b cut parallel to the incident surface 12a, and the light image incident on the incident surface 12a exits to the exit surface 12b. I can help you.
  • the output optical member 13 has an incident surface 13 a cut obliquely at an angle of 31 ° with respect to the optical axis, and an output surface 1 cut perpendicular to the optical axis.
  • Outgoing surface 1 1 b of input optical member 1 1 and incident surface 1 2 a of intermediate optical member 12, and outgoing surface 1 2 b of intermediate optical member 12 and incident surface 1 3 of output optical member 13 a is in contact with each other, in particular, a straight line parallel to both the input surface 1 la and the output surface 1 1 b of the input optical member 11, and the input surface 13 a of the output optical member 13 and the output surface Straight lines parallel to both 13b are perpendicular to each other. Accordingly, the light image incident on the entrance surface 11a of the input optical member 11 is reduced in the a-axis direction in FIG. 2 by the input optical member 11 and the a-axis is reduced by the output optical member 13. Then, the light is reduced in the b-axis direction perpendicular to the direction, and is output from the output surface 13 b of the output optical member 13.
  • FIG. 3 is a schematic sectional view showing the relationship between the optical axes of the optical members.
  • Each optical member is actually a bundle of thousands of optical fibers.
  • the angle between the incident surface 12a of the intermediate optical member 12 and the optical axis is 66 °
  • the angle between the incident surface 13a of the output optical member 13 and the optical axis is 31 °.
  • the angle between the optical axis of the input optical member 11 and the optical axis of the intermediate optical member 12 is 24 °
  • the angle between the optical axis of the intermediate optical member 12 and the optical axis of the output optical member 13 is Is 35 °, which is the angle between the optical axis of the input optical member 11 and the optical axis of the output optical member 13. It is smaller than 59 °.
  • the angle (24 °) between the optical axis of the input optical member 11 and the optical axis of the intermediate optical member 12 is defined by the distance from the exit surface of the input optical member 11 to the entrance surface of the intermediate optical member 12. Almost 100% of the light incident on 12a is at an angle that satisfies the condition of total reflection in the optical fiber 14 constituting the intermediate optical member 12, and the optical axis and output of the intermediate optical member 1 2
  • the angle (35 °) between the optical member 13 for output and the optical axis of the optical member 13 is about 35 °. 50% is an angle that satisfies the condition of total reflection in the optical fiber 14 constituting the output optical member 13.
  • the configuration shown in FIG. 4 may be used. That is, the finger 4 is brought into contact with the entrance surface 11a of the input optical member 11, and light is projected from above the finger using the LED 5 or the like.
  • the angle between the optical axis of the input optical member 11 and the incident surface 1 la is such that incident light from the air does not satisfy the condition of total reflection in the optical fiber 14 constituting the input optical member 11 Thus, the angle is 31 °. Therefore, the light that enters the input optical member 11 from the air is attenuated and disappears in the input optical member 11, whereas the light is input through the contact portion (fingerprint of the fingerprint) of the finger 4.
  • the light that has entered the optical member for use 11 propagates through the optical element 10. Therefore, a fingerprint image is transmitted to the emission surface 13b of the output optical member 13, and a reduced fingerprint image can be obtained by imaging the fingerprint image using the imaging device.
  • the operation of the optical element according to the present embodiment will be described.
  • light incident on the input surface 1 la of the input optical member 11 from the air passes through the core-cladding interface of the optical fiber 14 constituting the input optical member 11.
  • the refractive index of air The refractive indices of the core 14 ar and the clad 14 b of the optical fiber 14 constituting the input optical member 11 are nil and n 12 , respectively.
  • the angle between the optical axis of member 11 and the incident surface 11a is determined by the angle of incidence of light entering the incident surface 11a of air from the air. Let the incident angle of light incident on the cladding 14b from the core 14a of 11 be £ P refraction angle.
  • a part of the light which is a substance having a higher refractive index than air and which enters the input optical member 11 from the contact portion of the subject such as a finger with the incident surface 11a, has a condition of total reflection. Therefore, the light propagates through the input optical member 11.
  • the input optical member 11 is located at the incident surface 1 la. This has the effect of reducing the incident light image by 0.52 (sin 31 °) times in the a-axis direction and outputting it to the emission surface 11b.
  • the angle between the optical axis of the intermediate optical member 1 2 and the incident surface 1 2a is small, and the light incident on the incident surface 1 2b of the intermediate optical member 12 from the output surface 1 lb of the input optical member 11 the inlet elevation angle of 2, the angle of refraction 2, the incident angle of light incident from the intermediate optical member 1 2 of the core 1 4 a into the cladding 1 4 b £ 2, the angle of refraction and 5 2.
  • the angle /? I between the optical axis of the input optical member 11 and the emission surface 11b is a right angle.
  • the entrance surface 12a and the exit surface 12b of the intermediate optical member 12 are cut in parallel, the light image incident on the entrance surface 12a of the intermediate optical member 12 is not enlarged or reduced, The light is output from the emission surface 12 b of the optical member 12.
  • the angle ⁇ 2 between the optical axis exit surface 12 b of the intermediate optical member 12 is equal to summer and 7 i. From the total reflection condition of the intermediate optical member 12, 3 is
  • ⁇ 2 is converted to 31 ° I have. Therefore, in the optical element 10 according to the present embodiment, of the light incident from the exit surface 12b of the intermediate optical member 12 to the entrance surface 13a of the output optical member 13, the light receiving angle ratio (which satisfies the total reflection condition) About 50% of the light in the incident angle range / total incident angle X 100) propagates inside the output optical member 13 while satisfying the condition of total reflection.
  • the output optical member 13 can be used as a light image incident on the entrance surface 13a. Is reduced by a factor of 0.52 (sin31 ° :) in the b-axis direction and output to the exit surface 13b.
  • the optical element 10 according to the present embodiment reduces the optical image formed on the incident surface 11 a of the input optical member 11 by 0.52 times in each of the a-axis and b-axis directions. And has the function of transmitting the light to the emission surface 13 b of the output optical member 13.
  • the optical element 10 according to the present embodiment includes an angle formed by the optical axis of the input optical member 11 and the optical axis of the intermediate optical member 12, and the optical axis of the intermediate optical member 12 and the output optical member 1.
  • the angle between the optical axis of the input optical member 11 and the optical axis of the output optical member 13 is smaller than the angle between the optical axis of the input optical member 11 and the optical axis of the output optical member 13. Almost 1 of the light incident on the entrance surface 1 2a of the intermediate optical member 1 2 from the surface
  • 0% satisfies the condition of total reflection in the optical fiber 14 constituting the intermediate optical member 12, and from the exit surface 12 b of the intermediate optical member 12 to the incident surface 13 a of the output optical member 13.
  • About 50% of the light incident on the optical fiber 14 constituting the output optical member 16 satisfies the condition of total reflection.
  • an optical image can be transmitted without using a scattering surface or the like as a bonding surface of each optical member, an output image with extremely high resolution can be obtained, and fine processing of the scattering surface or the like is not required.
  • the straight line parallel to both of b and the straight line parallel to both the entrance surface 13a and the exit surface 13b of the output optical member 13 are orthogonal to each other. Therefore, the input optical member 11 reduces the incident image in a specific direction (a-axis direction), and the output optical member 13 reduces the incident image in the vertical direction (bitl). Direction). Therefore, an output image obtained by two-dimensionally reducing the light image incident on the incident surface 11 a of the input optical member 11 can be obtained from the output surface 13 b of the output optical member 13. Furthermore, hii ⁇ Fei 2, by adjusting the? 2 as appropriate, it is possible to variously change the reduction ratio.
  • the optical element 1 0 according to the present embodiment, / s 3 5 2 by the perpendicular to the optical axis, effectively reducing the light image incident on the entrance surface 1 la of the input optical member 1 1
  • the output pattern obtained can be obtained from the output surface 13 b of the output optical member 13.
  • the optical element 10 includes an optical axis and an incident surface of the input optical member 11.
  • Table 2 shows the relationship between the acceptance angle ratio and the reduction efficiency under various angle conditions.
  • 7 i is the angle between the optical axis of the intermediate optical member 12 and the incident surface 12 a
  • hi 2 is the angle between the optical axis of the output optical member 13 and the incident surface 13 a
  • A is The light receiving angle ratio in the intermediate optical member 12
  • B is the light receiving angle ratio in the output optical member 13
  • m is the reduction ratio.
  • the refractive indices of the core 14a and the cladding 14b of the optical fiber 14 constituting each optical member are as shown in Table 1.
  • Table 3 shows a change in the reduction ratio when the numerical aperture NA of the optical fiber 14 constituting the input optical member 11 is changed.
  • the core 14a of the optical fin 14 constituting the intermediate optical member 'i2, Refractive index n 31, n 32 Rudd 14b, and the refractive index 11 1 2 cladding 141) of the optical Fuaino '14 forming the input optical member 1 1, those same values as those shown in Table 1
  • the refractive index of the core 14a of the optical fiber 14 constituting the input optical member 11 was changed from 1.52 to 1.56, and the change in the reduction rate m was examined.
  • the angle i formed between the optical axis of the intermediate optical member 12 and the incident surface 12a is substantially equal to the light incident on the incident surface 12a of the intermediate optical member 12 from the output surface 11b of the input optical member 11.
  • An angle ⁇ 2 between the optical axis of the output optical member 13 and the incident surface 13a is determined so that 100% can propagate while satisfying the total reflection condition, and the angle ⁇ 2 formed by the output surface 12b of the intermediate optical member 12. It is determined that about 50% of the light incident on the entrance surface 13a of the optical member 13 can propagate while satisfying the condition of total reflection (that is, the light receiving angle ratio is fixed).
  • the imaging unit 100 includes the optical element 10 (i.e., the optical element 10 including the input optical member 11, the intermediate optical section forest 42 and the output optical member 13), and the output Optical section And a CCD 101 provided in contact with the emission surface 13 b of the material 13.
  • the emission surface 13b of the output optical member 13 is in contact with the light receiving surface of the CCD 101.
  • a side surface of the surface of the input optical member 11 except for the entrance surface 11a and the exit surface 11b, the side surface of the intermediate optical member 12, and the output optical member 1
  • a light-blocking material 102 is provided on the side surface of 3 (see the hatched portion in FIG. 8).
  • the imaging unit 100 is configured to include the above-described optical element 10, the optical image incident on the incident surface 11 a of the input optical member 11 can be efficiently output to the output optical member 1. It can transmit up to 3 outgoing surfaces 13b.
  • the imaging unit 100 transmitted the light to the emission surface 13 b of the output optical member 13 by providing the CCD 101 in contact with the emission surface 13 b of the output optical member 13. An optical image can be captured.
  • the imaging unit 100 light is prevented from entering the inside of each optical member from the side by providing the light shielding material 102 on the side surface of each optical member, and the S / N ratio is reduced. Can be increased.
  • the imaging unit 100 can capture a reduced image with clear, high contrast and high resolution.
  • Imaging device using optical element according to embodiment of the present invention Subsequently, an imaging device using the optical element according to the above embodiment will be described with reference to the drawings.
  • the configuration of an imaging device using the optical element according to the above embodiment will be described.
  • the imaging device 200 has four sets of the imaging units 100, and the input surface 11 a of the input optical member 11 constituting each imaging unit 100 has the same configuration.
  • the imaging units 100 are arranged so as to be arranged on substantially the same plane.
  • the imaging device 200 is provided with the imaging unit 100, it is possible to capture a clear, high-contrast, high-resolution reduced image.
  • the imaging device 200 arranges the four sets of imaging units 100 such that the input surfaces 11 a of the input optical members 11 constituting each imaging unit 100 are arranged substantially on the same plane. Are arranged. Therefore, it is possible to enlarge a light receiving surface on which a light image can be input.
  • the reduced image is captured by being divided into the respective CCDs 101, and the entire reduced image can be reproduced by combining the images captured by the respective CCDs 101 with an image processing device or the like.
  • the imaging device 200 since the imaging device 200 has an extremely simple configuration including a plurality of simple optical members and a CCD, the imaging device 200 may include a tapered fiber optical member or the like manufactured for the purpose of increasing the light receiving surface. In comparison, it can be manufactured at extremely low cost.
  • the imaging device 200 is arranged in a plurality of imaging units 100 in which a plurality of optical members are combined, so that the CCDs 101 in each imaging unit 100 are located adjacent to each other. Will no longer be placed. As a result, there is no longer any placement restriction due to the outer shape of the CCD 101 being larger than the effective light receiving surface.
  • a radiation image sensor using the optical element according to the above embodiment will be described with reference to the drawings. First, the configuration of the radiation image sensor using the optical element according to the above embodiment will be described. As shown in FIG.
  • the radiation image sensor 300 includes the above-described imaging unit 100 (that is, the input optical member 11, the intermediate optical member 12, the output optical member 13, and the CCD 101). And an imaging unit 100) provided with a light-shielding material 102, and an incident unit 11 provided on the input surface 11 a of the input optical member 11 constituting the imaging unit 100. And a phosphor 310 that emits light.
  • a material of the phosphor 3 0 for example, G d 2 0 2 S: T b have good the like is used.
  • the incident surface 11 a of the input optical member 11 is Polishing is performed so that the center line average roughness is in the range of 0.20 to 0.80 m (hereinafter referred to as coarse polishing).
  • a polished surface having a center line average roughness in such a range is polished using, for example, an abrasive having an average diameter of abrasive grains of about 6 to 30 ⁇ m (eg, green force-borundum abrasive grains). Thereby, it can be easily formed.
  • Fig. 12 shows how light is incident when the incident surface 11a is not roughly polished.
  • Fig. 13 shows that the incident surface 11a is rough as in the case of the radiation image sensor 300 described above. The state of incidence of light when polished is shown.
  • the incident surface 11a The incident radiation R a, specific point of the phosphor 3 0 within 1 L. Is emitted into the input optical member 11 as diffused light having the maximum intensity in the normal direction of the incident surface 11a.
  • L a is L.
  • the length of a chord formed by a straight line drawn in a specific direction from the circle and the circle indicates the intensity of light traveling in the specific direction.
  • the shaded area L t is L.
  • the radiation image sensor 300 since the radiation image sensor 300 includes the above-described optical element 10, the optical image incident on the incident surface 1 la of the input optical member 11 is efficiently emitted from the output optical member 13. The light can be transmitted to the surface 13b, and such an optical image can be captured by the CCD 101.
  • the radiation image sensor 300 can capture a reduced image of the radiation image incident on the phosphor 301 in a clear, contrasting, and high-resolution state.
  • the radiation image sensor 300 combines the three optical members so that the position where the CCD 101 serving as the sensor unit is provided is changed to the incident surface 11 1 of the input optical member 11 serving as the detection surface.
  • the sensor portion deviates from the portion immediately below a, and it is possible to reduce the effect of damage to the sensor portion from radiation incident on the detection surface.
  • FIG. 14 is a schematic configuration diagram of the fingerprint matching device 401 using the optical element according to the above embodiment.
  • the fingerprint matching device 400 includes an imaging unit that captures a fingerprint, and an information processing device 401 that is a fingerprint matching unit that matches a fingerprint image captured by the imaging unit with a reference pattern registered in advance.
  • the information processing apparatus 401 includes a display 402 that is a display unit that displays a result of the comparison performed by the information processing apparatus 401.
  • the imaging unit for imaging a fingerprint the imaging unit 100 using the optical element according to the above-described embodiment has been employed.
  • the information processing device 401 includes a memory for temporarily storing a fingerprint image output from the imaging unit 100, a storage device for storing a reference pattern, a fingerprint image captured by the imaging unit, and a storage device. And a computing device for collating with the reference pattern stored in the storage device.
  • the operation and effect of the fingerprint collation device using the optical element according to the above embodiment will be described.
  • the finger 4 is brought into contact with the input surface 11a of the input optical member 11 constituting the imaging unit 100, the fingerprint image is formed on the output optical member 13 as described with reference to FIG.
  • the light is transmitted to the emission surface 13 b and imaged by the CCD 101.
  • the fingerprint image picked up by the CCD 101 forming the imaging unit 100 is output to the information processing device 401 and is temporarily stored in a memory. Thereafter, the fingerprint image is collated by the arithmetic unit with a reference pattern registered in advance in the storage device, and the collation result is displayed on the display 402 together with the captured fingerprint image and the like.
  • the fingerprint collation device 400 is configured to include the optical element 10; The light image incident on the incident surface 11 a of the input optical member 11 can be efficiently transmitted to the output surface 13 b of the output optical member 13. Therefore, a clear, high-contrast, high-resolution reduced image can be captured by the CCD 101. As a result, the fingerprint collation device 400 can perform highly accurate fingerprint collation with less erroneous recognition.
  • FIG. 15 shows the configuration of an optical element 16 according to this modification.
  • the optical element 16 according to the present modified example is different in configuration from the optical element 10 according to the embodiment described above.
  • the input optical member 11 used in the optical element 10 according to the embodiment is Although the gap between the optical fibers 14 was filled with the light absorbing material 15, the input optical member 17 used for the optical element 16 according to the present modified example is provided in the gap between the optical fibers 14.
  • the first member 18 is not filled with the light absorbing material 15 and the second member 19 is filled with the light absorbing material 15 in the gap between the optical fins 14. .
  • the first member 18 is composed of an optical member in which a number of optical fibers 14 are arranged in parallel with each other and integrally formed, and the gap between the optical fibers 14 is not filled with the light absorbing material 15.
  • the incident surface 18a has an angle of 31 ° with the optical axis so that the incident light from the air does not satisfy the condition of total reflection, and the exit surface 18b has Perpendicular to the axis.
  • the second member 19 is formed of an optical member in which a number of optical fibers 14 are arranged in parallel with each other and integrally formed, and a gap between the optical fibers 14 is filled with a light absorbing material 15.
  • the entrance surface 19a and the exit surface 19b are perpendicular to the optical axis.
  • the entrance surface 19a of the second member 19 is in contact with the exit surface 18b of the first member 18.
  • the exit surface 19 b of the second member 19 is in contact with the entrance surface 12 a of the intermediate optical member 12.
  • Both the optical axis of the first member 18 and the optical axis of the second member 19 are parallel to the xy plane in FIG. Therefore, when the optical element 16 is cut along a plane parallel to the xy plane in FIG. 15, the cross section is as shown in FIG.
  • the optical element 16 when the optical element 16 is used to reduce and transmit a fingerprint image, as shown in FIG. 15, a finger is placed on the incident surface 18a of the first member 18 constituting the input optical member 17. 4 is brought into contact, and light is projected from below the first member 18 by the LED 5 or the like. The light projected by the LED 5 and the like passes through the first member 18 of the input optical member 17 from the bottom to the top and is reflected on the incident surface 18a, but the fingerprint is projected on the incident surface 18a. When the parts touch, the projected light is absorbed at that part without being reflected. Therefore, the reflected light reflected by a portion other than the contact portion of the convex portion of the fingerprint is transmitted through each optical member, and is output from the output surface 13 of the output optical member 13 as a fingerprint pattern.
  • the second member 19 is a component in which illumination light emitted from the LED 5 or the like directly enters the intermediate optical member 12 or is scattered in the first member 18 constituting the input optical member 17. Has the effect of preventing the S / N ratio of the detected image from deteriorating due to the light entering the intermediate optical member 12.
  • FIG. 17 shows a configuration of an optical element 20 according to the present modification.
  • the optical element 20 includes, as shown in FIG. 17, an input optical member 21, a first intermediate optical member 22, a second intermediate optical member 23, and an output optical member 24. Have been.
  • the input optical member 21, the first intermediate optical member 22, the second intermediate optical member 23, and the output optical member 24 are integrally formed by arranging a number of optical fibers 14 in parallel with each other. Have been.
  • Table 4 shows the refractive index of the core 14a, the refractive index of the cladding 14b, and the numerical aperture of the optical fiber 14 constituting each optical member.
  • a gap between the optical fibers 14 constituting each optical member is filled with a light absorbing material 15.
  • the input optical member 21 has an incident surface 21a obliquely cut at an angle of 10 ° with respect to the optical axis, and an output surface 21b cut perpendicular to the optical axis.
  • the light image incident on the entrance surface 21a can be reduced in one specific direction and output to the exit surface 21b.
  • the angle (10 °) between the optical axis and the incident surface 2 la is such that the light incident on the incident surface 21 a from the air is within the optical fiber 14 constituting the input optical member 21, The angle does not satisfy the condition for total reflection.
  • the first intermediate optical member 22 includes an incident surface 22a cut obliquely at an angle of 66 ° with respect to the optical axis, and an output surface 22b cut parallel to the incident surface 22a.
  • the light image incident on the incident surface 22a can be output to the exit surface 22b.
  • the second intermediate optical member 23 has an incident surface 23a cut obliquely at an angle of 35 ° with respect to the optical axis, and an output surface 23b cut parallel to the incident surface 23a.
  • the light image incident on the incident surface 23a can be output to the exit surface 23b.
  • the output optical member 24 has an incident surface 24 a cut obliquely at an angle of 10 ° with respect to the optical axis, and an output surface 24 b cut perpendicular to the optical axis.
  • the light image incident on the entrance surface 24a can be reduced in one specific direction and output to the exit surface 24b.
  • the entrance surface 23a of the third optical member 23, the exit surface 23b of the second intermediate optical member 23, and the entrance surface 24a of the output optical member 24 are in contact with each other.
  • a straight line parallel to both the entrance surface 2 la and the exit surface 2 1 b and a straight line parallel to both the entrance surface 24 a and the exit surface 24 b of the output optical member 24 are perpendicular to each other. . Accordingly, the light image incident on the incident surface 21a of the input optical member 21 is reduced in the a-axis direction in FIG. 17 by the input optical member 21 and the output optical member 2 4, the light is reduced in the direction of the b-axis perpendicular to the a-axis and output from the output surface 24 b of the output optical member 24.
  • optical axes of the input optical member 21, the first intermediate optical member 22, the second intermediate optical member 23, and the output optical member 24 are parallel to the xy plane in FIG.
  • a cross-sectional view of the element 20 cut along a plane parallel to the xy plane in FIG. 17 is as shown in FIG.
  • the angle between the incident surface 2 2 a of the first intermediate optical member 22 and the optical axis is 66 °
  • the angle between the incident surface 23 a of the second intermediate optical member 23 and the optical axis is 3
  • the angle between the optical axis and the incident surface 24 a of the output optical member 24 is 10 °
  • the optical axis of the input optical member 21 and the first intermediate optical member 22 The angle formed by the optical axis of the first intermediate optical member 22 is 24 °.
  • the angle between the optical axis of the second intermediate optical member 23 and the optical axis of the second intermediate optical member 23 is 31 °
  • the angle between the optical axis of the second intermediate optical member 23 and the optical axis of the output optical member 24 is 25 °.
  • the angle is smaller than 80 ° which is an angle formed between the optical axis of the input optical member 21 and the optical axis of the output optical member 24.
  • the angle (24 °) between the optical axis of the input optical member 21 and the optical axis of the first intermediate optical member 22 is defined by the first surface from the exit surface 2 113 of the input optical member 21. Almost 100% of the light incident on the incident surface 22 a of the intermediate optical member 22 has an angle satisfying the condition of total reflection in the optical fiber 14 constituting the first intermediate optical member 22. ing. Further, the angle (31 °) between the optical axis of the first intermediate optical member 22 and the optical axis of the second intermediate optical member 23 is defined by the exit surface 2 of the first intermediate optical member 22.
  • the optical element 20 includes an angle between the optical axis of the input optical member 21 and the optical axis of the first intermediate optical member 22, the optical axis of the first intermediate optical member 22 and the second intermediate optical member. Both the angle between the optical axis of 23 and the optical axis of the second intermediate optical member 23 and the optical axis of the output optical member 24 are the same as the angle between the optical axis of the input optical member 21 and the output.
