WO1999003336A1 - Mammiferes transgeniques - Google Patents

Mammiferes transgeniques Download PDF

Info

Publication number
WO1999003336A1
WO1999003336A1 PCT/JP1998/002927 JP9802927W WO9903336A1 WO 1999003336 A1 WO1999003336 A1 WO 1999003336A1 JP 9802927 W JP9802927 W JP 9802927W WO 9903336 A1 WO9903336 A1 WO 9903336A1
Authority
WO
WIPO (PCT)
Prior art keywords
transgenic
hdaf
human
complement
organs
Prior art date
Application number
PCT/JP1998/002927
Other languages
English (en)
French (fr)
Inventor
Hiroshi Murakami
Tatsuya Fujimura
Yoichi Takahagi
Koji Toyomura
Tamotsu Shigehisa
Original Assignee
Nippon Meat Packers, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Meat Packers, Inc. filed Critical Nippon Meat Packers, Inc.
Priority to AU79355/98A priority Critical patent/AU7935598A/en
Priority to EP98929756A priority patent/EP1004238B1/en
Priority to CA002297105A priority patent/CA2297105A1/en
Priority to US09/462,740 priority patent/US6825395B1/en
Priority to DE69832883T priority patent/DE69832883T2/de
Priority to AT98929756T priority patent/ATE313256T1/de
Publication of WO1999003336A1 publication Critical patent/WO1999003336A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Knock-in vertebrates, e.g. humanised vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/108Swine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated
    • A01K2267/025Animal producing cells or organs for transplantation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases

Definitions

  • the present invention relates to transgenic mammals. More specifically, the present invention relates to a transgenic non-human mammal having a gene for human complement regulatory factor (hDAF / CD55). More particularly, the present invention relates to livestock and experimental animals having the M3AF gene.
  • hDAF / CD55 human complement regulatory factor
  • C3b binds to the cell membrane surface of porcine tissue and activates C5 by forming C5 convertase, decomposing it into C5b and C5a.
  • C5b also binds to the membrane, after which C6, C7, C8, C9 and the complement molecule react successively.
  • MAC Membrane Auack Complex
  • transgenic pigs and / or small experimental model animals that are easier to handle than pigs and to conduct various studies.
  • the development of transgenic pigs that express at least the same level of hDAF as humans in the organs and tissues of interest and / or the development of small experimental model animals that are easier to handle than pigs are important in conducting research in this field and Or, it is considered useful in the development of clinical application methods. Therefore, as described above, the development of transgenic pigs expressing human complement regulatory factors has been attempted.
  • the promoter gene of the transgene construct used to create transgenic pigs expressing the human complement regulatory factor gene which has been reported so far, has the following characteristics. (GA Langford et al., Transplant. Proc., 26, 1400, 1994; WL Fodor et al., Proc. Natl. Acad. Sci. USA, 91. 11153-11157, 1994; GW Byrne et al., Transplantation 63. 149-155, 1997) and / or (2) Puromota one associated with molecules that all tissues distributed in the body of an animal (e.g., beta -Y Uchin was Eta 2 K b).
  • transgenic mice expressing hDAF have been attempted (N. Cary et al., Transplantation Proceedings, Vol. 5 (1), 400-401, 1993; D. Kagan et al., Transplantation Proceedings, Vol. 26 (3), 1242, 1994).
  • the expression site and expression level of hDAF in transgenic mice developed differ from report to report. Strictly speaking, the site where human complement regulatory factor should be expressed (especially vascular endothelium).
  • a transgenic mouse expressing at a level higher than that expressed in a human cell has not been developed.
  • the present inventors have proposed a transgenic animal expressing hDAF in organs, organs, tissues and cells, particularly vascular endothelial cells, particularly humans, in which complement regulatory factors should be expressed.
  • the preparation of mammals was studied.
  • the organs and organs in which the complement control factor should be expressed using the porcine capture factor control factor (pMCP) promoter previously invented by the present inventors (see Japanese Patent Application No. 9-142961).
  • the intended purpose is achieved by introducing a gene designed to express hF into tissues and cells, especially vascular endothelial cells, into the fertilized egg of the animal, transplanting it into the uterus of the recipient mother animal, and giving birth
  • pMCP porcine capture factor control factor
  • ⁇ J revealed that we can create enic animals.
  • hDAF is expressed not only in various organs, tissues, and its vascular endothelial cells but also in erythrocytes and central and peripheral nerves. The expression level was higher than that of human cells. Furthermore, it was confirmed that hDAF was also expressed in red blood cells and nerves in the case of the transgenic pig of the present invention.
  • the present invention has been made based on such findings, and an object of the present invention is to provide a transgenic animal useful in the fields of medicine and pharmacy. Disclosure of the invention
  • the present invention relates to a non-human transgenic mammal having a human complement control factor (MF / CD55) gene and expressing the human complement control factor in organ tissues. Furthermore, the present invention relates to a transgenic mammal expressing human complement regulatory factor (MF / CD55) in vascular endothelial cells, particularly vascular endothelial cells in all tissues.
  • MF / CD55 human complement control factor
  • the transgenic mammal of the present invention preferably has a porcine complement control factor (pMCP) promoter upstream of the human complement control factor (DAF / CD55) gene.
  • pMCP porcine complement control factor
  • DAF / CD55 human complement control factor
  • FIG. 1 is a diagram showing the structure of a transgene containing the pMCP promoter (5.4 kb) and hDAF cDNA.
  • FIG. 2 is a diagram showing the structure of a transgene containing the pMCP promoter (0.9 kb) and hDAF cDNA.
  • FIG. 3 is a diagram showing the structure of an introduction gene containing the hDAF promoter and hDAF cDNA used for comparison.
  • FIG. 4 is a diagram showing the results of PCR reactions using hDAFcDNA specific primers, in FIG. (1) and ( 3) shows the results of pigs and mice confirmed to have hDAF cDNA, respectively, and (2) and (4) show the results of pigs and mice confirmed to have no hDAF cDNA among litters It is.
  • FIG. 5 is a diagram showing the expression of hDAF-derived mBA in various organs of TgFl mice, comparative transgenic mice, and normal mice (non-transgenic mice).
  • FIG. 1 is a diagram showing mRNA expressed in various organs of TgFl mouse;
  • B is a transgenic mouse for comparison (gene for transfection containing hDAF promoter and hDAF cDNA (3)
  • Fig. 3 is a diagram showing mRNAs expressed in various organs of a transgenic mouse obtained by introducing (Fig. 3);
  • C shows mRNAs expressed in various organs of a non-transgenic mouse.
  • the rightmost graph shows the expression of hDAF-derived mRNA in human lymphocyte cells (k562).
  • Symbols B, H, K, Li, Lu, S and T in the figure mean brain, heart, kidney, liver, lung, spleen and testis, respectively.
  • FIG. 6 is a diagram showing FACS analysis of erythrocytes collected from non-transgenic pigs among transgenic pigs and litters, using an anti-hDAF monoclonal antibody.
  • A shows the expression frequency of hDAF in erythrocytes collected from transgenic pigs;
  • B for comparison, nontransgenic diabetic litters
  • FIG. 2 shows that hDAF is not expressed in erythrocytes collected from pigs.
  • FIG. 7 is a diagram showing the degree of hemolysis when red blood cells collected from a transgenic animal (Kai) and a normal animal (martial) are reacted with human serum.
  • (A) shows the results of examination on mouse erythrocytes
  • (b) shows the results of examination on porcine erythrocytes.
  • the horizontal axis in the figure shows the percentage of HNS in the complement-content-adjusted human serum, and the vertical axis shows the hemolysis rate.
  • the present invention relates to a transgenic mammal other than a human, which has a gene for a human complement control factor (hereinafter, referred to as hDAF), and comprises a complement control factor for the human. It is expressed in organs and tissues, especially expressed in vascular endothelial cells.
  • the mammal in the present invention is not particularly limited as long as it is a mammal other than a human, and examples thereof include a mouse, a rat, a hamster, a pig, a pig, a horse, a sheep, a heron, a dog, a cat, and the like. '-.
  • the transgenic mammal of the present invention can be prepared by the following method.
  • a gene for transfection by linking the promoter and hDAF cDNA.
  • an appropriate vector for example, pGL-3 basic vector, pBluescript, etc.
  • hMFcDNA for example, Medof, ME et al., Proc. Natl. Acad. Sci. USA., 84,
  • the above-mentioned promoter is not particularly limited as long as it is a promoter capable of expressing hDAF in the body of a mammal.
  • an endothelin promoter and the like can be exemplified.
  • the present inventors have proposed a porcine complement regulatory factor (pMCP ) Promoters have been found to be particularly suitable.
  • the nucleotide sequence of the porcine complement regulatory factor (pMCP) promoter is shown as SEQ ID NO: 1 (see Japanese Patent Application No. 9-142961).
  • the transgenic mammal introduces the transgene prepared above into the pronucleus of a fertilized egg (pronuclear stage egg) of the mammal by a conventional method such as microinjection, and requires the fertilized egg. It is produced by transplanting into the oviduct or uterus of a female mammal (recipient mammal) that has been cultured or has not been cultured and has been immediately synchronized with a pseudopregnancy state, and obtains a litter.
  • a female mammal recipient mammal
  • centrifugation should be performed in advance according to an ordinary method.
