WO1999005562A1 - Afficheur et dispositif electronique equipe dudit afficheur - Google Patents

Afficheur et dispositif electronique equipe dudit afficheur Download PDF

Info

Publication number
WO1999005562A1
WO1999005562A1 PCT/JP1998/003282 JP9803282W WO9905562A1 WO 1999005562 A1 WO1999005562 A1 WO 1999005562A1 JP 9803282 W JP9803282 W JP 9803282W WO 9905562 A1 WO9905562 A1 WO 9905562A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
light
display device
polarizing plate
liquid crystal
Prior art date
Application number
PCT/JP1998/003282
Other languages
English (en)
French (fr)
Inventor
Chiyoaki Iijima
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to JP50210799A priority Critical patent/JP3345755B2/ja
Priority to US09/269,538 priority patent/US6507380B1/en
Priority to EP98933897A priority patent/EP0935155A4/en
Priority to KR10-1999-7002548A priority patent/KR100505522B1/ko
Publication of WO1999005562A1 publication Critical patent/WO1999005562A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133545Dielectric stack polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133626Illuminating devices providing two modes of illumination, e.g. day-night
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/367Control of matrices with row and column drivers with a nonlinear element in series with the liquid crystal cell, e.g. a diode, or M.I.M. element

Definitions

  • the present invention relates to the technical field of a display device, and in particular, includes a polarizing plate, a polarization separator such as a reflective polarizer, and a reflection type for displaying by reflecting external light and a transmission type for transmitting and transmitting light from a light source.
  • the present invention relates to a technical field of a display device such as a liquid crystal display device that can be used for both purposes and an electronic device such as a mobile phone and a clock using the display device.
  • transflective display devices that can be used both in a reflective type and a transmissive type are mainly used for light places, while external light incident from a display screen is reflected by a transflective film provided inside the device.
  • the reflective display is performed by controlling the amount of light emitted from the display screen for each pixel using an optical element such as a liquid crystal or a polarization separator disposed on the optical path.
  • the light is emitted from the display screen using the above-mentioned optical elements such as the liquid crystal and the polarization separator while irradiating the light source from the back side of the transflective film with the built-in light source such as a backlight, mainly for dark places.
  • the transmissive display is performed by controlling the amount of light for each pixel.
  • the liquid crystal display device used has a structure in which the variable transmission polarization axis optical element is sandwiched between two polarizing plates.
  • the first polarizing plate on the liquid crystal display screen side causes only the polarization component in a specific direction to pass. Is transmitted, and other polarized components are absorbed by the first polarizer.
  • the polarization direction of the light transmitted through the polarizing plate is selectively changed according to the orientation state of the liquid crystal, which changes according to the voltage applied to the liquid crystal, and is transmitted to the second polarizing plate on the other side of the liquid crystal. Incident. For example, in the case of a normally white mode, this external light is generated for each pixel.
  • the reflective display is performed.
  • the second polarizing plate on the back side of the liquid crystal is changed. Only the polarized component in a specific direction is transmitted, and the other polarized components are absorbed by the second polarizer.
  • the light transmitted through the second polarizing plate has its polarization direction selectively changed according to the alignment state of the liquid crystal, which changes according to the voltage applied to the liquid crystal, and the first polarization on the display screen side of the liquid crystal. It is incident on the plate.
  • the light from the light source is: (i) When no voltage is applied to the liquid crystal, the light emitted from the liquid crystal passes through the first polarizing plate, and (Ii) When a voltage is applied to the liquid crystal, the light emitted from the liquid crystal is absorbed by the first polarizing plate, and the display light is not emitted from the display screen.
  • the transmission type display is performed by controlling the amount of display light emitted from the display screen for each pixel using the liquid crystal, the polarizing plate, and the like disposed on the optical path of the light source light.
  • a polarizing plate which is an example of a polarization separator, performs polarization by absorbing a polarized light component in a direction different from a specific polarization axis direction of incident light, so that light use efficiency is poor. Therefore, as described above, reflection is performed by disposing two polarizing plates on both sides of the liquid crystal. In the case of the type display and the transmission type display, there is a problem that the display becomes dark. On the other hand, if the display is to be made brighter by simply replacing the polarizing plate with another polarization separating means, the contrast of the display, which is regarded as important together with the brightness of the display, will be reduced. There is a problem.
  • the present invention has been made in view of the above-described problems, and in a display device using a variable transmission polarization axis optical element such as a liquid crystal, a display device capable of performing high-contrast, bright display during reflection display or transmission display. And an electronic device using the same.
  • the above object of the present invention is to provide a transmission polarization axis changing means for changing a transmission polarization axis, and to transmit light of a linear polarization component in a first direction, which is disposed on one side of the transmission polarization axis changing means.
  • a first polarization separation unit that reflects or absorbs light having a linear polarization component in a predetermined direction different from the first direction; and a second polarization separation unit that is disposed on the other side of the transmission polarization axis variable unit and that is disposed in the second direction.
  • a second polarization separation unit that transmits light of a linear polarization component and reflects light of a linear polarization component in a predetermined direction different from the second direction; and the transmitted polarized light with respect to the second polarization separation unit.
  • a polarizing plate disposed on the side opposite to the axis changing unit; and a light source disposed on the side opposite to the second polarization separating unit with respect to the polarizing plate and incident light on the transmission polarization axis changing unit side.
  • the second direction is opposite to the direction of the transmission axis of the polarizing plate.
  • a predetermined angle 0 (however, 0 degree ⁇ ⁇ 90 degrees) and deviates from the direction of the absorption axis of the polarizing plate by a predetermined angle 0 (however, 0 degrees ⁇ 0 ′ ⁇ 90 degrees).
  • 0 degrees ⁇ 0 ′ ⁇ 90 degrees
  • the display device of the present invention when performing reflection type display using external light, external light is incident from the first polarization separation unit side.
  • the first polarization separating means transmits the light of the linearly polarized light component in the first direction out of the incident external light to the side of the variable transmission polarization axis. Then, the first polarized light separating means reflects or absorbs a linearly polarized light component in a predetermined direction different from the first direction (for example, a direction orthogonal or substantially orthogonal to the first direction).
  • the second polarization splitting means converts the light of the linear polarization component in the second direction, out of the light incident through the first polarization splitting means and the transmission polarization axis changing means, into the transmission polarization axis changing means.
  • a predetermined direction different from the second direction for example, orthogonal to the second direction or (In a direction substantially perpendicular to) is reflected.
  • the light transmitted through the second polarization separation means is absorbed by the polarizing plate in the direction of the absorption axis, and the light transmitted through the polarizing plate is reflected or diffused by the light source in the non-lighting state.
  • the light reflected by the second polarization separation means passes through the transmission polarization axis variable means and the first polarization separation means in the reverse order to the above order.
  • the light reflected by the second polarization splitting means is selectively transmitted through the transmission polarization axis changing means according to the direction of the transmission axis in the transmission polarization axis changing means.
  • the second display state (relatively dark) due to the light not being emitted from the polarization separation means side is obtained.
  • the amount of light absorbed can ultimately reduce the amount of light emitted from the first polarization splitting means side in the above-described second display state, thereby enhancing the contrast in the reflective display.
  • the brightness of the reflective display is determined by using a polarizing plate as the second polarization separating means as in the related art (or using a polarizing plate for both the first and second polarization separating means). In comparison, polarization separation is performed by light reflection rather than light absorption, and the reflected linearly polarized light component is used as display light, so that a bright reflective display is obtained.
  • the second polarization separating means transmits the linearly polarized light component in the second direction of the incident light source light to the transmission polarization axis variable means side, and the linearly polarized light component in a predetermined direction different from the second direction. Is reflected.
  • the first polarized light separating means of the light incident through the second polarized light separating means and the transmitted polarization axis changing means, converts the linearly polarized light component in the first direction into light opposite to the transmitted polarization axis changing means.
  • Side that is, the display screen side.
  • the light transmitted through the second polarization separation means is selectively emitted from the first polarization separation means side in accordance with the direction of the transmission axis in the transmission polarization axis variable means.
  • a third display state (relatively bright) due to the light is obtained, and a fourth display state (relatively dark) due to the light from the light source being reflected by the first polarization separation means.
  • the relative position between the second polarization separation means and the polarizing plate is such that the second direction is at a predetermined angle 0, (0 ° ⁇ , ⁇ 90 °) with respect to the direction of the absorption axis of the polarizing plate.
  • the display device of the present invention can provide a high contrast and bright display at the time of reflective display or transmissive display.
  • the contrast of the reflective display using external light can be increased while the light source light is increased.
  • the first polarization separation unit transmits light of the linear polarization component in the first direction and transmits the light of the first polarization direction. It consists of a reflective polarizer that reflects the light of the linearly polarized light component in the direction orthogonal to the direction.
  • the reflective polarizer transmits the linearly polarized light component in the first direction of the incident light as the linearly polarized light component in the first direction. Then, the linearly polarized light component in a direction orthogonal to the first direction is reflected as a linearly polarized light component in the orthogonal direction. Therefore, display can be performed based on the light transmitted through the reflective polarizer.
  • the reflective polarizer has a birefringent first layer, and a birefringent material having a refractive index substantially equal to any one of a plurality of refractive indexes of the first layer.
  • the reflective polarizer having such a configuration may have a configuration in which the second layer having no reflective polarizer is alternately laminated.
  • the light of the linear polarization component in the first direction is transmitted as the light of the linear polarization component in the first direction to the other main surface on the opposite side.
  • the light of the linear polarization component in the direction orthogonal to the first direction is reflected as the light of the linear polarization component in the direction orthogonal to the first direction.
  • the light of the linearly polarized light component in the first direction is converted into the light of the linearly polarized light component in the first direction on one side of the opposite side. Transmits to the main surface side.
  • the light of the linearly polarized light component in the direction orthogonal to the first direction is reflected as the light of the linearly polarized light component in the orthogonal direction.
  • the first polarization splitting unit transmits the linearly polarized light component in the first direction and transmits the linearly polarized light component in a direction orthogonal to the first direction. It is characterized by comprising a polarizing plate that absorbs light.
  • the polarizing plate transmits the linearly polarized light component in the first direction of the incident light as the linearly polarized light component in the first direction, and converts the linearly polarized light component in a direction orthogonal to the first direction. Absorb. Therefore, display can be performed based on the light transmitted through the polarizing plate.
  • the second polarization separation unit transmits the linearly polarized light component in the second direction and transmits the linearly polarized light component in a direction orthogonal to the second direction. It consists of a reflective polarizer that reflects light.