  • the angle between the optical axis of the input optical member 24 and the optical axis of the output optical member 24 is smaller than 80 °, the angle between the optical axis of the input optical member 21 and the optical axis of the output optical member 24 is 80 °. Even at a very large angle, the light image incident on the incident surface 2 la of the input optical member 21 is totally reflected by the optical fiber 14 constituting each optical member. Can be efficiently transmitted to the output surface 24 b of the output optical member 24.
  • the optical element 20 according to the present modified example has an angle formed by the optical axis of the input optical member 21 and the incident surface 21a, and an angle formed by the optical axis of the first intermediate optical member 23 and the incident surface 23a.
  • Various deformations can be considered for the angle between the optical axis of the second intermediate optical member 23 and the incident surface 23a, the angle between the optical axis of the output optical member 24 and the incident surface 24a, and the like.
  • the incident light is incident on the incident surface 21a of the input optical member 21.
  • Table 5 shows the ratio C (product of the light receiving angle ratio of each optical member) of the light transmitted to the output surface 24b of the output optical member 24 while satisfying the total reflection condition.
  • the angle formed by the optical axis of the first intermediate optical member 22 and the incident surface 22 a is defined by the distance from the exit surface 21 b of the input optical member 21 to the incident surface 2 of the first intermediate optical member 22.
  • An angle of 66 ° is set so that almost 100% of the light incident on 2a propagates in the optical fin 14 constituting the first intermediate optical member 22 while satisfying the condition of total reflection.
  • the angle formed between the optical axis of the optical member 24 and the incident surface 24a is 10 ° in order to secure a reduction ratio.
  • the column "A" symbol of ⁇ 3 in the table is described is a result when using no second intermediate optical member 2 3.
  • the second intermediate optical member Be 2 3 and the optical axis an angle ⁇ 3 of the entrance surface 2 3 a varied widely with 1 0 to 5 5 °, at least the light incident on the incident surface 2 1 a of the input optical member 2 1 Part of the light can be propagated to the output surface 24 b of the output optical member 24 while satisfying the condition of total reflection, and a clear output image can be obtained.
  • the angle a3 between the optical axis of the second intermediate optical member 23 and the incident surface 23a is set to 35 to 40 °, the efficiency is highest, and the second intermediate optical member 23 is not used. Transmission efficiency is significantly improved as compared with the case.
  • FIG. 19 shows the configuration of an optical element 30 according to this modification.
  • the optical element 30 includes an input optical member 31, an intermediate optical member 32, and an output optical member.
  • the input optical member 31, the intermediate optical member 32, and the output optical member 33 are each integrally formed by arranging a number of optical fibers 14 in parallel with each other.
  • the core of the optical fiber 14 that constitutes each optical member 14 The refractive index of 14a, clad 1
  • Table 6 shows the refractive index and numerical aperture of 4b.
  • a gap between the optical fibers 14 constituting each optical member is filled with a light absorbing material 15.
  • the input optical member 31 is inclined at an angle of 15 ° with respect to the optical axis of the optical fiber 14 constituting the input optical member 31 (hereinafter referred to as a first optical axis). It has a cut entrance surface 31a and an exit surface 31b obliquely cut at an angle (acute angle) of 53.5 °.
  • a plane parallel to the first optical axis and perpendicular to the exit surface 3 lb (a plane parallel to the xy plane in FIG. 19; hereinafter, referred to as a first reference plane) and a plane parallel to the first optical axis and incident
  • the plane perpendicular to the plane 3 la (the plane parallel to the Xz plane in Fig. 19) is perpendicular to each other.
  • the angle (15 °) between the first optical axis and the incident surface 31 a is such that the light incident on the incident surface 31 a from the air is the optical fiber 1 4 constituting the input optical member 31. The angle does not satisfy the condition for total reflection
  • the intermediate optical member 32 has an incident surface 3 which is obliquely cut at an angle of 35 ° with respect to the optical axis of the optical fiber 14 constituting the intermediate optical member 32 (hereinafter referred to as a second optical axis). 2a and an exit surface 32b cut parallel to the entrance surface 32a.
  • the output optical member 33 is an incident light obliquely cut at an angle of 12 ° with respect to the optical axis of the optical fiber 14 constituting the output optical member 33 (hereinafter referred to as a third optical axis). It has a surface 33a and a vertically cut emission surface 33b.
  • Outgoing surface 3 1 b of input optical member 3 1 and entrance surface 3 2 a of intermediate optical member 3 2, and exit surface 3 2 b of intermediate optical member 3 2 and entrance surface of output optical member 3 3 3 3 a are in contact with each other, and the light image incident from the entrance surface 31a of the input optical member 31 is transmitted to the exit surface 16c of the output optical member 33 via the intermediate optical member 32. .
  • a plane parallel to the first reference plane, the second optical axis and perpendicular to the exit surface 32b of the intermediate optical member 32 (hereinafter referred to as a second reference plane), and a third optical axis Planes that are parallel and perpendicular to the entrance surface 33a of the output optical member 33 (hereinafter referred to as a third reference plane) are parallel (parallel to the xy plane in Fig. 19).
  • the optical axis of the optical fiber 14 is also parallel to the xy plane! That is, the light incident on each optical fiber 14 from the incident surface 31a of the input optical member 31 travels in parallel with the xy plane.
  • the cross section of the optical element 30 cut along a plane parallel to the xy plane in FIG. 19 is as shown in FIG.
  • the angle between the optical axis of the input optical member 31 and the optical axis of the intermediate optical member 32 is 18.5 °
  • the angle between the optical axis of the intermediate optical member 32 and the optical axis of the output optical member 33 is 23 °, and both are smaller than 41.5 °, which is the angle between the optical axis of the input optical member 31 and the optical axis of the output optical member 33.
  • the angle 35 ° formed between the second optical axis and the entrance surface 32a of the intermediate optical member 32 on the first reference plane is defined by the first optical axis and the exit surface 3 1 b of the input optical member 31.
  • the angle 12 ° formed by the third optical axis and the entrance surface 33a of the output optical member 33 on the second reference plane is the second optical axis and the exit surface 32b of the intermediate optical member 32.
  • Angle 35. Has become smaller than.
  • the connection between the intermediate optical member 32 and the output optical member 33 is established.
  • the angle of refraction of the optical path (optical fiber 14) on the surface is reduced.
  • the operation of the optical element according to the present modification will be described.
  • the propagation of the light incident on the input optical member 31 from the air in the input optical member 31 is described in FIG. 5 in the description of the optical element 10 according to the embodiment. This is as described above.
  • hi is set to 15 ° in consideration of the reduction efficiency and the ratio of the light receiving angle from the intermediate optical member 32 to the output optical member 3-3.
  • the input surface 3 la of the input optical member 3 1 is perpendicular to the xz plane in FIG. 19 and forms an angle of 15 ° with the first optical axis.
  • the input optical member 31 is The light image incident on the entrance surface 3 1a is reduced to 1 / 3.86 (sin 15.) Times in the a-axis direction in Fig. 19, and is reduced to 1.24 (1 / sin 5 3) in the b-axis direction. 5 °) It has the effect of expanding the output twice.
  • the light that has entered the entrance surface 32 a of the intermediate optical member 32 from the exit surface 31 b of the input optical member 31 constitutes the intermediate optical member 32.
  • the intermediate optical member 3 2 constituting the optical fiber Bruno 1 4 co ⁇ 1 4 a, the refractive index of the cladding 14 b and n 21, n 22 respectively.
  • the person 2 the movement angle of the light traveling through the second optical axis and the intermediate optical member 3 2 of the incident surface 3 2 a
  • Ai input optical Faculty member 3 in 1 an angle relative to the first optical axis
  • the incident angle of light incident from the exit surface 3 1 b of the input optical member 31 to the entrance surface 32 a of the intermediate optical member 32 is 2
  • the refraction angle is 2
  • equation (16) at least a part of 2 that satisfies equations (13) to (15) depends on the total reflection condition at the core-cladding interface.
  • the light you propagate input optical member 3 in 1 has a movement angle lambda 2 within 13 ° with respect to the first optical axis.
  • the light propagates in the optical fiber 14 constituting the member 32 while satisfying the condition of total reflection.
  • the entrance surface 32a of the intermediate optical member 32 is parallel to the exit surface 32b of the intermediate optical member 32, the light image incident on the entrance surface 32a of the intermediate optical member 32 is enlarged or reduced. Without this, the light is output from the exit surface 32b of the intermediate optical member 32.
  • the light that has entered from the exit surface 32b of the intermediate optical member 32 to the entrance surface 33a of the output optical member 33 passes through the core of the optical fiber 14 that constitutes the output optical member 33.
  • the optical fiber i constituting the output optical member 33 is i
  • the refractive indices of the four cores 14 a and 14 b are n 31 and n 32 , respectively.
  • the angle between the third optical axis and the entrance surface 33a of the output optical member 33 is defined as 2 , and the angle of light incident on the entrance surface 33a of the output optical member 33 from the exit surface 32b of the intermediate optical member 32 is determined.
  • n 32 1. is 495, the light transmitting intermediate optical member 32 enters with a incident angle 3 of more than 20 ° to the incident surface 33 b of the output optical member 33. Further, in order to produce a total reflection at the core first cladding interface of the optical fiber 14 constituting the output optical member 33 is required to be incident at Kuradzu de 14 b with respect to 5 5 ° or more incident angle epsilon 3 , For that, refraction angle £ 3 must be larger than 43 °.
  • ⁇ 2 35 °
  • the incident angle ratio of the light incident from the exit surface 32 b of the intermediate optical member 32 to the entrance surface 33 a of the output optical member 33 (incident angle range satisfying the total reflection condition / total About 67% of the light in the incident angle range X 100) propagates in the output optical member 33 while satisfying the condition of total reflection.
  • the entrance surface 33a of the output optical member 33 is perpendicular to the xy plane in FIG. 19, and forms an angle of 12 ° with the third optical axis
  • the output surface 33b of the output optical member 33 is Since the output optical member 33 is perpendicular to the third optical axis, the output optical member 33 converts the light image incident on the incident surface 33a of the output optical member 33 in the direction of the b-axis in FIG. s in 12 °). Accordingly, the light image input to the input surface 31a of the input optical member 31 and output from the output surface 33b of the output optical member 33 is reduced to 1 / 3.86 times in the direction a in FIG. At the same time, it is reduced to 1 / 3.87 times in the b-axis direction, resulting in a similar reduced optical image.
  • the optical image output from the output surface 33b of the output optical member 33 converts the optical image formed on the input surface 31a of the input optical member 31 into one in the a-axis direction and the b-axis direction. / 3. Light image reduced to 86 times. Subsequently, effects of the optical element according to the present modification will be described.
  • the optical element 30 has both an angle formed by the optical axis of the input optical member 31 and the optical axis of the intermediate optical member 32, and an angle formed by the optical axis of the intermediate optical member 32 and the optical axis of the output optical member 33.
  • the configuration of the optical element according to the present modification is shown in FIG.
  • the configuration of the optical element 35 according to the present modified example is different from that of the optical element 30 according to the third modified example as follows. That is, the input optical member 31 used in the optical element 30 according to the third modified example described above has the gap between the optical fibers 14 filled with the light absorbing material 15.
  • the input optical member 36 used for the optical element 35 includes a first member 37 in which the gap between the optical fibers 14 is not filled with the light absorbing material 15 and a gap between the optical fibers 14. This is a point composed of the second member 38 filled with the light absorbing material 15.
  • the first member 37 is formed integrally by arranging a large number of optical fibers 14 in parallel with each other, and is composed of optical members in which the gap between the optical fibers 14 is not filled with the light absorbing material 15.
  • the incident surface 37a is at an angle of 15 ° with the optical axis so that the incident light entering from the air does not satisfy the condition of total reflection, and the exit surface 37b is Perpendicular to the axis.
  • the second member 38 is formed of an optical member in which a large number of optical fibers 14 are arranged in parallel with each other and integrally formed, and a gap between the optical fibers 14 is filled with a light absorbing material 15.
  • the entrance surface 38a and the exit surface 38b are perpendicular to the optical axis.
  • the entrance surface 38a of the second member 38 is in contact with the exit surface 37b of the first member 37, and the exit surface 38b of the second member 38 is connected to the intermediate optical member 32. It is in contact with the entrance surface 32a.
  • the optical axis of the first member 37 and the optical axis of the second member 38 are both parallel to the xy plane in FIG. Therefore, when the optical element 3 _5 is cut along a plane parallel to the xy plane in FIG. 23, the cross section is as shown in FIG. Swell.
  • the optical element 35 also outputs the optical image incident from the incident surface 37 a of the first member 37 constituting the input optical member 36 to the output optical element. It is possible to efficiently transmit the light to the emission surface 33 b of the member 33.
  • the optical element 40 includes an input optical member 41, a first intermediate optical member 42, a second intermediate optical member 43, and an output optical member 44. Have been.
  • the input optical member 41, the first intermediate optical member 42, the second intermediate optical member 43, and the output optical member 44 are integrally formed by arranging a number of optical fibers 14 in parallel with each other. Have been.
  • Table 7 shows the refractive index of the core 14a, the refractive index of the clad 14b, and the numerical aperture of the optical fiber 14 constituting each optical member.
  • a gap between the optical fibers 14 constituting each optical member is filled with a light absorbing material 15.
  • the input optical member 41 has an incident surface 4 which is obliquely cut at an angle of 15 ° with respect to the optical axis of the optical fiber 14 constituting the input optical member 41 (hereinafter referred to as a first optical axis). 1a and diagonally at an angle of 53.5 ° (a sharp angle) It has a cut out surface 41b.
  • a plane parallel to the first optical axis and perpendicular to the emission surface 41b of the input optical member 41 (a plane parallel to the xy plane in FIG. 25; hereinafter, referred to as a first reference plane);
  • a plane parallel to the first optical axis and perpendicular to the entrance surface 41a of the input optical member 41 (a plane parallel to the xz plane in FIG.
  • the angle (15 °) formed by the first optical axis and the input surface 41 a of the input optical member 41 is such that the light incident on the input surface 4 la of the input optical member 41 from the air is: The angle does not satisfy the condition of total reflection in the optical fiber 14 constituting the input optical member 41.
  • the first intermediate optical member 42 has an angle of 35 ° with respect to the optical axis of the optical fiber 14 constituting the first intermediate optical member 42 (hereinafter referred to as a second optical axis). It has an incident surface 42a cut obliquely and an output surface 42b cut parallel to the incident surface 42a.
  • the second intermediate optical member 43 is 23.5 with respect to the optical axis of the optical fin 14 constituting the second intermediate optical member 43 (hereinafter referred to as a third optical axis). It has an incident surface 43a that is obliquely cut at an angle and an output surface 43b that is cut in parallel with the incident surface 43a.
  • the output optical member 44 has an incident surface cut at an angle of 12 ° with respect to the optical axis of the optical fiber 14 constituting the output optical member 44 (hereinafter referred to as a fourth optical axis). 44 a and a vertically cut out surface 44 b.
  • a plane parallel to the first reference plane and the second optical axis and perpendicular to the emission surface 42b of the first intermediate optical member 42 (hereinafter referred to as a second reference plane) is parallel to the third optical axis.
  • a plane perpendicular to the exit surface 43b of the second intermediate optical member 43 (hereinafter referred to as a third reference plane), and perpendicular to the entrance surface 44a of the output optical member 44 and parallel to the fourth optical axis.
  • the flat planes (hereinafter referred to as the fourth reference plane) are parallel (parallel to the xy plane in Fig. 25). Therefore, the axis of the optical fiber 14 constituting each optical member is also parallel to the xy plane, and the light incident on each optical fiber 14 from the incident surface 41a of the input optical member 41 travels parallel to the xy plane.
  • FIG. 26 shows a cross section of the optical element 40 cut along a plane parallel to the xy plane in FIG.
  • the angle between the optical axis of the input optical member 41 and the optical axis of the first intermediate optical member 42 is 18.5 °
  • the optical axis of the first intermediate optical member 42 and the second intermediate optical member The angle between the optical axis of the output optical member 43 and the optical axis is 11.5 °
  • the angle between the optical axis of the second intermediate optical member 43 and the optical axis of the output optical member 44 is 1 1.
  • the angle is smaller than 41.5 °, which is the angle between the optical axis of the input optical member 41 and the optical axis of the output optical member 44.
  • the angle 35 ° formed between the second optical axis and the entrance surface 42a of the first intermediate optical member 42 on the first reference plane is defined by the first optical axis and the exit surface 41 of the input optical member 41.
  • the angle formed by b is smaller than 53.5 °. Further, by setting the angle between the first optical axis and the second optical axis to 18.5 °, which is the difference between the above 53.5 ° and 35 °, the input optical member 41 and the first optical axis are formed. The refraction angle of the optical path (optical fin 14) at the connection surface of the intermediate optical member 42 is reduced.
  • the angle 23.5 ° formed between the third optical axis and the incident surface 43a of the second intermediate optical member 43 on the second reference plane 54d is defined as the angle 23.5 ° between the second optical axis and the first intermediate optical member 43.
  • the angle formed by the exit surface 42b of the member 42 is smaller than 35 °.
  • the second By setting the angle between the optical axis and the third optical axis to 11.5 °, which is the difference between 35 ° and 23.5 °, the first intermediate optical member 42 and the second intermediate optical The angle of refraction of the optical path (optical fiber, '14) at the connection surface of the member 43 is reduced.
  • the angle 12 ° formed by the fourth optical axis and the entrance surface 44a of the output optical member 44 on the third reference plane is defined by the third optical axis and the exit surface 43b of the second intermediate optical member 43. Angle less than 23.5 °.
  • the second intermediate optical member 43 By setting the angle between the third optical axis and the fourth optical axis to 11.5 °, which is the difference between the above 23.5 ° and 12 °, the second intermediate optical member 43 The angle of refraction of the optical path (optical fino, 14) at the connection surface between the optical path and the output optical member 44 is reduced.
  • the optical element 40 is formed by an angle formed between the optical axis of the input optical member 41 and the optical axis of the first intermediate optical member 42, the optical axis of the first intermediate optical member 42 and the optical axis for output of the second intermediate optical member. Both the angle between the optical axis of the member 43 and the angle between the optical axis of the second intermediate optical member 43 and the optical axis of the output optical member 44 are determined by the optical axis of the input optical member 41 and the output axis.
  • the angle between the optical member 44 and the optical axis is smaller than that of the optical member 44, the light image incident on the input surface 41a of the input optical member 41 can be output while satisfying the condition of total reflection in each optical member.
  • the light can be efficiently transmitted to the emission surface 44b of the optical member 44 for use.
  • the output surface 4 1 100% of the light incident from b on the incident surface 42a of the first intermediate optical member 42 propagates within the first intermediate optical member 42 while satisfying the condition of total reflection. Further, by setting the angle between the optical axis of the first intermediate optical member 42 and the optical axis of the second intermediate optical member output optical member 43 to 11.5 °, the first intermediate optical member 4 -
  • the light enters the entrance surface 43a of the second intermediate optical member 43 from the exit surface 42b of About 84% of the light propagates in the second intermediate optical member 43 satisfying the condition of total reflection. Furthermore, by setting the angle between the optical axis of the second intermediate optical member 43 and the optical axis of the output optical member 44 to 11.5 °, the emission surface 4 of the second intermediate optical member 43 is formed. Approximately 84% of the light incident on the entrance surface 44 a of the output optical member 44 from 3 b propagates within the output optical member 44 while satisfying the condition of total reflection. Therefore, the transmission efficiency can be improved as compared with the case where an optical element is configured by combining three optical members.
  • Table 8 shows the change in light transmission efficiency (product of the incident angle ratio at each connection) when various changes are made as shown in 7 to 33.
  • Table 8 shows that the input optical member was cut obliquely to the optical axis compared to the case where the exit surface was cut perpendicular to the optical axis (1 to 3 in Table 8) (Table 8). 4 to 7) show that the light transmission efficiency is significantly improved. In addition, in order to improve transmission efficiency, the input optical member should be inclined with respect to the optical axis of the exit surface.
  • the effect of (4 to 7 in Table 8) is that the output surface of the input optical member is vertical, and two intermediate optical members such as a first intermediate optical member and a second intermediate optical member are inserted (see Table 8). It can be seen that the effect is larger than that of 8-2).
  • the optical element 50 includes an input optical member 51, an intermediate optical member 52, and an output optical member 53.
  • the input optical member 51 is formed integrally by arranging a number of optical fibers 14 in parallel with each other.
  • the refractive index of the core 14a of each optical fiber 14 is 1.56, the refractive index of the clad 14b is 1.52, and the numerical aperture is 0.35.
  • the gap is filled with a light absorbing material 15.
  • the input optical member 51 has an incident surface 5 la that is obliquely cut at an angle of 30 ° with respect to the optical axis, and an output surface 51 b that is cut perpendicular to the optical axis.
  • the light image incident on the incident surface 51a can be reduced in one specific direction and output to the output surface 51b.
  • the angle (30 °) between the optical axis and the incident surface 5 la is such that the light incident on the incident surface 5 la from the air does not satisfy the condition for total reflection in the input optical member 51. ing.
  • the intermediate optical member 52 has a structure as shown in FIGS. 35 and 36.
  • FIG. 36 is an enlarged view of a portion 52 p in FIG. 35.
  • the intermediate optical member 52 has a diameter approximately equal to or smaller than the diameter of the optical fiber 14 constituting the input optical member 51, and has a plurality of transmission holes formed in parallel with each other. 5.
  • a metal film 52e that reflects light is formed on the inner wall of the 2d transmission hole by vapor deposition or plating, and a translucent substance with a refractive index of 1.56 is formed in the transmission hole.
  • f is filled to form a light-transmitting path It is.
  • FIG. 38 is an enlarged view of a portion 52q in FIG.
  • the first end face (hereinafter referred to as an incident face 52a) has an angle of 68.8 ° with respect to the axis of the light transmission path (hereinafter referred to as an optical axis), and the second end face (hereinafter referred to as an outgoing light axis).
  • the surface 52b) is formed parallel to the entrance surface 52a.
  • the output optical member 53 is formed integrally by arranging a number of optical fibers 14 in parallel with each other.
  • the refractive index of the core 14a of each optical fiber 14 is 1.82
  • the refractive index of the cladding 14b is 1.495
  • the numerical aperture is 1. ⁇ .
  • the gap between the optical fibers 14 is Is filled with a light absorbing material 15.
  • the output optical member 53 has an incident surface 53 a cut obliquely at an angle of 30 ° with respect to the optical axis and an output surface 53 b cut perpendicular to the optical axis.
  • the light image incident on the entrance surface 53a can be reduced in one specific direction and output to the exit surface 53b.
  • the exit surface 5 1 b of the input optical member 51 and the entrance surface 52 a of the intermediate optical member 52, and the exit surface 52 b of the intermediate optical member 52 and the entrance surface 53 of the output optical member 53. a are in contact with each other, and in particular, a straight line parallel to both the input surface 51 a and the output surface 51 b of the input optical member 51, and the input surface 53 a and the output surface of the output optical member 53.
  • the straight lines parallel to both 5 3 b are perpendicular to each other. Accordingly, the light image incident on the entrance surface 51 a of the input optical member 51 is reduced in the a-axis direction in FIG.
  • the light is reduced in the direction of the b-axis perpendicular to the a-axis, and is output from the output surface 53 b of the output optical member 53.
  • the optical axes of the input optical member 51, the intermediate optical member 52, and the output optical member 53 are parallel to the xy plane in FIG. 34, and the optical element 50 is cut along a plane parallel to the xy plane in FIG.
  • the resulting cross-sectional view is as shown in FIG.
  • the angle between the incident surface 52a of the intermediate optical member 52 and the optical axis is 68.8 °
  • the angle between the incident surface 53a of the output optical member 53 and the optical axis is 30 °.
  • the angle between the optical axis of the input optical member 51 and the optical axis of the intermediate optical member 52 is 21.2 °, and the angle between the optical axis of the intermediate optical member 52 and the optical axis of the output optical member 53. Is 38.8 °, both of which are smaller than 60 ° which is the angle between the optical axis of the input optical member 51 and the optical axis of the output optical member 53.