  • Confirmation that the produced offspring are transgenic mammals can be performed by a dot blotting method, a PCR method, an immunohistological method, a complement resistance test, and the like described below.
  • the resulting transgenic mammal can be bred by mating according to a conventional method and obtaining a litter.
  • cells of the transgenic mammal are subjected to reprogramming culture, with or without reprogramming, and nuclei are collected from the cells and transplanted (nuclear transplantation) into fertilized eggs that have been enucleated in advance.
  • Transplant into the fallopian tube or uterus of the animal They can also be bred by obtaining litters.
  • the transgenic mammal obtained by the present invention has the hDAF gene, and expresses hDAF in vascular endothelial cells of all organs, and exhibits resistance to human complement. It was confirmed to have.
  • organs of the transgenic mammal of the present invention for example, heart, lung, liver, kidney, etc., or transplanting these organs into primate animals,
  • DAF is useful for avoiding hyperacute rejection associated with xenotransplantation.
  • a xenograft model is prepared by contacting human blood with organs of the transgenic mammal of the present invention, for example, heart, lung, liver, kidney, etc., or transplanting these organs into primate animals. If prepared, a drug that supplements the avoidance of hyperacute rejection during xenotransplantation.Treatment equipment, etc. and a drug to avoid acute or chronic rejection that is likely to occur after Z or hyperacute rejection Etc. can be contributed to the development.
  • Transgenic mammal organs of the present invention eg, heart, lung, liver, kidney, spleen, etc.
  • tissues eg, coronary arteries, cerebral dura etc.
  • cells attached to ⁇ storage Eg, islets of Langerhans that produce insulin, nigral striatal cells that produce dopamine, etc.
  • ⁇ storage Eg, islets of Langerhans that produce insulin, nigral striatal cells that produce dopamine, etc.
  • organs of the transgenic mammal of the present invention eg, cells collected from organs such as liver and kidney, islets of Langerhans producing insulin, and nigrostriatal cells producing dopamine
  • the cultured cells are appropriately incorporated into equipment, etc., and connected to a human patient with dysfunction of the corresponding organ via the extracorporeal circulation system, and used as a replacement or treatment for the dysfunctional organ It becomes possible.
  • organs of the transgenic mammal of the present invention eg, cells collected from organs such as liver and kidney, islets of Langerhans producing insulin, and nigrostriatal cells producing dopamine
  • a transgene was prepared by linking the pMCP promoter and hDAF cDNA in the following manner. That is, the luc. Gene was extracted from the pGL-3 basic vector (Promega) at the Ncol site and the Xbal site, and both ends on the vector side were blunted with T4 DNA polymerase. Next, the hDAF cDNA containing the first intron was excised at the Ascl site immediately before the ATG start codon and the Accl codon immediately after the TAG stop codon, and blunted with T4 DNA polymerase, and the blunt-ended portion of the above vector was used. Was inserted. Also, from the region containing the pMCP gene (Japanese Patent Application No. 9-142961) of the pig genomic phage library, about 5.4 kb of the portion corresponding to the promoter was cut out with EcoRI and Fspl sites, and the pB.luescript vector EcoRI And EcoRV site.
  • a transgene (3) in which the hAF promoter and the hDAF cDNA were linked was prepared as follows.
  • the hDAF promoter cuts out a region of about 3.8 kb corresponding to the promoter with a Hindll site and an Ascl site, blunt-ends the site, and places it on the Sinai site immediately upstream of the hDAF cDNA insertion site of the aforementioned vector. Inserted. Then, the region containing the above promoter and hDAF cDNA was cut out with Notl and Eco47II sites, and the gene for transfection was cut out.
  • transgenic mammals (mouse)
  • transgene was introduced into mouse fertilized eggs by the microinjection method and transgenic mice were prepared as follows.
  • mice Female C57BL / 6 mice were bred to female CBA or C3H mice to obtain offspring. This female was used as an egg collection mouse (donor). After superovulation (administration of PMSG and hCG) to a single mouse, the mouse was bred with ICR mouse os, and a fertilized egg (pronuclear stage egg) was collected. The above-mentioned transgene (1) or (3) was injected into the pronuclear stage eggs by microinjection until the pronuclei could be expanded. Then, the pronuclear stage egg into which the transgene was injected was immediately transplanted into the oviduct of the recipient mouse. Transplanted into mouse uterus. And I got a baby. The recipient mouse was mated with a vasectomized mouse in advance to make a pseudopregnant state.
  • transgenic pigs were prepared as follows. That is, crossbred sows of Landrace, Greater Buffalo and Deloch were used as pigs for egg collection (donor pigs). After superovulation treatment (administration of PMSG or FSH and hCG) to donor pigs, fertilized eggs (pronuclear stage eggs) were collected by artificial insemination using sperm of Delocked boars. The pronuclear stage eggs were processed by a centrifugal separator (12,000 ⁇ g, 8 minutes), and then the transgene (2) was injected by microinjection until the pronuclei could be expanded.
  • the pronuclear stage eggs into which the transgene was injected were immediately transplanted into the oviducts of recipient pigs. And I got a baby.
  • recipient pigs pigs that had been subjected to the above-mentioned superovulation treatment in advance and whose estrous cycle was synchronized with the donor pigs, or one pig after collecting fertilized eggs were used.
  • the genomic DNA was extracted from the tail of the offspring obtained from the recipient mammal by a conventional method, and the transgenic mammal was identified and selected by the following two methods.
  • Dot blotting method Genomic DNA of a test offspring was immobilized on a membrane and hybridized with a gene consisting of a part of hDAF cDNA which had been previously labeled with biotin. A transgenic mammal was identified by detecting the presence or absence of the introduced gene by performing a color reaction (Sumalite, manufactured by Sumitomo Metals) using alkaline phosphatase.
  • FIG. 4 shows the results. As shown in FIG. 4, it was confirmed that among the offspring obtained from the recipient mammals, mice and pigs having hDAF cDNA in the genome were present. Note that 1 and 3 in Fig. 4 are the results of pigs and mice confirmed to have hFcDNA, respectively, and 2 and 4 in Fig. 4 indicate that hDAFcDNA was extracted from litters. The results are from pigs and mice confirmed not to have.
  • mice Breeding of transgenic mammals (mouse) Mice identified as transgenic were bred to ICR mice to produce offspring carrying the transgene (referred to as TgFl mice).
  • MRNA was extracted from various organs of TgFl mice, and the expression of hMF-derived mRNA in the organs was examined using a conventional RT-PCR method.
  • mRNA was extracted from various organs in transgenic mice and normal mice (non-transgenic mice) obtained by introducing the transgene (3) containing the hDAF promoter and hDAF cDNA. Then, the expression of mRNA derived from hDAF was examined in the same manner as described above.
  • Figure 5 shows the results.
  • the symbols B, H, K, Li, Lu, S and T in the figure mean brain, heart, kidney, liver, lung, spleen and testis, respectively.
  • the organs whose expression has been confirmed include atrial muscle of the heart, ventricular muscle and small and medium capillaries, endothelium of the capillaries, glomeruli of the kidneys, tubules and small and medium capillaries, capillary endothelium, liver hepatocytes, bile duct epithelium and small and medium capillaries endothelium, lung Alveoli, tracheal epithelium and small and medium capillaries endothelium, intestinal mucosa epithelium and small and medium capillaries endothelium, exocrine gland cells of the kidney, islets of Langerhans, arm duct epithelium and small and medium capillaries, capillary endothelium, white spleen of spleen The red
  • transgenic mice obtained by introducing the transgene (3) containing the hDAF promoter and hDAF cDNA hDAF expression was observed only in the testis. However, no expression was observed in testicular vascular endothelial cells.
  • hDAF protein was confirmed in pigs that were confirmed to be transgenic by the PCR method described in (1).
  • a frozen section of the pig tail was prepared and reacted with a biotinylated anti-hDAF monoclonal antibody. Subsequently, peroxidase-labeled streptavidin was bound. A chromogenic substrate (diaminobenzidine; DAB) was allowed to act on this, and the expression intensity and expression site of the hDAF protein were examined by microscopic observation.
  • DAB diaminobenzidine
  • hDAF expression was observed in the small and medium-sized capillary endothelium of transgenic pig tissue sections obtained by introducing the transgene (2) containing the pMCP promoter and hDAF cDNA.
  • hDAF expression was observed in tissues such as peripheral nerve, skeletal muscle, and stratified squamous epithelium. ; Confirmation of transgene expression in Enick mammals (pigs) (Confirmation of hDAF protein expression and expression intensity by FACS analysis)
  • Porcine tissues that have been confirmed to be transgenic by the PCR method described in 4 and the immunohistochemical method described in 8 are subjected to FACS (Fluorescence-activated cell sorter, vector) using an anti-hDAF monoclonal antibody. It was subjected to FACScan (Dickinson) analysis to confirm the expression of hDAF protein.
  • FACS Fluorescence-activated cell sorter, vector
  • Fig. 6 shows the results of the same FACS analysis performed on non-transgenic pigs among litters.
  • the horizontal axis represents the fluorescence intensity per cell, that is, the expression intensity of hDAF
  • the vertical axis represents the number of cells per intensity.
  • non-transgenic pigs did not express hDAF.