  • the reflective polarizer transmits the linearly polarized light component in the second direction of the incident light as the linearly polarized light component in the second direction. Then, the linearly polarized light component in a direction orthogonal to the second direction is reflected as a linearly polarized light component in the orthogonal direction. Therefore, display can be performed based on the light transmitted through the reflective polarizer.
  • the reflective polarizer has a birefringent first layer, and a birefringent material having a refractive index substantially equal to any one of a plurality of refractive indexes of the first layer.
  • the reflective polarizer having such a configuration may be configured such that the second layer having no reflective layer is alternately laminated with a second layer having no reflective layer.
  • the light of the linear polarization component in the second direction is transmitted to the other main surface on the opposite side as the light of the linear polarization component in the second direction. Then, the light of the linear polarization component in the direction orthogonal to the second direction is reflected as the light of the linear polarization component in the direction orthogonal to the second direction.
  • the light of the linearly polarized light component in the second direction is transmitted as the light of the linearly polarized light component in the second direction to the one main surface on the opposite side.
  • the light of the linearly polarized light component in the direction orthogonal to the second direction is reflected as the light of the linearly polarized light component in the orthogonal direction.
  • the second polarization separation unit transmits the linearly polarized light component in the second direction with respect to light in substantially the entire wavelength range of a visible light region.
  • the light of the linear polarization component in the direction orthogonal to the second direction is reflected.
  • two display states are obtained for external light in substantially the entire wavelength range of the visible light region in accordance with the direction of the transmission polarization axis in the transmission polarization axis variable means.
  • one display state display by transparent reflection or white reflection is obtained.
  • two display states can be obtained according to the direction of the transmission polarization axis in the transmission polarization axis variable means for light source light in almost the entire wavelength range of the visible light region.
  • display by transparent reflection or white reflection is obtained.
  • an angle between the transmission axis and the absorption axis of the polarizing plate is a right angle.
  • the predetermined angle ⁇ is 30 to 75 degrees.
  • the predetermined angle 0 may be configured to be 45 to 60 degrees. With such a configuration, better contrast and brightness can be obtained both in the reflective display mode and in the transmissive display mode.
  • the transmission polarization axis changing unit includes a liquid crystal element. That is, the display device may be configured as a liquid crystal display device.
  • the transmission polarization axis changing means may further include a TN liquid crystal element and an STN liquid crystal element.
  • an ECB (Electrically Controlled Birefringence) liquid crystal element may be used.
  • the STN liquid crystal element includes an STN liquid crystal element using an optically anisotropic body for color compensation.
  • a liquid crystal element having a birefringence effect such as an ECB liquid crystal element is used, the color emitted from the light source can be changed.
  • a second transmission polarization axis varying unit is further provided on the side opposite to the transmission polarization axis varying unit with respect to the second polarization separation unit.
  • the second transmission polarization axis variable means can adjust the absorption of the external light transmitted through the second polarization separation means, and can adjust the contrast.
  • the second transmission polarization axis variable means can adjust the intensity of the light source light transmitted through the second polarization separation means and adjust the brightness.
  • the second transmission polarization axis changing unit may be configured to include a liquid crystal element.
  • the second transmission polarization axis changing means may be a TN liquid crystal element, an STN liquid crystal element, or an ECB (Electrically Controlled Birefringence) liquid crystal element.
  • the second transmission polarization axis changing unit may be disposed between the second polarization separation unit and the polarizing plate.
  • the direction of the linearly polarized light transmitted through the second polarization splitting means is changed with respect to the transmission axis of the polarizing plate by the second transmission polarization axis changing means.
  • the ratio at which the linearly polarized light is absorbed by the polarizing plate can be arbitrarily adjusted.
  • the direction of the linearly polarized light transmitted through the polarizing plate is changed by the second transmission polarization axis changing means in the second direction of the second polarization separation means. It is possible to arbitrarily adjust the ratio of the linearly polarized light transmitting through the second polarization separation means, and as a result, it is possible to adjust contrast during reflective display and brightness during transmissive display.
  • the display device further includes a translucent light diffusing unit between the light source and the first polarization splitting unit.
  • the light passes through the first polarization separation means and is emitted as display light.
  • Light can provide a non-mirror (paper-like) display.
  • the arrangement of the light diffusion means may be, for example, between the first polarization separation means and the transmission polarization axis variable means, or between the transmission polarization axis variable means and the first polarization separation means. It may be.
  • the display apparatus of the present invention since the display apparatus of the present invention is provided, various electronic apparatuses capable of performing bright display while maintaining the contrast at a desired level can be realized.
  • the electronic device of the present invention may be equipped with any one of the various modes described above, depending on the application.
  • the object of the present invention is to provide a variable transmission polarization axis optical element, a first polarization separator that is disposed on one side of the transmission polarization axis variable optical element and performs polarization separation by reflection or absorption.
  • a second polarization separator that is disposed on the other side of the variable transmission polarization axis optical element and performs polarization separation by reflection; and a variable transmission polarization axis with respect to the second polarization separator.
  • a polarizing plate disposed on the side opposite to the optical element; a light source disposed on the side opposite to the second polarization separator with respect to the polarizing plate and incident light on the side of the transmission polarization axis variable optical element;
  • the second direction is displaced by a predetermined angle 0 (0 ° ⁇ 0 ⁇ 90 °) with respect to the direction of the transmission axis of the polarizing plate, and the absorption direction of the absorbing axis of the polarizing plate is The second polarized light component is deviated from the direction by a predetermined angle ⁇ , where 0 ° ⁇ , ⁇ 90 °. Even by a display device which vessel the relative position of the polarizer is defined it is achieved.
  • known matrix methods such as a simple matrix method, an active matrix method using a TFT (Thin Film Transistor) and a TFD (Thin Film Diode), and a segment method are known. Whichever type of display device is used, a bright reflective display can be realized.
  • the polarization separating means of the present invention in addition to the above-mentioned reflective polarizer, for example, a combination of a cholesteric liquid crystal layer and a (1/4) human plate, or the angle of Bruce is used. (S 1 D 9 2 D 1 GE ST pages 427 to 429), those using holograms, internationally published international applications (international application publications: WO 95/27891 and WO 95/177692) ) Can also be used. It should be noted that these various types of polarization separators can also be used instead of the reflective polarizer in each of the embodiments described later. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic perspective view of a polarization separator (reflection polarizer) used in the display device of each embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the operation principle at the time of reflective display in the display device of each embodiment of the present invention.
  • FIG. 3 is a diagram for explaining the operation principle at the time of transmissive display in the display device of each embodiment of the present invention.
  • FIG. 4 is an exploded cross-sectional view for explaining the liquid crystal display device according to the first embodiment of the present invention.
  • FIG. 5 is a characteristic diagram showing changes in contrast and reflectance when the predetermined angle 0 is changed during reflective display in the liquid crystal display device according to the first embodiment of the present invention (FIG. 5 (a)).
  • FIG. 5 (b) is a characteristic diagram showing changes in contrast and transmittance when a predetermined angle 0 is changed during transmission type display.
  • FIG. 6 is an exploded cross-sectional view for explaining a liquid crystal display device of a comparative example with respect to the second embodiment of the present invention.
  • FIG. 7 is a table showing a comparison of contrast and transmittance characteristics between the second embodiment of the present invention and a comparative example.
  • FIG. 8 is an exploded cross-sectional view for explaining a liquid crystal display device according to a third embodiment of the present invention.
  • 9 (a), 9 (b) and 9 (c) are perspective views of an embodiment of the electronic device according to the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described for each embodiment with reference to the drawings.
  • FIG. 1 is a schematic perspective view of a reflective polarizer (reflective polarizer) as an example of a polarization separator used in each embodiment of the present invention.
  • the basic configuration of such a reflective polarizer is described in Japanese Patent Application Laid-Open No. 9-506985 (International Application Publication: WO / 95Z1 7692) and International Application Publication: W0 / 95/27819. It is disclosed in the issue.
  • the polarization separator 160 has a structure in which two different layers 1 (A layer) and 2 (B layer) are alternately laminated in a plurality of layers.
  • the refractive index in the X direction (nAX) of the A layer 1 is different from the refractive index (nAY) in the Y direction.
  • the refractive index in the X direction (nBX) of the B layer 2 is equal to the refractive index in the Y direction (nBY).
  • the refractive index of the A layer 1 in the Y direction (nAY) is equal to the refractive index of the B layer 2 in the Y direction (nBY).
  • the linearly polarized light in the Y direction out of the light incident on the polarization separator 160 from the direction perpendicular to the upper surface 5 of the polarization separator 160 passes through the polarization separator 160 and returns from the lower surface 6 to the straight line in the Y direction. Emitted as polarized light.
  • linearly polarized light in the Y direction out of the light incident on the polarization separator 160 from a direction perpendicular to the lower surface 6 of the polarization separator 160 passes through the polarization separator 160 and passes from the upper surface 5 to Y Emitted as linearly polarized light in the direction.
  • the direction of transmission (the Y direction in this example) is called a transmission axis.
  • the thickness of the A layer 1 in the Z direction is t A
  • the thickness of the B layer 2 in the Z direction is t B
  • the wavelength of the incident light is given by:
  • the linearly polarized light in the X direction out of the light incident on the polarization separator 160 from the direction perpendicular to the upper surface 5 of the polarization separator 160 is The X direction is reflected as linearly polarized light by the separator 160.
  • linearly polarized light which is light of a wavelength and is on the lower surface 6 of the polarization separator 160, is The light is reflected as linearly polarized light in the X direction by the polarization separator 160.
  • the direction of reflection (the X direction in this example) is called a reflection axis.
  • the thickness (tA) of the A layer 1 in the Z direction and the thickness tB of the B layer 2 in the Z direction are variously changed so that the above (1) is satisfied over the entire visible light wavelength range.
  • a polarization separator that reflects linearly polarized light in the X direction as linearly polarized light in the X direction, and transmits linearly polarized light in the Y direction as linearly polarized light in the Y direction. Is obtained.
  • FIG. 2 is a diagram for explaining a case where external light is incident on the display device
  • FIG. 3 is a diagram for explaining a case where a light source is turned on in the display device.
  • the liquid crystal display devices shown in these drawings are for explaining the principle of the present invention, and it goes without saying that the present invention is not limited to the liquid crystal display devices shown in these drawings.
  • a TN liquid crystal 140 is used as a transmission polarization axis variable optical element.
  • a polarizing plate 130 is provided as an example of a first polarization separating means.
  • a light scattering layer 150 is provided below the TN element 140.
  • a polarization separator 160 is provided below the TN element 140.
  • a light source 190 capable of emitting light from below the polarization separator 160 is provided.
  • the direction of the transmission axis (second direction) of the polarization separator 160 is a predetermined angle 0 (where 0 degrees ⁇ 0 ⁇ 90) with respect to the direction of the transmission axis of the polarizing plate 170.
  • the position relative to 70 is specified.
  • the operation principle of the reflective display will be described with the left side of the display device as the voltage application unit 110 and the right side as the no voltage application unit 120 under external light.
  • the natural light 12 1 incident as external light is converted into linearly polarized light in a direction parallel to the paper by the polarizing plate 130, and then the polarization direction is changed by the TN liquid crystal 140.