  • the angle (28.8 °) between the optical axis of the intermediate optical member 52 and the optical axis of the output optical member 53 is defined by the distance from the exit surface 52b of the intermediate optical member 52 to the entrance surface 53a of the output optical member 53. Approximately 50% of the light that has entered the optical fiber 14 constituting the output optical member 53 has an angle satisfying the condition of total reflection.
  • the propagation of the light incident on the input optical member 51 from the air inside the input optical member 51 is as described with reference to FIG. 5 in the description of the optical element 10.
  • h is set to 30 °.
  • the input optical member 51 allows the light incident on the entrance surface 5la. This has the effect of reducing the image by a factor of 0.50 (sin30 °) in the a-axis direction and outputting it to the output surface 5 lb.
  • FIG. 40 shows that the incident surface 52b of the intermediate optical member 52 is incident from the exit surface 51b of the input optical member 51 to the incident surface 52t. Finally, the reflected light is reflected by the 52 g portion of the metal film 52 e of the intermediate optical member 52 (the portion outside the bent optical path) and enters the output optical member 53. is there.
  • the refractive index of the core 14 & the clad 14 b of the optical fiber 14 constituting the input optical member 51 is n and n 12 , respectively, the refractive index of the translucent substance 52 f in the intermediate optical member 52 is n 21 , The refractive indices of the core 14a and the clad 14b of the optical fiber 14 constituting the output optical member 53 are rpn. Assume 2 .
  • the light propagating in the input optical member 51 satisfies the condition of total reflection at the core-cladding interface of the optical fiber 14 constituting the input optical member 51.
  • nil 1. 56
  • n 12 1. 52
  • the light incident on the intermediate optical member 52, nil, 11 21 is not changing the traveling direction from the both 1.56 are erased, the proceeds with the spread of 26 °.
  • FIG. 41 shows that the light that has entered the entrance surface 52a of the intermediate optical member 52 from the exit surface 51b of the input optical member 51 finally reaches the metal film 52e of the intermediate optical member 52 at 52h. It shows a case where the light is reflected by a portion (the portion inside the bent optical path) and enters the output intermediate optical member 16.
  • the output optical member 53 has an angle between the optical axis and the incident surface 53a of 30 °, and the exit surface 53b is perpendicular to the optical axis, so that the light image incident on the incident surface 53a is This has the effect of reducing the image by a factor of 0.50 (sin30 °) in the b-axis direction and outputting it to the launch surface 53b.
  • Optical element 50 Are the angle between the optical axis of the input optical member 51 and the optical axis of the intermediate optical member 52, and the angle between the optical axis of the intermediate optical member 52 and the optical axis of the output optical member 53.
  • the light image incident on the incident surface 51a of the input optical member 51 can be efficiently transmitted to the output surface 53b of the output optical member 53 while satisfying the condition of total reflection.
  • the angle formed by the optical axis of the input optical member 51 and the incident surface 51a, the angle formed by the optical axis of the intermediate optical member 52 and the incident surface 52a, the output optical member Various deformations can be considered for the angle between the optical axis 53 and the incident surface 53a.
  • Table 9 shows the relationship between the acceptance angle ratio and the reduction efficiency under various angle conditions.
  • 7 is the angle between the optical axis of the intermediate optical member 52 and the incident surface 52a
  • hi 2 is the angle between the optical axis of the output optical member 53 and the incident surface 53a
  • A is the output.
  • the light receiving angle ratio in the optical member 53 for use, and m is the reduction ratio.
  • the refractive indices of the core 14a and the cladding 14b of the optical fiber 14 constituting each optical member, and the refractive index of the translucent substance 52f are as described above.
  • FIG. 42 shows the configuration of an optical element 54 according to this modification.
  • the optical element 54 according to the present embodiment is structurally different from the optical element 50 according to the sixth modification in the following points. That is, in the input optical member 51 used in the optical element 50 according to the sixth modification, the gap between the optical fibers 14 is filled with the light absorbing material 15.
  • the input optical member 55 used for the optical element 54 includes a first member 56 in which the gap between the optical fibers 14 is not filled with the light absorbing material 15 and a light absorbing material in the gap between the optical fibers 14. This is a point composed of a second member 57 filled with 15.
  • the first member 56 is formed integrally by arranging a large number of optical fibers 14 in parallel with each other, and is formed of an optical member in which the gap between the optical fibers 14 is not filled with the light absorbing material 15. I have.
  • the entrance surface 56 a of the first member 56 has an angle of 30 ° with the optical axis so that incident light entering from the air does not satisfy the condition of total reflection, and the exit surface 56 b is It is perpendicular to the optical axis.
  • the second member 57 is composed of an optical member in which a number of optical fibers 14 are arranged in parallel with each other and integrally formed, and a gap between the optical fibers 18 is filled with a light absorbing material 20. .
  • the entrance surface 57a and the exit surface 57b of the second member 57 are perpendicular to the optical axis.
  • the entrance surface 57a of the second member 57 is in contact with the exit surface 56b of the first member, and the exit surface 57b of the second member 57 is incident on the intermediate optical member 52. It touches the surface 52a.
  • the optical axis of each of the first member 56 and the second member 57 is parallel to the xy plane in FIG. Therefore, when the optical element 54 is cut along a plane parallel to the xy plane in FIG. 42, the cross section is as shown in FIG.
  • the optical element according to the present modification will be described. Also in the optical element 54 according to the present modified example, the optical element 10 according to the above-described embodiment is used. Similarly, it is possible to efficiently transmit the light image incident from the entrance surface 56a of the first member 56 constituting the input optical member 55 to the exit surface of the output optical member 53, and Output pattern can be obtained. viii) Eighth modification
  • the optical element 60 includes an input optical member 61, a first intermediate optical member 62, a second intermediate optical member 63, and an output optical member 64. It is configured.
  • the input optical member 61 is integrally formed by arranging a number of optical fibers 14 in parallel with each other.
  • the refractive index of the core 14a of each optical fiber 14 is 1.56, the refractive index of the cladding 14b is 1.52, and the numerical aperture is 0.35.
  • the input optical member 61 has an incident surface 6 la that is obliquely cut at an angle of 10 ° with respect to the optical axis, and an output surface 61 b that is cut perpendicular to the optical axis.
  • the light image incident on the entrance surface 61a can be reduced in one specific direction and output to the exit surface 61b.
  • the angle (10.) between the optical axis and the incident surface 6 la is such that the light incident on the incident surface 61 a from the air is entirely within the optical fiber 14 constituting the input optical member 61. The angle does not satisfy the reflection conditions.
  • the first intermediate optical member 62 is equal to or smaller than the diameter of the optical fiber 14 constituting the input optical member 61.
  • a metal film 62e that reflects light by a vapor deposition method or a plating method is applied to the inner wall of the transmission hole of the cabinet plate 62d, which has a large diameter and a large number of transmission holes formed parallel to each other. Then, fill this transmission hole with a translucent substance 62 f having a refractive index of 1.56 to form a light transmission path. Things.
  • the light image incident on the surface 62a can be output to the output surface 62b.
  • the second intermediate optical member 63 also has the same configuration as the first intermediate optical member 62, but the incident surface 63a cut obliquely at an angle of 62.2 ° with respect to the optical axis.
  • the first intermediate optical member 62 is different from the first intermediate optical member 62 in having an exit surface 63b cut parallel to the entrance surface 63a.
  • the output optical member 64 is formed integrally by arranging a number of optical fibers 14 in parallel with each other.
  • the output optical member 64 has an incident surface 64 a cut obliquely at an angle of 10 ° with respect to the optical axis, and an output surface 64 a cut perpendicularly to the optical axis. b, so that the light image incident on the entrance surface 64 a can be reduced in one specific direction and output to the exit surface 64 b.
  • the input surface 6 4a of the output optical member 6 4 is in contact with the output optical member 6 4 .
  • a straight line parallel to both the input surface 6 la and the output surface 6 1 b of the input optical member 6 1, and the output optical unit Straight lines parallel to both the entrance surface 64a and the exit surface 64b of the material 64 are perpendicular to each other. Accordingly, the light image incident on the incident surface 61 a of the input optical member 61 is reduced in the a-axis direction in FIG.
  • the light image is reduced by the output optical member 64.
  • the light is reduced in the direction of the b-axis perpendicular to the a-axis, and output from the output surface 64 b of the output optical member 64.
  • the optical axis of the output optical member 64 is parallel to the xy plane
  • a cross section of the optical element 60 cut along a plane parallel to the xy plane in FIG. 44 is as shown in FIG.
  • the angle between the incident surface 6 2 a of the first intermediate optical member 62 and the optical axis is 83.5 °
  • the angle between the incident surface 63 a of the second intermediate optical member 63 and the optical axis is 83.5 °
  • the optical axis of the input optical member 61 and the first intermediate optical member The angle between the optical axis of 62 and the optical axis of 6.5 is 6.5 °, the angle between the optical axis of the first intermediate optical member 62 and the optical axis of the second intermediate optical member 63 is 21.3 °,
  • the angle formed by the optical axis of the intermediate optical member 6 3 and the optical axis of the output optical member 6 4 is 52.2 °, and in each case, the optical axis of the input optical member 6 1 and the output optical member 6
  • the angle between the optical axis of 4 and 80 is 80. Has become smaller than.
  • the angle (52.2 °) between the optical axis of the second intermediate optical member 63 and the optical axis of the output optical member 64 is equal to the emission surface 6 3 b of the second intermediate optical member 63.
  • a part of the light incident on the incident surface 64 a of the output optical member 64 has an angle satisfying the condition of total reflection in the optical fiber 14 constituting the output optical member 64.
  • the optical element 60 is formed by an angle between the optical axis of the input optical member 61 and the optical axis of the first intermediate optical member 62, the optical axis of the first intermediate optical member 62 and the second intermediate optical member. Both the angle formed by the optical axis of 3 and the angle formed by the optical axis of the second intermediate optical member 63 and the optical axis of the output optical member 64 are the optical axes of the input optical member 61. And the optical axis of the output optical member 64, the angle between the optical axis of the input optical member 61 and the optical axis of the output optical member 64 is 80 °.
  • the light image incident on the incident surface 61a of the input optical member 61 is converted into the input optical member 61, the first intermediate optical member 62, and the second intermediate optical member. 63. It is possible to efficiently transmit the light to the output surface 64b of the output optical member 64 while satisfying the total reflection condition in the output optical member 64.
  • the angle of the incident surface 61 a and the optical axis of the input optical member 61, the angle of the first intermediate optical member 6 second optical axis and the incident surface 6 2 a, the second Various deformations can be considered with respect to the angle formed between the optical axis of the intermediate optical member 63 and the incident surface 63a, the angle formed between the optical axis of the output optical member 64 and the incident surface 64a, and the like. Further, in the optical element 50, 54, 60 or the like, the intermediate optical member 5
  • the first intermediate optical member 62 or the second intermediate optical member 63 was manufactured using a cabillary plate, but this method uses an optical mask to expose a photosensitive glass substrate, Crystallized, etched, and processed into a capillary plate shape may be used.
  • the intermediate optical member 52, the first intermediate optical member 62 or the second intermediate optical member 63 includes a light-transmitting substance in the transmission hole. Although it was filled, it may be hollow without filling with a translucent substance.
  • the intermediate optical member 52, the first intermediate optical member 62 or the second intermediate optical member 63 is formed as shown in FIGS. 46 and 47.
  • the intermediate optical member 66 may be used.
  • FIG. 47 is an enlarged view of a portion 66 p in FIG.
  • the intermediate optical member 66 is formed of a translucent material such as glass or plastic, and has a diameter approximately equal to or smaller than the diameter of the optical fiber 14 constituting the input optical member 51 or the like.
  • a metal film 66e coated on the outer periphery of the translucent fiber 66f by a vapor deposition method or a plating method is arranged in parallel with each other, and the light incident surface 66a and the light emitting surface 66b are lighted.
  • This is an intermediate optical member 66 formed by cutting obliquely with respect to the axis.
  • FIG. 49 is an enlarged view of a portion 66 q in FIG. 4-8.
  • the incident surface 66a is 68;
  • the light exit surface 66b is formed parallel to the light incident surface 66a.
  • the intermediate optical member 52, the first intermediate optical member 62, or the second intermediate optical member 63 is shown in FIGS. 50 and 51.
  • Such an intermediate optical member 67 may be used.
  • a metal thin plate 67 e is provided with a plurality of through holes parallel to each other by punching or etching, and the through holes are filled with a translucent substance 67 f such as an adhesive or oil. It is.
  • the diameter of the through hole is equal to or smaller than the diameter of the optical fiber 14 constituting the input optical member 51, and the intermediate optical member 67 is placed on the xy plane in FIG. 67.
  • FIGS. 52 and 53 When cut along a parallel plane, the shape is as shown in FIGS. 52 and 53.
  • FIG. 53 is an enlarged view of a portion 67q in FIG.
  • the entrance surface 67a forms an angle of 68.8 ° with the optical axis
  • the exit surface 67b is formed in parallel with the entrance surface 67a.
  • the optical element according to the present modified example is an optical element that transmits an input image in a similar manner.
  • the configuration of the optical element according to the present modification will be described.
  • the optical element 70 according to this modification mainly includes an input optical member 71, an intermediate optical member 72, an output optical member 73, and a display optical member 74. It is configured with.
  • the input optical member 71, the intermediate optical member 72, the output optical member 73, and the display optical member 74 are each integrally formed by arranging a large number of optical fibers 14 in parallel with each other.
  • the refractive index of the core 1-4a, the refractive index of the cladding 14b and the numerical aperture of the cladding 14b of the optical fiber 14 constituting each optical member are as shown in Table 10. is there.
  • the gap between the optical fibers 14 constituting each optical member is filled with a light absorbing material 15.
  • the input optical member 71 has an incident surface 71a cut perpendicular to the optical axis, and an emission surface 71b cut obliquely at an angle of 10 ° to the optical axis.
  • the light image incident on the incident surface 71a can be enlarged in one specific direction and output to the exit surface 71b.
  • the intermediate optical member 72 has an entrance surface 72 a cut obliquely at an angle of 55 ° with respect to the optical axis, and an exit surface 72 b cut parallel to the entrance surface 72 a. That is, the light image incident on the entrance surface 72a can be output to the exit surface 72b.
  • the output optical member 73 has an incident surface 73a cut perpendicular to the optical axis and an output surface 73b obliquely cut at an angle of 10 ° to the optical axis.
  • the light image incident on the incident surface 73a can be enlarged in one specific direction and output to the exit surface 73b.
  • the display optical member 74 has an incident surface 74a cut obliquely at an angle of 55 ° with respect to the optical axis and an output surface 74b cut parallel to the incident surface 74a.
  • the light image incident on the entrance surface 74a can be output to the exit surface 74a.
  • the straight lines parallel to both the output surface 73 b are perpendicular to each other.
  • the light image incident on the incident surface 71 a of the input optical member 71 is enlarged in the b-axis direction in FIG. 54 by the input optical member 71, and the light image is output by the output optical member 73. After being enlarged in the a-axis direction perpendicular to the b-axis, the light is output from the emission surface 74 b of the display optical member 74.
  • FIG. 55 shows a cross-sectional view taken along a plane parallel to FIG.
  • the angle between the incident surface 71a of the input optical member 71 and the optical axis is 10 °
  • the angle between the incident surface 72a of the intermediate optical member 72 and the optical axis is 55 °.
  • the angle between the optical axis of the input optical member 7 1 and the optical axis of the intermediate optical member 7 2 is 45 °
  • the optical axis of the intermediate optical member 7 2 and the optical axis of the output optical member 7 3 Is 35 °, and both are smaller than 80 ° which is an angle formed between the optical axis of the input optical member 71 and the optical axis of the output optical member 73.
  • the angle (45 °) between the optical axis of the input optical member 71 and the optical axis of the intermediate optical member 72 is defined by the distance between the exit surface 71 b of the input optical member 71 and the intermediate optical member 72.
  • About 50% of the light incident on the incident surface 7 2a has an angle satisfying the total reflection condition in the optical fiber 14 constituting the intermediate optical member 72, and the light of the intermediate optical member 72 is
  • the angle (35 °) between the axis and the optical axis of the output optical member 73 was such that the light entered from the exit surface 72 b of the intermediate optical member 72 to the incident surface 73 a of the output optical member 73.
  • About 36% of the light has an angle satisfying the condition of total reflection in the output optical member 73.
  • the optical element 70 is placed on the entrance surface 71 a of the input optical member 71.
  • the emitted light image is efficiently enlarged and transmitted, and an enlarged image with high resolution can be obtained from the emission surface 73a of the display optical member 73.
  • the optical element 70 includes the display optical member 74 so that the light output in the oblique direction from the output surface 73 b of the output optical member 73 is emitted perpendicularly to the observation surface, A brighter and clearer enlarged image can be obtained.
  • the angle formed by the optical axis of the input optical member 71 and the output surface 7 lb does not need to be limited to 10 ° and can be set freely so as to satisfy a desired magnification. can do.
  • the optical element 50 about 50% of the light incident on the entrance surface 72a of the intermediate optical member 72 from the exit surface 71 of the input optical member 71 is transmitted while satisfying the condition of total reflection. Also, about 36% of the light incident from the exit surface 7 2 b of the intermediate optical member 72 to the entrance surface 73 a of the output optical member 73 satisfies the condition for total reflection.
  • the angle between the optical axis of the intermediate optical member 72 and the entrance surface 72 a was set to 55 ° so that this angle could be changed from the exit surface 71 b of the input optical member 71 to the middle.
  • the output optical surface 72 b of the intermediate optical member 72 is used for output optics.
  • the angle is such that at least a part of the light incident on the incident surface 73a of the member 73 can propagate while satisfying the condition of total reflection. If it is not limited to 5 5 °.
  • Table 11 shows the ratio D of light propagating while satisfying the total reflection condition up to the emission surface 73 b of the optical member 73 (the product of the light receiving angle ratios of the optical members).
  • the angle between the optical axis of the intermediate optical member 72 and the incident surface 72a! Can be efficiently transmitted to the output surface 73b of the output optical member 73 even if the light image is changed over a wide range of 35 to 70 °. Can be.
  • the imaging unit 100 mainly includes the optical element 10 and the CCD 101
  • the imaging unit 100 mainly includes the optical elements according to the first to eighth modifications and the CCD 101. Can be configured.
  • the light shielding material 102 is provided on the entire side surface of each optical element.
  • the light shielding material 102 may not be provided on the entire surface.
  • the input optical In order to make light incident on the incident surface of the member, it is preferable to form a portion on the side surface where the light shielding material 102 is not provided.
  • the imaging device 200 described with reference to FIG. 9 is configured by arranging four sets of the imaging unit 100 described with reference to FIG. 8, the imaging unit 100 is not limited to the four sets, and the imaging pattern is not limited to four sets. Depending on the size of Various changes can be made.
  • an imaging device 210 configured by combining eight sets of imaging units 100 is also conceivable.
  • an imaging device 220 in which 12 sets of imaging units 100 are combined is also conceivable.
  • the imaging unit 100 using the optical element 100 described with reference to FIG. 2 is provided, but this is the optical element according to the above-described various modifications. May be used.
  • an imaging apparatus 230 shown in FIG. Realize Similarly, by arranging eight sets of imaging units 110, the figure
  • An imaging device 240 as shown in FIG. 60 is realized, and an imaging device 250 as shown in FIG. 60 is realized by arranging nine sets of imaging units 110.
  • the imaging devices are arranged without any gap so that the entrance surfaces 31a of the input optical members 31 of each imaging unit 110 do not overlap with each other.
  • the imaging units 110 may be arranged such that the edges of the incident surface 31a of the input optical member 31 overlap each other.
  • the radiation image sensor 300 0 (described with reference to FIG. 10) In order to make the light generated when the radiation enters the phosphor 301 efficiently enter the input optical member 11, the incident surface 11 a of the input optical member 11 is roughly polished. However, instead of coarsely polishing the incident surface 11a of the input optical member 11, a flat plate optical member 311 as shown below may be provided. The details will be described below.
  • the radiation image sensor 310 includes the imaging unit 100 (that is, the input optical member 11, the intermediate optical member 12, the output optical member 13, and the CCD 10). 1) and a light shielding material 102, and a flat plate optical member 3 1 provided on the incident surface 11 a of the input optical member 11 constituting the imaging unit 100. 1, and a phosphor 310, which is provided on the incident surface 311a of the flat plate optical member 311 and emits light in response to the incidence of radiation.
  • the incident surface 1 la of the input optical member 11 forms an angle of 10 ° with the optical axis
  • the output optical member 13 The incident surface 13a forms an angle of 10 ° with the optical axis.
  • the plate optical member 311 is integrally formed by arranging a number of optical fibers 14 in parallel with each other.
  • the flat optical member 3 1 1 also has an entrance surface 3 1 1 a obliquely cut at an angle of 50 ° with respect to the optical axis, and an exit surface 3 1 1 cut parallel to the entrance surface 3 1 a. 1b, and the entire surface of the flat optical member 311 except the entrance surface 3111a and the exit surface 3111b is covered with a light shielding material 102.
  • a phosphor 310 that emits light in response to the radiation is formed on the incident surface 311a of the flat optical member 311.
  • the flat plate optical member 311 and the input optical member 1 1 is the angle (40 °) between the optical axis of the plate optical member 3 1 1 and the optical axis of the input optical member 11 1, and the optical axis of the plate optical member 3 1 1 and the exit surface 3 1 1 b And the angle (10 °) between the optical axis of the input optical member 11 and the incident surface 1 la (10 °).
  • Fig. 64 shows the light emission when the light emitted by the phosphor 301 in response to the incidence of radiation enters the input surface 11a of the input optical member 11 without passing through the flat optical member 311.
  • the incident state is shown in FIG. 65.
  • FIG. 65 shows the incident state of light when entering the entrance surface 311a of the flat plate optical member 311.
  • L a shown in FIGS. 64 and 65 is the same as that shown in FIGS. 12 and 13. 7 is a circle showing the traveling direction and intensity of the light emitted in step (a).
  • L The length of the chord formed by the straight line drawn in a particular direction from the circle and the circle indicates the intensity of light traveling in that particular direction.
  • the shaded area L t is L.
  • the light propagates in the optical fiber 14 constituting the optical member while satisfying the condition of total reflection.
  • the radiation image sensor 310 is not configured The amount of light transmitted through each optical member increases, and a very clear captured image can be obtained by the CCD 101.
  • the entrance surface 311a of the flat optical member 311 has a center line average roughness lower than that of the flat optical member 311. Polishing may be performed so as to be in the range of 0.80 zm.
  • the incident surface 3 1 1a of 1 1 is roughly polished, the light generated when the radiation is incident on the phosphor 3 0 1 is reflected on the incident surface 3 1 1 a of the flat optical member 3 1 1.
  • the light is scattered, the incident direction of the light entering the flat optical member 311 is expanded, and the proportion of light traveling in each optical member that satisfies the condition of total reflection increases.
  • the incident surface 11a of the input optical member 11 constituting the radiation image sensor 300 or the incident surface 311a of the flat optical member 311 constituting the radiation image sensor 310 is described.
  • The was polished so that the center line average roughness was in the range of 0.20 to 0.80 m, but this may be performed as follows.
  • the incident surface 11a of the input optical member 11 may be cut in a stepwise manner in the inclination direction.
  • a part having an angle of 35 ° with respect to the optical axis is formed while maintaining the angle of 20 ° with the optical axis as a whole of the incident surface.
  • the angle between the normal line of the portion and the fiber axis is reduced, and each optical element is compared with the input optical member 11 shown in FIG. 68, which has a uniform angle of 20 ° with the optical axis. It is possible to increase the proportion of light that propagates within the member while satisfying the condition of total reflection.
  • the incident surface 11a of the input optical member 11 may be processed in a stepwise manner so as to be partially perpendicular to the optical axis. Even with such processing, compared to the input optical member 11 shown in FIG. 68, which has a uniform angle of 20 ° with the optical axis, the total internal reflection condition in each optical member is reduced. It is possible to increase the proportion of light that satisfies and propagates. Industrial applicability
  • the optical element of the present invention can be used for, for example, a radiation image sensor and a fingerprint verification device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