  • FIG. 6 in the case of the transgenic pig obtained in this example, erythrocytes expressing hDAF and erythrocytes not expressing hDAF are mixed in the population of whole erythrocytes (referred to as mosaic). It is already known that the first generation (Founder) of the transgenic animal created by the microinjection method exhibits a mosaic, and that the remosaic is eliminated by conventional means such as crossing and breeding. ing.
  • transgenic pigs obtained by introducing the transgene containing the pMCP promoter and hDAF cDNA express hDAF protein derived from hDAF cDNA in a wide range of organ tissues including vascular endothelial cells. Confirmation of transgene expression in transgenic mammals (Confirmation of hDAF protein function)
  • the hDAF protein expressed on the cells of the transgenic mammal had the intrinsic function of the hDAF protein, ie, the inhibitory effect on the complement cascade reaction. This was confirmed by reacting human serum with red blood cells of a transgenic mammal and measuring the presence or absence of hemolysis.
  • erythrocytes were used as the cells of transgenic mammals because (1) the presence or absence of membrane attack complex formation by the complement cascade reaction can be easily assayed by the presence or absence of hemolysis; (2) erythrocytes Because the membrane is more fragile than that of other cells (eg, leukocytes, vascular endothelial cells, etc.), the strength of the complement cascade reaction can be assayed more sensitively.
  • Blood was collected from the tails of transgenic and non-transgenic mice, and from the ear vein of transgenic and non-transgenic pigs to obtain a red blood cell fraction. After diluting each erythrocyte with PBS, 30 ⁇ l was dispensed to each well of a 96-well microplate (1 ⁇ 10 ′ cells / well), and then complement content adjusted human serum (untreated normal human serum) [HNS] and human serum [HIS] previously inactivated [heated to 56 ° C for 30 minutes] are mixed at various ratios to adjust the content of human complement (serum). 70 ⁇ l was dropped into the above-mentioned well to react with erythrocytes (37 ° C, 1.5 hours). Thereafter, the absorbance of each supernatant solution at 405 ° was measured using a microplate reader (manufactured by Bio-Rad), and the percentage of hemolysis caused by the complement reaction was calculated.
  • HNS normal human serum
  • HIS human serum
  • FIG. 7 shows the results. However, FIG. 7 (a) shows the results for transgenic mice, and FIG. 7 (b) shows the results for transgenic pigs.
  • the horizontal axis in Fig. 7 shows the complement content adjustment
  • the ratio of HNS in the human serum, that is, the concentration of human complement, is shown, and the vertical axis shows the hemolysis rate of each red blood cell.
  • the fist mark is red blood cells collected from transgenic animals and the garden mark is red blood cells collected from normal animals.
  • the erythrocytes of the non-transgenic animal lysed irrespective of the human complement content.
  • haemolysis of erythrocytes in transgenic mammals was suppressed. From these results, it was confirmed that the erythrocytes of the transgenic mammal expressing the DAF protein have resistance to human complement.
  • the population of the transgenic pig erythrocytes of this example was mosaic, but had resistance to human complement.
  • Sequence type nucleic acid
  • TTCTCCCCTA ATCTCCCAAA ATATGGGCAA AGGACAGGTA CCCGTGGCAC 500 TGGAAAAATA CAGGCAAGCA ACCCATGAGT ACATGAAAAG ATGCTCCAGG 550
  • GGGAGAACAA TGGCCAAACC TTTCGTGATT TTGAAATCTA TCAGGCCACG 4750 AGACACTTCG GTAGCGGACG CTCAACCCTG GGAATCCCAA CTATTGTCCG 4800

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Environmental Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Confectionery (AREA)
  • Seasonings (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

m 糸田 エニック哺乳動物 技術分野
本発明はトランスジエニック哺乳動物に関する。 より詳細には、 ヒトの補体制御 因子 (hDAF/CD55)の遺伝子を有するヒト以外のトランスジエニック哺乳動物に関する。 さらに詳細には、 M3AFの遺伝子を有する家畜及び実験動物に関する。 背景技術
近年、 動物臓器をヒ卜への移植 (異種移植) に供するための研究が欧米を中心に 盛んになってきている。 臓器を提供する動物としては、 ヒ卜に最も近い点でサルが 好ましいが、 サルは希少で知性の高い野生動物であることから、 サルの利用は困難 な状況にある。 そこで、 家畜、 中でも臓器サイズ、 形態がヒトに近く、 繁殖や増産 技術の確立しているブタの臓器を利用するための研究が主に行われるようになって きた。
しかし、 ブタの臓器をヒ卜に移植した場合には急激に (数分のうちに) 強い拒絶 反応 (超急性拒絶) が起こり、 移植した臓器は機能を失ってしまうことが知られて いる。