  • the light is twisted by 90 ° to become linearly polarized light in a direction perpendicular to the paper surface, and is reflected by the polarization separator 160 through the light diffusion layer 150.
  • the reflected linearly polarized light in a direction perpendicular to the plane of the paper is again twisted by 90 ° by the TN liquid crystal 140 through the light diffusion layer 150 and the linearly polarized light in a direction parallel to the plane of the paper. Then, the light is emitted from the polarizing plate 130 as linearly polarized light in a direction parallel to the paper surface.
  • the incident light is reflected instead of being absorbed by the polarization separator 160, so that a bright display is obtained. Since a light scattering layer 150 is provided between the polarization separator 160 and the TN liquid crystal 140, the reflected light from the polarization separator 160 changes from a mirror surface to a white one. Seen with a wide field of view.
  • the natural light 111 incident as external light becomes linearly polarized light parallel to the paper by the polarizing plate 130, and then the TN liquid crystal 140 changes its polarization direction.
  • the light passes through the polarization separator 160 with linear polarization in the direction parallel to the paper.
  • the transmitted light is absorbed by the polarizing plate 170 in accordance with a shift between the transmission axis of the polarization separator 160 and the transmission axis of the polarizing plate 170.
  • the light transmitted through the polarizing plate 170 is absorbed or scattered by the light source 190 in the non-lighting state, the light is reflected by the light source 190 and is again reflected as a component of the transmission axis of the polarizing plate 170.
  • the component transmitted through the polarizing plate 170 is small or hardly present.
  • the light reflected by the polarization separator 160 is scattered by the light scattering layer 150 to become a white emission light 122, and the voltage applying section In 110, the light transmitted through the polarization separator 160 becomes dark with little or no return to the polarization separator 160 due to absorption by the polarizing plate 170 or the like.
  • the operation principle of the transmissive display will be described with the left side of the display device as the voltage application unit 110 and the right side as the no voltage application unit 120 under the light of the light source.
  • the light source light 125 becomes linearly polarized light in the direction of its transmission axis by the polarizing plate 17 ° in the right-side no-voltage application section 12 °, and further polarized light.
  • the light is converted into linearly polarized light parallel to the paper by the separator 160, and the polarization To Penetrate.
  • the linearly polarized light parallel to the paper surface transmitted through the polarization separator 160 is twisted 90 ° by the TN liquid crystal 140 to become linearly polarized light in a direction perpendicular to the paper surface, and the polarizing plate 13 Absorbed by 0. That is, the voltage non-applied portion 120 becomes dark.
  • the light source light 115 becomes linearly polarized light in the direction of its polarization axis by the polarizing plate 170, and furthermore, the light in the direction parallel to the paper surface by the polarization separator 160. It becomes linearly polarized light and passes through the polarization separator 160. Therefore, the light source light 125 is attenuated by the polarizing plate 170 and the polarization separator 160 in accordance with the shift between the transmission axis of the polarizing plate 170 and the transmission axis of the polarization separator 160.
  • the linearly polarized light parallel to the paper surface transmitted through the polarization separator 160 is transmitted by the TN liquid crystal 140 as linearly polarized light 1 16 in the direction parallel to the paper surface without changing the polarization direction, and the polarizer 1 It is emitted without being absorbed by 30. That is, the voltage applying unit 110 becomes brighter in the color of the light source light 116.
  • the TN liquid crystal 140 was used as an example, but instead of the TN liquid crystal 140, STN liquid crystal or ECB (E Basic operation principle is the same even if other transmission polarization axes such as liquid crystal can be changed by voltage or the like.
  • FIG. 4 is an exploded cross-sectional view for explaining the liquid crystal display device according to the first embodiment of the present invention
  • FIG. 5 is a characteristic diagram showing a contrast characteristic, a transmittance characteristic, and the like.
  • an STN cell 20 is used as a transmission polarization axis variable optical element.
  • STN cell above 20 In the figure, a phase difference film 14 and a polarizing plate 12 are provided in this order.
  • a light diffusion plate 30, a polarization separator 40 and a polarization plate 50 are provided in this order.
  • a light source 70 to which light can enter from below the polarizing plate 50 is provided.
  • the light source 70 uses an LED (Light Emitting Diode) 71, and emits light upward through the light guide 72.
  • LED Light Emitting Diode
  • the polarization separator 40 As the polarization separator 40, the polarization separator described with reference to FIG. 1 (that is, the reflective polarizer) is used.
  • an STN liquid crystal 26 is sealed in a cell constituted by two glass substrates 21 and 22 and a sealing member 23.
  • a transparent electrode 24 is provided on the lower surface of the glass substrate 21, and a transparent electrode 25 is provided on the upper surface of the glass substrate 22.
  • IT ⁇ Indium Tin Oxide
  • tin oxide tin oxide, or the like.
  • the retardation film 14 is used as an optically anisotropic body for color compensation, and is used to correct coloring generated in the STN cell 20.
  • the operation principle of the liquid crystal display device 10 of the present embodiment is the same as in the case of FIG. 2 and FIG.
  • the light reflected by the polarization separator 40 in the no-voltage application region is scattered by the light diffusion plate 30 to be emitted as white linearly polarized light, and is polarized and separated in the voltage application region.
  • the light that has passed through the optical separator 40 is returned to the polarized light separator 40 again, and becomes dark, due to absorption by the polarizing plate 50 and the like. Therefore, a black display is obtained on a white background.
  • the light source 70 When the light source 70 is turned on, the light is absorbed by the polarizer 12 in a voltage non-applied region and becomes dark, and becomes bright without being absorbed by the polarizer 12 in a voltage applied region. Therefore, under the lighting of the light source 70, a light source color can be displayed on a black background. That is, a black positive display is obtained on a white background under external light, and a negative display of a light source color is obtained on a black background when the light source 70 is lit.
  • the relative position between the polarization separator 40 and the polarizing plate 50 is such that the direction of the transmission axis of the polarization separator 40 is the same as the direction of the transmission axis of the polarizing plate 50. Since the angle is defined to be shifted by the predetermined angle 0 (however, 0 degree ⁇ ⁇ 90 degrees), the direction of the transmission axis of the polarization separator 40 coincides with the direction of the transmission axis of the polarizing plate 5 °. (Ie, ⁇ ⁇ 0 degrees), the light transmitted through the polarization separator 40 is far more Absorbed in large quantities. Therefore, the voltage application part can be darkened by the amount absorbed, so that the contrast is enhanced. Regarding the brightness in the reflection type display, the polarization separation is performed not by light absorption but by light reflection in the polarization separator 40, and the reflected linearly polarized light component is used as display light. You.
  • the relative position between the polarization separator 40 and the polarizing plate 50 is such that the direction of the transmission axis of the polarization separator 40 is at a predetermined angle with respect to the direction of the absorption axis of the polarizing plate 50.
  • the voltage application part can be made brighter by the amount of the transmission, so that the contrast can be increased and the brightness can be increased at the same time.
  • the specific angle ⁇ ⁇ which is the angle between the transmission axis of the polarizing plate 50 and the transmission axis of the polarization separator 40, will be discussed more specifically with reference to FIG.
  • the swist angle of the S ⁇ liquid crystal 26 is 250 °
  • the thickness of the liquid crystal layer is 5.8 ⁇ m
  • the optical anisotropy ⁇ of the liquid crystal is 0.13.
  • the retardation value of the phase difference film 14 is 570 nm
  • the duty ratio is 1/240.
  • FIG. 5 (a) is a characteristic diagram showing changes in contrast and reflectance when the angle 0 is changed in the display device 10 under external light (during reflective display).
  • b) is a characteristic diagram showing changes in contrast and transmittance when the angle 0 is changed when the light source is turned on (in transmissive display).
  • the contrast is good at the time of the reflection type display. More specifically, in the characteristic diagram of FIG. ⁇ 75 degrees is preferred. Furthermore, in the characteristic diagram of FIG. 5 (a), when the angle ⁇ is 45 to 60 degrees, the contrast in the reflective display is better, and at the same time, in the characteristic diagram of FIG.
  • the transmittance (ie, brightness) at the time of die display is also at a favorable level without any practical problem.
  • the reflectance in the display device 10 based on the contrast and the polarization separator 40 and the polarizing plate 50 (that is, the reflectance)
  • the brightness of the display can be increased to a high level
  • the contrast and the transmittance (that is, the brightness of the display) in the display device 10 based on the polarization separator 40 and the polarizing plate 50 can be increased. Level.
  • FIG. 6 is an exploded cross-sectional view for explaining a display device of a comparative example with respect to the second embodiment
  • FIG. 7 shows contrast characteristics and the like of the second embodiment and the comparative example. It is a table compared.
  • the angle 0 is 50 degrees
  • the twist angle of the STN liquid crystal 26 is 240 degrees
  • the thickness of the liquid crystal layer is 6.5 ⁇ m.
  • the optical anisotropy ⁇ of the liquid crystal is 0.133
  • the retardation value of the retardation film 14 is 600 nm.
  • Other configurations are the same as those of the first embodiment shown in FIG.
  • the characteristics at the time of reflection and at the time of light source lighting in the second embodiment thus configured were examined.
  • a display device as shown in FIG. 6 was used. That is, in the comparative example, instead of the light diffusing plate 30, the polarization separator 40 and the polarizing plate 50, a polarizing plate 80 and a semi-transmissive plate were used. A firing plate 90 is provided.
  • Fig. 7 shows the characteristics of reflection and light source lighting when driving at 1/240 duty.
  • the contrast at reflection is the same, but the reflectivity increases by 65%.
  • the transmittance does not change much, but the contrast increases by 15%. This is because the contrast between dots increases in the comparative example because the dots between dots are bright in the comparative example, but dark in the comparative example.
  • FIG. 8 is an exploded cross-sectional view for explaining a liquid crystal display device according to a third embodiment of the present invention.
  • a TN liquid crystal cell 102 is provided between the polarization separator 40 and the polarizing plate 50 in the first embodiment.
  • Other configurations are the same as those of the first embodiment shown in FIG.
  • the TN liquid crystal 102 is contained in a cell composed of two glass substrates 102, 102 and a sealing member 102. 6 is enclosed.
  • a transparent electrode 102 is provided on the lower surface of the glass substrate 102, and a transparent electrode 102 is provided on the upper surface of the glass substrate 102.
  • a voltage can be applied between the transparent electrode 102 and the transparent electrode 102.
  • the contrast at the time of reflection and the brightness at the time of transmission can be freely set.
  • an ECB liquid crystal cell is provided in place of the TN liquid crystal cell 120 in the third embodiment.
  • the transparent electrode 102 and the transparent electrode 102 into a dot matrix, a display with a larger amount of information can be performed.
  • the polarizing plate 1 2 (see FIGS. 2 and 3)
  • the polarized light separator 130) in the above may be composed of a reflective polarizer as shown in FIG. 1 similarly to the polarized light separator 40.
  • a reflective polarizer that reflects light over the entire wavelength range of visible light
  • a polarization separator that reflects only light in a specific wavelength range.
  • the display of a desired color may be performed using the reflective polarizer.
  • the fifth embodiment includes an electronic device equipped with the liquid crystal display device as in each of the embodiments described above.
  • the liquid crystal display device of each embodiment is applied to, for example, a display portion 3001 of a cellular phone 30000 as shown in FIG. 9 (a), it can be used in the sun, in the shade, or indoors. It is possible to realize an energy-saving mobile phone that provides a bright, high-contrast reflective display. Also, if it is applied to the display 3101 of a wristwatch 3100 as shown in Fig. 9 (b),
  • Energy-saving wristwatches that provide bright, high-contrast reflective displays, whether in the sun, in the shade, or indoors, can be realized.
  • liquid crystal display device of the present embodiment is also applicable to electronic devices such as a telephone, a POS terminal, and a device having a touch panel.
  • the display device according to the present invention can be used as a high-contrast, bright reflective and transmissive display device by using a liquid crystal device as a transmission polarization axis changing means.
  • a liquid crystal device as a transmission polarization axis changing means.
  • the electronic device according to the present invention is configured using such a display device, and can be used as an energy-saving electronic device capable of performing high-contrast, bright reflective display and transmissive display.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Description