明 細
光学素子並びにこれを用いた撮像ユニット、 撮像装置、 放射線イメージセ ンサ及び指紋照合装置 技術分野
本発明は、 光学素子並びにこれを用いた撮像ユニット、 撮像装置、 放射 線イメージセンサ及び指紋照合装置に関するものである。 背景技術
光イメージを伝送する光学部材として、 複数の光ファイバを互いに平行 に配置して一体成形した光学部材が知られている。 また、 光軸に対して斜 めにカツ卜された端面と垂直にカツトされた端面を有する 2つの上記光学 部材を用いて、 光イメージを任意の倍率に縮小または拡大して伝送する光 学素子が、 例えば米国特許 3 4 0 2 0 0 0号公報に開示されている。 発明の開示
しかし、 上記光学素子は、 光イメージの伝送効率が必ずしも十分ではな いという問題点があった。 そこで、 本発明は、 光イメージの伝送効率が良 い光学素子を提供することを課題とする。
上記課題を解決するために、 本発明の光学素子は、 例えば図 1の分解図 に示すように、 複数の光ファイバを互いに平行に配置して一体成形され、 光軸 1 1とそれぞれひい 5 1の角度で交差する第 1の入射面 1 a、 第 1の 出射面 1 bを有する第 1の光学部材 1と、 複数の透光路が互いに平行 配 列されてなり、 透光路の軸 1 2とそれぞれァい ァ 2の角度で交差する集 1 の端面 2 a、 第 2の端面 2 bを有する中間光学部材 2と、 複数の光フアイ バを互いに平行に配置して一体成形され、 光軸 13とそれぞれひ 2、 ?2の 角度で交差する第 2の入射面 3 a、 第 2の出射面 3 bを有する第 2の光学 部材 3とを備え、 第 1の出射面 1 bと第 1端面 2 a、 及び、 第 2の端面 2 bと第 2の入射面 3 aはそれぞれ接しており、 第 1の光学部材 1の光軸 1
1と中間光学部材 2の透光路の軸 12とのなす角 0iと、 中間光学部材 2 の透光路の軸 12と第 2の光学部材 3の光軸 13とのなす角 02と、 第 1 の光学部材 1の光軸 1 1と第 2の光学部材 3の光軸 13とのなす角 03と の間には、 Ss ^^ かつ、 03>6>2の関係が成立していることを特徴と している。
上記構成の様に、 03>0い かつ、 03>02とすることにより、 伝送路 の屈曲による光の伝送損失を減少させることが可能となる。 その結果、 第 1の入射面 1 aに入射した光イメージを、 効率良く第 2の出射面 3 bに伝 送することができる。
また、 本発明の光学素子は、 複数の光ファイバを互いに平行に配置して 一体成形され、 光軸とそれぞれひい ?iの角度で交差する第 1の入射面、 第 1の出射面を有する第 1の光学部材と、 第 1から第 n (nは 2以上の整 数) までの n個の中間光学部材と、 複数の光ファイバを互いに平行に配置 して一体成形され、 光軸とそれぞれひ 2、 32の角度で交差する第 2の入射 面、 第 2の出射面を有する第 2の光学部材とを備え、 第 i (1は1〜11の 整数) の中間光学部材は、 複数の透光路が互いに平行に配列されてなり、 透光路の軸とそれぞれ y2i—い 72iの角度で交差する第 2 i- 1の端面、 第 2 iの端面を有し、 第 1の出射面と第 1の端面、 第 2 i (iは l〜n— 1の整数) の端面と 2 i + lの端面、 2 nの端面と第 2の入射面はそれぞ れ接しており、 第 1の光学部材の光軸と第 1の中間光学部材の透光路の 由 とのなす角 0,と、 第 i (丄は1〜11— 1の整数) の中間光学部材の 光 路の軸と第 i + 1の中間光学部材が有する透光路の軸とのなす角 + 1と、 第 nの中間光学部材が有する透光路の軸と第 2の光学部材の光軸とのなす 角 6» n + 1とは全て、 第 1の光学部材の光軸と第 2の光学部材の光軸とのな す角 0 n+ 2より小さいことを特徴としても良い。
上記構成とすることにより、 1枚の中間光学部材を用いる場合と比較し て、 伝送路の屈曲による光の伝送損失をさらに減少させることが可能とな る。 その結果、 第 1の入射面に入射した光イメージを、 より効率良く第 2 の出射面に伝送することができる。 図面の簡単な説明
図 1は、 光学素子の分解図である。
図 2は、 光学素子の斜視図である。
図 3は、 光学素子の模式断面図である。
図 4は、 光学素子の使用説明図である。
図 5は、 光学素子内の光の伝搬を示す説明図である。
図 6は、 光学素子内の光の伝搬を示す説明図である。
図 7は、 光学素子内の光の伝搬を示す説明図である。
図 8は、 撮像ュニットの斜視図である。
図 9は、 撮像装置の斜視図である。
図 1 0は、 放射線イメージセンサの斜視図である。
図 1 1は、 放射線イメージセンサの模式断面図である。
図 1 2は、 放射線イメージセンサへの放射線の入射を示す説明図である。 図 1 3は、 放射線イメージセンサへの放射線の入射を示す説明図である。 図 1 4は、 指紋照合装置の構成図である。
図 1 5は、 光学素子の斜視図である。 一 図 1 6は、 光学素子の模式断面図である。 図 1 7は、 光学素子の斜視図である。
図 1 8は、 光学素子の模式断面図である。
図 1 9は、 光学素子の斜視図である。
図 2 0は、 光学素子の模式断面図である。
図 2 1は、 光学素子内の光の伝搬を示す説明図である。
図 2 2は、 光学素子内の光の伝搬を示す説明図である。
図 2 3は、 光学素子の斜視図である。
図 2 4は、 光学素子の模式断面図である。
図 2 5は、 光学素子の斜視図である。
図 2 6は、 光学素子の模式断面図である。
図 2 7は、 光学素子の模式断面図である。
図 2 8は、 光学素子の模式断面図である。
図 2 9は、 光学素子の模式断面図である。
図 3 0は、 光学素子の模式断面図である。
図 3 1は、 光学素子の模式断面図である。
図 3 2は、 光学素子の模式断面図である。
図 3 3は、 光学素子の模式断面図である。
図 3 4は、 光学素子の斜視図である。
図 3 5は、 中間光学部材の斜視図である。
図 3 6は、 中間光学部材の一部拡大斜視図である。
図 3 7は、 中間光学部材の模式断面図である。
図 3 8は、 中間光学部材の一部拡大模式断面図である。
図 3 9は、 光学素子の模式断面図である。
図 4 0は、 光学素子内の光の伝搬を示す説明図である。
図 4 1は、 光学素子内の光の伝搬を示す説明図である。 -— 図 4 2は、 光学素子の斜視図である。 図 4 3は、 光学素子の模式断面図である。
図 4 4は、 光学素子の斜視図である。
図 4 5は、 光学素子の模式断面図である。
図 4 6は、 中間光学部材の斜視図である。
図 4 7は、 中間光学部材の一部拡大斜視図である。
図 4 8は、 中間光学部材の模式断面図である。
図 4 9は、 中間光学部材の一部拡大模式断面図である。
図 5 0は、 中間光学部材の斜視図である。
図 5 1は、 中間光学部材の一部拡大斜視図である。
図 5 2は、 中間光学部材の模式断面図である。
図 5 3は、 中間光学部材の一部拡大模式断面図である。
図 5 4は、 光学素子の斜視図である。
図 5 5は、 光学素子の模式断面図である。
図 5 6は、 撮像装置の斜視図である。
図 5 7は、 撮像装置の斜視図である。
図 5 8は、 撮像装置の斜視図である。
図 5 9は、 撮像装置の斜視図である。
図 6 0は、 撮像装置の斜視図である。
図 6 1は、 撮像装置の斜視図である。
図 6 2は、 放射線イメージセンサの斜視図である。
図 6 3は、 放射線イメージセンサの模式断面図である。
図 6 4は、 放射線イメージセンサの模式断面図である。
図 6 5は、 放射線イメージセンサの模式断面図である。
図 6 6は、 放射線イメージセンサの模式断面図である。
図 6 7は、 放射線イメージセンサの模式断面図である。 -— 図 6 8は、 放射線イメージセンサの模式断面図である。 図 6 9は、 放射線イメージセンサの模式断面図である < 発明を実施するための最良の形態
( 1 ) 本発明の実施形態に係る光学素子
本発明の実施形態に係る光学素子について説明する。 本実施形態に係る 光学素子 1 0は、 図 2に示すように、 入力用光学部材 1 1、 中間光学部材 1 2及び出力用光学部材 1 3から構成されている。
入力用光学部材 1 1、 中間光学部材 1 2及び出力用光学部材 1 3はそれ それ、 多数の光ファイバ 1 4を互いに平行に配置して一体形成されている。 各光学部材を構成する光フアイ ノ ' 1 4のコア 1 4 aの屈折率、 クラッ ド 1 4 bの屈折率及び開口数はそれぞれ表 1に示すとおりである。
表 1
Figure imgf000008_0001
また、 各光学部材を構成する各光ファイバ 1 4の間隙には、 光吸収材 1 5が充填してある。
入力用光学部材 1 1は、 光軸 (光学部材を構成する光ファイバの光軸) に対して 3 1 ° の角度をもって斜めにカットされた入射面 1 1 aと、 光軸 に対して垂直にカットされた出射面 1 l bを有しており、 入射面 1 l aに 入射した光イメージを、 特定の一方向に縮小して出射面 1 l bに出力する ことができるようなつている。 また、 光軸と入射面 1 1 aのなす角 ( 3 1 ° ) は、 空気中から入射面 1 l aに入射した光が、 入力用光学部材 1 1 を構成する光ファイバ 1 4内で、 全反射条件を満たさない角度となってい る。
中間光学部材 1 2は、 光軸に対して 6 6 ° の角度をもって斜めに力、乂-卜 された入射面 1 2 aと、 入射面 1 2 aと平行にカツトされた出射面 1 2 b を有しており、 入射面 1 2 aに入射した光イメージを、 出射面 1 2 bに出 力することができるようなつている。
出力用光学部材 1 3は、 光軸に対して、 3 1 ° の角度をもって斜めに カットされた入射面 1 3 aと、 光軸に対して垂直にカットされた出射面 1
3 bを有しており、 入射面 1 3 aに入射した光イメージを、 特定の一方向 に縮小して出射面 1 3 bに出力することができるようなつている。
入力用光学部材 1 1の出射面 1 1 bと中間光学部材 1 2の入射面 1 2 a、 及び、 中間光学部材 1 2の出射面 1 2 bと出力用光学部材 1 3の入射面 1 3 aは、 それぞれ接しており、 特に、 入力用光学部材 1 1の入射面 1 l a と出射面 1 1 bの双方に平行な直線と、 出力用光学部材 1 3の入射面 1 3 aと出射面 1 3 bの双方に平行な直線が互いに垂直となっている。 従って、 入力用光学部材 1 1の入射面 1 1 aに入射した光イメージは、 入力用光学 部材 1 1によって図 2の a軸方向に縮小され、 また、 出力用光学部材 1 3 によって、 a軸と垂直な b軸方向に縮小されて、 出力用光学部材 1 3の出 射面 1 3 bから出力される。
入力用光学部材 1 1、 中間光学部材 1 2、 出力用光学部材 1 3の光軸は、 図 2の x y平面に平行となっており、 光学素子 1 0を図 2中の x y平面に 平行な平面で切断した断面図は、 図 3に示すようになつている。 尚、 図 3 は、 各光学部材の光軸の関係を表す模式断面図であり、 各光学部材は、 実 際には数千の光ファイバの束となっている。 ここで、 中間光学部材 1 2の 入射面 1 2 aと光軸のなす角は 6 6 ° であり、 出力用光学部材 1 3の入射 面 1 3 aと光軸のなす角は 3 1 ° であることから、 入力用光学部材 1 1の 光軸と中間光学部材 1 2の光軸とのなす角は 2 4 ° 、 中間光学部材 1 2の 光軸と出力用光学部材 1 3の光軸とのなす角は 3 5 ° となり、 双方とも 入力用光学部材 1 1の光軸と出力用光学部材 1 3の光軸とのなす角であ^る 5 9 ° よりも小さくなつている。
さらに、 入力用光学部材 1 1の光軸と中間光学部材 1 2の光軸とのなす 角 (2 4 ° ) は、 入力用光学部材 1 1の出射面から中間光学部材 1 2の入 射面 1 2 aに入射した光のほぼ 1 0 0 %が、 中間光学部材 1 2を構成する 光ファイバ 1 4内で全反射条件を満たす角度となっており、 中間光学部材 1 2の光軸と出力用光学部材 1 3の光軸とのなす角 (3 5 ° ) は、 中間光 学部材 1 2の出射面 1 2 bから出力用光学部材 1 3の入射面 1 3 aに入射 した光の約 5 0 %が、 出力用光学部材 1 3を構成する光ファイバ 1 4内で 全反射条件を満たす角度となっている。
例えば指紋画像を縮小して伝送するために光学素子 1 0を用いるときは、 図 4に示すようにすればよい。 すなわち、 指 4を入力用光学部材 1 1の入 射面 1 1 aに接触させ、 指の上方から L E D 5等を用いて光を投射する。 入力用光学部材 1 1の光軸と入射面 1 l aのなす角は、 空気中からの入射 光が、 入力用光学部材 1 1を構成する光ファイバ 1 4内で全反射条件を満 たさない様に 3 1 ° の角度となっている。 よって、 空気中から入力用光学 部材 1 1内に入射した光は、 入力用光学部材 1 1内で減衰、 消滅するのに 対して、 指 4の接触部 (指紋の凸部) を通って入力用光学部材 1 1に入射 した光は、 光学素子 1 0内を伝搬することになる。 従って、 出力用光学部 材 1 3の出射面 1 3 bまで指紋画像が伝送され、 かかる指紋画像を撮像素 子を用いて撮像することにより、 縮小された指紋画像を得ることができる。 次に、 本実施形態に係る光学素子の作用について説明する。 まず、 図 5 に示すように、 空気中から入力用光学部材 1 1の入射面 1 l aに入射した 光が、 入力用光学部材 1 1を構成する光ファイバ 1 4のコア—クラッ ド界 面で屈折、 反射しながら伝搬する場合について考える。 ここで、 空気の屈 折率を!!。、 入力用光学部材 1 1を構成する光ファイバ 1 4のコア 1 4 ar、 クラヅド 1 4 bの屈折率をそれそれ n i l、 n 1 2とする。 また、 入力用 ¾学 部材 1 1の光軸と入射面 1 1 aのなす角をひ 空気中から入力用光学部 材 1 1の入射面 1 1 aに入射する光の入射角を^ 屈折角を £ 入力用 光学部材 1 1のコア 14 aからクラッド 14 bへ入射する光の入射角を £ P 屈折角を とする。
と £ iの関係は、 屈折の法則より、
n0s in^^n^s ίηξ l (1)
で表される。 従って、 空気中の全方位 (0°
Figure imgf000011_0001
0° ) から入射し た光は、
0≤ s i n £ i≤n0/n 1 ( 2 )
を満たす iの範囲で入力用光学部材 1 1の入射面 1 l aから入射する。 一方、 ひ p ξ 1 S iの関係は、 図 5より、
ひ (90。 + ) + (90。 — £ = 180° (3) となる。
従って、 式 (3) を用いて、 式 (2) を満たす全ての iにおいて、 コ ァ—クラッド界面における全反射条件
s ine 12/n 11 (
を満たさないようにひ iを決定すれば、 空気中から入力用光学部材 1 1に 入射した光は、 入力用光学部材 1 1内で減衰、 消滅し、 伝搬されないこと になる。
これに対して、 空気より屈折率の高い物質である、 指などの被検体の入 射面 1 1 aへの接触部から入力用光学部材 11に入射した光の一部は、 全 反射条件を満たすことになり、 入力用光学部材 1 1内を伝搬することにな る。
本実施形態にかかる光学素子 10においては、 1 ^= 1. 56、 n12 = 1. 52であるので、 を 37. 1° 以下にすれば、 空気中から入ガ用 光学部材 1 1の入射面 1 l aに入射した光を、 入力用光学部材 1 1内で 減衰、 消滅させることができる (空気の屈折率 n。= l . 0 0としてい る) 。 ここで、 本実施形態にかかる光学素子 1 0においては、 縮小効率、 及び中間光学部材 1 2から出力用光学部材 1 3への受光角割合 (詳細は後 述) を考慮して、 ひ iを 3 1 ° としている。
また、 光軸と入射面 1 1 aのなす角ひ iを 3 1 ° 、 出射面 1 1 bを光軸 に対して垂直とすることにより、 入力用光学部材 1 1は、 入射面 1 l aに 入射した光イメージを、 a軸方向に 0. 5 2 (s i n 3 1 ° ) 倍に縮小し て出射面 1 1 bに出力する作用がある。
次に、 図 6に示すように、 入力用光学部材 1 1の出射面 1 l bから中間 光学部材 1 2の入射面 1 2 aに入射した光が、 中間光学部材 1 2を構成す る光ファイバ 14のコア—クラッ ド界面で反射、 屈折しながら伝搬する場 合を考える。 ここで、 中間光学部材 1 2を構成する光ファイバ 1 4のコア 1 4 a、 クラッド 14 bの屈折率をそれぞれ n21、 n22とする。 また、 中 間光学部材 1 2の光軸と入射面 1 2 aのなす角をァい 入力用光学部材 1 1の出射面 1 l bから中間光学部材 1 2の入射面 1 2 bに入射する光の入 射角を 2、 屈折角を 2、 中間光学部材 1 2のコア 1 4 aからクラッド 1 4 bへ入射する光の入射角を £2、 屈折角を 52とする。 ここで、 入力用光 学部材 1 1の光軸と出射面 1 1 bのなす角/? iは直角となっている。
入力用光学部材 1 1の全反射条件より、 ^2は、
s i n (9 0。 一 ^2) ]!^/!! (5)
を満たす範囲となる。 また、 S22の関係は、 屈折の法則より、
Figure imgf000012_0001
を満たす。
一方、 ァぃ 2、 ε 2の関係は、 図 6より、
+ (9 0° — ) + (9 0。 一 £2) 二 1 80。 (7) -— となる。 従って、 式 (7) を用いて、 式 (5) 及び式 (6) の双方を満たす £2 のうち少なくとも一部が、 コア—クラッド界面における全反射条件
s m ε 2>n22/nn 1 (8)
を満たすようにァ iを決定すれば、 入力用光学部材 1 1の出射面 1 l bか ら中間光学部材 12の入射面 12 aに入射した光の少なくとも一部が、 中 間光学部材 12内を、 全反射条件を満たして伝搬することになる。
本実施形態にかかる光学素子 10においては、 11^= 1. 56、 n12 = 1. 52、 n21= l . 82、 n22 = 1. 495であるので、 ァ 1を66° とすることによって、 入力用光学部材 1 1の出射面 1 1 bから中間光学部 材 12の入射面 12 aに入射した光のほぼ 100%が、 中間光学部材 12 内を全反射条件を満たして伝送することになる。
また、 中間光学部材 12の入射面 12 aと出射面 12 bは平行にカツト されているので、 中間光学部材 12の入射面 12 aに入射した光イメージ は、 拡大または縮小されることなく、 中間光学部材 12の出射面 12 bか ら出力されることになる。
続いて、 図 7に示すように、 中間光学部材 12の出射面 12bから出力 用光学部材 13の入射面 13 aに入射した光が、 出力用光学部材 13を構 成する光ファイバ 14のコア—クラッド界面で反射、 屈折しながら伝搬す る場合を考える。 ここで、 出力用光学部材 13を構成する光ファイバ 14 のコア 14a、 クラヅ ド 14 bの屈折率をそれぞれ n31、 n32とする。 ま た、 出力用光学部材 13の光軸と入射面 13 aのなす角をひ 2、 中間光学 部材 12の出射面 12bから出力用光学部材 13の入射面 13 aに入射す る光の入射角を^ 3、 屈折角を 3、 出力用光学部材 13のコア 14 aから クラヅ ド 14bへ入射する光の入射角を £3、 屈折角を d3とする。 ここで、 中間光学部材 12の光軸と出射面 12 bのなす角ァ 2は、 7 iと等しくなつ ている。 中間光学部材 12の全反射条件より、 3
s i η (ァ 23) >η222丄 (9)
を満たす範囲となる。 また、 屈折の法則により、 3と £3の関係は、 n , s in^Q = n31s in^a 、10)
を満たす。
一方、 ひ 23、 £ 3の関係は、 図 7より、
2+ (90° — ) + (90° — £3) 二 180° ( 1 1) となる。
従って、 式 (1 1) の条件の下に、 式 (9) 及び式 ( 10) の双方を満 たす £3のうち少なくとも一部が、 コア—クラッド界面の全反射条件 s i n £ 3 > n 32/ n - 1 丄 2)
を満たせば、 中間光学部材 12の出射面 12 bから出力用光学部材 13の 入射面 13 aに入射した光の少なくとも一部が、 出力用光学部材 13内を、 全反射条件を満たして伝搬することになる。
本実施形態にかかる光学素子 1◦においては、 n21= l. 82、 n22 =
1. 495、 n31= l . 82、 n32= l. 495あり、 a軸方向の縮小率 と b軸方向の縮小率を合わせる (相似縮小) ために、 《2は 3 1° となつ ている。 よって、 本実施形態にかかる光学素子 10においては、 中間光学 部材 12の出射面 12 bから、 出力用光学部材 13の入射面 13 aに入射 した光のうち、 受光角割合 (全反射条件を満たす入射角範囲/全入射角 X 100) で約 50%の光が、 出力用光学部材 13内を、 全反射条件を満た して伝搬することになる。
また、 光軸と入射面 13 aのなす角ひ 2を 31° 、 出射面 13 bを光軸 に対して垂直とすることにより、 出力用光学部材 13は、 入射面 13 aに 入射した光イメージを、 b軸方向に 0. 52 (s in31° :) 倍に縮小-し て出射面 13 bに出力する作用がある。 上記構成により、 本実施形態に係る光学素子 1 0は、 入力用光学部材 1 1の入射面 1 1 aに形成された光イメージを、 a軸、 b軸方向にそれぞれ 0 . 5 2倍に縮小し、 出力用光学部材 1 3の出射面 1 3 bまで伝送する作 用を有する。
続いて、 本実施形態に係る光学素子の効果について説明する。 本実施形 態に係る光学素子 1 0は、 入力用光学部材 1 1の光軸と中間光学部材 1 2 の光軸とのなす角と、 中間光学部材 1 2の光軸と出力用光学部材 1 3の光 軸とのなす角の双方を、 入力用光学部材 1 1の光軸と出力用光学部材 1 3 の光軸とのなす角よりも小さくすることによって、 入力用光学部材 1 1の 出射面 1 1 bから中間光学部材 1 2の入射面 1 2 aに入射した光のほぼ 1
0 0 %が中間光学部材 1 2を構成する光ファイバ 1 4内で全反射条件を満 たし、 中間光学部材 1 2の出射面 1 2 bから出力用光学部材 1 3の入射面 1 3 aに入射した光の約 5 0 %が出力用光学部材 1 6を構成する光フアイ バ 1 4内で全反射条件を満たしている。
その結果、 入力用光学部材 1 1の入射面 1 1 aに入射した光イメージを 効率よく出力用光学部材 1 3の出射面 1 3 bまで伝送することが可能とな る。
また、 各光学部材の接合面に散乱面等を用いることなく、 光イメージを 伝送することができることにより、 非常に解像度の高い出力イメージが得 られるとともに、 散乱面等の微細加工も必要とならない。
また、 本実施形態に係る光学素子 1 0は、 ひ i ? ^ a 2 < β 27 l = ァ2の関係を満たすと共に、 入力用光学部材 1 1の入射面 1 l aと出射面 1 1 bとの双方に平行な直線と、 出力用光学部材 1 3の入射面 1 3 aと出 射面 1 3 bとの双方に平行な直線とが互いに直交している。 よって、 入力 用光学部材 1 1では、 入射イメージを特定方向 (a軸方向) に縮小し、一出 力用光学部材 1 3では、 入射イメージを上記の特定方向と垂直方向 (b itl 方向) に縮小することが可能となる。 従って、 入力用光学部材 1 1の入射 面 1 1 aに入射した光イメージを 2次元的に縮小した出力イメージを出力 用光学部材 1 3の出射面 1 3 bから得ることができる。 さらに、 ひい β ひ 2、 ? 2を適宜調節することで、 縮小率を様々に変化させることが可能と なる。
また、 本実施形態に係る光学素子 1 0は、 /3 い 5 2を光軸に対して直角 としたことで、 入力用光学部材 1 1の入射面 1 l aに入射した光イメージ を効率良く縮小した出力パターンを、 出力用光学部材 1 3の出射面 1 3 b から得ることができる。
本実施形態に係る光学素子 1 0は、 入力用光学部材 1 1の光軸と入射面
1 1 aのなす角、 中間光学部材 1 2の光軸と入射面 1 2 aのなす角、 出力 用光学部材 1 3の光軸と入射面 1 3 aのなす角等について、 様々な変形が 考えられる。
表 2に、 様々な角度条件における受光角割合、 縮小効率の関係を示す。 なお、 表中の 7 iは中間光学部材 1 2の光軸と入射面 1 2 aのなす角、 ひ 2 は出力用光学部材 1 3の光軸と入射面 1 3 aのなす角、 Aは中間光学部材 1 2における受光角割合、 Bは出力用光学部材 1 3における受光角割合、 mは縮小率である。 また、 各光学部材を構成する光ファイバ 1 4のコア 1 4 aとクラッド 1 4 bの屈折率は、 表 1に示したとおりである。
表 2
Figure imgf000016_0001
また、 入力用光学部材 1 1を構成する光ファイバ 1 4の開口数 N . A . を変えた場合の、 縮小率の変化を表 3示す。 具体的には、 中間光学部材' i 2、 出力用光学部材 1 3を構成する光ファイノ 1 4のコア 1 4 a及びク ラッド 14bの屈折率 n31、 n32、 並びに入力用光学部材 1 1を形成する 光フアイノ' 14のクラッド 141)の屈折率111 2は、 表 1に示したものと同 じ値のものを用い、 入力用光学部材 1 1を構成する光ファイバ 14のコア 14 aの屈折率 を 1. 52〜1. 56まで変化させて、 縮小率 mの変 化を調べた。 この際、 中間光学部材 12の光軸と入射面 12 aのなす角ァ iは、 入力用光学部材 1 1の出射面 1 1 bから中間光学部材 12の入射面 12 aに入射した光のほぼ 100%が全反射条件を満たして伝搬すること ができるように決定し、 出力用光学部材 13の光軸と入射面 13 aのなす 角《2は、 中間光学部材 12の出射面 12 bから出力用光学部材 13の入 射面 13 aに入射した光の約 50%が全反射条件を満たして伝搬すること ができるように決定してある (つまり、 受光角割合は一定としている) 。 表 3
Figure imgf000017_0001
表 3の結果から分かるように、 中間光学部材 12、 出力用光学部材 13 の開口数と比較して、 入力用光学部材 1 1の開口数を小さくするほど、 受 光角割合を一定に保ちながら縮小率を高めることができる。
(2) 本発明の実施形態に係る光学素子を用いた撮像ュニット
続いて、 上記実施形態に係る光学素子を用いた撮像ュニットについて、 図面を参照して説明する。 まず上記実施形態に係る光学素子を用いた撮像 ュニッ卜の構成について説明する。 撮像ュニッ ト 100は、 図 8に示すよ うに上記光学素子 10 (すなわち、 入力用光学部材 1 1、 中間光学部林 4 2及び出力用光学部材 13を備えた光学素子 10) と、 上記出力用光学部 材 1 3の出射面 1 3 bに接して設けられた C C D 1 0 1とを備えて構成さ れる。 ここで、 より具体的には、 出力用光学部材 1 3の出射面 1 3 bは C C D 1 0 1の受光面と接している。
さらに、 入力用光学部材 1 1の表面のうち入射面 1 1 aと出射面 1 1 b とを除く全表面 (以下側面という) 、 中間光学部材 1 2の側面、 及び、 出 力用光学部材 1 3の側面には、 遮光材 1 0 2が設けられている (図 8の斜 線部参照) 。
各光学部材の側面に遮光材 1 0 2を設ける方法としては、 各光学部材の 入射面と出射面をマスクした後に、 側面に遮光剤 (例えば黒色のペイン ト) を吹き付ける方法、 側面に遮光剤を刷毛で塗布する方法、 遮光剤の満 たされた容器内に光学部材を浸ける方法等によって行うことができる。 続いて上記実施形態に係る光学素子を用いた撮像ュニットの作用、 効果 について説明する。 撮像ュニット 1 0 0は、 上記光学素子 1 0を備えて構 成されることから、 入力用光学部材 1 1の入射面 1 1 aに入射した光ィ メ一ジを効率よく出力用光学部材 1 3の出射面 1 3 bまで伝送することが できる。
また、 撮像ュニット 1 0 0は、 出力用光学部材 1 3の出射面 1 3 bに接 して C C D 1 0 1を設けることで、 出力用光学部材 1 3の出射面 1 3 bま で伝送した光ィメージを撮像することができる。
さらに、 撮像ュニット 1 0 0は、 各光学部材の側面に遮光材 1 0 2を設 けていることで、 各光学部材の内部に側面から光が入射することが防止さ れ、 S/N比を高めることができる。
その結果、 撮像ュニヅト 1 0 0は、 明瞭でコントラスト、 解像度の高い 縮小ィメ一ジを撮像することが可能となる。