このような現象は一連の反応の結果として生じると考えられている。 即ち、 (1 ) ヒ卜の血液中にはもともとブタの細胞に対する抗体 (自然抗体と呼ぶ) が存在する ので、 ヒ卜の体内にブタの組織が移植されると、 自然抗体がブタの組織を認識し抗 原抗体複合物が作られる。 (2) 抗原抗体複合物はヒトの血清中に含まれる補体を活 性化して補体カスケード反応を惹起させる。 即ち、 その抗原抗体複合物に補体成分 C 1が、 続いて C4、 C2が反応し、 それらは C3転換酵素を形成する。 C3転換酵素は C3を活 性化し、 C3bと C3aに分解する。 C3bはブタ組織の細胞膜表面に結合するとともに、 C5 転換酵素を形成するこ-とで C5を活性化し C5bと C5aに分解する。 C5bも膜に結合し、 そ の後連続的に C6、 C7、 C8、 C9と補体分子は反応して行く。 (3) 補体カスケード反応 の結果として膜侵襲複合体 (Membrane Auack Complex: MAC)が作られ (古典経路と 称する) 、 MACが移植されたブタの臓器を侵襲すると共に血栓も形成される。 (4) また、 古典経路と共に代替経路と称する補体カスケ一ド反応のあることも知られて いる。 代替経路の場合でも、 C3ステップ以降は上記と同様のカスケード反応が行わ れ、 最終的には MACが形成される。
Miyagawa, S. ら (Transplantation, Vol.46 (6) , 825-830, 1988) はつぎのこと を報告した; (1) 異種移植された臓器や器官の超急性拒絶は古典経路及び/又は代 替経路による補体カスケ一ド反応の惹起により生じる; (2) CVF (cobra venom fac tor) の事前投与により C3を欠損させておけば超急性拒絶を生じない。 これらのこと から、 C3ステップで補体カスケ一ド反応を阻止する膜結合型の因子である DAF及び/ 又は MCP、 特にレシピエント種と同種の DAF及び Z又は MCPを発現する動物の作成が望 まれていた。
そこで、 ブタの臓器にヒ卜の C3転換酵素を分解する作用を有する補体制御因子で ある hDAF (CD55) を発現させたトランスジエニックブタの開発が試みられている (A. M. Rosengardら、 Transpalantaion, Vol.59 (9), 1325-1333, 1995: G. Byrneら, T ransplantation Proceedings, Vol.28(2) , 759, 1996)。
しかし、 これらのトランスジエニックブタが超急性拒絶反応を完全に抑制するこ とができるか否かは現在までのところ明らかになっていない。 今後、 1) 必要な組織 に必要な量の hDAFが発現できている力、、 2) hDAF以外の別の補体制御因子の複合発現 が必要でないか、 さらには 3) ブタ細胞上に発現されていてヒトの自然抗体が結合す る抗原 (糖鎖抗原) を減少させる働きを有する糖転移酵素遺伝子の発現が必要では ないか、 4) 上記の遺伝子群及びそれら以外の遺伝子、 例えば血栓の形成を阻害する 働きを有する蛋白質をコードする遺伝子を同時に発現させることが必要ではないか 等を検討する必要がある。 即ち、 超急性拒絶抑制方法を開発のためには、 解明すベ き課題が多く残されている。
上述の不明な点を解決するためには、 ブタ及び/又はブタよリ取り扱い易い小型 の実験モデル動物を開発して、 種々の検討をすることが急務である。 とりわけ、 目 的とする臓器や組織に少なくともヒトと同レベル以上の hDAFを発現するトランスジ エニックブタの開発及 /又はブタより取り扱い易い小型の実験モデル動物の開発 は、 この分野の研究の遂行上及び Z又は臨床応用法の開発上、 有用と考えられる。 そこで、 上述のように、 これまでもヒ卜の補体制御因子を発現するトランスジェ ニックブタの開発が試みられてきている。 そして、 その発現は、 (1)免疫組織学的方 法等の in vitro試験、 (2)トランスジエニックブタの組織をヒ卜血液と接触させる ex vivo試験、 又は(3)トランスジエニックブタの組織を霊長類に移植する in vivo試験 などによリ確認されている。 トランスジエニックブタの組織を ex vivo試験や in viv o試験に供した場合には、 非卜ランスジェニックブタの組織を試験に供した場合に比 ベて、 機能保持時間を延長できることが確認されている。
但し、 これらのトランスジエニックブタの組織に発現されているヒト補体制御因 子の量がヒ卜の組織に発現されている量に比べて同程度かそれ以上であるかについ ては必ずしも明確にされていない。
また、 これまでに報告されているヒト補体制御因子遺伝子を発現するトランスジ エニックブタを作成するのに用いられた導入遺伝子コンストラク卜のプロモター遺 伝子は、 (1)ブタを起源とするものではなく(G. A. Langfordら、 Transplant. Proc. , 26, 1400, 1994; W. L. Fodorら、 Proc. Natl. Acad. Sci. USA, 91. 11153-11157, 19 94; G.W. Byrneら、 Transplantation 63. 149-155, 1997)及び/又は(2)動物の体内 の全組織的に分布している分子に関連するプロモタ一(例えば、 β -Ύゥチン、 Η 2 Kb) であった。
一方、 これまでにも hDAFを発現するトランスジエニックマウスの開発が試みられ てきている (N. Caryら, Transplantation Proceedings, Vol. 5 (1) , 400-401, 1993 ; D. Kaganら, Transplantation Proceedings, Vol. 26 (3) , 1242, 1994) 。 しかし、 開発されたトランスジエニックマウスの hDAFの発現部位、 発現量は、 報告例ごとに 異なり、 厳密に言えば、 ヒ卜の補体制御因子を本来、 発現しおくべき部位 (特に、 血管内皮細胞) にヒ卜で発現している量を上回るレベルで発現させたトランスジェ ニッククマウスは開発されていなかった。
上記課題を解決するために、 本発明者らは補体制御因子が本来発現されるべき器 官、 臓器、 組織や細胞、 特に血管内皮細胞に hDAFを発現したトランスジエニック動 物、 特にヒト以外の哺乳動物の作製を検討した。 その結果、 本発明者らが先に発明 したブタ捕体制御因子 (pMCP) プロモーター (日本国特願平 9- 142961号参照) を用 い、 補体制御因子が本来発現されるべき器官、 臓器、 組織や細胞、 特に血管内皮細 胞に h Fを発現するように考案した遺伝子を動物の受精卵に導入し、 レシピエント 母親動物の子宮に移植し、 出産させることにより所期の目的を達成する
エニック動物を作製できることが^ J明した。 また、 後記の実施例でも示されるように、 本発明のトランスジエニックマウスの 場合には、 hDAFが各種の臓器、 組織、 その血管内皮細胞と共に、 赤血球並びに中枢 及び末梢神経にも発現されており、 発現量はヒトの細胞の発現量以上であった。 更 に、 本発明のトランスジエニックブタの場合にも、 赤血球や神経にも hDAFが発現し ていることが確認された。
本発明は係る知見に基づいてなされたもので、 本発明は医学や薬学の分野で有用 なトランスジエニック動物を提供することを目的とする。 発明の開示
本発明は、 ヒ卜の補体制御因子 (MF/CD55)の遺伝子を有し、 当該ヒトの補体制御 因子を臓器♦組織に発現しているヒト以外のトランスジエニック哺乳動物に関する。 更に、 本発明は、 ヒトの補体制御因子 (MF/CD55)を血管内皮細胞、 特に全臓器♦組 織の血管内皮細胞に発現しているトランスジエニック哺乳動物に関する。
また、 本発明のトランスジエニック哺乳動物は、 ヒ卜の補体制御因子 (DAF/CD55) の遺伝子上流側にブタ補体制御因子 (pMCP)プロモーターを有することが好ましい。 本発明に係るトランスジエニック哺乳動物は、 家畜又は実験動物として有用であ る。 図面の簡単な説明
図 1は、 pMCPプロモーター (5.4kb) と hDAFcDNAを含む導入用遺伝子の構造を示す 図である。
図 2は、 pMCPプロモータ一 (0. 9kb) と hDAFcDNAを含む導入用遺伝子の構造を示す 図である。
図 3は、 比較として用いた hDAFプロモーターと hDAFcDNAを含む導入用遺伝子の構 造を示す図である。
図 4は、 トランスジエニック哺乳動物及び非卜ランスジエニックである哺乳動物 について、 hDAFcDNA特異的プライマーを用いて PCR反応を行った結果を示す図である t なお、 図中の(1 )と(3)はそれぞれ hDAFcDNAを有することが確認されたブタとマウス の結果であリ、 (2)と(4)はそれぞれ同腹産仔のうち hDAFcDNAを有さないことが確認 されたブタとマウスの結果である。 図 5は、 TgF lマウス、 比較のトランスジエニックマウス及び通常のマウス (非卜 ランスジエニックマウス) の各種臓器中の hDAF由来の mB Aの発現を示す図である。 なお、 (A ) は TgF lマウスの各種臓器に発現された mRNAを示す図であり ; (B ) は 比較のトランスジエニックマウス (hDAFプロモ一ターと hDAFcDNAを含む導入用遺伝 子 (3 ) (図 3参照) を導入して得たトランスジヱニックマウス) の各種臓器に発 現された m NAを示す図であり ; (C ) は非トランスジエニックマウスの各種臓器に 発現された mRNAを示す図であり、 最右端はヒ卜リンパ球細胞 (k 5 6 2 ) における h DAF由来 mRNAの発現を示す。 また、 図中の記号の B、 H、 K、 Li、 Lu、 S及び Tは、 それ ぞれ脳、 心臓、 腎臓、 肝臓、 肺、 脾臓及び精巣を意味する。
図 6は、 トランスジエニックブタ及び同腹産仔の内、 非トランスジエニックであ つたブタより採取した赤血球について抗 hDAFモノクロ一ナル抗体を用いて FACS解析 を行った示す図である。 なお、 (A ) はトランスジエニックブタより採取した赤血 球の hDAFの発現頻度を示す図であり ; (B ) は比較のために、 同腹産仔の内、 非卜 ランスジエニックであったブタより採取した赤血球には hDAFが発現されていないこ と示す図である。