明 細 表示装置及びそれを用いた電子機器 技術分野
本発明は表示装置の技術分野に関し、 特に偏光板、 反射偏光子等の偏光分離器 を備えており、 外光を反射して表示を行う反射型及び光源光を透過して表示する 透過型の両用可能な液晶表示装置等の表示装置及びそれを用いた携帯電話や時計 等の電子機器の技術分野に関する。 背景技術
従来、 外光を用いて表示を行う反射型の表示装置の場合、 暗所では光量の減少 に応じて、 表示が見え難くなつてしまう。 他方、 バックライ ト等の光源を用いて 表示を行う透過型の表示装置の場合、 明所、 暗所によらずに光源の分だけ電力省 費が大きくなり、 特に電池により動作させる携帯用の表示装置等には適さない。 そこで、 反射型及び透過型の両用可能な半透過反射型の表示装置は、 主に明所用 に、 表示画面から入射する外光を装置内部に設けられた半透過反射膜で反射しつ つ、 その光路上に配置された液晶、 偏光分離器等の光学素子を用いて表示画面か ら出射する光量を画素毎に制御することにより、 反射型表示を行う。 他方、 主に 暗所用に、 前述の半透過反射膜の裏側からバックライ ト等の内蔵光源により光源 光を照射しつつ、 前述の液晶、 偏光分離器等の光学素子を用いて、 表示画面から 出射する光量を画素毎に制御することにより、 透過型表示を行う。
このように反射型及び透過型の両用可能であり、 従来の T N (Twisted Nematic ) 液晶や S T N ( Super- Twi sted Nemati c) 液晶等の透過光の偏光軸を回転させる 透過偏光軸可変光学素子を利用した液晶表示装置においては、 この透過偏光軸可 変光学素子を 2枚の偏光板で挟んだ構造を採用している。
上述の反射型表示の場合には、 この 2枚の偏光板を備えた構成において、 外光 が表示画面から入射すると、 液晶の表示画面側にある第 1偏光板を特定方向の偏 光成分のみが透過し、 他の偏光成分は、 この第 1偏光板により吸収される。 第 1 偏光板を透過した光は、 液晶に印加される電圧に応じて変化する液晶の配向状態 に応じて、 その偏光方向が選択的に変化させられ、 液晶の他方の側にある第 2偏 光板に入射する。 この外光は、 例えばノ一マリーホワイ トモ一ドであれば各画素 について、 ( i ) 液晶に電圧が印加されない状態では、 この液晶から出射した光 が第 2偏光板を透過し、 更にその裏側にある反射板により反射された後、 再び第 2偏光板、 液晶及び第 1偏光板を透過して、 液晶表示装置の表示画面から表示光 として出射され、 ( i i ) 液晶に電圧が印加された状態では、 この液晶を出射し た光が第 2偏光板で吸収され、 最終的に表示画面から表示光は出射されない。 このように、 表示画面から入射する外光を装置内部に設けられた反射膜で反射 しつつ、 その光路上に配置された液晶、 偏光板等を用いて表示画面から出射する 表示光の光量を画素毎に制御することにより、 反射型表示は行われる。
他方、 上述の透過型表示の場合には、 この 2枚の偏光板を備えた構成において 、 光源光が表示画面から見て液晶の裏側から発せられると、 液晶の裏側にある第 2偏光板を特定方向の偏光成分のみが透過し、 他の偏光成分は、 この第 2偏光板 により吸収される。 第 2偏光板を透過した光は、 液晶に印加される電圧に応じて 変化する液晶の配向状態に応じて、 その偏光方向が選択的に変化させられ、 液晶 の表示画面側にある第 1偏光板に入射する。 この光源光は、 例えばノーマリ一ホ ワイ トモ一ドであれば各画素について、 ( i ) 液晶に電圧が印加されない状態で は、 この液晶から出射した光が第 1偏光板を透過して、 液晶表示装置の表示画面 から表示光として出射され、 ( i i ) 液晶に電圧が印加された状態では、 この液 晶を出射した光が第 1偏光板で吸収され、 表示画面から表示光は出射されない。 このように、 光源光の光路上に配置された液晶、 偏光板等を用いて表示画面か ら出射する表示光の光量を画素毎に制御することにより、 透過型表示は行われる
発明の閧示
しかしながら、 偏光分離器の一例たる偏光板は、 入射光のうち特定の偏光軸方 向と異なる方向の偏光成分を吸収することにより偏光を行うので、 光の利用効率 が悪い。 このため、 上述のように液晶の両側に 2枚の偏光板を配置して行う反射 型表示や透過型表示では、 表示が暗くなつてしまうという問題がある。 これに対 し、 偏光板を単純に他の偏光分離手段に置き換えることにより表示を明るく しょ うとすれば、 今度は、 表示の明るさと共に重要視される表示のコン トラス トが低 下してしまうという問題点がある。
本発明は上述の問題点に鑑みなされたものであり、 液晶等の透過偏光軸可変光 学素子を利用する表示装置において、 反射表示時や透過表示時に、 高コントラス 卜で明るい表示を行える表示装置及びこれを用いた電子機器を提供することを課 題とする。
本発明の上記課題は、 透過偏光軸を可変な透過偏光軸可変手段と、 該透過偏光 軸可変手段の一方の側に配置されており第 1の方向の直線偏光成分の光を透過さ せると共に該第 1の方向とは異なる所定方向の直線偏光成分の光を反射又は吸収 する第 1の偏光分離手段と、 前記透過偏光軸可変手段の他方の側に配置されてお り第 2の方向の直線偏光成分の光を透過させると共に該第 2の方向とは異なる所 定方向の直線偏光成分の光を反射する第 2の偏光分離手段と、 該第 2の偏光分離 手段に対して前記透過偏光軸可変手段と反対側に配置された偏光板と、 該偏光板 に対して前記第 2の偏光分離手段と反対側に配置されており前記透過偏光軸可変 手段の側に光を入射する光源とを備えており、 前記第 2の方向は、 前記偏光板の 透過軸の方向に対して所定角度 0 (但し、 0度 < θ < 9 0度) だけずれ且つ前記 偏光板の吸収軸の方向に対して所定角度 0, (但し、 0度 < 0 ' < 9 0度) だけ ずれるように前記第 2の偏光分離手段と前記偏光板との相対位置が規定されてい る表示装置により達成される。
本発明の表示装置によれば、 外光を利用して反射型表示を行う場合には、 第 1 の偏光分離手段側から外光が入射される。 第 1の偏光分離手段が、 入射した外光 のうち第 1の方向の直線偏光成分の光を透過偏光軸可変手段の側に透過させる。 そして、 第 1の偏光分離手段は、 第 1の方向と異なる所定方向 (例えば、 第 1の 方向と直交又はほぼ直交する方向) の直線偏光成分を反射又は吸収する。 次に、 第 2の偏光分離手段は、 第 1の偏光分離手段及び透過偏光軸可変手段を介して入 射した光のうち、 第 2の方向の直線偏光成分の光を、 透過偏光軸可変手段と反対 側に透過させ、 第 2の方向とは異なる所定方向 (例えば、 第 2の方向と直交又は ほぼ直交する方向) の直線偏光成分の光を反射する。 また、 第 2の偏光分離手段 を透過した光は、 偏光板によりその吸収軸の方向の成分が吸収され、 更に偏光板 を透過した光は、 非点灯状態にある光源部分において反射や拡散される。 他方、 第 2の偏光分離手段により反射された光は、 上記順番と逆順で、 透過偏光軸可変 手段及び第 1の偏光分離手段を通過する。
以上の結果、 反射型表示の場合には、 透過偏光軸可変手段における透過軸の方 向に応じて選択的に、 第 2の偏光分離手段により反射された光が透過偏光軸可変 手段を介して第 1の偏光分離手段側から出射されることによる (相対的に明るい ) 第 1の表示状態と、 第 2の偏光分離手段を透過した光が偏光板で吸収されるこ と等によって第 1の偏光分離手段側から出射されないことによる (相対的に暗い ) 第 2の表示状態とが得られる。 ここで特に、 第 2の偏光分離手段と偏光板との 相対位置は、 第 2の方向が偏光板の透過軸の方向に対して所定角度 0 (但し、 0 度 < θ < 9 0度) だけずれるように規定されているので、 第 2の方向が偏光板の 透過軸の方向と一致している (即ち、 6 = 0度の) 場合と比較して、 第 2の偏光 分離手段を透過した光が偏光板により遥かに大量に吸収される。 従って、 この吸 収される分だけ、 上述した第 2の表示状態において最終的に第 1の偏光分離手段 側から出射される光量を小さく出来るので、 当該反射型表示におけるコントラス 卜が高められる。 また、 当該反射型表示における明るさについては、 第 2の偏光 分離手段として従来のように偏光板を用いる場合 (或いは、 第 1及び第 2の偏光 分離手段の両方に偏光板を用いる場合) と比較して、 光の吸収ではなく光の反射 により偏光分離を行うと共にこの反射された直線偏光成分を表示光として利用す ることになるので、 明るい反射型の表示が得られる。
他方、 光源を利用して透過型表示を行う場合には、 光源から偏光板を介して第 2の偏光分離手段に光源光が入射される。 第 2の偏光分離手段が、 入射した光源 光のうち第 2の方向の直線偏光成分の光を透過偏光軸可変手段の側に透過させ、 第 2の方向と異なる所定方向の直線偏光成分の光を反射する。 更に、 第 1の偏光 分離手段は、 第 2の偏光分離手段及び透過偏光軸可変手段を介して入射した光の うち、 第 1の方向の直線偏光成分の光を、 透過偏光軸可変手段と反対側、 即ち表 示画面側に透過させる。 そして、 第 1の方向とは異なる所定方向の直線偏光成分 を反射する。
以上の結果、 透過型表示の場合には、 透過偏光軸可変手段における透過軸の方 向に応じて選択的に、 第 2の偏光分離手段を透過した光が第 1の偏光分離手段側 から出射されることによる (相対的に明るい) 第 3の表示状態と、 光源からの光 が第 1の偏光分離手段により反射されることによる (相対的に暗い) 第 4の表示 状態とが得られる。 ここで特に、 第 2の偏光分離手段と偏光板との相対位置は、 第 2の方向が偏光板の吸収軸の方向に対して所定角度 0, (但し、 0度 < θ, < 9 0度) だけずれるように規定されているので、 第 2の方向が、 偏光板の吸収軸 の方向と一致している (即ち、 Θ , = 0度の) 場合と比較して、 光源光は偏光板 及び第 2の偏光分離手段を遥かに大量に透過する。 従って、 この透過する分だけ 、 上述した第 3の表示状態において最終的に第 1の偏光分離手段側から出射され る光量を大きく出来るので、 当該透過型表示におけるコントラス トが高められる と同時に明るさを高められる。
このように本発明の表示装置により、 反射表示時や透過表示時に、 高コン トラ ストで明るい表示を行うことができ、 特に外光を用いた反射型表示におけるコン トラス トを高く しつつ光源光を用いた透過型表示における明るさを明るくできる 本発明の表示装置の一の態様では、 記第 1の偏光分離手段は、 前記第 1の方向 の直線偏光成分の光を透過させると共に前記第 1の方向と直交する方向の直線偏 光成分の光を反射する反射偏光子からなる。
この態様によれば、 反射偏光子が、 入射した光のうち第 1の方向の直線偏光成 分を第 1の方向の直線偏光成分として透過させる。 そして、 第 1の方向と直交す る方向の直線偏光成分を該直交する方向の直線偏光成分として反射する。 従って 、 当該反射偏光子を透過する光に基づいて表示を行える。
この態様では、 前記反射偏光子は、 複屈折性を有する第 1層と、 該第 1層の複 数の屈折率のうちのいずれか一つに実質的に等しい屈折率を有すると共に複屈折 性を有しない第 2層とが交互に積層された積層体からなるように構成してもよい このような構成の反射偏光子においては、 反射偏光子の一方の主面に対して積 層方向から入射された光のうち第 1の方向の直線偏光成分の光は第 1の方向の直 線偏光成分の光として反対側の他方の主面側に透過する。 そして、 第 1の方向と 直交する方向の直線偏光成分の光は、 該直交する方向の直線偏光成分の光として 反射される。 また、 反射偏光子の他方の主面に対して積層方向から入射された光 のうち第 1の方向の直線偏光成分の光は第 1の方向の直線偏光成分の光として反 対側の一方の主面側に透過する。 そして、 第 1の方向と直交する方向の直線偏光 成分の光は、 該直交する方向の直線偏光成分の光として反射される。
本発明の表示装置の他の態様では、 前記第 1の偏光分離手段は、 前記第 1の方 向の直線偏光成分の光を透過させると共に前記第 1の方向と直交する方向の直線 偏光成分の光を吸収する偏光板からなることを特徴とする。
この態様によれば、 偏光板は、 入射した光のうち第 1の方向の直線偏光成分を 第 1の方向の直線偏光成分として透過させ、 第 1の方向と直交する方向の直線偏 光成分を吸収する。 従って、 偏光板を透過する光に基づいて表示を行える。
本発明の表示装置の他の態様では、 前記第 2の偏光分離手段は、 前記第 2の方 向の直線偏光成分の光を透過させると共に前記第 2の方向と直交する方向の直線 偏光成分の光を反射する反射偏光子からなる。
この態様によれば、 反射偏光子が、 入射した光のうち第 2の方向の直線偏光成 分を第 2の方向の直線偏光成分として透過させる。 そして、 第 2の方向と直交す る方向の直線偏光成分を該直交する方向の直線偏光成分として反射する。 従って 、 当該反射偏光子を透過する光に基づいて表示を行える。
この態様では、 前記反射偏光子は、 複屈折性を有する第 1層と、 該第 1層の複 数の屈折率のうちのいずれか一つに実質的に等しい屈折率を有すると共に複屈折 性を有しない第 2層とが交互に積層された積層体からなるように構成してもよい このような構成の反射偏光子においては、 反射偏光子の一方の主面に対して積 層方向から入射された光のうち第 2の方向の直線偏光成分の光は第 2の方向の直 線偏光成分の光として反対側の他方の主面側に透過する。 そして、 第 2の方向と 直交する方向の直線偏光成分の光は、 該直交する方向の直線偏光成分の光として 反射される。 また、 反射偏光子の他方の主面に対して積層方向から入射された光 のうち第 2の方向の直線偏光成分の光は第 2の方向の直線偏光成分の光として反 対側の一方の主面側に透過する。 そして、 第 2の方向と直交する方向の直線偏光 成分の光は、 該直交する方向の直線偏光成分の光として反射される。
本発明の表示装置の他の態様では、 前記第 2の偏光分離手段は、 可視光領域の ほぼ全波長範囲の光に対して、 前記第 2の方向の直線偏光成分を透過させると共 に前記第 2の方向と直交する方向の直線偏光成分の光を反射する。
この態様によれば、 反射型表示時に、 可視光領域のほぼ全波長範囲の外光に対 して、 透過偏光軸可変手段における透過偏光軸の方向に応じて二つの表示状態が 得られ、 そのうち一方の表示状態では、 透明反射または白反射による表示が得ら れる。 他方、 透過型表示時に、 白色光源を用いれば、 可視光領域のほぼ全波長範 囲の光源光に対して、 透過偏光軸可変手段における透過偏光軸の方向に応じて二 つの表示状態が得られ、 そのうち一方の表示状態では、 透明反射または白反射に よる表示が得られる。