( 3 ) 本発明の実施形態に係る光学素子を用いた撮像装置 一— 続いて、 上記実施形態に係る光学素子を用いた撮像装置について、 図面 を参照して説明する。 まず上記実施形態に係る光学素子を用いた撮像装置 の構成について説明する。 撮像装置 2 0 0は、 図 9に示すように、 上記撮 像ュニット 1 0 0を 4組有し、 各撮像ュニット 1 0 0を構成する入力用光 学部材 1 1の入射面 1 1 aが略同一平面上に並ぶように各撮像ュニット 1 0 0を配列した構成となっている。
続いて、 上記実施形態に係る光学素子を用いた撮像装置の作用、 効果に ついて説明する。 撮像装置 2 0 0は、 上記撮像ュニヅ ト 1 0 0を備えてい ることで、 明瞭でコントラスト、 解像度の高い縮小イメージを撮像するこ とが可能となる。
さらに、 撮像装置 2 0 0は、 4組の撮像ュニヅ ト 1 0 0を、 各撮像ュ ニット 1 0 0を構成する入力用光学部材 1 1の入射面 1 1 aが略同一平面 上に並ぶように配列されている。 よって、 光イメージを入力させることが 可能となる受光面を大きくすることができる。 なお、 縮小イメージは各 C C D 1 0 1に分割されて撮像されるが、 各 C C D 1 0 1によって撮像され たイメージを画像処理装置等によって合成することで、 縮小イメージ全体 を再生することができる。
また、 撮像装置 2 0 0は、 複数の簡単な光学部材と C C Dとを備えた極 めて簡単な構成であるため、 同じく受光面を大きくする目的で製造される テーパ形状のファイバ光学部材などと比較して、 極めて安価に製造するこ とが可能である。
さらに、 撮像装置 2 0 0は、 複数個の光学部材を組み合わせた撮像ュ ニッ ト 1 0 0を複数個配列することで、 各撮像ュニヅ ト 1 0 0内の C C D 1 0 1が互いに隣接する位置に配置されなくなる。 その結果、 C C D 1 0 1の外形が有効受光面よりも大きいことに起因する配置上の制約を受け-る ことが無くなる。 ( 4 ) 本発明の実施形態に係る光学素子を用いた放射線ィメージセンサ 続いて、 上記実施形態に係る光学素子を用いた放射線ィメージセンサに ついて、 図面を参照して説明する。 まず、 上記実施形態に係る光学素子を 用いた放射線イメージセンサの構成について説明する。 放射線イメージセ ンサ 3 0 0は、 図 1 0に示すように、 上記撮像ユニット 1 0 0 (すなわち、 入力用光学部材 1 1、 中間光学部材 1 2、 出力用光学部材 1 3、 C C D 1 0 1及び遮光材 1 0 2を備えた撮像ュニット 1 0 0 ) と、 上記撮像ュニヅ ト 1 0 0を構成する入力用光学部材 1 1の入射面 1 1 a上に設けられた、 放射線の入射に伴い光を発する蛍光体 3 0 1とを備えて構成されている。 蛍光体 3 0 1の材料としては、 例えば G d 2 0 2 S : T bなどを用いればよ い。
ここで、 入力用光学部材 1 1を図 1 0の x z平面に平行な平面で切断し た拡大断面図である図 1 1に示すように、 入力用光学部材 1 1の入射面 1 1 aは中心線平均粗さが 0 . 2 0〜0 . 8 0〃mの範囲になるように研磨 (以下、 粗く研磨という) されている。 このような範囲の中心線平均粗さ を有する研磨面は、 例えば砥粒の平均径が 6〜3 0〃m程度の研磨剤 (例 えばグリーン力一ボランダム砥粒) を用いて表面を研磨することにより、 容易に形成することができる。
続いて、 上記実施形態に係る光学素子を用いた放射線イメージセンサの 作用、 効果について説明する。 まず、 蛍光体 3 0 1に入射した放射線に よって発せられた光が入力用光学部材 1 1に入射する場合について考える。 図 1 2は、 入射面 1 1 aが粗く研磨されていない場合の光の入射の様子を 示しており、 図 1 3は、 上記放射線イメージセンサ 3 0 0のごとく、 入射 面 1 1 aが粗く研磨されている場合の光の入射の様子を示している。 図 1 2及び図 1 3に示すように、 入射面 1 1 aの法線方向から入射面 1 1 aこ 入射した放射線 R aによって、 蛍光体 3 0 1内の特定点 L。で発せられた光 は、 入射面 1 1 aの法線方向に最大強度を有する拡散光として入力用光学 部材 1 1内に入射する。 L aは L。で発せられた光の進行方向と強度とを表 した円である。 すなわち、 L。から特定方向にひいた直線と当該円とが作 る弦の長さが、 その特定方向に進行する光の強度を示している。 また、 斜 線部 L tは L。で発せられた光のうち、 入力用光学部材 1 1内を全反射条件 を満たして伝搬する光を表している。
ここで、 図 1 2に示すように、 入射面 1 1 aが粗く研磨されていない場 合は、 入力用光学部材 1 1内を全反射条件を満たして伝搬する光 L tが極 めて少ないのに対し、 図 1 3に示すように、 入射面 1 1 aが粗く研磨され ている場合は、 拡散光が散乱し、 様々な方向に最大強度を有するようにな るので、 入力用光学部材 1 1内を全反射条件を満たして伝搬する光 (斜線 部 L t) が極めて多くなる。
また、 放射線イメージセンサ 3 0 0は、 上記光学素子 1 0を備えて構成 されことから、 入力用光学部材 1 1の入射面 1 l aに入射した光イメージ を効率よく出力用光学部材 1 3の出射面 1 3 bまで伝送することができ、 かかる光イメージを C C D 1 0 1によって撮像することができる。
その結果、 放射線イメージセンサ 3 0 0は、 蛍光体 3 0 1に入射した放 射線イメージの縮小イメージを、 明瞭でコントラス ト、 解像度の高い状態 で撮像することが可能となる。
また、 放射線イメージセンサ 3 0 0は、 3つの光学部材を組み合わせて いることにより、 センサ部である C C D 1 0 1の設けられる位置が、 検出 面である入力用光学部材 1 1の入射面 1 1 aの直下部からはずれることに なり、 検出面に入射する放射線から受けるセンサ部へのダメ - の影響を低減することが可能となる。 ( 5 ) 本発明の実施形態に係る光学素子を用いた指紋照合装置
続いて、 上記実施形態に係る光学素子を用いた指紋照合装置について、 図面を参照して説明する。 まず上記実施形態に係る光学素子を用いた指紋 照合装置の構成について説明する。 図 1 4は、 上記実施形態に係る光学素 子を用いた指紋照合装置 4 0 1の模式的な構成図である。 指紋照合装置 4 0 0は、 指紋を撮像する撮像ュニッ 卜と、 上記撮像ュニットによって撮像 された指紋画像を、 予め登録された参照パターンと照合する指紋照合部で ある情報処理装置 4 0 1と、 情報処理装置 4 0 1によって照合された照合 結果を表示する表示部であるディスプレイ 4 0 2とを備えて構成される。 指紋を撮像する撮像ユニットとしては、 すでに説明した上記実施形態に 係る光学素子を用いた撮像ュニヅト 1 0 0が採用されている。
情報処理装置 4 0 1は、 撮像ュニット 1 0 0から出力された指紋画像を 一時的に格納するメモリと、 参照パターンを格納する記憶装置と、 撮像ュ ニッ トによって撮像された指紋画像と記憶装置に格納されている参照パ ターンとを照合する演算装置とを備えている。
続いて、 上記実施形態に係る光学素子を用いた指紋照合装置の作用、 効 果について説明する。 撮像ュニッ ト 1 0 0を構成する入力用光学部材 1 1 の入射面 1 1 aに指 4を接触させると、 上記図 4を用いて説明したように、 指紋画像が出力用光学部材 1 3の出射面 1 3 bまで伝送され、 C C D 1 0 1によって撮像される。
撮像ュニヅト 1 0 0を構成する C C D 1 0 1によって撮像された指紋画 像は、 情報処理装置 4 0 1に対して出力され、 メモリに一時的に格納され る。 その後、 上記指紋画像は、 演算装置によって、 記憶装置に予め登録さ れている参照パターンと照合され、 該照合結果は、 撮像された指紋画像な どとともに、 ディスプレイ 4 0 2に表示される。 一 指紋照合装置 4 0 0は、 上記光学素子 1 0を備えて構成されことか 、 入力用光学部材 1 1の入射面 1 1 aに入射した光イメージを効率よく出力 用光学部材 1 3の出射面 1 3 bまで伝送することができる。 よって、 C C D 1 0 1によって明瞭でコントラスト、 解像度の高い縮小イメージを撮像 することが可能となる。 その結果、 指紋照合装置 4 0 0は、 誤認が少なく、 精度の高い指紋照合が可能となる。
( 6 ) 本発明の実施形態に係る光学素子の変形例
1 )第1の変形例
続いて、 第 1の変形例に係る光学素子について図面を用いて説明する。 まず、 第 1の変形例にかかる光学素子の構成について説明する。 本変形例 にかかる光学素子 1 6の構成を図 1 5に示す。 本変形例にかかる光学素子 1 6が、 上記実施形態に係る光学素子 1 0と構成上相違する点は、 上記実 施形態に係る光学素子 1 0に用いている入力用光学部材 1 1は、 各光ファ ィバ 1 4の間隙に光吸収材 1 5を充填していたが、 本変形例に係る光学素 子 1 6に用いる入力用光学部材 1 7は、 各光ファイバ 1 4の間隙に光吸収 材 1 5を充填していない第 1部材 1 8と、 各光ファイノ 1 4の間隙に光吸 収材 1 5を充填してある第 2部材 1 9とから構成されている点である。 第 1部材 1 8は、 多数の光ファイバ 1 4を互いに平行に配置して一体形成さ れ、 各光ファイバ 1 4の間隙に光吸収材 1 5を充填していない光学部材か ら構成されており、 その入射面 1 8 aは、 空気中から入射した入射光が全 反射条件を満たさないように、 光軸と 3 1 ° の角度をなしており、 その出 射面 1 8 bは、 光軸に対して垂直になっている。 また、 第 2部材 1 9は、 多数の光ファイバ 1 4を互いに平行に配置して一体形成され、 各光フアイ バ 1 4の間隙に光吸収材 1 5を充填してある光学部材から構成されており、 その入射面 1 9 a及び出射面 1 9 bは、 光軸に対して垂直になっている-。 第 2部材 1 9の入射面 1 9 aは、 第 1部材 1 8の出射面 1 8 bと接しぞぉ り、 また、 第 2部材 1 9の出射面 1 9 bは、 中間光学部材 1 2の入射面 1 2 aに接している。 また、 第 1部材 1 8の光軸と第 2部材 1 9の光軸との 双方は、 図 1 5の x y平面に平行になっている。 従って、 光学素子 1 6を 図 1 5中の x y平面に平行な平面で切断すると、 断面は図 1 6に示すよう になる。
続いて、 第 1の変形例にかかる光学素子の作用、 効果について説明する。 例えば指紋画像を縮小して伝送するために光学素子 1 6を用いるときは、 図 1 5に示すように、 入力用光学部材 1 7を構成する第 1部材 1 8の入射 面 1 8 aに指 4を接触させ、 第 1部材 1 8の下方から L E D 5等により光 を投射する。 L E D 5等により投射された光は、 入力用光学部材 1 7の第 1部材 1 8内を下から上に透過し、 入射面 1 8 aで反射するが、 入射面 1 8 aに指紋の凸部が接触すると、 その部分では投射された光が反射せずに 吸収される。 したがって、 指紋の凸部の接触部以外の部分によって反射し た反射光が各光学部材内を伝送し、 出力用光学部材 1 3の出射面 1 3 か ら指紋パターンとして出力される。
特に、 第 2部材 1 9は、 L E D 5等から発せられた照明光が直接中間光 学部材 1 2に入射したり、 入力用光学部材 1 7を構成する第 1部材 1 8内 で散乱した光が中間光学部材 1 2に入射したりして、 検出画像の S /N比 が劣化することを防止する作用がある。
光学素子 1 6も、 上記実施形態に係る光学素子 1 0と同様に、 入力用光 学部材 1 7を構成する第 1部材 1 8の入射面 1 8 aから入射した光ィメ一 ジを出力用光学部材 1 3の出射面 1 3 bまで効率良く伝送することが可能 となる。 ii )第 2の変形例 -- 続いて、 第 2の変形例に係る光学素子について図面を用いて説明す ¾。 まず、 第 2の変形例にかかる光学素子の構成について説明する。 本変形例 にかかる光学素子 2 0の構成を図 1 7に示す。 光学素子 2 0は、 図 1 7に 示す様に、 入力用光学部材 2 1、 第 1の中間光学部材 2 2、 第 2の中間光 学部材 2 3及び出力用光学部材 2 4を備えて構成されている。
入力用光学部材 2 1、 第 1の中間光学部材 2 2、 第 2の中間光学部材 2 3及び出力用光学部材 2 4はそれぞれ、 多数の光ファイバ 1 4を互いに平 行に配置して一体形成されている。 各光学部材を構成する光ファイバ 1 4 のコア 1 4 aの屈折率、 クラッド 1 4 bの屈折率及び開口数は表 4に示す とおりである。
表 4
Figure imgf000025_0001
また、 各光学部材を構成する各光ファイバ 1 4の間隙には、 光吸収材 1 5が充填されている。
入力用光学部材 2 1は、 光軸に対して 1 0 ° の角度をもって斜めにカツ トされた入射面 2 1 aと、 光軸に対して垂直にカツ卜された出射面 2 1 b を有しており、 入射面 2 1 aに入射した光イメージを、 特定の一方向に縮 小して出射面 2 1 bに出力することができるようなつている。 また、 光軸 と入射面 2 l aのなす角 ( 1 0 ° ) は、 空気中から入射面 2 1 aに入射し た光が、 入力用光学部材 2 1を構成する光ファイバ 1 4内で、 全反射条件 を満たさない角度となっている。
第 1の中間光学部材 2 2は、 光軸に対して 6 6 ° の角度をもって斜めに カツトされた入射面 2 2 aと、 入射面 2 2 aと平行にカツ卜された出射面 2 2 bを有しており、 入射面 2 2 aに入射した光イメージを、 出射面 2 2 bに出力することができるようなつている。 第 2の中間光学部材 2 3は、 光軸に対して 3 5 ° の角度をもって斜めに カツ卜された入射面 2 3 aと、 入射面 2 3 aと平行にカツトされた出射面 2 3 bを有しており、 入射面 2 3 aに入射した光イメージを、 出射面 2 3 bに出力することができるようなつている。
出力用光学部材 2 4は、 光軸に対して、 1 0 ° の角度をもって斜めに カツトされた入射面 2 4 aと、 光軸に対して垂直にカヅトされた出射面 2 4 bを有しており、 入射面 2 4 aに入射した光イメージを、 特定の一方向 に縮小して出射面 2 4 bに出力することができるようなつている。
入力用光学部材 2 1の出射面 2 1 bと第 1の中間光学部材 2 2の入射面 2 2 a、 第 1の中間光学部材 2 2の出射面 2 2 bと第 2の中間光学部材 2
3の入射面 2 3 a、 第 2の中間光学部材 2 3の出射面 2 3 bと出力用光学 部材 2 4の入射面 2 4 aはそれぞれ接しており、 特に、 入力用光学部材 2 1の入射面 2 l aと出射面 2 1 bの双方に平行な直線と、 出力用光学部材 2 4の入射面 2 4 aと出射面 2 4 bの双方に平行な直線が、 互いに垂直に なっている。 従って、 入力用光学部材 2 1の入射面 2 1 aに入射した光ィ メ一ジは、 入力用光学部材 2 1によって図 1 7の a軸方向に縮小され、 ま た、 出力用光学部材 2 4によって、 a軸と垂直な b軸方向に縮小されて、 出力用光学部材 2 4の出射面 2 4 bから出力される。
入力用光学部材 2 1、 第 1の中間光学部材 2 2、 第 2の中間光学部材 2 3、 出力用光学部材 2 4の光軸は、 図 1 7の x y平面に平行となっており、 光学素子 2 0を図 1 7中の x y平面に平行な平面で切断した断面図は、 図 1 8に示すようになつている。 ここで、 第 1の中間光学部材 2 2の入射面 2 2 aと光軸のなす角は 6 6 ° 、 第 2の中間光学部材 2 3の入射面 2 3 a と光軸のなす角は 3 5 ° 、 出力用光学部材 2 4の入射面 2 4 aと光軸のな す角は 1 0 ° であることから、 入力用光学部材 2 1の光軸と第 1の中間光 学部材 2 2の光軸とのなす角は 2 4 ° 、 第 1の中間光学部材 2 2の光軸 第 2の中間光学部材 2 3の光軸とのなす角は 3 1 ° 、 第 2の中間光学部材 2 3の光軸と出力用光学部材 2 4の光軸とのなす角は 2 5 ° となり、 いず れも、 入力用光学部材 2 1の光軸と出力用光学部材 2 4の光軸とのなす角 である 8 0 ° よりも小さくなつている。
さらに、 入力用光学部材 2 1の光軸と第 1の中間光学部材 2 2の光軸と のなす角 (2 4 ° ) は、 入力用光学部材 2 1の出射面 2 1 13から第1の中 間光学部材 2 2の入射面 2 2 aに入射した光のほぼ 1 0 0 %が、 第 1の中 間光学部材 2 2を構成する光ファイバ 1 4内で全反射条件を満たす角度と なっている。 また、 第 1の中間光学部材 2 2の光軸と第 2の中間光学部材 2 3の光軸とのなす角 (3 1 ° ) は、 第 1の中間光学部材 2 2の出射面 2
2 bから第 2の中間光学部材 2 3の入射面 2 3 aに入射した光の約 5 6 % が、 第 2の中間光学部材 2 3を構成する光ファイバ 1 4内で全反射条件を 満たす角度となっており、 第 2の中間光学部材 2 3の光軸と出力用光学部 材 2 4の光軸とのなす角 (2 5 ° ) は、 第 2の中間光学部材 2 3の出射面 2 3 bから出力用光学部材 2 4の入射面 2 4 aに入射した光の約 6 4 %が、 出力用光学部材 2 4を構成する光ファイバ 1 4内で全反射条件を満たす角 度となっている。
続いて、 第 2の変形例にかかる光学素子の作用、 効果について説明する。 光学素子 2 0は、 入力用光学部材 2 1の光軸と第 1の中間光学部材 2 2の 光軸とのなす角、 第 1の中間光学部材 2 2の光軸と第 2の中間光学部材 2 3の光軸とのなす角、 第 2の中間光学部材 2 3の光軸と出力用光学部材 2 4の光軸とのなす角がいずれも、 入力用光学部材 2 1の光軸と出力用光学 部材 2 4の光軸とのなす角よりも小さくなつていることより、 入力用光学 部材 2 1の光軸と出力用光学部材 2 4の光軸とのなす角が 8 0 ° というき わめて大きい角度であっても、 入力用光学部材 2 1の入射面 2 l aに入-射 した光イメージを、 各光学部材を構成する光ファイバ 1 4内で全反射条祥 を満たしながら、 出力用光学部材 2 4の出射面 2 4 bまで効率よく伝送す ることができる。
本変形例に係る光学素子 2 0は、 入力用光学部材 2 1の光軸と入射面 2 1 aのなす角、 第 1の中間光学部材 2 3の光軸と入射面 2 3 aのなす角、 第 2の中間光学部材 2 3の光軸と入射面 2 3 aのなす角、 出力用光学部材 2 4の光軸と入射面 2 4 aとのなす角等について、 様々な変形が考えられ る。
たとえば、 第 2の中間光学部材 2 3の光軸と入射面 2 3 aとのなす角ァ 3を様々な角度に設定した場合に、 入力用光学部材 2 1の入射面 2 1 aに 入射した光のうち、 出力用光学部材 2 4の出射面 2 4 bまで、 全反射条件 を満たしながら伝送する光の割合 C (各光学部材の受光角割合の積) を表 5に示す。 ここで、 第 1の中間光学部材 2 2の光軸と入射面 2 2 aのなす 角は、 入力用光学部材 2 1の出射面 2 1 bから第 1の中間光学部材 2 2の 入射面 2 2 aに入射した光のほぼ 1 0 0 %が、 第 1の中間光学部材 2 2を 構成する光ファイノ 1 4内で全反射条件を満たして伝搬するように 6 6 ° の角度としており、 出力用光学部材 2 4の光軸と入射面 2 4 aのなす角は、 縮小率を確保するために 1 0 ° としている。 また、 表中のァ 3の欄に" 一" 記号が記載されているのは、 第 2の中間光学部材 2 3を用いない時の 結果である。
表 5
Figure imgf000028_0001
表 5に示すように、 上記光学素子 2 0においては、 第 2の中間光学部材 2 3の光軸と入射面 2 3 aとのなす角ァ3を 1 0〜5 5 ° と幅広く変化さ せても、 入力用光学部材 2 1の入射面 2 1 aに入射した光の少なくとも一 部を、 出力用光学部材 2 4の出射面 2 4 bまで、 全反射条件を満たしなが ら伝搬させることが可能となり、 明瞭な出力イメージを得ることが可能と なる。 特に、 第 2の中間光学部材 2 3の光軸と入射面 2 3 aとのなす角ァ 3を 3 5〜4 0 ° にすると最も効率が良く、 第 2の中間光学部材 2 3を用 いない場合よりも、 著しく伝送効率が向上する。 iii )第 3の変形例
続いて、 第 3の変形例に係る光学素子について図面を用いて説明する。 まず、 第 3の変形例にかかる光学素子の構成について説明する。 本変形例 にかかる光学素子 3 0の構成を図 1 9に示す。 光学素子 3 0は、 図 1 9に 示すように、 入力用光学部材 3 1、 中間光学部材 3 2及び出力用光学部材
3 3を備えて構成されている。
入力用光学部材 3 1、 中間光学部材 3 2及び出力用光学部材 3 3はそれ ぞれ、 多数の光ファイバ 1 4を互いに平行に配置して一体形成されている。 各光学部材を構成する光ファイバ 1 4のコア 1 4 aの屈折率、 クラッド 1
4 bの屈折率及び開口数は表 6に示すとおりである。
表 6
Figure imgf000029_0001
また、 各光学部材を構成する各光ファイバ 1 4の間隙には、 光吸収材 1 5が充填されている。
入力用光学部材 3 1は、 入力用光学部材 3 1を構成する光ファイバ 1 4 の光軸 (以下第 1の光軸という) に対して、 1 5 ° の角度をもって斜めに カットされた入射面 3 1 aと、 5 3 . 5 ° の角度 (鋭角) をもって斜めに カヅトされた出射面 3 1 bを有している。 ここで、 第 1の光軸に平行かつ 出射面 3 l bに垂直な平面 (図 1 9の x y平面と平行な平面。 以下第 1の 基準面という) と、 第 1の光軸に平行かつ入射面 3 l aに垂直な平面 (図 1 9の X z平面と平行な平面) とは、 互いに垂直になっている。 また、 第 1の光軸と入射面 3 1 aのなす角 ( 1 5 ° ) は、 空気中から入射面 3 1 a に入射した光が、 入力用光学部材 3 1を構成する光ファイバ 1 4内で、 全 反射条件を満たさない角度となっている。
中間光学部材 3 2は、 中間光学部材 3 2を構成する光ファイバ 1 4の光 軸 (以下第 2の光軸という) に対して、 3 5 ° の角度をもって斜めにカヅ 卜された入射面 3 2 aと、 入射面 3 2 aと平行にカツ卜された出射面 3 2 bを有している。
出力用光学部材 3 3は、 出力用光学部材 3 3を構成する光ファイバ 1 4 の光軸 (以下第 3の光軸という) に対して、 1 2 ° の角度をもって斜めに カッ トされた入射面 3 3 aと、 垂直にカットされた出射面 3 3 bを有して いる。
入力用光学部材 3 1の出射面 3 1 bと中間光学部材 3 2の入射面 3 2 a、 及び、 中間光学部材 3 2の出射面 3 2 bと出力用光学部材 3 3の入射面 3 3 aはそれぞれ接しており、 入力用光学部材 3 1の入射面 3 1 aから入射 した光イメージは、 中間光学部材 3 2を介して出力用光学部材 3 3の出射 面 1 6 cに伝送される。
ここで、 第 1の基準面、 第 2の光軸に平行かつ中間光学部材 3 2の出射 面 3 2 bに垂直な平面 (以下第 2の基準面という) 、 及び、 第 3の光軸に 平行かつ出力用光学部材 3 3の入射面 3 3 aに垂直な平面 (以下第 3の基 準面という) はそれぞれ平行 (図 1 9の x y平面と平行) となっている 従って、 各光学部材を構成する光ファイバ 1 4の光軸も x y平面に平行! なり、 入力用光学部材 31の入射面 31 aから各光ファイバ 14に入射し た光は、 xy平面に平行に進行することになる。
光学素子 30を、 図 19中の xy平面に平行な平面で切断したときの断 面は、 図 20に示すようになつている。 ここで、 入力用光学部材 31の光 軸と中間光学部材 32の光軸とのなす角は 18. 5° 、 中間光学部材 32 の光軸と出力用光学部材 33の光軸とのなす角は 23° となり、 双方とも、 入力用光学部材 31の光軸と出力用光学部材 33の光軸とのなす角である 41. 5° よりも小さくなつている。 また、 第 2の光軸と中間光学部材 3 2の入射面 32 aが第 1の基準面上でなす角 35° は、 第 1の光軸と入力 用光学部材 3 1の出射面 3 1 bのなす角 53. 5° よりも小さくなつてい る。 また、 第 1の光軸と第 2の光軸とのなす角を、 上記 53. 5° と 3 5° との差である 18. 5° とすることにより、 入力用光学部材 31と中 間光学部材 32の接続面における、 光路 (光ファイバ 14) の屈折角度を 小さくしている。
また、 第 3の光軸と出力用光学部材 33の入射面 33 aが第 2の基準面 上でなす角 12° は、 第 2の光軸と中間光学部材 32の出射面 32 bのな す角 35。 よりも小さくなつている。 また、 第 2の光軸と第 3の光軸との なす角を、 上記 35° と 12° との差である 23° とすることにより、 中 間光学部材 32と出力用光学部材 33の接続面における、 光路 (光フアイ ノ 14) の屈折角度を小さくしている。
次に、 本変形例に係る光学素子の作用について説明する。 撮像素子 30 において、 空気中から入力用光学部材 31に入射した光の、 入力用光学部 材 31内における伝搬については、 上記実施形態に係る光学素子 10につ いての説明の部分において図 5を用いて説明した通りである。 光学素子 3 0においては、 縮小効率、 及び中間光学部材 32から出力用光学部材 3-3 への受光角割合を考慮して、 ひ iを 15° としている。 ここで、 入力用光学部材 3 1の入射面 3 l aは図 1 9の x z平面に垂直 で、 かつ、 第 1の光軸と 1 5° の角度をなし、 また、 入力用光学部材 3 1 の出射面 3 1 bは xy平面に垂直で、 かつ、 第 1の光軸と 5 3. 5 ° の角 度をなしていることより、 入力用光学部材 3 1は、 入力用光学部材 3 1の 入射面 3 1 aに入射した光イメージを、 図 1 9の a軸方向に 1/3. 8 6 ( s i n 1 5。 ) 倍に縮小し、 b軸方向に 1. 24 ( 1/s i n 5 3. 5° ) 倍に拡大して出力する作用がある。
次に、 図 2 1に示すように、 入力用光学部材 3 1の出射面 3 1 bから中 間光学部材 3 2の入射面 3 2 aに入射した光が、 中間光学部材 3 2を構成 する光ファイバ 1 4のコア—クラッ ド界面で反射、 屈折しながら伝搬する 場合を考える。 ここで、 中間光学部材 3 2を構成する光ファイ ノ 1 4のコ ァ 1 4 a、 クラッド 14 bの屈折率をそれぞれ n21、 n22とする。 また、 第 2の光軸と中間光学部材 3 2の入射面 3 2 aのなす角をァい 入力用光 学部材 3 1内を進行する光の、 第 1の光軸に対する進行角を人 2、 入力用 光学部材 3 1の出射面 3 1 bから中間光学部材 3 2の入射面 3 2 aに入射 する光の入射角を 2、 屈折角を 2、 中間光学部材 3 1を構成する光ファ イ ノ ' 1 4のコア 1 4 aからクラッ ド 1 4 bへ入射する光の入射角を £ 2、 屈折角を 52とする。
入力用光学部材 3 1の全反射条件より、 人 2は、
s i n (9 0。 —入 2) ^ u/rin ( 1 3)
を満たす範囲となる。 入力用光学部材 3 1の出射面 3 l bは、 第 1の光軸 に対して β の角度で交差していることより、 人 2と S 2との関係は、
2=90° —/? i± i2 ( 14)
となる。 また、 2と £2の関係は、 屈折の法則より、
rij j S i n ^ 0 = n2 1 s ι η 2 ( 1 5 ) -— を満たす。 一方、 ァい 2、 £2の関係は、 図 21より、
ァ (90。 + ) + (90° - £2) = 180° ( 16) となる。
従って、 式 ( 1 6) を用いて、 式 ( 13) から式 (15) を満たす 2 のうち少なくとも一部が、 コア—クラッド界面における全反射条件
s in£2>n22/ nn j 、 17)
を満たせば、 入力用光学部材 3 1の出射面 31 bから中間光学部材 32の 入射面 32 aに入射した光の少なくとも一部が、 中間光学部材 32を構成 する光ファイノ 14内を、 全反射条件を満たして伝搬することになる。
光学素子 30においては、 11^= 1. 56、 n12= l. 52、 n21= 1.
82、 n22= 1. 495であることより、 入力用光学部材 3 1内を伝搬す る光は、 第 1の光軸に対して 13° 以内の進行角 λ2を有する。 また、 中 間光学部材 32を構成する光ファイバ 14のコア一クラッド界面で全反射 を生じるためには、 クラッド 14bに対して 55° 以上の入射角 2で入 射することが必要となる。 従って、 ^=53. 5° 、 7i= 35° とする と、 入力用光学部材 31の出射面 31 bから中間光学部材 32の入射面 3 2 aに入射した光のほぼ 100%が、 中間光学部材 32を構成する光ファ ィバ 14内を全反射条件を満たして伝搬することになる。