図 7は、 トランスジエニック動物 (會印) 及び通常の動物 (匪印) より採取した 赤血球とヒト血清を反応させた際の溶血の程度を示す図である。 なお、 (a)はマウス 赤血球、 (b)はブタ赤血球について調べた結果を示す図である。 図の横軸は補体含有 量調整ヒト血清中の HNSの割合を示し、 縦軸は溶血率を示す。 発明を実施するための最良の形態
前述のように、 本発明は、 ヒ卜以外のトランスジエニック哺乳動物であって、 ヒ トの補体制御因子 (以下、 hDAFという) の遺伝子を有し、 当該ヒ卜の補体制御因子 を臓器 ·組織に発現していることからなり、 特に血管内皮細胞に発現していること からなる。 本発明における哺乳動物はヒ卜以外の哺乳動物であれば特に限定されず、 例えば、 マウス、 ラッ卜、 ハムスター、 ブタ、 ゥシ、 ゥマ、 ヒッジ、 ゥサギ、 ィヌ、 ネコなどが例示される '-。
本発明のトランスジエニック哺乳動物は、 以下の方法により作製することができ る。
まず、 プロモーターと hDAFcDNAを結合した導入用遺伝子を調製する。 この方法と しては、 適当なベクタ一(例えば、 pGL- 3ベ一シックべクタ一、 pBluescript等)の一 部を制限酵素で抜き取り、 そのベクター側の末端を常法に準じて平滑化しておく。 一方、 hMFcDNA (例えば、 Medof, M. E.ら, Proc. Natl. Acad. Sci. USA. , 84,
2007, 1987等参照) より、 hDAF をコードする塩基配列の開始コドンの直前から終始 コドン直後の領域を制限酵素で切り取り、 その末端を常法に準じて平滑化した後、 上記のベクターの平滑化した部分に挿入し、 更に適当なプロモーターを hDAFcDNA挿 入部位の上流側に挿入する。
上記のプロモータ一としては、 hDAFを哺乳動物の体内で発現し得るプロモータ一 であれば特に限定されず、 例えば、 エンドセリンのプロモーターなどが例示できる が、 本発明者らはブタ補体制御因子 (pMCP) プロモーターが特に好適であることを 見い出している。 なお、 ブタ補体制御因子 (pMCP) プロモータ一の塩基配列を配列 番号 1として示す (日本国特願平 9- 142961号参照) 。
かくして得られたベクタ一 (環状遺伝子) より、 プロモーターと hDAFを含む領域 を適当な制限酵素で切り出すことにより、 導入用遺伝子が調製される。
なお、 上記の工程における個々の手法は当業者に知られており、 各工程は常法に 準じて行うことができる。
トランスジエニック哺乳動物は、 上記で調製された導入用遺伝子を哺乳動物の受 精卵 (前核期卵) の前核にマイクロインジェクション法などの慣用の方法で導入し、 当該受精卵を必要に応じて培養し、 又は培養せず直に疑妊娠状態に同期化させてお いた雌性哺乳動物 (レシピエント哺乳動物) の卵管又は子宮に移植し、 産仔を得る ことにより作製される。 なお、 前核にマイクロインジェクションを行う際に、 受精 卵内の多量の脂肪粒の存在等によリ前核の確認が困難な場合には、 常法に従って予 め遠心処理を行う。
作製された産仔がトランスジヱニック哺乳動物であることの確認は、 後記のドッ 卜ブロッテング法、 PCR法、 免疫組織学的方法、 補体抵抗性試験などにより行うこと ができる。
かくして得られたド-ランスジエニック哺乳動物は、 常法に準じて交配し、 産仔を 得ることにより繁殖させることができる。 また、 当該卜ランスジエニック哺乳動物 の細胞を初期化培養し、 又はせずに、 その細胞から核を採取し、 予め除核しておい た受精卵に移植 (核移植) し、 レシピエン卜哺乳動物の卵管又は子宮に移植し、 ク ローン産仔を得ることによつても繁殖させることもできる。
後記の実施例に示されるように、 本発明で得られたトランスジエニック哺乳動物 は hDAF遺伝子を有し、 また全臓器の血管内皮細胞に hDAFを発現しており、 ヒト補体 に対する抵抗性を有することが確認された。 産業上の利用可能性
本発明によれば、 下記のような効果が得られ、 医学、 薬学などの分野で有用であ る。
( 1 ) 本発明の卜ランスジエニック哺乳動物の臓器、 例えば心臓、 肺、 肝臓、 腎臓な どとヒトの血液を接触させるか、 又はこれらの臓器を霊長類の動物に移植すれば、 h
DAFが異種移植に伴う超急性拒絶の回避に有用であることを確認することができる。
(2) 本発明のトランスジエニック哺乳動物の臓器、 例えば心臓、 肺、 肝臓、 腎臓な どとヒトの血液を接触させるか、 又はこれらの臓器を霊長類の動物に移植して異種 移植モデルを作製すれば、 異種移植時の超急性拒絶の回避を補完する薬剤 ·処置器 材等及び Z又は超急性拒絶の後に発生すると危惧されている急性又は慢性拒絶を回 避するための薬剤♦処置器材等の開発に資することができる。
(3) 補体制御因子の発現だけでは解決できない超急性拒絶に関する問題点を顕在化 させるための研究開発を行うことが可能となる。 即ち、 超急性拒絶の回避のために は、 補体制御因子の導入と共に、 ヒトの自然抗体が結合するブタ細胞上の糖鎖抗原 の発現を減少させる機能を有する糖転移酵素の導入及び/又は血管内皮の恒常性を 維持する因子 (例えば、 トロンボモジュリンなど) の導入が必要か否かの議論に解 答を与えることができる。
(4) 本発明の卜ランスジエニック哺乳動物に他の補体制御因子 (ヒト MCPとヒト CD5 9) を発現するトランスジエニック哺乳動物を交配させるなどすれば、 それぞれの補 体制御因子の相乗効果を検討することも可能である。
(5) 本発明の卜ランスジエニック哺乳動物の臓器 (例えば、 心臓、 肺、 肝臓、 腎臓、 脾臓等) 、 β蔵器に付属:する組織 (例えば、 冠状動脈、 脳硬膜等) や細胞 (例えば、 ィンスリンを産生するランゲルハンス島、 ド一パミンを産生する脳黒質線条体細胞 等) 等をヒ卜患者に移植すれば既にダメージを受け機能を失調させた患者臓器等の 補完、 あるいはその代用とすることができる。 (6) 本発明のトランスジエニック哺乳動物の臓器の細胞 (例えば、 肝臓、 腎臓など の臓器から採取した細胞、 インスリンを産生するランゲルハンス島、 ド一パミンを 産生する脳黒質線条体細胞) を培養し、 培養細胞を適宜器材装置等に組み入れ、 対 応する臓器の機能が失調しているヒト患者と体外循環系を介して接続すれば、 失調 している臓器の代替や治療として活用することが可能となる。 実施例
以下、 実施例に基づいて本発明をより詳細に説明するが、 本発明はこれらの例に 限定されるものではない。
実施例
①導入用遺伝子の構築
pMCPプロモーターと hDAFcDNAを連結した導入用遺伝子を下記の要領で作製した。 即ち、 pGL- 3ベーシックベクタ一(Promega)より、 luc.遺伝子を Ncolサイ トと Xbal サイ トで抜き取り、 ベクター側の両末端を T4 DNA polymeraseで平滑化した。 次ぎに、 第一ィントロンを含む hDAFcDNAを、 ATG開始コドンの直前の Asclサイ トと TAG終始コ ドンの直後の Acclコドンで切り出し、 T4 DNA polymeraseで平滑化し、 前述のベクタ 一の末端平滑化した部分に挿入した。 また、 ブタゲノムファージライブラリーの pMC P遺伝子 (特願平 9- 142961号) を含む領域より、 プロモーターに相当する部分の約 5. 4kbを EcoRIと Fsplサイ トで切り出し、 pB.luescriptベクターの EcoRIと EcoRVサイトに 挿入した。
(1) pBluescriptべクターに挿入したプロモータ一部分の約 5.4kbを BstEI Iと EcoRI で切り出し (配列番号 1の塩基配列 2〜5392香の配列を有する断片) 、 T4 DNA polym eraseで平滑化し (配列番号 1の塩基配列 2〜5397番の配列を有する断片) 、 前述の ベクタ一の hDAFcDNA挿入部位のすぐ上流にある Smalサイ トに挿入した。 そして、 上 記のプロモーターと hDAFcDNAを含む領域を Notlと Eco47I I Iサイ トで切り出し、 導入 用遺伝子 (1 ) とした (図 1参照) 。
(2) プロモータ一を-揮入した pBluescriptベクタ一より、 pMCPの ATG開始コドンの 直前にある BstEI Iサイ 卜と BssH2で 1.7kbのプロモーター領域を切り出し、 末端を T4 DNA polymeraseで平滑化した後、 前述の hDAFcDNAを含むベクタ一の Smalサイトに挿 入した。 さらに、 プロモータ一部分よりさらに上流にある pBluescript由来の BstXI サイ卜と Spelサイ 卜で切断しプラスミドを直鎖状にし、 Kilo- Sequence用 Deletion K it (Takara社製) を用いてプロモーター領域が 0.9Kbの長さ (配列番号 1の塩基配列 4498〜5397番の配列を有する) になるまで短縮した deletion皿 tantを得た。 そして、 上記のプロモーターと hMFcDNAを含む領域を Notlと Eco47I IIサイ 卜で切り出し、 導 入用遺伝子 (2 ) とした (図 2参照) 。
(3) 一方、 h AFプロモーターと hDAFcDNAを連結した導入用遺伝子 (3 ) を次ぎの要 領で作成した。 即ち、 hDAFプロモーターは、 プロモーターに相当する部分の約 3.8kb の領域を Hindl l lサイ 卜と Asclサイ トで切り出し、 末端を平滑化し、 前述のベクター の hDAFcDNA挿入部位のすぐ上流にある Sinaiサイ トに挿入した。 そして、 上記のプロ モーターと hDAFcDNAを含む領域を Notlと Eco47I I Iサイ トで切り出し、 導入用遺伝子
( 3 ) とした (図 3参照) 。
それぞれの導入用遺伝子は、 リン酸緩衝生理食塩水 (PBS) にて 5 /_i g/nilの濃度に 調整して用いた。 ②トランスジエニック哺乳動物 (マウス) の作成