本発明の表示装置の他の態様では、 前記偏光板の前記透過軸と前記吸収軸との なす角は、 直角である。
この態様によれば、 偏光板は、 透過軸と吸収軸とのなす角が直角である既存の 偏光板であり、 所定角度 0 ' = 9 0度—所定角度 Sである。 従って、 比較的簡単 な構成を用いて、 反射型表示時及び透過型表示のいづれにおいても良好なコン ト ラス トと明るさとが得られる。
本発明の表示装置の他の態様では好ましくは、 前記所定角度 Θは、 3 0〜 7 5 度である。
この態様によれば、 反射型表示時及び透過型表示のいづれにおいてもより良好 なコントラス トと明るさとが得られる。
この態様では更に好ましくは、 前記所定角度 0は、 4 5〜 6 0度であるように 構成してもよい。 このように構成すれば、 反射型表示時及び透過型表示のいづれ においても更に良好なコン トラス トと明るさとが得られる。
本発明の表示装置の他の態様では、 前記透過偏光軸可変手段は、 液晶素子から なる。 即ち、 当該表示装置は、 液晶表示装置として構成されてもよい。
この場合更に、 前記透過偏光軸可変手段が、 T N液晶素子、 S T N液晶素子ま たは E C B (Electri cal ly Control led Bi refringence) 液晶素子であってもよい 。 このように構成すれば、 明るい高品位の反射型表示を比較的容易に行える。 な お、 この S T N液晶素子には、 色補償用光学異方体を用いる S T N液晶素子も含 んでいる。 また、 E C B液晶素子等複屈折効果をもつ液晶素子を利用すると、 前 記光源からの発色を変化させることが出来る。
本発明の表示装置の他の態様では、 前記第 2の偏光分離手段に対して前記透過 偏光軸可変手段と反対側に、 第 2の透過偏光軸可変手段を更に備える。
この態様によれば、 反射型表示時には、 第 2の透過偏光軸可変手段が第 2の偏 光分離手段を透過した外光の吸収を調整し、 コン トラス トを調整することが出来 る。 他方、 透過型表示時には、 第 2の透過偏光軸可変手段が第 2の偏光分離手段 を透過する光源光の強度を調整し、 明るさの調整することが出来る。
この態様では、 前記第 2の透過偏光軸可変手段は、 液晶素子からなるように構 成してもよい。
この場合更に、 前記第 2の透過偏光軸可変手段が、 T N液晶素子、 S T N液晶 素子または E C B (Electri cal ly Control l ed B i refringence) 液晶素子であって もよい。
この第 2の透過偏光軸可変手段を備えた態様では更に、 前記第 2の透過偏光軸 可変手段は、 前記第 2の偏光分離手段と前記偏光板との間に配置されてもよい。 このように構成すれば、 反射型表示には、 第 2の透過偏光軸可変手段により、 第 2の偏光分離手段を透過した直線偏光の方向を偏光板の透過軸に対して変化さ せることで、 当該直線偏光が偏光板により吸収される比率を任意に調整できる。 また、 透過型表示には、 第 2の透過偏光軸可変手段により、 偏光板を透過した直 線偏光の方向を第 2の偏光分離手段の第 2の方向 (こ対して変化させることで、 当 該直線偏光が第 2の偏光分離手段を透過する比率を任意に調整できる。 これらの 結果、 反射型表示時におけるコン トラス トの調整及び透過型表示時における明る さの調整を行うことが出来る。
本発明の表示装置の他の態様では、 前記光源と前記第 1の偏光分離手段との間 に、 透光性の光拡散手段を更に備える。
この態様によれば、 第 1の偏光分離手段側を透過し、 表示光として出射される 光により、 鏡面状態でない (紙状の) 表示を行える。 尚、 光拡散手段の配置とし ては、 例えば、 第 1の偏光分離手段と透過偏光軸可変手段との間であってもよい し、 透過偏光軸可変手段と第 1の偏光分離手段との間であってもよい。
本発明の上記課題は、 上述した本発明の表示装置を備えたことを特徴とする電 子機器によっても達成される。
本発明の電子機器によれば、 上述の本発明の表示装置を備えているので、 コン トラス トを所望レベルに保ちつつ明るい表示を行うことが可能な各種の電子機器 を実現できる。 尚、 本発明の電子機器は、 その用途によっては、 上述した各種態 様のうちいずれかの表示装置を搭載してもよい。
本発明の上記課題は、 透過偏光軸可変光学素子と、 該透過偏光軸可変光学素子 の一方の側に配置されており、 反射又は吸収により偏光分離を行う型の第 1の偏 光分離器と、 前記透過偏光軸可変光学素子の他方の側に配置されており、 反射に より偏光分離を行う型の第 2の偏光分離器と、 該第 2の偏光分離器に対して前記 透過偏光軸可変光学素子と反対側に配置された偏光板と、 該偏光板に対して前記 第 2の偏光分離器と反対側に配置されており前記透過偏光軸可変光学素子の側に 光を入射する光源とを備えており、 前記第 2の方向は、 前記偏光板の透過軸の方 向に対して所定角度 Θ (但し、 0度 < 0 < 9 0度) だけずれ且つ前記偏光板の吸 収軸の方向に対して所定角度 Θ, (但し、 0度 < Θ, < 9 0度) だけずれるよう に前記第 2の偏光分離器と前記偏光板との相対位置が規定されている表示装置に よっても達成される。
この表示装置によれば、 上述したように高コン トラス 卜で明るい表示が得られ る。
なお、 以上述べた本発明の表示装置においては、 単純マト リクス方式、 T F T (Thin Fi lm Transistor) や T F D (Thin F i lm D iode) 等を用いたァクティブマ ト リクス方式、 セグメント方式など、 公知のいずれの駆動方式の表示装置として 構成しても、 明るい反射型表示を実現できる。
また、 本発明の偏光分離手段としては、 前記のような反射偏光子以外にも、 例 えばコレステリ ック液晶層と ( 1 / 4 ) 人板を組み合わせたもの、 ブリュース夕 一の角度を利用して反射偏光と透過偏光とに分離するもの ( S 1 D 9 2 D 1 GE S T 第 42 7頁乃至第 42 9頁) 、 ホログラムを利用するもの、 国際公開 された国際出願 (国際出願公開: W〇 9 5 / 27 8 1 9号及び WO 9 5/1 7 6 92号) に開示されたもの等を用いることもできる。 尚、 これら各種の偏光分離 器は、 後述の各実施例においても、 同様に反射偏光子の代わりに利用することが 可能である。 図面の簡単な説明
図 1は、 本発明の各実施例の表示装置に用いる偏光分離器 (反射偏光子) の概 略斜視図である。
図 2は、 本発明の各実施例の表示装置における反射型表示時の動作原理を説明 するための図である。
図 3は、 本発明の各実施例の表示装置における透過型表示時の動作原理を説明 するための図である。
図 4は、 本発明の第 1の実施例の液晶表示装置を説明するための分解断面図で ある。
図 5は、 本発明の第 1の実施例の液晶表示装置における、 反射型表示時に所定 角度 0を変化させた場合のコン トラス ト及び反射率の変化を示す特性図 (図 5 ( a) ) 及び透過型表示時に所定角度 0を変化させた場合のコントラスト及び透過 率の変化を示す特性図 (図 5 (b) ) である。
図 6は、 本発明の第 2の実施例に対する比較例の液晶表示装置を説明するため の分解断面図である。
図 7は、 本発明の第 2の実施例と比較例とにおける、 コン トラス ト及び透過率 特性を比較して示す表である。
図 8は、 本発明の第 3の実施例の液晶表示装置を説明するための分解断面図で ある。
図 9 (a) 、 (b) 及び ( c) は夫々、 本発明による電子機器の実施例の斜 視図である。 発明を実施するための最良の形態 以下、 本発明を実施するための最良の形態について実施例毎に図面に基づい て説明する。
(動作原理)
まず、 図 1から図 3を参照して本発明の各実施例による液晶表示装置の動作 原理を説明する。
図 1は、本発明の各実施例に用いられる偏光分離器の一例たる反射偏光子(r eflective polarizer: リフレクティブ 'ポラライザ一) の概略斜視図である。 尚、 このような反射偏光子の基本的な構成については、 特表平 9— 50698 5号公報 (国際出願公報: WO/9 5Z1 7692号) 及び国際出願公報: W 0/95/278 1 9号の中に開示されている。
偏光分離器 1 60は、 異なる 2つの層 1 (A層) と 2 (B層)とが交互に複数 層積層された構造を有している。 A層 1の X方向の屈折率 (nAX) と Y方向の 屈折率 (nAY) とは異なる。 B層 2の X方向の屈折率 (nBX) と Y方向の屈折 率 (nBY) とは等しい。 また、 A層 1の Y方向の屈折率 (nAY) と B層 2の Y 方向の屈折率 (nBY) とは等しい。
従って、 この偏光分離器 1 60の上面 5に垂直な方向から偏光分離器 1 6 0 に入射した光のうち Y方向の直線偏光はこの偏光分離器 1 60を透過し下面 6 から Y方向の直線偏光の光として出射する。 また、 逆に偏光分離器 1 60の下 面 6に垂直な方向から偏光分離器 1 60に入射した光のうち Y方向の直線偏光 の光はこの偏光分離器 1 60を透過し上面 5から Y方向の直線偏光の光として 出射する。 ここで、 このように透過する方向 (本例では Y方向) のことを透過 軸と呼ぶ。
一方、 A層 1の Z方向における厚みを t A、 B層 2の Z方向における厚みを t Bとし、 入射光の波長をえとすると、
t A · nAX+ t B · nBX= λ/ 2 ( 1 )
となるようにすることによって、 波長人の光であって偏光分離器 1 60の上面 5に垂直な方向から偏光分離器 1 60に入射した光のうち X方向の直線偏光の 光は、 この偏光分離器 1 60によって X方向は直線偏光の光として反射される 。 また、 波長人の光であって偏光分離器 1 60の下面 6に直線偏光の光は、 こ の偏光分離器 1 6 0によって X方向の直線偏光の光として反射される。 ここで 、 反射する方向 (本例では X方向) のことを反射軸と呼ぶ。
そして、 A層 1の Z方向における厚み t A及び B層 2の Z方向における厚み t Bを種々変化させて、 可視光の全波長範囲にわたって上記( 1 ) が成立するよう にすることにより、 単一色だけでなく、 白色光全部にわたって X方向の直線偏光 の光を X方向の直線偏光の光として反射し、 Y方向の直線偏光の光を Y方向の直 線偏光の光として透過させる偏光分離器が得られる。
尚、 可視光の特定の波長範囲にわたって上記 ( 1 ) が成立するようにするこ とにより、 この特定の波長範囲の光だけが反射するようにして、 白色ではなく 所望色の表示を行うように構成することも可能である。
次に、以上のように構成された反射偏光子を偏光分離器として用いた表示装置 における、 外光を用いた反射型表示時の動作及び光源光を用いた透過型表示時の 動作について図 2及び図 3を参照して説明する。 図 2は、 表示装置に対して外光 が入射した場合について説明するための図であり、 図 3は、 表示装置において光 源が点灯した場合について説明するための図である。 なお、 これらの図に示した 液晶表示装置は、 本発明の原理を説明するためのものであり、 本発明がこれら の図に示した液晶表示装置に限定されるものでないことはいうまでもない。 図 2に示すように、 表示装置においては、 透過偏光軸可変光学素子として T N 液晶 1 4 0を使用している。 T N液晶 1 4 0の上側には、 第 1の偏光分離手段の 一例として偏光板 1 3 0が設けられている。 T N素子 1 4 0の下側には、 光散乱 層 1 5 0、 第 2の偏光分離手段の一例としての偏光分離器 1 6 0及び偏光板 1 Ί 0が、 この順に設けられている。 また、 偏光分離器 1 6 0の下方より光を出射す ることの出来る光源 1 9 0が設けられている。 本発明では特に、 偏光分離器 1 6 0の透過軸の方向 (第 2の方向) は、 偏光板 1 7 0の透過軸の方向に対して所定 角度 0 (但し、 0度 < 0 < 9 0度) だけずれ且つ偏光板 1 7 ◦の吸収軸の方向に 対して所定角度 0, (但し、 0度 < θ, < 9 0度) だけずれるように、 偏光分離 器 1 6 0と偏光板 1 7 0との相対位置が規定されている。
先ず図 2を参照し、 外光下での、 この表示装置の左側を電圧印加部 1 1 0とし 、 右側を電圧無印加部 1 2 0として、 反射型表示の動作原理について説明する。 右側の電圧無印加部 1 2 0においては、 外光として入射した自然光 1 2 1 が偏 光板 1 3 0によって、 紙面に平行な方向の直線偏光となり、 その後、 T N液晶 1 4 0によって偏光方向が 9 0 ° 捻られて紙面に垂直な方向の直線偏光となり、 光 拡散層 1 5 0を介して偏光分離器 1 6 0によって反射される。 この反射された紙 面に垂直な方向の直線偏光は、 再び、 光拡散層 1 5 0を介して T N液晶 1 4 0に よって偏光方向が 9 0 ° 捻られて紙面に平行な方向の直線偏光となり、 偏光板 1 3 0から紙面に平行な方向の直線偏光として出射する。 このように、 電圧無印加 時においては、 入射した光は偏光分離器 1 6 0によって吸収されるのではなく反 射されるので明るい表示が得られる。 なお、 偏光分離器 1 6 0と T N液晶 1 4 0 との間には光散乱層 1 5 0を設けているので、 偏光分離器 1 6 0からの反射光が 鏡面状から白色状になると共に広い視野で見える。
左側の電圧印加部 1 1 0においては、 外光として入射した自然光 1 1 1が偏光 板 1 3 0によって、 紙面に平行な方向の直線偏光となり、 その後、 T N液晶 1 4 0を偏光方向を変えずに透過し、 偏光分離器 1 6 0を紙面に平行な方向の直線偏 光のまま透過する。 この透過した光は、 偏光分離器 1 6 0の透過軸と偏光板 1 7 0の透過軸とのずれに応じて偏光板 1 7 0により吸収される。 尚、 偏光板 1 7 0 を透過した光は、 非点灯状態にある光源 1 9 0において吸収や散乱されるので、 光源 1 9 0で反射して再び偏光板 1 7 0の透過軸の成分として偏光板 1 7 0を透 過する成分は少ないか殆ど存在しない。
このように、 電圧無印加部 1 2 0においては、 偏光分離器 1 6 0によって反射 された光が光散乱層 1 5 0によって散乱されて白色状の出射光 1 2 2 となり、 電 圧印加部 1 1 0においては、 偏光分離器 1 6 0を透過した光は偏光板 1 7 0によ る吸収等により偏光分離器 1 6 0側に殆ど又は全く戻ることなく暗くなる。