また、 中間光学部材 32の入射面 32 aと中間光学部材 32の出射面 3 2 bは平行であるので、 中間光学部材 32の入射面 32 aに入射した光ィ メージは、 拡大または縮小されることなく、 中間光学部材 32の出射面 3 2bから出力されることになる。
続いて、 図 22に示すように、 中間光学部材 32の出射面 32 bから出 力用光学部材 33の入射面 33 aに入射した光が、 出力用光学部材 33を 構成する光ファイバ 14のコアークラッド界面で反射、 屈折しながら伝搬 する場合を考える。 ここで、 出力用光学部材 33を構成する光ファイバ i 4のコア 14 a、 クラヅ ド 14 bの屈折率をそれぞれ n31、 n32とする。 また、 第 3の光軸と出力用光学部材 33の入射面 33 aのなす角をひ 2、 中間光学部材 32の出射面 32 bから出力用光学部材 33の入射面 33 a に入射する光の入射角を 3、 屈折角を £3、 出力用光学部材 33のコア 1 4 aからクラッド 14 bへ入射する光の入射角を £3、 屈折角を 63とする。 中間光学部材 32の全反射条件より、 3
s in (ァ 2 + ^ 3) ノ ηつ? ^" ( 18)
を満たす範囲となる。 また、 屈折の法則により、 3と £3の関係は、 n21s in^ 3 ~ n 3 i s in^ ( 19)
を満たす。
一方、 ひ 2、 £ 3、 £3の関係は、 図 22より、
2+ (90° + ) + (90° — £3) = 180° (20) となる。
従って、 式 (20) の条件の下に、 式 ( 18 ) 及び式 ( 19) の双方を 満たす £3のうち少なくとも一部が、 コア—クラッド界面の全反射条件
Figure imgf000034_0001
を満たせば、 中間光学部材 32の出射面 32 bから出力用光学部材 33の 入射面 33 aに入射した光の少なくとも一部が、 出力用光学部材 33を構 成する光ファイバ 14内を、 全反射条件を満たして伝搬することになる。 光学素子 30においては、 n21= l . 82、 n22= l. 495、 n31 =
1. 82、 n32= 1. 495であるため、 中間光学部材 32内を伝達する 光は出力用光学部材 33の入射面 33 bに対して 20° 以上の入射角 3 をもって入射する。 また、 出力用光学部材 33を構成する光ファイバ 14 のコア一クラッド界面で全反射を生じるためには、 クラヅ ド 14 bに対し て 5 5° 以上の入射角 ε3で入射することが必要となり、 そのためには 屈折角 £3が 43° より大きくなければならない。 従って、 ァ2= 35° 、 ひ 2= 12° とすると、 中間光学部材 32の出射面 32 bから出力用光学 部材 33の入射面 33 aに入射した光のうち入射角割合 (全反射条件を満 たす入射角範囲/全入射角範囲 X 100) で約 67%が、 出力用光学部材 33内を全反射条件を満たして伝搬することになる。
ここで、 出力用光学部材 33の入射面 33 aは図 19の xy平面に垂直 で、 かつ第 3の光軸と 12° の角度をなし、 また、 出力用光学部材 33の 出射面 33 bは第 3の光軸と垂直であることより、 出力用光学部材 33は、 出力用光学部材 33の入射面 33 aに入射した光イメージを、 図 19の b 軸方向に 1/4. 8 1 (s in 12° ) 倍に縮小する。 従って、 入力用光 学部材 31の入射面 31 aに入力されて出力用光学部材 33の出射面 33 bから出力される光イメージは、 図 19の a方向に 1/3. 86倍に縮小 されるとともに、 b軸方向には 1/3. 87倍に縮小され、 相似縮小され た光イメージとなる。
その結果、 出力用光学部材 33の出射面 33 bから出力される光ィメー ジは、 入力用光学部材 31の入射面 3 1 aに形成された光イメージを、 a 軸、 b軸方向にそれぞれ 1/3. 86倍に縮小された光イメージとなる。 続いて、 本変形例に係る光学素子の効果について説明する。 光学素子 3 0は、 入力用光学部材 31の光軸と中間光学部材 32の光軸とのなす角と、 中間光学部材 32の光軸と出力用光学部材 33の光軸とのなす角の双方を、 入力用光学部材 31の光軸と出力用光学部材 33の光軸とのなす角よりも 小さくすることで、 入力用光学部材 3 1の入射面 3 1 aに入射した光ィ メージを、 各光学部材内で全反射条件を満たしながら、 出力用光学部材 3 3の出射面 33 bまで効率よく伝送させることができる。
また、 入力用光学部材 31の出射面 3 l bを光軸に対して斜め (鋭角) にカットしたことにより、 入力用光学部材 31の出射面 31 bを光軸に対 して垂直にカットした場合と比較して、 入力用光学部材 31の入射面 31 aから出力用光学部材 3 3の出射面 3 3 bまでの伝送効率が向上する。 iv)第 4の変形例
続いて、 第 4の変形例に係る光学素子について説明する。 まず、 本変形 例に係る光学素子の構成を図 2 3に示す。 本変形例に係る光学素子 3 5が、 上記第 3の変形例に係る光学素子 3 0と構成上相違する点は以下の通りで ある。 すなわち、 上記第 3の変形例に係る光学素子 3 0に用いる入力用光 学部材 3 1は、 各光ファイバ 1 4の間隙に光吸収材 1 5を充填していたが、 本変形例に係る光学素子 3 5に用いる入力用光学部材 3 6は、 各光フアイ バ 1 4の間隙に光吸収材 1 5を充填していない第 1部材 3 7と、 各光ファ ィバ 1 4の間隙に光吸収材 1 5を充填してある第 2部材 3 8とから構成さ れている点である。
第 1部材 3 7は、 多数の光ファイバ 1 4を互いに平行に配置して一体形 成され、 各光ファイバ 1 4の間隙に光吸収材 1 5を充填していない光学部 材から構成されており、 その入射面 3 7 aは、 空気中から入射した入射光 が全反射条件を満たさないように、 光軸と 1 5 ° の角度をなしており、 そ の出射面 3 7 bは、 光軸に対して垂直になっている。 また、 第 2部材 3 8 は、 多数の光ファイバ 1 4を互いに平行に配置して一体形成され、 各光 ファイバ 1 4の間隙に光吸収材 1 5を充填してある光学部材から構成され ており、 その入射面 3 8 a及び出射面 3 8 bは、 光軸に対して垂直になつ ている。
第 2部材 3 8の入射面 3 8 aは、 第 1部材 3 7の出射面 3 7 bに接して おり、 また、 第 2部材 3 8の出射面 3 8 bは、 中間光学部材 3 2の入射面 3 2 aに接している。 また、 第 1部材 3 7の光軸、 第 2部材 3 8の光軸は、 双方とも、 図 2 3の x y平面に平行になっている。 従って、 光学素子 3 _5 を図 2 3中の X y平面に平行な平面で切断すると、 断面は図 2 4に示す ΐ うになる。
光学素子 3 5も、 上記実施形態に係る光学素子 1 0と同様に、 入力用光 学部材 3 6を構成する第 1部材 3 7の入射面 3 7 aから入射した光ィメー ジを出力用光学部材 3 3の出射面 3 3 bまで効率良く伝送することが可能 となる。
V )第 5の変形例
続いて、 第 5の変形例に係る光学素子について説明する。 まず、 本変形 例に係る光学素子の構成について説明する。 まず、 本変形例に係る光学素 子の構成について説明する。 光学素子 4 0は、 図 2 5に示す様に、 入力用 光学部材 4 1、 第 1の中間光学部材 4 2、 第 2の中間光学部材 4 3及び出 力用光学部材 4 4を備えて構成されている。
入力用光学部材 4 1、 第 1の中間光学部材 4 2、 第 2の中間光学部材 4 3及び出力用光学部材 4 4はそれぞれ、 多数の光ファイバ 1 4を互いに平 行に配置して一体形成されている。 各光学部材を構成する光ファイバ 1 4 のコア 1 4 aの屈折率、 クラッド 1 4 bの屈折率及び開口数は表 7に示す とおりである。
表 7
Figure imgf000037_0001
また、 各光学部材を構成する各光ファイバ 1 4の間隙には、 光吸収材 1 5が充填されている。
入力用光学部材 4 1は、 入力用光学部材 4 1を構成する光ファイバ 1 4 の光軸 (以下第 1の光軸という) に対して、 1 5 ° の角度をもって斜め カットされた入射面 4 1 aと、 5 3 . 5 ° の角度 (鋭角) をもって斜めに カットされた出射面 4 1 bを有している。 ここで、 第 1の光軸に平行かつ 入力用光学部材 4 1の出射面 4 1 bに垂直な平面 (図 2 5の x y平面と平 行な平面。 以下第 1の基準面という) と、 第 1の光軸に平行かつ入力用光 学部材 4 1の入射面 4 1 aに垂直な平面 (図 2 5の x z平面と平行な平 面) とは、 互いに垂直になっている。 また、 第 1の光軸と入力用光学部材 4 1の入射面 4 1 aのなす角 ( 1 5 ° ) は、 空気中から入力用光学部材 4 1の入射面 4 l aに入射した光が、 入力用光学部材 4 1を構成する光ファ ィバ 1 4内で、 全反射条件を満たさない角度となっている。
第 1の中間光学部材 4 2は、 第 1の中間光学部材 4 2を構成する光ファ ィバ 1 4の光軸 (以下第 2の光軸という) に対して、 3 5 ° の角度をもつ て斜めにカツトされた入射面 4 2 aと、 入射面 4 2 aと平行にカツ卜され た出射面 4 2 bを有している。
第 2の中間光学部材 4 3は、 第 2の中間光学部材 4 3を構成する光ファ イノ 1 4の光軸 (以下第 3の光軸という) に対して、 2 3 . 5。 の角度を もって斜めにカットされた入射面 4 3 aと、 入射面 4 3 aと平行にカット された出射面 4 3 bを有している。
出力用光学部材 4 4は、 出力用光学部材 4 4を構成する光ファイバ 1 4 の光軸 (以下第 4の光軸という) に対して、 1 2 ° の角度をもって斜めに カツトされた入射面 4 4 aと、 垂直にカツトされた出射面 4 4 bを有して いる。
入力用光学部材 4 1の出射面 4 1 bと第 1の中間光学部材 4 2の入射面 4 2 a、 第 1の中間光学部材 4 2の出射面 4 2 bと第 2の中間光学部材 4 3の入射面 4 3 a、 及び、 第 2の中間光学部材 4 3の出射面 4 3 bと出力 用光学部材 4 4の入射面 4 4 aはそれぞれ接しており、 入力用光学部材 4 1の入射面 4 1 aから入射した光イメージは、 第 1の中間光学部材 4 2、- 第 2の中間光学部材 4 3を介して出力用光学部材 4 4の出射面 4 4 bに^ 送 れる
ここで、 第 1の基準面、 第 2の光軸に平行かつ第 1の中間光学部材 42 の出射面 42 bに垂直な平面 (以下第 2の基準面という) 、 第 3の光軸に 平行かつ第 2の中間光学部材 43の出射面 43 bに垂直な平面 (以下第 3 の基準面という) 、 及び、 第 4の光軸に平行かつ出力用光学部材 44の入 射面 44 aに垂直な平面 (以下第 4の基準面という) はそれぞれ平行 (図 25の xy平面と平行) となっている。 従って、 各光学部材を構成する光 ファイバ 14の軸も xy平面に平行となり、 入力用光学部材 41の入射面 41 aから各光ファイバ 14に入射した光は、 xy平面に平行に進行する ことになる。
光学素子 40を、 図 25中の xy平面に平行な平面で切断した断面を図 26に示す。 ここで、 入力用光学部材 41の光軸と第 1の中間光学部材 4 2の光軸とのなす角は 18. 5° 、 第 1の中間光学部材 42の光軸と第 2 の中間光学部材出力用光学部材 43の光軸とのなす角は 1 1. 5° 、 第 2 の中間光学部材 43の光軸と出力用光学部材 44の光軸とのなす角は 1 1.
5° となり、 いずれも、 入力用光学部材 41の光軸と出力用光学部材 44 の光軸とのなす角である 41. 5° よりも小さくなつている。
また、 第 2の光軸と第 1の中間光学部材 42の入射面 42 aが第 1の基 準面上でなす角 35° は、 第 1の光軸と入力用光学部材 41の出射面 41 bのなす角 53. 5° よりも小さくなつている。 また、 第 1の光軸と第 2 の光軸とのなす角を、 上記 53. 5° と 35° との差である 18. 5° と することにより、 入力用光学部材 41と第 1の中間光学部材 42の接続面 における、 光路 (光ファイノ 14) の屈折角度を小さくしている。
また、 第 3の光軸と第 2の中間光学部材 43の入射面 43 aが第 2の基 準面 54 d上でなす角 23. 5° は、 第 2の光軸と第 1の中間光学部材 4 2の出射面 42bのなす角 35° よりも小さくなつている。 また、 第 2 光軸と第 3の光軸とのなす角を、 上記 35° と 23. 5° との差である 1 1. 5° とすることにより、 第 1の中間光学部材 42と第 2の中間光学部 材 43の接続面における、 光路 (光ファイク、' 14) の屈折角度を小さくし ている。
さらに、 第 4の光軸と出力用光学部材 44の入射面 44 aが第 3の基準 面上でなす角 12° は、 第 3の光軸と第 2の中間光学部材 43の出射面 4 3bのなす角 23. 5° よりも小さくなつている。 また、 第 3の光軸と第 4の光軸とのなす角を、 上記 23. 5° と 1 2° との差である 1 1. 5° とすることにより、 第 2の中間光学部材 43と出力用光学部材 44の接続 面における、 光路 (光ファイノ、 14) の屈折角度を小さくしている。
続いて、 光学素子 40の作用及び効果について説明する。 光学素子 40 は、 入力用光学部材 4 1の光軸と第 1の中間光学部材 42の光軸とのなす 角、 第 1の中間光学部材 42の光軸と第 2の中間光学部材出力用光学部材 43の光軸とのなす角、 第 2の中間光学部材 43の光軸と出力用光学部材 44の光軸とのなす角のいずれもが、 入力用光学部材 4 1の光軸と出力用 光学部材 44の光軸とのなす角より小さくなつていることで、 入力用光学 部材 4 1の入射面 4 1 aに入射した光イメージを、 各光学部材内で全反射 条件を満たしながら、 出力用光学部材 44の出射面 44 bまで効率よく伝 送させることができる。
より具体的には、 入力用光学部材 4 1の光軸と第 1の中間光学部材 42 の光軸とのなす角を 18. 5° としたことで、 入力用光学部材 41の出射 面 4 1 bから第 1の中間光学部材 42の入射面 42 aに入射した光の 1 0 0%が、 第 1の中間光学部材 42内で全反射条件を満たして伝搬する。 ま た、 第 1の中間光学部材 42の光軸と第 2の中間光学部材出力用光学部材 43の光軸とのなす角を 1 1. 5° としたことで、 第 1の中間光学部材 4-
2の出射面 42 bから第 2の中間光学部材 43の入射面 43 aに入射し fこ 光の約 8 4 %が、 第 2の中間光学部材 4 3内で全反射条件を満たして伝搬 する。 さらに、 第 2の中間光学部材 4 3の光軸と出力用光学部材 4 4の光 軸とのなす角を 1 1 . 5 ° としたことで、 第 2の中間光学部材 4 3の出射 面 4 3 bから出力用光学部材 4 4の入射面 4 4 aに入射した光の約 8 4 % が、 出力用光学部材 4 4内で全反射条件を満たして伝搬する。 よって、 3 つの光学部材を組み合わせて光学素子を構成した場合と比較して、 伝送効 率を向上させることができる。
上記光学素子 1 0、 2 0、 3 0または 4 0においては、 入力用光学部材 の光軸と入射面とのなす角、 中間光学部材の光軸と入射面、 出射面とのな す角、 出力用光学部材の光軸と入射面とのなす角等について、 様々な変形 が考えられる。
ここで、 縮小率を 1 / 3 . 8 6に保った状態で、 入力用光学部材の出射 面が光軸となす角、 中間光学部材の入射面、 出射面が光軸となす角を図 2 7〜3 3に示すようにいろいろと変化させた場合の光の伝送効率 (各接続 部における入射角割合の積) の変化を表 8に示す。
表 8
Figure imgf000041_0001
表 8より、 入力用光学部材の出射面を光軸に対して垂直にカツ卜した場 合 (表 8の 1〜3 ) と比較して、 光軸に対して斜めにカットした場合 (表 8の 4〜7 ) は光の伝送効率が著しく向上することが分かる。 また、 伝送 効率を向上させるために、 入力用光学部材の出射面光軸に対して斜めにす る (表 8の 4〜7 ) ことの効果は、 入力用光学部材の出射面が垂直で、 第 1の中間光学部材及び第 2の中間光学部材といった 2枚の中間光学部材を 挿入する (表 8の 2 ) ことの効果よりも大きいことが分かる。 vi )第 6の変形例
続いて、 第 6の変形例にかかる光学素子について説明する。 まず、 本変 形例に係る光学素子の構成について説明する。 光学素子 5 0は、 図 3 4に 示すように、 入力用光学部材 5 1、 中間光学部材 5 2及び出力用光学部材 5 3を備えて構成されている。
入力用光学部材 5 1は、 多数の光ファイバ 1 4を互いに平行に配置して 一体形成されている。 各光ファイバ 1 4のコア 1 4 aの屈折率は 1 . 5 6、 クラッド 1 4 bの屈折率は 1 . 5 2、 開口数は 0 . 3 5であり、 各光ファ ィバ 1 4の間隙には、 光吸収材 1 5が充填されている。 また、 入力用光学 部材 5 1は、 光軸に対して 3 0 ° の角度をもって斜めにカットされた入射 面 5 l aと、 光軸に対して垂直にカットされた出射面 5 1 bを有しており、 入射面 5 1 aに入射した光イメージを、 特定の一方向に縮小して出射面 5 1 bに出力することができるようなつている。 また、 光軸と入射面 5 l a のなす角 (3 0 ° ) は、 空気中から入射面 5 l aに入射した光が、 入力用 光学部材 5 1内で、 全反射条件を満たさない角度となっている。
中間光学部材 5 2は、 図 3 5及び図 3 6に示すような構造になっている。 ここで、 図 3 6は、 図 3 5における部分 5 2 pの拡大図である。 中間光学 部材 5 2は、 上記入力用光学部材 5 1を構成する光ファイバ 1 4の径と同 程度か、 それより小さい径を持ち、 互いに平行に形成された多数の透過孔 を有するキヤビラリ一プレート 5 2 dの透過孔の内壁に、 蒸着法あるいは メツキ法などにより、 光を反射する金属膜 5 2 eを形成し、 さらにこの透 過孔に屈折率 1 . 5 6の透光性物質 5 2 f を充填し、 透光路を形成したも のである。
また、 中間光学部材 5 2を、 図 3 5中の x y平面に平行な平面で切断す ると、 図 3 7及び図 3 8に示すような形状になっている。 尚、 図 3 8は、 図 3 7における部分 5 2 qの拡大図である。 透光路の軸 (以下光軸とい う) に対し、 第 1の端面 (以下入射面 5 2 aという) は、 6 8 . 8 ° の角 度をなしており、 第 2の端面 (以下出射面 5 2 bという) は、 入射面 5 2 aと平行に形成されている。 その結果、 入射面 5 2 aに入射した光ィメ一 ジを、 縮小、 または拡大することなく出射面 5 2 bに出力することができ るようなっている。
出力用光学部材 5 3は、 多数の光ファイバ 1 4を互いに平行に配置して 一体形成されている。 各光ファイバ 1 4のコア 1 4 aの屈折率 1 . 8 2、 クラッド 1 4 bの屈折率は 1 . 4 9 5、 開口数は 1 . ◦であり、 各光ファ ィバ 1 4の間隙には、 光吸収材 1 5が充填されている。 また、 出力用光学 部材 5 3は、 光軸に対して 3 0 ° の角度をもって斜めにカッ トされた入射 面 5 3 aと、 光軸に対して垂直にカットされた出射面 5 3 bを有しており、 入射面 5 3 aに入射した光イメージを、 特定の一方向に縮小して出射面 5 3 bに出力することができるようなつている。
入力用光学部材 5 1の出射面 5 1 bと中間光学部材 5 2の入射面 5 2 a、 及び、 中間光学部材 5 2の出射面 5 2 bと出力用光学部材 5 3の入射面 5 3 aはそれぞれ接しており、 特に、 入力用光学部材 5 1の入射面 5 1 aと 出射面 5 1 bの双方に平行な直線と、 出力用光学部材 5 3の入射面 5 3 a と出射面 5 3 bの双方に平行な直線とは、 互いに垂直となっている。 従つ て、 入力用光学部材 5 1の入射面 5 1 aに入射した光イメージは、 入力用 光学部材 5 1によって図 3 4の a軸方向に縮小され、 また、 出力用光学部 材 5 3によって、 a軸と垂直な b軸方向に縮小されて、 出力用光学部材 -5 3の出射面 5 3 bから出力される。 入力用光学部材 51、 中間光学部材 52、 出力用光学部材 53の光軸は、 図 34の xy平面に平行となっており、 光学素子 50を図 34中の xy平 面に平行な平面で切断した断面図は、 図 39に示すようになつている。 ここで、 中間光学部材 52の入射面 52 aと光軸のなす角は 68. 8° であり、 出力用光学部材 53の入射面 53 aと光軸のなす角は 30° であ ることから、 入力用光学部材 5 1の光軸と中間光学部材 52の光軸とのな す角は 2 1. 2° 、 中間光学部材 52の光軸と出力用光学部材 53の光軸 とのなす角は 38. 8° となり、 双方とも、 入力用光学部材 5 1の光軸と 出力用光学部材 53の光軸とのなす角である 60° よりも小さくなつてい る。
さらに、 中間光学部材 52の光軸と出力用光学部材 53の光軸とのなす 角 (28. 8° ) は、 中間光学部材 52の出射面 52bから出力用光学部 材 53の入射面 53 aに入射した光の約 50%が、 出力用光学部材 53を 構成する光ファイバ 14内で全反射条件を満たす角度となっている。
次に、 光学素子 50の作用について説明する。 空気中から入力用光学部 材 51に入射した光の、 入力用光学部材 51内における伝搬については、 光学素子 10の説明の部分において図 5を用いて説明したとおりである。 光学素子 50おいては、 縮小効率、 及び中間光学部材 52から出力用光学 部材 53への受光角割合を考慮して、 ひ iを 30° としている。
また、 光軸と入射面 51 aのなす角ひ iを 30° 、 出射面 5 1 bを光軸 に対して垂直とすることにより、 入力用光学部材 51は、 入射面 5 l aに 入射した光イメージを、 a軸方向に 0. 50 (s i n30° ) 倍に縮小し て出射面 5 lbに出力する作用がある。
次に、 入力用光学部材 51内を伝搬してきた光が、 中間光学部材 52を 通り、 出力用光学部材 53に入射する場合を考える。 図 40は、 入力用光 学部材 5 1の出射面 51 bから中間光学部材 52の入射面 52 aに入射 t た光が、 最終的に、 中間光学部材 52の金属膜 52 eの 52 gの部分 (屈 曲した光路の外側の部分) で反射し、 出力用光学部材 53に入射する場合 を表したものである。 ここで、 入力用光学部材 51を構成する光ファイバ 14のコァ14&、 クラッド 14 bの屈折率をそれぞれ n 、 n12、 中間 光学部材 52内の透光性物質 52 fの屈折率を n21、 出力用光学部材 53 を構成する光ファイバ 14のコア 14 a、 クラヅド 14 bの屈折率をそれ それ r p n。2とする。
入力用光学部材 51内を伝搬する光は、 入力用光学部材 5 1を構成する 光ファイバ 14のコア—クラッ ド界面で全反射条件を満たしている。 ここ で、 n i l = 1. 56、 n12 = 1. 52を用いると、 入力用光学部材 51内 で全反射条件を満たす光はコア—クラッド界面におけるクラッド 14bへ の入射角が、 77° 以上となる。 従って、 入力用光学部材 51内を伝送し てきた光は、 13° (=90° — 77° ) 以下の入射角で、 中間光学部材 52の入射面 52 aに入射することになる。
中間光学部材 52に入射した光は、 n i l、 1121が共に 1. 56であるこ とから進行方向を変えず、 26° の拡がりをもって進行する。
最終的に、 中間光学部材 52の金属膜 52 eの 52 gの部分で反射した 光が出力用光学部材 53に入射すると、 n21= l. 56、 n31= l. 82 であること、 また、 中間光学部材 52の光軸と出射面 52 bのなす角が 6 8. 8 ° 、 出力用光学部材 53の光軸と入射面 53 aのなす角が 30° で あることから、 その入射光のコア一クラヅド界面におけるクラヅド 14 b への入射角は 55〜74. 6° となる。
ここで、 出力用光学部材 53におけるコア—クラッド界面の全反射条件 より、 55° 以上の入射角でクラッド 14 bに入射する光は全反射する。 従って、 中間光学部材 52の金属膜 52 eの 52 gの部分で反射し、 出力 用光学部材 53に入射した光は、 出力用光学部材 53内を全反射条件を ¾ たしながら伝搬することになる。
一方、 図 41は、 入力用光学部材 5 1の出射面 5 1 bから中間光学部材 52の入射面 52 aに入射した光が、 最終的に、 中間光学部材 52の金属 膜 52 eの 52hの部分 (屈曲した光路の内側の部分) で反射し、 出力用 中間光学部材 16に入射する場合を表したものである。
入力用光学部材 51から中間光学部材 52に入射し、 最終的に、 中間光 学部材 52の金属膜 52 eの 52 hの部分で反射した光が、 出力用光学部 材 53に入射すると、 n21= l . 56、 n31= l. 82であること、 また、 中間光学部材 52の光軸と出射面 52 bのなす角が 68. 8° 、 出力用光 学部材 53の光軸と入射面 53 aのなす角が 30° であることから、 その 入射光のコア—クラッド界面におけるクラヅド 14bへの入射角は 19〜 41° となる。 出力用光学部材 53におけるコア—クラッド界面の全反射 条件より、 55° 未満の入射角でクラッド 14bに入射する光は全反射条 件を満たさないため、 中間光学部材 52の金属膜 52 eの 52 hの部分で 反射し、 出力用光学部材 53に入射した光は、 出力用光学部材 53内で減 衰、 消滅することになる。
従って、 中間光学部材 52の出射面 52 bから出力用光学部材 53の入 射面 53 aに入射した光の少なくとも一部、 つまり受光角割合 (全反射条 件を満たす入射角範囲/全入射角 X 100) で約 50%の光は、 出力用光 学部材 53内で全反射条件を満たし、 出力用光学部材 53の出射面 53 b まで伝送される。
また、 出力用光学部材 53は、 光軸と入射面 53 aのなす角を 30° 、 出射面 53 bを光軸に対して垂直とすることにより、 入射面 53 aに入射 した光イメージを、 b軸方向に 0. 50 (s i n30° ) 倍に縮小して出 射面 53 bに出力する作用がある。 ― 続いて、 光学素子 50の効果について説明する。 光学素子 50においそ は、 入力用光学部材 5 1の光軸と中間光学部材 5 2の光軸とのなす角と、 中間光学部材 5 2の光軸と出力用光学部材 5 3の光軸とのなす角の双方を、 入力用光学部材 5 1の光軸と出力用光学部材 5 3の光軸とのなす角よりも 小さくすることによって、 入力用光学部材 5 1の出射面 5 1 bから中間光 学部材 5 2を経由し、 出力用光学部材 5 3の入射面 5 3 aに入射した光の 少なくとも一部が、 出力用光学部材 5 3内で全反射条件を満たすように なっている。
その結果、 入力用光学部材 5 1の入射面 5 1 aに入射した光イメージを、 全反射条件を満たしながら、 出力用光学部材 5 3の出射面 5 3 bまで効率 よく伝送させることができる。
上記光学素子 5 0においては、 入力用光学部材 5 1の光軸と入射面 5 1 aのなす角、 中間光学部材 5 2の光軸と入射面 5 2 aのなす角、 出力用光 学部材 5 3の光軸と入射面 5 3 aのなす角等について、 様々な変形が考え られる。
表 9に、 様々な角度条件における受光角割合、 縮小効率の関係を示す。 なお、 表中の 7 は中間光学部材 5 2の光軸と入射面 5 2 aのなす角、 ひ 2 は出力用光学部材 5 3の光軸と入射面 5 3 aのなす角、 Aは出力用光学部 材 5 3における受光角割合、 mは縮小率である。 また、 各光学部材を構成 する光ファイバ 1 4のコア 1 4 aとクラヅド 1 4 bの屈折率は、 および、 透光性物質 5 2 fの屈折率は前述の通りである。
表 9
Figure imgf000047_0001