マイクロインジェクション法による導入用遺伝子のマウス受精卵への導入とトラ ンスジエニックマウスの作成を下記の要領で行つた。
即ち、 CBAマウスあるいは C3Hマウスのォスに C57BL/6マウスのメスを交配させ、 産 子を得た。 このメスを採卵用マウス (ドナー) に供した。 ドナ一マウスに過排卵処 理 (PMSGと hCGの投与) した後、 ICRマウスのォスと交配させ、 受精卵 (前核期卵) を採取した。 この前核期卵に、 前述の導入用遺伝子 (1 ) 又は (3 ) をマイクロイ ンジェクシヨン法により、 前核が膨らむのがわかる程度まで注入した。 そして、 導 入用遺伝子の注入された前核期卵を直ちにレシピエン卜マウスの卵管に移植し、 あ るレ、は導入用遺伝子の注入された前核期卵を 3日間培養した後にレシピエントマウ スの子宮に移植した。 そして、 産子を得た。 なお、 レシピエントマウスは精管結紮 マウスと予め交尾させて疑妊娠状態にしておいた。
③トランスジエニック哺乳動物 (ブタ) の作成
マイクロインジェクシヨン法による導入用遺伝子のブタ受精卵への導入と卜ラン スジエニックブタの作成を下記の要領で行つた。 即ち、 ランドレース種、 大ヨークシャー種及びデロック種の交雑種の雌豚を採卵 用豚 (ドナー豚) に供した。 ドナー豚に過排卵処理 (PMSGあるいは FSHと hCGの投与) した後、 デロック雄豚の精子を用いて人工授精法により受精させ、 受精卵 (前核期 卵) を採取した。 この前核期卵を遠心分離機で処理し (12, 000 x g, 8分間)、 その 後、 前記導入用遺伝子 (2 ) をマイクロインジェクション法により、 前核が膨らむ のがわかる程度まで注入した。 そして、 導入用遺伝子の注入された前核期卵を直ち にレシピエント豚の卵管に移植した。 そして、 産子を得た。 なお、 レシピエント豚 には、 予め前述の過排卵処理を行いドナー豚と性周期を同期化しておいた豚、 ある いは受精卵を採取した後のドナ一豚を供した。
④トランスジエニック哺乳動物の同定
レシピエント哺乳動物から得られた産仔の尾部から常法によリゲノム DNAを抽出し、 下記の 2方法によりトランスジエニック哺乳動物の同定と選抜を行った。
(1 ) ドットブロッティング法:供試産仔のゲノム DNA d O g)をメンブレンに固定し、 予めピオチンラベルしておいた hDAFcDNAの一部からなる遺伝子とハイブリダイゼズ させた。 アルカリホスファターゼを用いた発色反応 (スマライ ト、 住友金属社製) を行い、 導入遺伝子の組込みの有無を検出し、 トランスジエニック哺乳動物を同定 した。
(2) PCR法:供試産仔のゲノム DNAをテンプレートとして、
hDAFcDNA由来の 5' -GGCCTTCCCCCAGATGTACCTAATGCC-3 'をセンスプライマー、
同 5' -TCCATAATGGTCACGTTCCCCTTG-3'をアンチセンスプライマーとする PCR反応を行つ た (条件; 94°C 30秒間、 68°C 2分 30秒間、 30回) 。 そして、 導入遺伝子の組込みの 有無を検出し、 トランスジエニック哺乳動物の同定を行った。 その結果を図 4に示 す。 図 4に示すように、 レシピエント哺乳動物から得られた産子の内には、 そのゲ ノム中に hDAFcDNAを有するマウス及びブタの存在することが確認された。 なお、 図 4中の 1と 3はそれぞれ h FcDNAを有することが確認されたブタとマウスの結果であ り、 図 4中の 2と 4はそ ··れぞれ同腹産仔のうち hDAFcDNAを有さないことが確認された ブタとマウスの結果である。
⑤卜ランスジヱニック哺乳動物 (マウス) の繁殖 卜ランスジエニックと同定されたマウスを、 ICRマウスと交配させ、 導入遺伝子を 持つ産子 (TgFlマウスという) を作出した。
⑥卜ランスジエニック哺乳動物 (マウス) における導入遺伝子の発現の確認 (IRR A の発現)
TgFlマウスの各種臓器から mR Aを抽出し、 常法の RT-PCR法を用いて、 臓器中の hM F由来の mRNAの発現を調べた。 なお、 比較例として、 hDAFプロモーターと hDAFcDNAを 含む導入用遺伝子 (3 ) を導入して得たトランスジエニックマウス及び通常のマウ ス (非卜ランスジエニックマウス) についても、 各種臓器から mRNAを抽出し、 上記 と同様な方法で hDAF由来の mRNAの発現を調べた。 その結果を図 5に示す。 なお、 図 中の記号、 B、 H、 K、 Li、 Lu、 S及び Tは、 それぞれ脳、 心臓、 腎臓、 肝臓、 肺、 脾臓 及び精巣を意味する。
その結果、 pMCPプロモータ一と hDAFcDNAを含む導入用遺伝子 ( 1 ) (図 1参照) を導入して得たトランスジエニックマウスの場合には、 検討した臓器 (脳、 心臓、 腎 臓、 肝臓、 肺、 脾臓及び精巣) の全てに hDAFcDNAに由来する mRNAの発現を示す強い シグナルが認められた (図 5の A ) 。 このことから、 TgF lマウスは全臓器で h F由 来の mE Aを発現していることが明かとなった。
一方、 hDAFプロモーターと hDAFcDNAを含む導入用遺伝子 (3 ) (図 3参照) を導 入して得たトランスジエニックマウスの場合には、 精巣のみに hDAFcDNAに由来する m RNAのシグナルが認められたが、 その他の臓器では、 シグナルは認められないか、 認 められても非常に弱いものであった (図 5の B ) 。
なお、 非卜ランスジエニックマウスの場合には、 いずれの臓器においても、 hDAF に由来する mRNAの発現は認められなかった (図 5の C ) 。
また、 ヒ卜リンパ球細胞株 (K562) について同様の分析をした場合には、 hDAFに 由来する mRNAの発現が認められた (図 5の Cの最右端) 。
⑦トランスジエニック :哺乳動物 (マウス) における導入遺伝子の発現の確認 (免疫 組織学的手法による hDAF蛋白質の発現の確認)
TgFlマウスの各臓器の凍結切片を作成し、 ピオチン化抗 hDAFモノクローナル抗体 を反応させた。 その後に、 ペルォキシダ一ゼ標識ストレプトアビジンを結合させた。 これに発色基質 (ジァミノべンジジン; DAB) を作用させ、 顕微鏡観察により hDAF蛋 白質の発現強度及び発現部位を検討した。 その結果を下記表 1に示す。
表 1に示されるように、 pMCPプロモーターと hDAFcDNAを含む導入用遺伝子 (1 ) を導入して得たトランスジエニックマウスの場合には、 観察した全臓器に hDAFの強 い発現が認められた。 発現の確認された臓器は心臓の心房筋、 心室筋と中小 ·毛細 血管内皮、 腎臓の糸球体、 尿細管と中小 ·毛細血管内皮、 肝臓の肝細胞、 胆管上皮 と中小 ·毛細血管内皮、 肺の肺胞、 気管上皮と中小 ·毛細血管内皮、 腸の腸粘膜上 皮と中小 ·毛細血管内皮、 脖臓の外分泌腺細胞、 ランゲルハンス島、 膊管上皮と中 小 ·毛細血管内皮、 脾臓の白脾臓、 赤脾臓、 脾柱と中小 ·毛細血管内皮、 脳の大脳 皮質と髄質、 小脳皮質と髄質と中小 ·毛細血管内皮、 精巣の精上皮細胞、 間細胞、 精子と中小 '毛細血管内皮、 及び抹消神経であり、 全臓器にわたっていた。
一方、 hDAFプロモーターと hDAFcDNAを含む導入用遺伝子 (3 ) を導入して得た卜 ランスジエニックマウスの場合には、 精巣のみに hDAFの発現が認められた。 しかし、 精巣の血管内皮細胞には発現が認められなかった。
表 1
臓 器 プ ロモ 一 タ ー 通常マウス p M C P h D A F
心臓 心房筋 + + ― 一 心室筋 + ― ― 中小 ♦ 毛細血管内皮 + + 一 一 腎臓 糸球体 + + ― 一 尿細管 ― ― 一 中小 · 毛細血管内皮 + + ― 一 肝臓 肝細胞 士 ― ― 胆管上皮 + + 一 一 中小 · 毛細血管内皮 + + ― ― 肺 肺胞 + + ― ― 気管上皮 + + ― ― 中小 · 毛細血管内皮 + + 一 一 腸 腸粘膜上皮 + ― ― 中小 · 毛細血管内皮 + + ― 一 脾臓 外分泌腺細胞 + 一 ― ランゲルハンス島 + ― ― 脾管上皮 + ― ― 中小 · 毛細血管内皮 + + ― ― 脾臓 白脾臓 士 ― 一 赤脾臓 士 ― ― 脾柱 + ― ― 中小 · 毛細血管内皮 + + 一 ― 脳 大脳皮質 + + ― ― 髄質 + + ― 一 小脳皮質 + 一 一 髄質 + +
中小 · 毛細血管内皮 + +
精上皮細胞 + + 土
間細胞 + 土
精子 + + + +
中小 · 毛細血管内皮 + +
末梢神経 + + + ⑧トランスジエニック哺乳動物 (ブタ) における導入遺伝子発現の確認 (免疫組織 学的手法による hDAF蛋白質の発現の確認)
④に記載の PCR法によりトランスジエニックであることが確認されたブタについて hDAF蛋白質の発現を確認した。
即ち、 ⑦と同様に、 当該ブタの尾部の凍結切片を作成し、 ピオチン化抗 hDAFモノ クローナノレ抗体を反応させた。 その後に、 ペルォキシダ一ゼ標識ストレブトァビジ ンを結合させた。 これに発色基質 (ジァミノべンジジン; DAB) を作用させ、 顕微鏡 観察によリ hDAF蛋白質の発現強度及び発現部位を検討した。
その結果、 pMCPプロモーターと hDAFcDNAを含む導入用遺伝子 (2 ) を導入して得 たトランスジエニックブタの組織切片の中小 ·毛細血管内皮に hDAFの発現が認めら れた。 その他にも抹消神経、 骨格筋、 皮膚重層扁平上皮などの組織で hDAFの発現が 認められた。 ;エニック哺乳動物 (ブタ) における導入遺伝子発現の確認 (FACS解析 による hDAF蛋白質の発現と発現強度の確認)
④に記載の PCR法及び⑧に記載の免疫組織化学的手法によりトランスジエニックで あることが確認されたブタの組織を抗 hDAFモノクロ一ナル抗体を用いる FACS (Fluore sence- activated cell sorter, べクトンディキンソン社製 FACScan) 解析に供し、 h DAF蛋白質の発現を確認した。