次に図 3を参照し、 光源光下での、 この表示装置の左側を電圧印加部 1 1 0と し、 右側を電圧無印加部 1 2 0 として、 透過型表示の動作原理について説明する 光源 1 9 ◦が点灯している時は、 右側の電圧無印加部 1 2 ◦においては、 光源 光 1 2 5は、 偏光板 1 7 ◦によりその透過軸の方向の直線偏光となり、 更に、 偏 光分離器 1 6 0により紙面に平行な方向の直線偏光となり、 偏光分離器 1 6 0を 透過する。 そして、 偏光分離器 1 6 0を透過した紙面に平行な直線偏光は、 T N 液晶 1 4 0によって偏光方向が 9 0 ° 捻られて紙面に垂直な方向の直線偏光とな り、 偏光板 1 3 0によって吸収される。 即ち、 当該電圧無印加部 1 2 0は、 暗く なる。
左側の電圧印加部 1 1 0においては、 光源光 1 1 5は、 偏光板 1 7 0によりそ の偏光軸の方向の直線偏光となり、 更に、 偏光分離器 1 6 0により紙面に平行な 方向の直線偏光となり、 偏光分離器 1 6 0を透過する。 従って、 偏光板 1 7 0の 透過軸と偏光分離器 1 6 0の透過軸とのずれに応じて光源光 1 2 5は、 偏光板 1 7 0及び偏光分離器 1 6 0により減衰される。 そして、 偏光分離器 1 6 0を透過 した紙面に平行な直線偏光は、 T N液晶 1 4 0によって偏光方向は変わらずに紙 面に平行な方向の直線偏光 1 1 6として透過し、 偏光板 1 3 0によって吸収され ずに出射される。 即ち、 当該電圧印加部 1 1 0は、 光源光 1 1 6の色に明るくな る。
このように、 電圧無印加部 1 2 0においては、 偏光板 1 3 0によって吸収され 暗くなり、 電圧印加部 1 1 0においては、 偏光板 1 3 0によって吸収されること なく明るくなる。 従って、 光源 1 9 0点灯下では黒地に光源色の表示が得られる なお、 上記においては、 T N液晶 1 4 0を例にとって説明したが、 T N液晶 1 4 0に代えて S T N液晶や E C B (E l ectri cal ly Control led B i refringence ) 液晶等の他の透過偏光軸を電圧等によって変えられるものを用いても基本的な動 作原理は同一である。
以上説明した原理に基づき動作する表示装置の各種の実施例を以下説明する
(第 1の実施例)
本発明の第 1の実施例の液晶表示装置について、 図 4及び図 5を参照して説 明する。 図 4は、 本発明の第 1の実施例の液晶表示装置を説明するための分解 断面図であり、 図 5は、 そのコントラス ト特性、 透過率特性等を示す特性図で ある。
図 4に示すように、 第 1の実施例の液晶表示装置 1 0においては、 透過偏光 軸可変光学素子として S T Nセル 2 0を使用している。 S T Nセル 2 0の上側に は位相差フイルム 1 4及び偏光板 1 2がこの順に設けられている。 S T Nセル 2 0の下側には、 光拡散板 3 0、 偏光分離器 4 0及び偏光板 5 0がこの順に設けら れている。 また、 偏光板 5 0の下方より光が入射することの出来る光源 7 0が設 けられている。 光源 7 0は L E D (Light Emi tting Diode) 7 1 を用い、 ライ ト ガイ ド 7 2にて上方に光を出射している。
偏光分離器 4 0として、 図 1 を用いて説明した偏光分離器 (即ち、 反射偏光子 ) を使用する。
S T Nセル 2 0においては、 2枚のガラス基板 2 1、 2 2 とシール部材 2 3 と によって構成されるセル内に S T N液晶 2 6が封入されている。 ガラス基板 2 1 の下面には透明電極 2 4が設けられ、 ガラス基板 2 2の上面には透明電極 2 5が 設けられている。 透明電極 2 4、 2 5 としては、 I T〇 (Indium Tin Oxide) や 酸化錫等を用いることができる。 位相差フィルム 1 4は、 色補償用の光学異方体 として用いており、 S T Nセル 2 0で発生する着色を補正するために使用してい る。
本実施例の液晶表示装置 1 0の動作原理は、 図 2及び図 3の場合と同様とな る。 これにより、 外光下では、 電圧無印加領域において偏光分離器 4 0によって 反射された光が光拡散板 3 0によって散乱されて白色状の直線偏光となって出射 し、 電圧印加領域において偏光分離器 4 0を透過した光は偏光板 5 0による吸収 等により再び偏光分離器 4 0にはほとんど戻らずに暗くなる。 従って、 白地に黒 の表示が得られる。 また、 光源 7 0点灯下では、 電圧無印加領域において偏光板 1 2によって吸収され暗くなり、 電圧印加領域において偏光板 1 2によって吸収 されずに明るくなる。 従って、 光源 7 0点灯下では黒地に光源色の表示が得られ る。 即ち、 外光下では白地に黒のポジ表示、 光源 7 0点灯下では黒地に光源色の ネガ表示が得られる。
ここで、 反射型表示の場合、 偏光分離器 4 0と偏光板 5 0 との相対位置は、 偏 光分離器 4 0の透過軸の方向が、 偏光板 5 0の透過軸の方向に対して所定角度 0 (但し、 0度 < θ < 9 0度) だけずれるように規定されているのため、 偏光分離 器 4 0の透過軸の方向が偏光板 5 ◦の透過軸の方向と一致している (即ち、 Θ 0度の) 場合と比較して、 偏光分離器 4 0を透過した光が偏光板 5 0により遥か に大量に吸収される。 従って、 この吸収される分だけ、 電圧印加部を暗く出来る ので、 コン トラス トが高められる。 当該反射型表示における明るさについては、 偏光分離器 4 0における光の吸収ではなく光の反射により偏光分離を行うと共に この反射された直線偏光成分を表示光として利用することになるので、 明るくな る。
他方、 透過型表示の場合、 偏光分離器 4 0と偏光板 5 0との相対位置は、 偏光 分離器 4 0の透過軸の方向が、 偏光板 5 0の吸収軸の方向に対して所定角度 Θ '
(但し、 0度 < 0, < 9 0度) だけずれるように規定されているので、 偏光分離 器 4 0の透過軸の方向が偏光板 5 0の吸収軸の方向にと一致している (即ち、 Θ ' = 0度の) 場合と比較して、 光源光は偏光板 5 0及び偏光分離器 4 0を遥かに 大量に透過する。 従って、 この透過する分だけ、 電圧印加部を明るく出来るので 、 コントラス トが高められると同時に明るさを高められる。
ここで、 偏光板 5 0の透過軸と偏光分離器 4 0の透過軸とのなす角である所定 角度 Θについて、 図 5を参照して、 より具体的な検討を加える。 尚、 本実施例の 場合、 偏光板 5 0における透過軸と吸収軸とのなす角度 Θ ' は、 直角である。 即 ち、 所定角度 θ ' = 9 0度一所定角度 Θであるとする。
また、 この場合、 S Τ Ν液晶 2 6のッイス ト角は 2 5 0度であり、 液晶層の厚 みは 5 . 8〃mであり、 液晶の光学異方性 Δ ηは 0 . 1 3 8であり、 位相差フィ ルム 1 4のリタデ一ション値は 5 7 0 n mであり、 デューティ比は 1 / 2 4 0で あるとする。
図 5 ( a ) は、 表示装置 1 0における、 外光時 (反射型表示時) に、 角度 0を 変化させた場合のコン トラス ト及び反射率の変化を示す特性図であり、 図 5 ( b ) は、 光源点灯時 (透過型表示時) に、 角度 0を変化させた場合のコン トラス ト 及び透過率の変化を示す特性図である。
図 5に示すように、 表示装置 1 0においては、 偏光分離器 4 0 と偏光板 5 0と の相対位置を変えることにより、 この角度 0を変えると、 コン トラス ト及び明る さが変化する。 特に、 角度 Θが大きくなると、 反射型表示時のコン トラス トが增 加し、 透過型表示時の透過率が減少して明るさが減少する。 また、 角度 Θが大き くなつても反射型表示時の反射率には変化が殆どは見られず、 その明るさはほぼ 一定であり、 透過型表示時のコントラストは減少する。
他方、 角度 0が小さくなると、 反射型表示時のコン トラス トが減少し、 透過型 表示時の透過率が増加して明るさが増加する。 また、 角度 Θが小さくなつても反 射型表示時の反射率には変化が殆どは見られず、 その明るさはほぼ一定であり、 透過型表示時のコントラストは増加する。
ここで本願発明者の研究によれば、 一般的に反射型表示時にコントラス トが良 いことが望まれ、 より具体的には、 図 5 ( a ) の特性図上において、 角度 0は 3 0〜 7 5度が好ましい。 更には、 図 5 ( a ) の特性図上において、 角度 Θが 4 5 〜 6 0度で反射型表示時のコントラストはより良好であり、 同時に、 図 5 ( b ) の特性図上において、 透過型表示時の透過率 (即ち明るさ) も実用上問題ない良 好なレベルとなる。
以上説明したように、 本実施例の表示装置 1 0により、 特に反射型表示におい ては、 コントラス ト並びに偏光分離器 4 0及び偏光板 5 0等に基く表示装置 1 0 における反射率 (即ち、 表示の明るさ) を高いレベルにでき、 透過型表示におい ては、 コントラスト並びに偏光分離器 4 0及び偏光板 5 0等に基く表示装置 1 0 における透過率 (即ち、 表示の明るさ) を高いレベルにできる。
(第 2の実施例)
次に、 本発明の第 2の実施例の液晶表示装置について図 6及び図 7を参照し て説明する。 尚、 図 6は、 第 2の実施例に対する比較例の表示装置を説明するた めの分解断面図であり、 図 7は、 第 2の実施例と比較例とで、 コン トラス ト特性 等を比較した表である。
第 2の実施例では、 上記第 1の実施例において特に、 角度 0は 5 0度であり、 S T N液晶 2 6のツイスト角は 2 4 0度であり、 液晶層の厚みは 6 . 5〃mであ り、 液晶の光学異方性 Δ ηは 0 . 1 3 3であり、 位相差フィルム 1 4のリタデー シヨン値は 6 0 0 n mである。その他の構成については図 4に示した第 1の実施 例の場合と同様である。
このように構成された第 2の実施例における反射時と光源点灯時の特性を調べ た。 比較例として、 図 6に示すような表示装置を用いた。 即ち、 比較例では、 光 拡散板 3 0、 偏光分離器 4 0及び偏光板 5 0の代わりに偏光板 8 0及び半透過反 射板 9 0が設けられている。
1 / 2 4 0デューティ駆動した時の反射時と光源点灯時の特性を図 7の表に示 す。
図 7の表より明らかなように反射時のコントラストは同等だが、 反射率は 6 5 %アップする。 一方、 光源点灯時では透過率はあまり変わらないが、 コントラス トは 1 5 %アップする。 これはドット間が比較例では明るいのに対し、 実施例は 暗くなるためコントラストが増すことによる。
(第 3の実施例)
本発明の第 3の実施例の液晶表示装置について、 図 8を参照して説明する。 図 8は、 本発明の第 3の実施例の液晶表示装置を説明するための分解断面図で ある。
第 3の実施例では、上記第 1の実施例において、偏光分離器 4 0と偏光板 5 0 の間に、 T N液晶セル 1 0 2 0が設けられている。 その他の構成については図 4 に示した第 1の実施例の場合と同様である。
図 8に示すように、 T Nセル 1 0 2 0においては、 2枚のガラス基板 1 0 2 1 、 1 0 2 2とシール部材 1 0 2 3とによって構成されるセル内に T N液晶 1 0 2 6が封入されている。 ガラス基板 1 0 2 1の下面には透明電極 1 0 2 4が設けら れ、 ガラス基板 1 0 2 2の上面には透明電極 1 0 2 5が設けられている。 透明電 極 1 0 2 4と透明電極 1 0 2 5の間に電圧が印加出来るようになつている。
透明電極 1 0 2 4と透明電極 1 0 2 5の間の印加電圧を制御することにより、 反射時のコントラス ト、 透過時の明るさを自由に設定できる。
(第 4の実施例)
第 4の実施例では、 上記第 3の実施例において、 T N液晶セル 1 0 2 0の代わ りに E C B液晶セルが設けられている。 透明電極 1 0 2 4と透明電極 1 0 2 5の 間の印加電圧を制御することにより、 透過時の外観色をいろいろ変化させること が出来た。
また、 透明電極 1 0 2 4と透明電極 1 0 2 5をドッ トマトリックスにすること により、 更に情報量の多い表示ができる。
尚、 以上説明した第 1から第 4の実施例において、 偏光板 1 2 (図 2及び図 3 における偏光分離器 1 3 0 ) を、 偏光分離器 4 0 と同じく図 1 に示した如き反射 偏光子から構成してもよい。 また、 偏光分離器として可視光の全波長範囲にわた つて反射する型の反射偏光子を用いて白色表示を行うだけでなく、 偏光分離器と して特定の波長範囲の光だけが反射する型の反射偏光子を用いて所望色の表示 を行うようにしてもよい。
(第 5の実施例)
第 5の実施例は、 以上説明した各実施例のような液晶表示装置を搭載した電子 機器からなる。
即ち、 各実施例のような液晶表示装置を、 例えば図 9 ( a ) に示すような携帯 電話 3 0 0 0の表示部 3 0 0 1 に適用すれば、 日向でも、 日陰でも、 室内でも、 明るく高コントラス 卜の反射型表示を行う省エネルギ型の携帯電話を実現できる また、 図 9 ( b ) に示すような腕時計 3 1 0 0の表示部 3 1 0 1 に適用すれば
、 日向でも、 日陰でも、 室内でも、 明るく高コントラス トの反射型表示を行う省 エネルギ型の腕時計を実現できる。
更に、 図 9 ( c ) に示すようなパーソナルコンピュータ (或いは、 情報端末) 3 2 0 0の表示画面 3 2 0 1に適用すれば、 日向でも、 日陰でも、 室内でも、 明 るく高コン トラス トの反射型表示を行う省エネルギ型のパーソナルコンピュー夕 を実現できる。
以上図 9に示した電子機器の他にも、 液晶テレビ、 ビューファイ ンダ型又はモ 二夕直視型のビデオテープレコーダ、 力一ナビゲーシヨン装置、 電子手帳、 電卓 、 ワードプロセッサ、 エンジニアリング . ワークステーション (E W S ) 、 テレ ビ電話、 P O S端末、 タツチパネルを備えた装置等などの電子機器にも、 本実施 例の液晶表示装置を適用可能である。 産業上の利用可能性
本発明に係る表示装置は、 液晶装置を透過偏光軸可変手段として用いて、 高コ ントラス トで明るい反射型及び透過型両用の表示装置として利用可能であり、 更 に、 液晶装置以外の透過偏光軸可変手段を用いた表示装置として利用可能である ° 99/05562 PC謂賺 82
。 また、 本発明に係る電子機器は、 このような表示装置を用いて構成され、 高コ ントラストで明るい反射型表示及び透過型表示を行える省エネルギ型の電子機器 等として利用可能である。