vii )第 7の変形例 続いて、 第 7の変形例にかかる光学素子について説明する。 まず、 本変 形例に係る光学素子の構成について説明する。 本変形例に係る光学素子 5 4の構成を図 4 2に示す。 本実施形態に係る光学素子 5 4が、 第 6の変形 例に係る光学素子 5 0と構成上相違する点は、 以下の点である。 すなわち、 第 6の変形例に係る光学素子 5 0に用いている入力用光学部材 5 1は、 各 光ファイバ 1 4の間隙に光吸収材 1 5を充填していたが、 本変形例に係る 光学素子 5 4に用いる入力用光学部材 5 5は、 各光ファイバ 1 4の間隙に 光吸収材 1 5を充填していない第 1部材 5 6と、 各光ファイバ 1 4の間隙 に光吸収材 1 5を充填してある第 2部材 5 7とから構成されている点であ る。
第 1部材 5 6は、 多数の光ファイバ 1 4を互いに平行に配置して一体形 成され、 各光ファイバ 1 4の間隙に光吸収材 1 5を充填していない光学部 材から構成されている。 第 1部材 5 6の入射面 5 6 aは、 空気中から入射 した入射光が全反射条件を満たさないように、 光軸と 3 0 ° の角度をなし ており、 その出射面 5 6 bは、 光軸に対して垂直になっている。
第 2部材 5 7は、 多数の光ファイバ 1 4を互いに平行に配置して一体形 成され、 各光ファイバ 1 8の間隙に光吸収材 2 0を充填してある光学部材 から構成されている。 第 2部材 5 7の入射面 5 7 a及び出射面 5 7 bは、 光軸に対して垂直になっている。 第 2部材 5 7の入射面 5 7 aは、 第 1部 材の出射面 5 6 bと接しており、 また、 第 2部材 5 7の出射面 5 7 bは、 中間光学部材 5 2の入射面 5 2 aに接している。 また、 第 1部材 5 6、 第 2部材 5 7とも、 その光軸は図 4 2の x y平面に平行になっている。 従つ て、 光学素子 5 4を図 4 2中の x y平面に平行な平面で切断すると、 断面 は図 4 3に示すようになる。
続いて、 本変形例に係る光学素子の作用、 効果について説明する。 本変 形例に係る光学素子 5 4においても、 上記実施形態に係る光学素子 1 0 同様に、 入力用光学部材 5 5を構成する第 1部材 5 6の入射面 5 6 aから 入射した光イメージを、 出力用光学部材 5 3の出射面に効率良く伝送する ことが可能となり、 分解能の高い出力パターンを得ることができる。 viii )第 8の変形例
続いて、 第 8の変形例にかかる光学素子 6 0について説明する。 光学素 子 6 0は、 図 4 4に示すように、 入力用光学部材 6 1、 第 1の中間光学部 材 6 2、 第 2の中間光学部材 6 3及び出力用光学部材 6 4を備えて構成さ れている。
入力用光学部材 6 1は、 多数の光ファイバ 1 4を互いに平行に配置して 一体形成されている。 各光ファイバ 1 4のコア 1 4 aの屈折率 1 . 5 6、 クラッド 1 4 bの屈折率は 1 . 5 2、 開口数は 0 . 3 5であり、 各光ファ ィバ 1 4の間隙には、 光吸収材 1 5が充填されている。 また、 入力用光学 部材 6 1は、 光軸に対して 1 0 ° の角度をもって斜めにカットされた入射 面 6 l aと、 光軸に対して垂直にカヅトされた出射面 6 1 bを有しており、 入射面 6 1 aに入射した光イメージを、 特定の一方向に縮小して出射面 6 1 bに出力することができるようなつている。 また、 光軸と入射面 6 l a のなす角 ( 1 0。 ) は、 空気中から入射面 6 1 aに入射した光が、 入力用 光学部材 6 1を構成する光ファイバ 1 4内で、 全反射条件を満たさない角 度となっている。
第 1の中間光学部材 6 2は、 光学素子 5 0において用いた中間光学部材 5 2と同様に、 上記入力用光学部材 6 1を構成する光ファイバ 1 4の径と 同程度か、 それより小さい径を持ち、 互いに平行に形成された多数の透過 孔を有するキヤビラリープレート 6 2 dの透過孔の内壁に、 蒸着法あるい はメツキ法などにより、 光を反射する金属膜 6 2 eを形成し、 さらにこ-の 透過孔に屈折率 1 . 5 6の透光性物質 6 2 f を充填し、 透光路を形成しチこ ものである。 また、 光軸に対して 8 3 . 5 ° の角度をもって斜めにカット された入射面 6 2 aと、 入射面 6 2 aと平行にカツトされた出射面 6 2 b を有しており、 入射面 6 2 aに入射した光イメージを、 出射面 6 2 bに出 力することができるようなつている。
第 2の中間光学部材 6 3も、 第 1の中間光学部材 6 2と同様な構成であ るが、 光軸に対して 6 2 . 2 ° の角度をもって斜めにカットされた入射面 6 3 aと、 入射面 6 3 aと平行にカツトされた出射面 6 3 bを有する点で、 第 1の中間光学部材 6 2と異なっている。
出力用光学部材 6 4は、 多数の光ファイバ 1 4を互いに平行に配置して 一体形成されている。 また、 出力用光学部材 6 4は、 光軸に対して、 1 0 ° の角度をもって斜めにカッ トされた入射面 6 4 aと、 光軸に対して垂 直にカツトされた出射面 6 4 bを有しており、 入射面 6 4 aに入射した光 イメージを、 特定の一方向に縮小して出射面 6 4 bに出力することができ るようなっている。
入力用光学部材 6 1の出射面 6 1 bと第 1の中間光学部材 6 2の入射面
6 2 a, 第 1の中間光学部材 6 2の出射面 6 2 bと第 2の中間光学部材 6 3の入射面 6 3 a、 及び、 第 2の中間光学部材 6 3の出射面 6 3 bと出力 用光学部材 6 4の入射面 6 4 aはそれぞれ接しており、 特に、 入力用光学 部材 6 1の入射面 6 l aと出射面 6 1 bの双方に平行な直線と、 出力用光 学部材 6 4の入射面 6 4 aと出射面 6 4 bの双方に平行な直線は、 互いに 垂直になっている。 従って、 入力用光学部材 6 1の入射面 6 1 aに入射し た光イメージは、 入力用光学部材 6 1によって図 4 4の a軸方向に縮小さ れ、 また、 出力用光学部材 6 4によって、 a軸と垂直な b軸方向に縮小さ れて、 出力用光学部材 6 4の出射面 6 4 bから出力される。
入力用光学部材 6 1、 第 1の中間光学部材 6 2、 第 2の中間光学部材 -6
3、 出力用光学部材 6 4の光軸は、 図 4 4の x y平面に平行となってお T、 光学素子 6 0を図 4 4中の x y平面に平行な平面で切断した断面は、 図 4 5に示すようになつている。 ここで、 第 1の中間光学部材 6 2の入射面 6 2 aと光軸のなす角は 8 3 . 5 ° 、 第 2の中間光学部材 6 3の入射面 6 3 aと光軸のなす角は 6 2 . 2 ° 、 出力用光学部材 6 4の入射面 6 4 aと光 軸のなす角は 1 0 ° であることから、 入力用光学部材 6 1の光軸と第 1の 中間光学部材 6 2の光軸とのなす角は 6 . 5 ° 、 第 1の中間光学部材 6 2 の光軸と第 2の中間光学部材 6 3の光軸とのなす角は 2 1 . 3 ° 、 第 2の 中間光学部材 6 3の光軸と出力用光学部材 6 4の光軸とのなす角は 5 2 . 2 ° となり、 いずれも、 入力用光学部材 6 1の光軸と出力用光学部材 6 4 の光軸とのなす角である 8 0。 よりも小さくなつている。
さらに、 第 2の中間光学部材 6 3の光軸と出力用光学部材 6 4の光軸と のなす角 (5 2 . 2 ° ) は、 第 2の中間光学部材 6 3の出射面 6 3 bから 出力用光学部材 6 4の入射面 6 4 aに入射した光の一部が、 出力用光学部 材 6 4を構成する光ファイバ 1 4内で全反射条件を満たす角度となってい る。
続いて、 光学素子 6 0の作用及び効果について説明する。 光学素子 6 0 は、 入力用光学部材 6 1の光軸と第 1の中間光学部材 6 2の光軸とのなす 角、 第 1の中間光学部材 6 2の光軸と第 2の中間光学部材 6 3の光軸との なす角、 及び、 第 2の中間光学部材 6 3の光軸と出力用光学部材 6 4の光 軸とのなす角のいずれも、 入力用光学部材 6 1の光軸と出力用光学部材 6 4の光軸とのなす角よりも小さくなつていることから、 入力用光学部材 6 1の光軸と出力用光学部材 6 4の光軸とのなす角が 8 0 ° というきわめて 大きい角度であっても、 入力用光学部材 6 1の入射面 6 1 aに入射した光 イメージを、 入力用光学部材 6 1、 第 1の中間光学部材 6 2、 第 2の中間 光学部材 6 3、 出力用光学部材 6 4内で全反射条件を満たしながら、 出-力 用光学部材 6 4の出射面 6 4 bまで効率よく伝送させることができる。 一- 上記光学素子 6 0においては、 入力用光学部材 6 1の光軸と入射面 6 1 aのなす角、 第 1の中間光学部材 6 2の光軸と入射面 6 2 aのなす角、 第 2の中間光学部材 6 3の光軸と入射面 6 3 aのなす角、 出力用光学部材 6 4の光軸と入射面 6 4 aとのなす角等について、 様々な変形が考えられる。 さらに、 上記光学素子 5 0、 5 4又は 6 0等において、 中間光学部材 5
2、 第 1の中間光学部材 6 2または第 2の中間光学部材 6 3は、 キヤビラ リープレートを用いて製造していたが、 これは、 光学マスクを使用して感 光性ガラス基板を露光、 結晶化、 エッチングし、 キヤピラリープレート状 に加工したものを用いても良い。
また、 上記光学素子 5 0、 5 4又は 6 0において、 中間光学部材 5 2、 第 1の中間光学部材 6 2または第 2の中間光学部材 6 3は、 透過孔の中に 透光性物質を充填していたが、 これは透光性物質を充填せずに中空であつ ても良い。
さらに、 上記光学素子 5 0、 5 4又は 6 0において、 中間光学部材 5 2、 第 1の中間光学部材 6 2または第 2の中間光学部材 6 3は、 図 4 6及び図 4 7に示すような中間光学部材 6 6であっても良い。 尚、 図 4 7は、 図 4 6における部分 6 6 pの拡大図である。 中間光学部材 6 6は、 ガラスまた はプラスチックなどの透光性材料から形成されると共に、 入力用光学部材 5 1などを構成する光ファイバ 1 4の径と同程度か、 それより小さい径を 持つ、 透光性ファイバ 6 6 fの外周に、 蒸着法あるいはメツキ法により金 属膜 6 6 eをコーティングしたものを、 互いに平行に配列し、 その入射面 6 6 a及び出射面 6 6 bを光軸に対して斜めにカツトして形成する中間光 学部材 6 6である。
中間光学部材 6 6を、 図 4 6中の x y平面に平行な平面で切断すると、 図 4 8及び図 4 9に示すような形状になっている。 尚、 図 4 9は、 図 4-8 における部分 6 6 qの拡大図である。 光軸に対し、 入射面 6 6 aは、 6 8; 8 ° の角度をなしており、 出射面 6 6 bは、 入射面 6 6 aと平行に形成さ れている。
また、 上記光学素子 5 0、 5 4、 又は 6 0において、 中間光学部材 5 2、 第 1の中間光学部材 6 2または第 2の中間光学部材 6 3は、 図 5 0及び図 5 1に示すような中間光学部材 6 7であっても良い。 尚、 図 5 1は、 図 5
0における部分 6 7 pの拡大図である。 すなわち、 金属薄板 6 7 eにパン チ、 あるいはエッチング等の方法で、 互いに平行な複数の貫通穴を設け、 その貫通穴に、 接着剤やオイルなどの透光性物質 6 7 f を充填したもので ある。 貫通穴の径は、 入力用光学部材 5 1を構成する光ファイバ 1 4の径 と同程度か、 それより小さい径となっており、 中間光学部材 6 7を、 図 6 7中の x y平面に平行な平面で切断すると、 図 5 2及び図 5 3に示すよう な形状になっている。 尚、 図 5 3は、 図 5 1における部分 6 7 qの拡大図 である。 入射面 6 7 aは、 光軸に対して 6 8 . 8 ° の角度をなしており、 出射面 6 7 bは、 入射面 6 7 aと平行に形成されている。 ix)第 9の変形例
続いて、 第 9の変形例に係る光学素子について説明する。 本変形例に係 る光学素子は、 入力イメージを相似拡大して伝送する光学素子である。 ま ず、 本変形例に係る光学素子の構成について説明する。 本変形例に係る光 学素子 7 0は、 図 5 4に示すように、 主に、 入力用光学部材 7 1、 中間光 学部材 7 2、 出力用光学部材 7 3及び表示用光学部材 7 4を備えて構成さ れている。
入力用光学部材 7 1、 中間光学部材 7 2、 出力用光学部材 7 3及び表示 用光学部材 7 4はそれぞれ、 多数の光ファイバ 1 4を互いに平行に配置し て一体形成されている。 各光学部材を構成する光ファイバ 1 4のコア 1-4 aの屈折率、 クラッド 1 4 bの屈折率及び開口数は表 1 0に示すとおり ある。
表 1 0
Figure imgf000054_0001
また、 各光学部材を構成する各光ファイバ 1 4の間隙には、 光吸収材 1 5が充填してある。
入力用光学部材 7 1は、 光軸に対して垂直にカツトされた入射面 7 1 a と、 光軸に対して 1 0 ° の角度をもって斜めにカットされた出射面 7 1 b を有しており、 入射面 7 1 aに入射した光イメージを、 特定の一方向に拡 大して出射面 7 1 bに出力することができるようなつている。
中間光学部材 7 2は、 光軸に対して 5 5 ° の角度をもって斜めにカット された入射面 7 2 aと、 入射面 7 2 aと平行にカツトされた出射面 7 2 b を有しており、 入射面 7 2 aに入射した光イメージを、 出射面 7 2 bに出 力することができるようなつている。
出力用光学部材 7 3は、 光軸に対して垂直にカツ卜された入射面 7 3 a と、 光軸に対して、 1 0 ° の角度をもって斜めにカットされた出射面 7 3 bを有しており、 入射面 7 3 aに入射した光イメージを、 特定の一方向に 拡大して出射面 7 3 bに出力することができるようなつている。
表示用光学部材 7 4は、 光軸に対して 5 5 ° の角度をもって斜めにカツ トされた入射面 7 4 aと、 入射面 7 4 aと平行にカツ卜された出射面 7 4 bを有しており、 入射面 7 4 aに入射した光イメージを、 出射面 7 4わに 出力することができるようなつている。
入力用光学部材 7 1の出射面 7 1 bと中間光学部材 7 2の入射面 7 2 a、 中間光学部材 7 2の出射面 7 2 bと出力用光学部材 7 3の入射面 7 3 a — 及び、 出力用光学部材 7 3の出射面 7 3 bと表示用光学部材 Ί 4の入射面 7 4 aは、 それぞれ接しており、 特に、 入力用光学部材 7 1の入射面 7 1 aと出射面 7 1 bの双方に平行な直線と、 出力用光学部材 7 3の入射面 7 3 aと出射面 7 3 bの双方に平行な直線は、 互いに垂直となっている。 従って、 入力用光学部材 7 1の入射面 7 1 aに入射した光イメージは、 入 力用光学部材 7 1によって図 5 4の b軸方向に拡大され、 また、 出力用光 学部材 7 3によって b軸と垂直な a軸方向に拡大された後、 表示用光学部 材 7 4の出射面 7 4 bから出力される。
入力用光学部材 7 1、 中間光学部材 7 2、 出力用光学部材 7 3の光軸は、 図 5 4の x y平面に平行となっており、 光学素子 7 0を図 5 4中の x y平 面に平行な平面で切断した断面図は、 図 5 5に示すようになつている。 こ こで、 入力用光学部材 7 1の入射面 7 1 aと光軸のなす角は 1 0 ° であり、 中間光学部材 7 2の入射面 7 2 aと光軸のなす角は 5 5 ° であることから、 入力用光学部材 7 1の光軸と中間光学部材 7 2の光軸とのなす角は 4 5 ° 、 中間光学部材 7 2の光軸と出力用光学部材 7 3の光軸とのなす角は 3 5 ° となり、 双方とも、 入力用光学部材 7 1の光軸と出力用光学部材 7 3の光 軸とのなす角である 8 0 ° よりも小さくなつている。
さらに、 入力用光学部材 7 1の光軸と中間光学部材 7 2の光軸とのなす 角 (4 5 ° ) は、 入力用光学部材 7 1の出射面 7 1 bから中間光学部材 7 2の入射面 7 2 aに入射した光の約 5 0 %が、 中間光学部材 7 2を構成す る光ファイバ 1 4内で全反射条件を満たす角度となっており、 中間光学部 材 7 2の光軸と出力用光学部材 7 3の光軸とのなす角 (3 5 ° ) は、 中間 光学部材 7 2の出射面 7 2 bから出力用光学部材 7 3の入射面 7 3 aに入 射した光の約 3 6 %が、 出力用光学部材 7 3内で全反射条件を満たす角度 となっている。
続いて、 本変形例に係る光学素子の作用、 効果について説明する。 上記 の構成により、 光学素子 7 0は、 入力用光学部材 7 1の入射面 7 1 aに 射した光イメージを効率よく拡大、 伝送し、 表示用光学部材 7 3の出射面 7 3 aから分解能の高い拡大イメージを得ることが可能となる。
また、 光学素子 7 0は、 表示用光学部材 7 4を備えることにより、 出力 光学部材 7 3の出射面 7 3 bから斜面方向に出力される光を、 観察面に垂 直方向に出射させ、 より明るく、 明瞭な拡大イメージを得ることができる。 また、 光学素子 5 0においては、 入力用光学部材 7 1の光軸と出射面 7 l bのなす角は、 1 0 ° に限る必要はなく、 所望の拡大率を満足するよう に、 自由に設定することができる。
また、 光学素子 5 0においては、 入力用光学部材 7 1の出射面 7 1わか ら中間光学部材 7 2の入射面 7 2 aに入射した光の約 5 0 %が全反射条件 を満たして伝送することができるように、 また、 中間光学部材 7 2の出射 面 7 2 bから出力用光学部材 7 3の入射面 7 3 aに入射した光の約 3 6 % が全反射条件を満たして伝送することができるように、 中間光学部材 7 2 の光軸と入射面 7 2 aのなす角を 5 5 ° としていたが、 この角は、 入力用 光学部材 7 1の出射面 7 1 bから中間光学部材 7 2の入射面 7 2 aに入射 した光の少なくとも一部が全反射条件を満たして伝搬することができるよ うに、 また、 中間光学部材 7 2の出射面 7 2 bから出力用光学部材 7 3の 入射面 7 3 aに入射した光の少なくとも一部が全反射条件を満たして伝搬 することができるような角度であれば、 5 5 ° に限定されることはない。 ここで、 中間光学部材 7 2の光軸と入射面 7 2 aとのなす角 7 lを変化 させた場合に、 入力用光学部材 7 1の入射面 7 1 aに入射した光のうち、 出力用光学部材 7 3の出射面 7 3 bまで、 全反射条件を満たしながら伝搬 する光の割合 D (各光学部材の受光角割合の積) を表 1 1に示す。 Ύ i D
70. 0° 10. 2%
55. 0α 17. 9%
45. 0° 17. 9%
35. 0° 13. 8%
表 1 1に示すように、 中間光学部材 72の光軸と入射面 72 aとのなす 角ァ!を、 35〜70° と広い範囲で変化させても、 入力用光学部材 7 1 の入射面 71 aに入射した光イメージを、 出力用光学部材 73の出射面 7 3bまで、 効率よく伝送することができる。
(7) 本発明の実施形態に係る光学素子を用いた撮像撮像ュニッ卜の変形 例
上記撮像ュニット 100は、 上記光学素子 10と CCD 101とを主に 備えて構成されていたが、 上記第 1〜第 8の変形例にかかる各光学素子と CCD 101とを主に備えることによつても構成できる。
また、 上記撮像ュニット 100においては、 各光学素子の側面全面に遮 光材 102を設けていたが、 これは全面でなくても良い。 特に上記第 1の 変形例に係る光学素子 16、 第 4の変形例に係る光学素子 35または第 7 の変形例に係る光学素子 54を用いて撮像ュニッ 卜を構成する場合は、 入 力用光学部材の入射面に対して光を入射させるために、 側面に、 遮光材 1 02を設けない部分を形成するのが好ましい。
( 8 ) 本発明の実施形態に係る光学素子を用いた撮像装置の変形例 続いて、 本発明の実施形態に係る光学素子を用いた撮像装置の変形例に ついて説明する。 図 9を用いて説明した上記撮像装置 200は、 図 8を用 いて説明した撮像ュニヅト 100を 4組配列して構成されていたが、 こ は 4組に限定されるものではなく、 撮像するパターンの大きさによって 様々に変更することが可能である。
例えば、 図 5 6に示すように、 8組の撮像ュニッ ト 1 0 0を組み合わせ て構成した撮像装置 2 1 0も考えられる。 また、 図 5 7に示すように 1 2 組の撮像ュニット 1 0 0を組み合わせた撮像装置 2 2 0も考えられる。 さらに、 上記変形例においては、 図 2を用いて説明した光学素子 1 0を 用いた撮像ュニッ ト 1 0 0を備えて構成されていたが、 これは、 上述の 種々の変形例に係る光学素子を用いて構成しても良い。 例えば、 図 1 9を 用いて説明した光学素子 3 0と C C D 1 0 1とを組み合わせた撮像ュニッ ト 1 1 0を 4組配列することにより、 図 5 8に示すような撮像装置 2 3 0 が実現する。 同様に、 撮像ュニット 1 1 0を 8組配列することにより、 図
5 9に示すような撮像装置 2 4 0が実現し、 撮像ュニット 1 1 0を 9組配 列することにより、 図 6 0に示すような撮像装置 2 5 0が実現する。
また、 上記各撮像装置においては、 各撮像ュニット 1 1 0の入力用光学 部材 3 1の入射面 3 1 aが互いに重ならないように隙間無く配列して撮像 装置を構成していたが、 図 6 1に示す撮像ユニット 2 6 0のように、 入力 用光学部材 3 1の入射面 3 1 aの縁辺部が互いに重なるように各撮像ュ ニット 1 1 0を配列しても良い。 入力用光学部材 3 1の入射面 3 1 aの縁 辺部を重ねて配列することで、 縁辺部に生じる不感帯 (デッドスペース) の影響を除去することができる。 尚、 重なり部分のデ一夕は画像処理に よって適宜除去することが可能である。
( 9 ) 本発明の実施形態に係る光学素子を用いた放射線イメージセンサの 変形例
本発明の実施形態に係る光学素子を用いた放射線イメージセンサの変形 例について説明する。 まず本変形例に係る放射線イメージセンサの構成お ついて説明する。 図 1 0を用いて説明した放射線イメージセンサ 3 0 0 ( おいては、 蛍光体 3 0 1に放射線が入射した際に発生した光を効率よく入 力用光学部材 1 1に入射させるために、 入力用光学部材 1 1の入射面 1 1 aを粗く研磨していたが、 入力用光学部材 1 1の入射面 1 1 aを粗く研磨 する代わりに、 以下に示すような平板光学部材 3 1 1を設けても良い。 以 下、 詳細に説明する。
放射線イメージセンサ 3 1 0は、 図 6 2に示すように、 上記撮像ュニヅ ト 1 0 0 (すなわち、 入力用光学部材 1 1、 中間光学部材 1 2、 出力用光 学部材 1 3、 C C D 1 0 1及び遮光材 1 0 2を備えた撮像ュニッ ト 1 0 0 ) と、 上記撮像ュニット 1 0 0を構成する入力用光学部材 1 1の入射面 1 1 a上に設けられた平板光学部材 3 1 1と、 平板光学部材 3 1 1の入射 面 3 1 1 aに設けられ、 放射線の入射に伴い光を発する蛍光体 3 0 1とを 備えて構成されている。 ここで、 特に、 入射イメージの縮小率を確保する ために、 入力用光学部材 1 1の入射面 1 l aは、 光軸と 1 0 ° の角度をな しており、 出力用光学部材 1 3の入射面 1 3 aは、 光軸と 1 0 ° の角度 をなしている。
平板光学部材 3 1 1は、 多数の光ファイバ 1 4を互いに平行に配置して 一体形成されている。 平板光学部材 3 1 1はまた、 光軸に対して、 5 0 ° の角度をもって斜めにカツトされた入射面 3 1 1 aと、 入射面 3 1 1 aと 平行にカツトされた出射面 3 1 1 bを有しており、 平板光学部材 3 1 1の、 入射面 3 1 1 aと出射面 3 1 1 bとを除く全表面は、 遮光材 1 0 2で覆わ れている。 また、 平板光学部材 3 1 1の入射面 3 1 1 aには、 放射線の入 射に伴い光を発する蛍光体 3 0 1が形成されている。
平板光学部材 3 1 1の出射面 3 1 1 bと入力用光学部材 1 1の入射面 1 1 a入力用光学部材 1 1の出射面 1 1 bと中間光学部材 1 2の入射面 1 2 a、 中間光学部材 1 2の出射面 1 2 bと出力用光学部材 1 3の入射面 1-3 a、 及び、 出力用光学部材 1 3の出射面 1 3 bと C C D 1 0 1の受光面ぼ、 それぞれ接している。 ここで、 放射線イメージセンサ 3 1 0を図 6 2の X z平面に平行な平面で切断した拡大断面図である図 6 3に示すように、 平 板光学部材 3 1 1と入力用光学部材 1 1とは、 平板光学部材 3 1 1の光軸 と入力用光学部材 1 1の光軸とのなす角 (4 0 ° ) が、 平板光学部材 3 1 1の光軸と出射面 3 1 1 bとがなす角 (5 0 ° ) と、 入力用光学部材 1 1 の光軸と入射面 1 l aとがなす角 ( 1 0 ° ) との差の角度となっている。 続いて、 放射線イメージセンサ 3 1 0の作用、 効果について説明する。 図 6 4は、 放射線の入射に伴い蛍光体 3 0 1によって発せられた光が平板 光学部材 3 1 1を介さずに入力用光学部材 1 1の入射面 1 1 aに入射する 場合の光の入射の様子を示しており、 図 6 5は、 平板光学部材 3 1 1の入 射面 3 1 1 aに入射する場合の光の入射の様子を示している。
図 6 4及び図 6 5に示す L aは、 図 1 2及び図 1 3に示したものと同様 に、 L。で発せられた光の進行方向と強度とを表した円である。 ここで、 L。から特定方向にひいた直線と当該円とが作る弦の長さが、 その特定方 向に進行する光の強度を示している。 また、 斜線部 L tは L。で発せられた 光のうち、 光学部材を構成する光ファイバ 1 4内を全反射条件を満たして 伝搬する光を表している。
ここで、 図 6 4に示すように、 平板光学部材 3 1 1を設けていない場合 は、 入射面 1 1 aの法線方向と光軸とのなす角が大きいため、 L。から発 せられ拡散光 L aのうち、 光学部材 1 1を構成する光ファイバ 1 4内を全 反射条件を満たして伝搬する光 (斜線部 L t ) の割合は極めて小さい。 こ れに対して、 図 6 5に示すように、 平板光学部材 3 1 1を設けることによ り、 入射面 3 1 1 aの法線方向と光軸とのなす角を小さくすることができ、 L。から発せられ拡散光 L aのうち、 平板光学部材 3 1 1を構成する光ファ ィバ 1 4内を全反射条件を満たして伝搬する光 (斜線部 L t ) の割合を大- きくすることができる。 その結果、 放射線イメージセンサ 3 1 0を構成ず- る各光学部材内を伝達する光の量が多くなり、 C C D 1 0 1によって極め て明瞭な撮像画像を得ることができる。
また、 上記のように平板光学部材 3 1 1を設ける場合は、 図 6 6に示す ように、 平板光学部材 3 1 1の入射面 3 1 1 aを、 中心線平均粗さがひ. 2 0〜0 . 8 0 z mの範囲になるように研磨しても良い。 平板光学部材 3
1 1の入射面 3 1 1 aが粗く研磨されていることで、 蛍光体 3 0 1に放射 線が入射した際に発生した光が、 平板光学部材 3 1 1の入射面 3 1 1 aで 散乱し、 平板光学部材 3 1 1に入射する光の入射方向が拡がり、 全反射条 件を満たして各光学部材内を進行する光の割合が増加する。
また、 上記放射線イメージセンサ 3 0 0を構成する入力用光学部材 1 1 の入射面 1 1 a、 あるいは上記放射線イメージセンサ 3 1 0を構成する平 板光学部材 3 1 1の入射面 3 1 1 aは、 中心線平均粗さが 0 . 2 0〜0 . 8 0 mの範囲になるように研磨されていたが、 これは、 以下に示すよう にしても良い。
すなわち、 図 6 7に示すように、 入力用光学部材 1 1の入射面 1 1 aを、 その傾斜方向に階段状に切断加工しても良い。 このような加工を施すこと で、 入射面全体としては光軸と 2 0 ° の角を維持しつつ、 部分的に光軸に 対して 3 5 ° の角度を有する部分ができる。 その結果、 当該部分の法線と ファイバ軸とのなす角が小さくなり、 光軸と一様に 2 0 ° の角を有する図 6 8に示す入力用光学部材 1 1と比較して、 各光学部材内を全反射条件を 満たして伝搬する光の割合を増加させることが可能となる。
また、 図 6 9に示すように、 入力用光学部材 1 1の入射面 1 1 aが、 部 分的に光軸に対して直角となるように階段状に加工しても良い。 このよう な加工を施すことによつても、 光軸と一様に 2 0 ° の角を有する図 6 8に 示す入力用光学部材 1 1と比較して、 各光学部材内を全反射条件を満たし- て伝搬する光の割合を増加させることが可能となる。 産業上の利用の可能性
本発明の光学素子は、 上記のように、 例えば放射線イメージセンサ、 指 紋照合装置に用いることが可能である。