即ち、 当該ブタから血液を採取し、 赤血球画分を得た。 この赤血球にピオチン化 抗 hDAFモノクローナル抗体を反応させた。 その後に、 Phycoprobe PE Streptavidin (Biomeda社製) を結合させ、 FACScanにより発現強度を検討した。 その結果を図 6 (A) に示す。 また、 同腹産仔の内、 非トランスジエニックであったブタについて 同様の FACS解析を行った結果を図 6 ( B ) に示す。 なお、 図 6の横軸は各細胞当た りの蛍光強度、 即ち hDAFの発現強度を表わし、 縦軸は各強度当たりの細胞数を表わ す。
図 6が示すように、 PCR法及び免疫組織学的手法によりトランスジエニックである ことが確認されたブタから採取した赤血球は、 hDAFを発現しており、 その発現量も 多いことが認められた。 一方、 非トランスジエニックブタの場合には、 hDAFを発現 していなかった。 図 6に示すように、 本例で得られたトランスジエニックブタの場合には、 赤血球 全体のポピュレーションの中に hDAFを発現する赤血球と hDAFを発現しない赤血球が 混在する(モザイクと称する)。 なお、 マイクロインジェクション法により作成され たトランスジエニック動物の第一世代目(Founder)個体がモザィクを呈すること、 及 び交配や育種等の慣用の手段によリモザィクが解消されることは既に知られている。
⑧と⑨に示す結果から、 pMCPプロモーターと hDAFcDNAを含む導入用遺伝子を導入 して得た卜ランスジエニックブタは、 hDAFcDNAに由来する hDAF蛋白質を血管内皮細 胞を含む広範囲の臓器組織に発現していることが分かつ† ⑩トランスジエニック哺乳動物における導入遺伝子の発現の確認 (hDAF蛋白質の機 能の確認)
トランスジェニック哺乳動物の細胞上に発現された hDAF蛋白質が hDAF蛋白質本来 の機能、 すなわち補体カスケード反応の抑制作用を有すること確認した。 この確認 はトランスジエニック哺乳動物の赤血球にヒ卜血清を反応させ、 溶血の有無を測定 することにより行った。 なお、 卜ランスジエニック哺乳動物の細胞として赤血球を 用いたのは、 (1) 補体カスケード反応による膜侵襲複合体形成の有無を溶血の有無 により簡便に検定可能であること、 (2) 赤血球の膜は他の細胞 (例えば、 白血球、 血管内皮細胞など) の膜より脆弱であるので、 補体カスケード反応の強弱をより鋭 敏に検定可能であることに依る。
トランスジエニックマウス及び非トランスジエニックマウスの尾部、 並びにトラ ンスジエニックブタ及び非トランスジエニックブタの耳静脈より血液を採取し、 赤 血球画分を得た。 それぞれの赤血球を PBSにて希釈後、 96穴マイクロプレートの各ゥ エルに 30 μ 1ずつ分注し (1x10'個/ゥエル) 、 その後、 補体含有量調整ヒト血清 ( 無処理の正常ヒト血清 [HNS]と予め非働化処理 [56°C30分間の加熱]しておいたヒ卜血 清 [HIS]を種々の割合で混合し、 ヒ卜補体の含有量を調整しておいた血清) 70 μ 1を 上記のゥエルに滴下し、 赤血球と反応させた (37°C、 1. 5時間) 。 その後、 各ゥニル 上清液の 405舰における吸光度をマイクロプレートリーダー(Bio- Rad社製)を用いて 測定し、 補体反応により生じる溶血の割合を算出した。
その結果を図 7に示す。 但し、 図 7 (a)はトランスジエニックマウスの結果、 図 7 (b)は卜ランスジエニックブタの結果である。 また、 図 7の横軸は補体含有量調整ヒ 卜血清中の HNSの割合、 即ちヒ卜補体の濃度を示し、 縦軸は各赤血球の溶血率を示す。 なお、 図中、 拳印はトランスジエニック動物より、 園印は通常の動物より採取した 赤血球である。
なお、 このような溶血反応は、 (1 ) ヒト血清中には自然抗体と補体が含まれてい るので、 動物の赤血球と共存すると補体の古典経路反応が速やかに活性化されるこ と、 (2) 補体制御因子の種特異性は高く、 動物 (本発明のトランスジエニック動物 は除く) の赤血球はヒトの補体反応を制御できないこと、 によって生じる。
図 7が示すように、 非卜ランスジエニック動物の赤血球はヒ卜補体含有量の如何 を間わず溶血した。 一方、 トランスジエニック哺乳動物の赤血球の溶血は抑制され た。 これらのことから、 DAF蛋白質を発現しているトランスジエニック哺乳動物の 赤血球はヒト補体に対する抵抗性を有していることが確認された。 なお、 本実施例 のトランスジエニックブタ赤血球のポピュレーションはモザイク状であつたが、 ヒ 卜補体に対する抵抗性を有していた。
配列表
配列番号: 1
配列の長さ: 5, 4 1 8
配列の型:核酸
鎖の数: 2本鎖
トポロジー 直鎖状
配列の種類 Genomic DNA
直接の起源 λ FIXI Iブタゲノムファージライブラリ一
配列
GAATTCTGCG TACACGGGGC CCCGGTGGCT TTACATCATC GCTACAGCGA 50 CATGGGATCC GAGCCGTGTC TACAACCTAC ACAACAACGC CAGATCCTTA 100 ACCCAATGCA TGAGGACAGG GCTCAAACCT GCGGCCTCAT AGATGCTAGT 150
CAGATTCGTT TCTGCTGAGC CACAATGGGA ACTCCTAATT CTAGATCGAT 200
CTAGAATTAG GAGTTCCCAT TGTGGCTCAG CAGAAACGAA TCTGACTAGC 250 ATCTATGAGG CCGCAGTTTG AGCCCTGTCC TCATGCATTG GGTTAAGGAT 300
CTGGCGTTGT TGTGTAGGTT GTAGACACGG CTCGGATCCC ATGTCGCTGT 350
AGCGATGATG TAAAGCCACC GGGGCCCCGT GCTACGCAGA ATTCNTGCAG 400
CCCGGGGGAT CCACTAGTTC TAGCNAGAGA GTTGAAAATT TAAAGAACAT 450
TTCTCCCCTA ATCTCCCAAA ATATGGGCAA AGGACAGGTA CCCGTGGCAC 500 TGGAAAAATA CAGGCAAGCA ACCCATGAGT ACATGAAAAG ATGCTCCAGG 550
GTTCGGCCTA ATGGAAGCCT GAACAATGCC TATCACATCG TGGGTTTCTG 600
MGAAGTAAC TTAAAGAAAC TAGAAATTAA ATGGCTTTCT TAGAATGAAA 650
ATTCTCTATC ACAAGGAAAA ATGTTGTATG TTGTTTTTCC CATAATGGAG 700
GTCAGTGGGC GCTATGATTA ACAAATATCT GATGCCTGTG ACTTTTTAAT 750 TGCAAGAAAT CTGTGNAGTT TTTTTATTAT CTATGGGAAA TATTGCATAT 800
ATTAATGATA TCACCTAACT TGTATTATTG AGCAATTCTG TCCACATCTG 850
GCCTTTCATC TTTCATCTM AAAGGAGGGG CTGGACGAAC TGACCTTCAG 900
TGCCATTCTT ACTGCTAACA TTCTAATTTT GTTTTTATTG CCTTTTTGTA 950
CAAAAGTGTG AGAGAAGTCA TTTTAAGTCT GTGACATTAA ATGTAATTTT 1000 CTGTCTCCAG CATTATAATA AGAATCAAAG ATTTAATCTA ATACACCGAT 1050 GGAATATTGT TTATAACGTA TTTACTGTTT CAAGCCTTCA AAACCAAGAG 1100
AAAACAAAAT GAGTACCTGT TCCTTCTGAG AAATGCCCTT CTTCCTGTTC 1150
AGAATCCCTG TGTATAACAG GAATGCTCTC GAGTTAACAG CCAAGTAAGA 1200
GGCCCATCGG CTGGCAGGTG CCCACCTAGC TAGGTGCAAG CAGAGGTGGC 1250 AGTGCTCCCA GGACCAACAG CAGAAACATG GCTTAACTAT CCTGTGTTTA 1300
GCAGTTCTCT TACGGGTTTT CACAACACCT AAAAAGCGCC CTGATGGGGT 1350
AAAGCCTCTG CCTTCATGCT GCTGCCCCGT CTCTGAAAAG CAGGACGTAA 1400
ATATACAATT TAGGAGGTAA GAGGGACATC TGCCATTGTT TTCTTTAACA 1450
CAGTCAGCCT CTGTTTAATG AATCCCAGCC ACCTCCCTCC ACCTACCATC 1500 ATTCCTAAGG TTTGCAGAGG AGCTGCCATA GAGCTCAAAA CACGG丽 TAC 1550
AGACAAGCAT NTTCTCCATC CCTCCTCATC TTCTCACAGG CCGCTTGACA 1600
ACATCTCTAG GAGGGGGTGG AGGCGCCACC AGTGTTTGAG CCCCTCGTTC 1650
ACGCAAAGCC TTGACTCTGG AGTTCTAGTC CTCGCGGGAC CTTAGGAAGT 1700
TCACGGTCAA TACTCCGCCC TTGGGCTCAG ACACTAAGAG GATCTCCGGG 1750 TAAAGAGATA GACAGTAGCT CCATGCCTGA TTTAGGAAAA CTGTCCGTAC 1800
AGACAGTTGT AATTCATTCC TTTCAGAGAC AAATCCTGCT CTCTTCCTAG 1850
TTCCTGAAGT CATTAAAATC AAAAGCTCTC AGAAACGTCC CAGCATTTGC 1900