Claims

請 求 の 範 囲
1 . 透過偏光軸を可変な透過偏光軸可変手段と、
該透過偏光軸可変手段の一方の側に配置されており第 1の方向の直線偏光成分 の光を透過させると共に該第 1の方向とは異なる所定方向の直線偏光成分の光を 反射又は吸収する第 1の偏光分離手段と、
前記透過偏光軸可変手段の他方の側に配置されており第 2の方向の直線偏光成 分の光を透過させると共に該第 2の方向とは異なる所定方向の直線偏光成分の光 を反射する第 2の偏光分離手段と、
該第 2の偏光分離手段に対して前記透過偏光軸可変手段と反対側に配置された 偏光板と、
該偏光板に対して前記第 2の偏光分離手段と反対側に配置されており前記透過 偏光軸可変手段の側に光を入射する光源と
を備えており、
前記第 2の方向は、 前記偏光板の透過軸の方向に対して所定角度 S (但し、 0 度 < θ < 9 0度) だけずれ且つ前記偏光板の吸収軸の方向に対して所定角度 0 '
(但し、 0度 < θ ' < 9 0度) だけずれるように前記第 2の偏光分離手段と前記 偏光板との相対位置が規定されていることを特徴とする表示装置。
2 . 前記第 1の偏光分離手段は、 前記第 1の方向の直線偏光成分の光を透過さ せると共に前記第 1の方向と直交する方向の直線偏光成分の光を反射する反射偏 光子からなることを特徴とする請求項 1に記載の表示装置。
3 . 前記反射偏光子は、 複屈折性を有する第 1層と、 該第 1層の複数の屈折率 のうちのいずれか一つに実質的に等しい屈折率を有すると共に複屈折性を有しな い第 2層とが交互に積層された積層体からなることを特徴とする請求項 2に記載 の表示装置。
. 前記第 1の偏光分離手段は、 前記第 1の方向の直線偏光成分の光を透過さ せると共に前記第 1の方向と直交する方向の直線偏光成分の光を吸収する偏光板 からなることを特徴とする請求項 1に記載の表示装置。
5 . 前記第 2の偏光分離手段は、 前記第 2の方向の直線偏光成分の光を透過さ せると共に前記第 2の方向と直交する方向の直線偏光成分の光を反射する反射偏 光子からなることを特徴とする請求項 1に記載の表示装置。
6. 前記反射偏光子は、 複屈折性を有する第 1層と、 該第 1層の複数の屈折率 のうちのいずれか一つに実質的に等しい屈折率を有すると共に複屈折性を有しな い第 2層とが交互に積層された積層体からなることを特徴とする請求項 5に記載 の表示装置。
7. 前記第 2の偏光分離手段は、 可視光領域のほぼ全波長範囲の光に対して、 前記第 2の方向の直線偏光成分を透過させると共に前記第 2の方向と直交する方 向の直線偏光成分の光を反射することを特徴とする請求項 1記載の表示装置。
8. 前記偏光板の前記透過軸と前記吸収軸とのなす角は、 直角であることを特 徴とする請求項 1に記載の表示装置。
9. 前記所定角度 0は、 30〜 7 5度であることを特徴とする請求項 1に記載 の表示装置。
1 0. 前記所定角度 0は、 4 5〜6 0度であることを特徴とする請求項 9に記 載の表示装置。
1 1. 前記透過偏光軸可変手段は、 液晶素子からなることを特徴とする請求項 1に記載の表示装置。
1 2. 前記透過偏光軸可変手段は、 TN液晶素子、 S TN液晶素子または E C B液晶素子からなることを特徴とする請求項 1 1に記載の表示装置。
1 3. 前記第 2の偏光分離手段に対して前記透過偏光軸可変手段と反対側に、 第 2の透過偏光軸可変手段を更に備えたことを特徴とする請求項 1に記載の表示
1 4. 前記第 2の透過偏光軸可変手段は、 液晶素子からなることを特徴とする 請求項 1 3に記載の表示装置。
1 5. 前記第 2の透過偏光軸可変手段が、 TN液晶素子、 S TN液晶素子また は E CB液晶素子からなることを特徴とする請求項 1 4に記載の表示装置。
1 6. 前記第 2の透過偏光軸可変手段は、 前記第 2の偏光分離手段と前記偏光 板との間に配置されていることを特徴とする請求項 1 3に記載の表示装置。
1 7. 前記光源と前記第 1の偏光分離手段との間に、 透光性の光拡散手段を更 に備えたことを特徴とする請求項 1に記載の表示装置。
1 8 . 請求項 1に記載の表示装置を備えたことを特徴とする電子機器。
1 9 . 透過偏光軸可変光学素子と、
該透過偏光軸可変光学素子の一方の側に配置されており、 反射又は吸収により 偏光分離を行う型の第 1の偏光分離器と、
前記透過偏光軸可変光学素子の他方の側に配置されており、 反射により偏光分 離を行う型の第 2の偏光分離器と、
該第 2の偏光分離器に対して前記透過偏光軸可変光学素子と反対側に配置され た偏光板と、
該偏光板に対して前記第 2の偏光分離器と反対側に配置されており前記透過偏 光軸可変光学素子の側に光を入射する光源と
を備えており、
前記第 2の方向は、 前記偏光板の透過軸の方向に対して所定角度 Θ (但し、 0 度 < 0 < 9 0度) だけずれ且つ前記偏光板の吸収軸の方向に対して所定角度 0 '
(但し、 0度 < θ ' < 9 0度) だけずれるように前記第 2の偏光分離器と前記偏 光板との相対位置が規定されていることを特徴とする表示装置。
PCT/JP1998/003282 1997-07-25 1998-07-22 Afficheur et dispositif electronique equipe dudit afficheur WO1999005562A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP50210799A JP3345755B2 (ja) 1997-07-25 1998-07-22 表示装置及びそれを用いた電子機器
US09/269,538 US6507380B1 (en) 1997-07-25 1998-07-22 Display device and electronic apparatus using the same
EP98933897A EP0935155A4 (en) 1997-07-25 1998-07-22 DISPLAY AND ELECTRONIC DEVICE EQUIPPED WITH IT
KR10-1999-7002548A KR100505522B1 (ko) 1997-07-25 1998-07-22 표시 장치 및 그것을 이용한 전자 기기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20056797 1997-07-25
JP9/200567 1997-07-25