Claims

請 求 の 範 囲
1 . 複数の光ファイバを互いに平行に配置して一体成形され、 光軸と それぞれひい の角度で交差する第 1の入射面、 第 1の出射面を有する 第 1の光学部材と、
複数の透光路が互いに平行に配列されてなり、 前記透光路の軸とそれぞ れァ ァ2の角度で交差する第 1の端面、 第 2の端面を有する中間光学部 材と、
複数の光ファイバを互いに平行に配置して一体成形され、 光軸とそれぞ れひ 2、 の角度で交差する第 2の入射面、 第 2の出射面を有する第 2の 光学部材と、
を備え、
前記第 1の出射面と前記第 1の端面、 及び、 前記第 2の端面と前記第 2 の入射面は、 それぞれ接しており、
前記第 1の光学部材の光軸と前記中間光学部材の透光路の軸とのなす角 と、
前記中間光学部材の透光路の軸と前記第 2の光学部材の光軸とのなす角 と、
前記第 1の光学部材の光軸と前記第 2の光学部材の光軸とのなす角 Θ 3 と、
の間には、
θ 3 > θ ^ かつ、 6> 3 > 0 2
の関係が成立している
ことを特徴とする光学素子。
2 . 前記中間光学部材は、 一— 複数の光ファイバを互いに平行に配置して一体成形された光学部材である ことを特徴とする請求項 1に記載の光学素子。
3. ,</3l2<52、 y i =ァ 2の関係を満たすと共に、 前記第 1の入射面、 前記第 1の出射面の双方に平行な直線と、 前記第 2 の入射面、 前記第 2の出射面の双方に平行な直線とが、 互いに直交する、 ことを特徴とする請求項 1または 2に記載の光学素子。
4. 複数の光ファイバを互いに平行に配置して一体成形され、 光軸と それぞれ α,、 の角度で交差する第 1の入射面、 第 1の出射面を有する 第 1の光学部材と、
第 1から第 η (ηは 2以上の整数) までの η個の中間光学部材と、 複数の光ファイバを互いに平行に配置して一体成形され、 光軸とそれぞ れひ 2、 ?2の角度で交差する第 2の入射面、 第 2の出射面を有する第 2の 光学部材と、
を備え、
第 i (1は1〜11の整数) の中間光学部材は、 複数の透光路が互いに平 行に配列されてなり、 前記透光路の軸とそれぞれ 72 i - ァ 2 iの角度で交 差する第 2 i— 1の端面、 第 2 iの端面を有し、
前記第 1の出射面と前記第 1の端面、 前記第 2 i (iは l〜n— 1の整 数) の端面と前記第 2 i + 1の端面、 前記第 2 nの端面と前記第 2の入射 面は、 それぞれ接しており、
前記第 1の光学部材の光軸と前記第 1の中間光学部材の透光路の軸との なす角 と、
前記第 i (iは l〜n— 1の整数) の中間光学部材の透光路の軸と前記 第 i + 1の中間光学部材が有する透光路の軸とのなす角 0 i+1と 前記第 nの中間光学部材の透光路の軸と前記第 2の光学部材の光軸との なす角 θη+1と、
は全て、
前記第 1の光学部材の光軸と前記第 2の光学部材の光軸とのなす角 θ η + 2より小さい
ことを特徴とする光学素子。
5. 前記 η個の中間光学部材のうち少なくとも 1つは、
複数の光ファイバを互いに平行に配置して一体成形された光学部材であ る
ことを特徴とする請求項 4に記載の光学素子。
6. ひ 2< ?2の関係を満たし、
1〜ηのすベての iについて、 y 2i— i = 72iの関係を満たすと共に、 前記第 1の入射面、 前記第 1の出射面の双方に平行な直線と、 前記第 2 の入射面、 前記第 2の出射面の双方に平行な直線とが、 互いに直交する、 ことを特徴とする請求項 4または 5に記載の光学素子。
7. 5 iは直角であることを特徴とする請求項 3または 6に記載の光 学素子。
8. 5 iは鋭角であることを特徴とする請求項 3または 6に記載の光 学素子。
9. 請求項 1または 4に記載の光学素子と、 一 前記第 2の出射面に接して設けられた撮像素子と を備えたことを特徴とする撮像ュニット。
1 0 . 前記第 1の光学部材と前記第 2の光学部材と前記中間光学部材 との表面のうち少なくとも一部に遮光材が設けられている
ことを特徴とする請求項 9に記載の撮像ュニット。
1 1 . 請求項 9に記載の撮像ュニッ卜を複数組有し、
前記複数組の撮像ュニットは、 前記各撮像ュニッ卜の第 1の入射面が略 同一平面上に並ぶように配列されている、
ことを特徴とする撮像装置。
1 2 . 請求項 9に記載の撮像ュニットと、
前記第 1の入射面上に設けられ、 放射線の入射に伴い光を発する蛍光体 と
を備えたことを特徴とする放射線イメージセンサ。
1 3 . 前記第 1の入射面は、
中心線平均粗さが 0 . 2 0〜0 . 8 0〃mの範囲になるように研磨され ている
ことを特徴とする請求項 1 2に記載の放射線イメージセンサ。
1 4 . 指紋を撮像する撮像ュニットと、
前記撮像ュニットによって撮像された指紋画像を、 予め登録された参照 パターンと照合する指紋照合部と、
前記指紋照合部によつて照合された照合結果を表示する表示部と 一 を備えた指紋照合装置において、 前記撮像ュニットは、 請求項 9に記載の撮像ュニットである ことを特徴とする指紋照合装置。
PCT/JP1998/003394 1997-07-30 1998-07-30 Element optique, unite d'imagerie, appareil d'imagerie detecteur d'image radiante et analyseur d'empreintes digitales l'utilisant WO1999006862A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98935280A EP1001284B1 (en) 1997-07-30 1998-07-30 Optical element, and imaging unit, imaging apparatus, radiation image sensor and fingerprint collator which use the same
DE69805416T DE69805416T2 (de) 1997-07-30 1998-07-30 Optisches element und eine abbildungseinheit, abbildungsvorrichtung, strahlungsbildsensor und fingerabdruckanalysator unter verwendung derselben
AU84604/98A AU8460498A (en) 1997-07-30 1998-07-30 Optical element, and imaging unit, imaging apparatus, radiation image sensor andfingerprint collator which use the same

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP9/204560 1997-07-30
JP20456097 1997-07-30
JP20612097 1997-07-31
JP9/206120 1997-07-31
JP9/239830 1997-09-04
JP23983097 1997-09-04
JP12131098 1998-04-30
JP10/121310 1998-04-30
JP12129498 1998-04-30
JP10/121294 1998-04-30
JP12897498 1998-05-12
JP10/128974 1998-05-12

Publications (1)

Publication Number Publication Date
WO1999006862A1 true WO1999006862A1 (fr) 1999-02-11

Family

ID=27552599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003394 WO1999006862A1 (fr) 1997-07-30 1998-07-30 Element optique, unite d'imagerie, appareil d'imagerie detecteur d'image radiante et analyseur d'empreintes digitales l'utilisant

Country Status (3)

Country Link
EP (1) EP1001284B1 (ja)
DE (1) DE69805416T2 (ja)
WO (1) WO1999006862A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137123A (ja) * 1998-10-30 2000-05-16 Hamamatsu Photonics Kk 光学素子並びにこれを用いた撮像ユニット、撮像装置及び放射線イメージセンサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02249537A (ja) * 1988-12-08 1990-10-05 Philips Gloeilampenfab:Nv 歯科用x線イメージ検出システム
JPH0651142A (ja) * 1992-02-26 1994-02-25 Sanyo Electric Co Ltd 光学素子及び光学素子を用いた画像表示装置
JPH08286048A (ja) * 1995-04-18 1996-11-01 Toppan Printing Co Ltd 密着型イメージセンサー素子及びこれを用いた 密着型イメージセンサー
JPH08315143A (ja) * 1995-05-15 1996-11-29 Mitsubishi Denki Bill Techno Service Kk 指紋照合装置
JPH0943439A (ja) * 1995-07-26 1997-02-14 Hamamatsu Photonics Kk ファイバー光学プレート

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3402000A (en) * 1964-09-10 1968-09-17 Norman H. Crawford Fiber optical image enlarger
GB1522520A (en) * 1976-01-26 1978-08-23 Secr Defence Display panel constructions
JPS59154407A (ja) * 1983-02-22 1984-09-03 Sumitomo Electric Ind Ltd イメ−ジフアイバ
US5360630A (en) * 1990-06-04 1994-11-01 Itt Corporation Thin film intagliated phosphor screen structure
JPH0829639A (ja) * 1994-07-13 1996-02-02 Seiko Giken:Kk 光ファイバ端面の球面研磨装置の研磨基盤および光ファイバ端面の球面研磨方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02249537A (ja) * 1988-12-08 1990-10-05 Philips Gloeilampenfab:Nv 歯科用x線イメージ検出システム
JPH0651142A (ja) * 1992-02-26 1994-02-25 Sanyo Electric Co Ltd 光学素子及び光学素子を用いた画像表示装置
JPH08286048A (ja) * 1995-04-18 1996-11-01 Toppan Printing Co Ltd 密着型イメージセンサー素子及びこれを用いた 密着型イメージセンサー
JPH08315143A (ja) * 1995-05-15 1996-11-29 Mitsubishi Denki Bill Techno Service Kk 指紋照合装置
JPH0943439A (ja) * 1995-07-26 1997-02-14 Hamamatsu Photonics Kk ファイバー光学プレート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1001284A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137123A (ja) * 1998-10-30 2000-05-16 Hamamatsu Photonics Kk 光学素子並びにこれを用いた撮像ユニット、撮像装置及び放射線イメージセンサ

Also Published As

Publication number Publication date
DE69805416D1 (de) 2002-06-20
DE69805416T2 (de) 2002-10-10
EP1001284A4 (en) 2000-09-06
EP1001284A1 (en) 2000-05-17
EP1001284B1 (en) 2002-05-15

Similar Documents

Publication Publication Date Title
US7038846B2 (en) Solid catadioptric lens with a single viewpoint
EP0647325A4 (en) LIGHTING SYSTEM WITH ASPHERIC LENS.
US20090310231A1 (en) Optical system
US4783156A (en) Optical system for altering the direction of the visual field in endoscopes
JPH0943439A (ja) ファイバー光学プレート
WO1999006861A1 (fr) Element optique, unite d&#39;imagerie, appareil d&#39;imagerie detecteur d&#39;image radiante et analyseur d&#39;empreintes digitales l&#39;utilisant
US10606051B2 (en) Optical system for light collection
US20130266258A1 (en) Apparatus For Transforming The Aspect Ratio Of An Optical Input Field Based On Stacked Waveguides
JPS60129703A (ja) 光学装置用非球面レンズ
WO1999006862A1 (fr) Element optique, unite d&#39;imagerie, appareil d&#39;imagerie detecteur d&#39;image radiante et analyseur d&#39;empreintes digitales l&#39;utilisant
JP3839664B2 (ja) 光学素子並びにこれを用いた撮像装置
JP2001174740A (ja) 走査光学系
WO1999006860A1 (fr) Element optique, unite d&#39;imagerie, appareil d&#39;imagerie detecteur d&#39;image radiante et analyseur d&#39;empreintes digitales l&#39;utilisant
JP6596744B2 (ja) 光学素子
TWI813409B (zh) 光子積體電路構造及製造其之光斑尺寸轉換器的方法
JP2005520214A (ja) 光放射フラックスを変換するデバイス
RU2237916C2 (ru) Устройство для преобразования потока оптического излучения
JP4416129B2 (ja) 先端に高屈折率層を形成したレンズ付き光ファイバおよびそのレンズ付き光ファイバを用いた光結合モジュール
JPH06222203A (ja) 光学部品
WO2000016148A1 (fr) Lentille servant a modifier un axe optique
TWM617663U (zh) 改良式光源裝置及包含其的光學檢測系統
JP4132301B2 (ja) 光学素子並びにこれを用いた撮像ユニット、撮像装置及び放射線イメージセンサ
Kong et al. Omnidirectional plane beam generation by a hollow tube prism
JP3078365U (ja) 照明装置用プロトタイプの急速作成装置に用いる光パイプ
JPS58168009A (ja) イメ−ジフアイバ伝送路における結像方式

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 1998935280

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWE Wipo information: entry into national phase

Ref document number: 09463633

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998935280

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998935280

Country of ref document: EP