Publications (1)

Publication Number Publication Date
WO1999005562A1 true WO1999005562A1 (fr) 1999-02-04

Family

ID=16426479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003282 WO1999005562A1 (fr) 1997-07-25 1998-07-22 Afficheur et dispositif electronique equipe dudit afficheur

Country Status (7)

Country Link
US (1) US6507380B1 (ja)
EP (1) EP0935155A4 (ja)
JP (2) JP3345755B2 (ja)
KR (1) KR100505522B1 (ja)
CN (1) CN1132050C (ja)
TW (1) TW444149B (ja)
WO (1) WO1999005562A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001134221A (ja) * 1999-09-13 2001-05-18 Asulab Sa 2つの重なり合った表示装置を含む表示アセンブリ
US8517939B2 (en) 2004-06-24 2013-08-27 Koninklijke Philips N.V. Medical instrument with low power, high contrast display

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1085364B1 (fr) * 1999-09-13 2007-07-18 Asulab S.A. Ensemble d'affichage comprenant deux dispositifs d'affichage superposés
US6822711B1 (en) * 1999-09-30 2004-11-23 Casio Computer Co., Ltd. Liquid crystal display apparatus using polarizing element transmitting one of two polarizing components crossing at right angles and reflecting the other component
US6801263B2 (en) * 2000-04-10 2004-10-05 Sony Corporation Liquid crystal display, liquid crystal device and liquid crystal display system
WO2002069031A1 (fr) * 2001-02-28 2002-09-06 Hitachi Displays, Ltd. Dispositif commutable entre un mode de presentation d'image de haute qualite, et un mode miroir, et equipements associes
JP2003029251A (ja) * 2001-07-16 2003-01-29 Nec Corp 液晶表示装置
US6661482B2 (en) * 2001-10-05 2003-12-09 Nitto Denko Corporation Polarizing element, optical element, and liquid crystal display
US20040246407A1 (en) * 2001-10-12 2004-12-09 Rohm Co., Ltd. Liquid crystal display apparatus, mirror apparatus, and electric device having liquid crystal display apparatus
DE602004010536T2 (de) * 2003-09-23 2008-11-27 Tpo Hong Kong Holding Ltd. Lichtwiederverwendung in einem transflektiven lcd
CN1707328A (zh) * 2004-06-11 2005-12-14 鸿富锦精密工业(深圳)有限公司 液晶显示装置
US20070242197A1 (en) * 2006-04-12 2007-10-18 3M Innovative Properties Company Transflective LC Display Having Backlight With Spatial Color Separation
TW200807084A (en) * 2006-04-12 2008-02-01 3M Innovative Properties Co Transflective LC display having backlight with temporal color separation
JP2009031439A (ja) * 2007-07-25 2009-02-12 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置
WO2010017294A1 (en) * 2008-08-05 2010-02-11 The Regents Of The University Of California Tunable white light based on polarization sensitive light-emitting diodes
JP4905438B2 (ja) * 2008-11-18 2012-03-28 カシオ計算機株式会社 液晶表示装置
CN106031056B (zh) * 2014-02-19 2018-11-30 松下电器(美国)知识产权公司 发送机、发送方法及接收方法
US20160034084A1 (en) * 2014-07-31 2016-02-04 Asustek Computer Inc. Touch display device
CN105320347B (zh) * 2014-07-31 2018-06-26 华硕电脑股份有限公司 触控显示装置
CN107664837A (zh) * 2017-10-20 2018-02-06 京东方科技集团股份有限公司 一种反射式显示装置
CN109541821A (zh) * 2018-12-28 2019-03-29 精电(河源)显示技术有限公司 一种控光的透射及反射装置
JP7204550B2 (ja) * 2019-03-19 2023-01-16 株式会社ジャパンディスプレイ 表示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293226A (ja) * 1986-06-12 1987-12-19 Optrex Corp 液晶表示素子
JPS63170826U (ja) * 1987-04-28 1988-11-07
JPH06301029A (ja) * 1993-04-13 1994-10-28 Toshiba Corp 液晶表示装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3517615A1 (de) 1985-05-15 1986-11-20 Titmus Eurocon Kontaktlinsen GmbH, 8750 Aschaffenburg Hydrophiler siliconkautschukkoerper und verfahren zu seiner herstellung
EP0706570B1 (en) 1993-07-01 2003-12-17 California Institute Of Technology Plants having modified response to ethylene
KR100432457B1 (ko) 1993-12-21 2004-05-22 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 휘도 향상 디바이스
WO1995017691A1 (en) 1993-12-21 1995-06-29 Minnesota Mining And Manufacturing Company Optical polarizer
CA2177714C (en) 1993-12-21 2005-08-09 Andrew J. Ouderkirk Multilayered optical film
AU1443595A (en) 1993-12-21 1995-07-10 Minnesota Mining And Manufacturing Company Reflective polarizer with brightness enhancement
US5882774A (en) 1993-12-21 1999-03-16 Minnesota Mining And Manufacturing Company Optical film
WO1995027919A2 (en) 1994-04-06 1995-10-19 Minnesota Mining And Manufacturing Company Polarized light sources
AU6114196A (en) 1995-06-26 1997-01-30 Minnesota Mining And Manufacturing Company Light diffusing adhesive
EP0871923A1 (en) 1995-06-26 1998-10-21 Minnesota Mining And Manufacturing Company Transflective displays with reflective polarizing transflector
US6088067A (en) 1995-06-26 2000-07-11 3M Innovative Properties Company Liquid crystal display projection system using multilayer optical film polarizers
WO1997001781A2 (en) 1995-06-26 1997-01-16 Minnesota Mining And Manufacturing Company Diffusely reflecting multilayer polarizers and mirrors
IL122245A0 (en) 1995-06-26 1998-04-05 Minnesota Mining & Mfg Transparent multilayer device
US5686979A (en) * 1995-06-26 1997-11-11 Minnesota Mining And Manufacturing Company Optical panel capable of switching between reflective and transmissive states
JPH11508702A (ja) 1995-06-26 1999-07-27 ミネソタ マイニング アンド マニュファクチャリング カンパニー 多層光学フィルムリフレクタを備えたバックライトシステム
US6080467A (en) 1995-06-26 2000-06-27 3M Innovative Properties Company High efficiency optical devices
AU6390396A (en) 1995-06-26 1997-01-30 Minnesota Mining And Manufacturing Company Multilayer polymer film with additional coatings or layers
IL122911A0 (en) 1995-08-11 1998-08-16 Minnesota Mining & Mfg Electroluminescent lamp using multilayer optical film
KR100582861B1 (ko) * 1996-09-17 2006-05-25 세이코 엡슨 가부시키가이샤 표시 장치 및 그 표시 장치를 사용한 전자 기기
JP3539206B2 (ja) * 1997-06-09 2004-07-07 セイコーエプソン株式会社 電子時計および液晶表示素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293226A (ja) * 1986-06-12 1987-12-19 Optrex Corp 液晶表示素子
JPS63170826U (ja) * 1987-04-28 1988-11-07
JPH06301029A (ja) * 1993-04-13 1994-10-28 Toshiba Corp 液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0935155A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001134221A (ja) * 1999-09-13 2001-05-18 Asulab Sa 2つの重なり合った表示装置を含む表示アセンブリ
US8517939B2 (en) 2004-06-24 2013-08-27 Koninklijke Philips N.V. Medical instrument with low power, high contrast display
US8823729B2 (en) 2004-06-24 2014-09-02 Koninklijke Philips N.V. Medical instrument with low power, high contrast display

Also Published As

Publication number Publication date
KR100505522B1 (ko) 2005-08-04
EP0935155A1 (en) 1999-08-11
JP3345755B2 (ja) 2002-11-18
CN1234876A (zh) 1999-11-10
TW444149B (en) 2001-07-01
JP2002350842A (ja) 2002-12-04
US6507380B1 (en) 2003-01-14
CN1132050C (zh) 2003-12-24
EP0935155A4 (en) 2000-04-05
KR20000068634A (ko) 2000-11-25

Similar Documents

Publication Publication Date Title
JP3820595B2 (ja) 表示装置及びそれを用いた電子機器並びに偏光分離器
JP3345755B2 (ja) 表示装置及びそれを用いた電子機器
US6285422B1 (en) Transflective liquid crystal device with bright reflective display
EP0913721B1 (en) Display and electronic device comprising the same
US6124905A (en) Display device employing a reflective polarizer and a reflective diffuser between a light source and the display device
KR100433607B1 (ko) 표시 장치, 그것을 사용한 전자기기 및 표시 장치용 도광체
EP0942313A1 (en) Display element and electronic clock
JP2001083509A (ja) 液晶表示装置およびそれを用いた電子機器
JP2002098961A (ja) 液晶装置及び電子機器
JP2001083508A (ja) 表示装置及びそれを用いた電子機器
JP3687384B2 (ja) 液晶表示装置およびそれを用いた電子機器
EP1557712A1 (en) Circular polariser arrangements for transmissive and transflective chiral nematic liquid crystal displays
JP2006501516A (ja) 液晶表示装置
JP3584471B2 (ja) 表示装置及び電子機器
JP3405282B2 (ja) 表示装置及びそれを用いた電子機器
JP3412520B2 (ja) 電子時計
JP4196976B2 (ja) 液晶表示装置及びそれを用いた電子機器
US6798468B1 (en) Display device with a light-reflective polarizer and electronic apparatus employing the same
JP3271264B2 (ja) 表示装置及びそれを用いた電子機器
JP3332017B2 (ja) 表示装置及びそれを用いた電子機器
JP4695344B2 (ja) 表示装置及びそれを用いた電子機器
JP3405281B2 (ja) 表示装置及びそれを用いた電子機器
JP2000147496A (ja) 液晶装置及び電子機器
JP2000066189A (ja) 液晶表示装置及びそれを用いた電子機器
JP2001324712A (ja) 表示素子及び電子時計

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801047.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019997002548

Country of ref document: KR

Ref document number: 09269538

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998933897

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998933897

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997002548

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1998933897

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998933897

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997002548

Country of ref document: KR