TAAGTCCACG CTGGGGGAGG ATGGGCAGAG CCGTGTTCAG CGCGTTTGAC 1950
AGCAACACCC ACTTATTTCA TTYAGTATCC ATAGGCATAT ATCATGCACC 2000 TGGTATAGGC CTCTCTCTCA GCACTGGAGA TACAGCAAGA AAACGCTATT 2050
CCTGCCCCAT GGAGCTTGTW MARAAAAATA GANMAAAAA CCCTTTANAA 2100
ANGGAAGCTR CCNGMTGGGN CMAAGTNAAA ATTAAGTAAA AAGAAAWCCG 2150
TGARRAAACC CTTCAGTNAT ATTAAGAAAG AAANTAGCTT GATGAAACCC 2200
CAGGTGTANA AATTNNCACT AAAACAATGS TCCCAATTAA AACCCCCMAA 2250 TTCATGGAAT TTACTCNAGT ANCCTGNAAC TAGGRAAACC AAATTCTAGC 2300
CNATAGTTTC TCCCTTCTAA ATNTTCTCAT GAGAAAACAA YTTATTTCCA 2350
AAGANATTTT CCATGATGGG GAAAGTTTTT TTCAACTTTG CTCAGGTATA 2400
AACTGAANAT ACAGCATTAA AGTAAAGATA GTTGCAGAGA CCACCAAATA 2450
GATACCCGTT TTCANAAAAA GTGCCAACAT GGAGCCAGAG AACATTTCCG 2500 TTACATCACG CTTTTACGGC TTTGAAAATT AACAGAGATG ATAATCCCCC 2550 0S0 OIIVXDOVIO OVYYXVOOIV VOIIIVYOVl VOOIXIOIOV OS
000 1IY0D1YYYD IDIIIOODVI VYYOVIIDOI OIIXIIOOII DVOOOVDVVO
0S6S OIIYVYOVYV VIVYIIIIVO IIVI1VIVIY VDIVXOIDVY IIIII0I3IV
0069 VO0VY30IVI VVIIVDIIIl VYIIVIOYVO HIODOVYI? OVIYIVYVDV
0S8S OVYVOOOYOV OOVyVYYIIO YYVVOVIYIY VOIOOOVYYO YVIOIVYYDO
008S 0IVDDV03YI II3IIIVVVV VVVVVVVOII IIIYOOIIDO VDVIIIVDIO
OSAS OVDOYDVVVY 3VVOIVIDII V00Y0I3IIV IDIXDOVOVI VOIOIVVIOI
OOAS 0VYII30IIV 0I3I00IY00 VIIOOIIYOO I1DDVDVOOO VOYlllDDVD os9s IDIV30IVOV Doyooiivvi VIOIIOVVVI VYDDWYYII IOIOIVVOOI
009S XOOIIVDVOV 3VYV¥?IYYV VVIIIWVVY IOVODIVWV VIVVVIXVDD
099S VYYID03V0V YOV3VOI3YV YVOVIOVIV1 OI0OIIIDY3 3ID00I0VDV OZ
OOSS OYOVDVOVOV IOIDIOIDI NIVIVVOVVV iMVOVDINIVN IVDOVDDIVO
OS S IVOVVOVIM OOIIDVOIDV IONVIVIDYV OOOMDOVVOV 03VI0I0OI0
OO^S DIVOOOIVVO OOVVIYOOIV VONIII30OI IVI3VVVY3D IYOYIVVIIO
OSSS OOOIIIDOVO OOOIOVOOVO OOID03VOVV OOOOOOHVOO 0000YV0GS3
009S II1DOIDIIO YDVOVVDYDO IllOVOOIVD NIDDVVVTOV VYVOVOVOOI 91
II0VVV0IV3 V3Y3VO0VIV IVVI3IVV00 lOIVIYIIOV OIVIVDXVOV
OOZS 33VIVTV0V0 VVVDVOYYVO VOIOV3IOVV OIYVVIDOIV 3XDV0V0VID
OS IS YYOOIODOIV ODOIVOYYOO VOOIllYOOO lYYDVVYYOY VOYVVVVDIV
00 IS 0XDVV3IDVI DVIVVOOIVV 3V3V0V1VIV XDOIOOVOVY 0VVIIV30IV
OSOS YOIDOV3VV0 IVDOIOIVVV XD3VO0VWO OIVOVDVVOO DVIVV3V0II Οΐ
000S V30Y33Y00I OYOIIOIVIO OVIV003Y0O IYOOIVDYYV YOOIOOOXIY
VVVVVOVDOV 3IVIDDVDOO OI3OI0VDI0 IOVOOVDOIV DOVDVDDVIO
006Z VVDVIVXDV? 0IVYVV0V3I lOVIOOVOOl VOOVOVYVVV OXVIDVDIYY
OVIODIDVVV IDIVVDOOIO OIIOI3V33I 30I333VI00 OVVVIIOVGV
00 Z I0IIOVVVIX VVDVIVVVII lOIDVYYVIO OVOODXDIVO VIDVOIIDIO S
OSiZ VV00V3DDVV OXIOIIIOOX Y30IIYVV00 VYVVDVIDOO I3I001D0I0
IIYOVVVOOI VVOVV30II3 I0OVVNVNI3 IOIOIDV3V3 VDOXDDOOIV
0392 3VIY0INIVI IIOIVOVVIO VIVDYVOOIV VIVIXVOYOO IOIOIVDIYD
009Z IDIIYVIIIO OIDOVIIIIY VNIOOIDDDI ND0I3VNDD1 IIODDIIDDW
6 I
LZeZO/SedT/lDd AAAATTCCTT ATATTTCTGC TAAACACTTA AGGGCTTATA TTTTCTCCAA 4100
ATTTATACAT CCTTGCTCAC AGTTCTGACG ATGTCTTTGG GATAAACTCT 4150
AAATGGAACT AGAGGTTTAA AAGTTATGTC CATTTAAAAC TTTTAACACA 4200
AAAAAAGGTA AGTTAAAAAG TAAAAGTTTG GGGAGGCTGC TGGTCGCCCC 4250 CCCAACATTG GCTGACATTT TTATTCTTTG ACAACAAATA GGAAGAAAAT 4300
GTCAATGTCT TTTTTTACTG CTTAATACTG GTCATGTTAC TTTTCTTTCC 4350
TTTTGCTAAT CATACAGGCT TACTCACAAC TCTACAAAAA AATCTTACTC 4400
ATTCCTAATG TTCCTTCATT GAGAGATTGG TTTGCCGGAA ACGTTCTCAC 4450
TCTCACCAAG TCCCAACAGT CCCAACTCTA ACGACGGTCG CTGCTTCCAG 4500 AAATACGGCA CTTAAGGCAC CCTCGTCCTT ACCTTTTTCA TGCATGTGTA 4550
TTTCATTTTC AATAAAACAT TGAGTTGTTC CAAGGCCAGA CCATAGAGTT 4600
GAGCCCCAAC ATGCTAGTGG CCCAGTGTGA TGTAATAATT TACCTTCCCA 4650
GGGGTCCTCT CCGGGGGGGT ACAGGCGAGA CTAAGTGACT TTAAGCTGTT 4700
GGGAGAACAA TGGCCAAACC TTTCGTGATT TTGAAATCTA TCAGGCCACG 4750 AGACACTTCG GTAGCGGACG CTCAACCCTG GGAATCCCAA CTATTGTCCG 4800
AAATTTTGCC TGACTCGTGC CAAAGATTGA GCCAGGGCCC GGGTGTCCAG 4850
GCAGTCTGCA GTGGCCCAGT CCCCACCAGA GCCCTGAAGG GTGTCGGGCC 4900
CCACGAAACC GCTGCCCGGG CTCTAGGGTT TCTGTTTTCA GGTCGCTGCG 4950
CTTTATTCTC TAATTCAGCG TTCCCGAAAG AGACCATGAG GACCCGCCCA 5000 GTGTCCTTTA CACCTTCCCG TGTCGGGTGG CGACAGCTGT TTACGAAGAA 5050
GAGTGCACCA CCCTTTCCCG CAAGCCGCAG CGGTTAGTTC CGCAGAAGGA 5100
GGAGCCAGGG CGTCGGGCCG CAGCTGGGAG AGAGGCCCGG CAGCGGGCGC 5150
CGCGGAGCAG CAAGGGCGTC GCTCTCTCGG CCGGAGCCCC GCCCCGCCCC 5200
GCCCCCACGG CCCCGCCTTG CGGCCCGCCC ATTGGCTCCG CCGGGCCCTG 5250 GAGTCACTCC CTAGAGCCAC TTCCGCCCAG GGCGGGGCCC AGGCCACGCC 5300
CACTGGCCTG ACCGCGCGGG AGGCTCCCGG AGACCGTGGA TTCTTACTCC 5350
TGCTGTCGGA ACTCGAAGA^G GTCTCCGCTA GGCTGGTGTC GGGTTACCTG 5400
CTCATCTTCC CGAAAATG 5418

Claims

言青求の範囲
1 . ヒ卜の捕体制御因子 (DAF/CD55) の遺伝子を有し、 当該ヒ卜の補体制御因子 を臓器 ·組織に発現しているヒト以外のトランスジエニック哺乳動物。
2 . ヒトの補体制御因子 (DAF/CD55) を血管内皮細胞に発現している請求項 1記 載のトランスジエニック哺乳動物。
3 . ヒトの補体制御因子 (DAF/CD55) を全臓器,組織の血管内皮細胞に発現して 、る請求項 1又は 2記載の卜ランスジエニック哺乳動物。
4 . ヒ卜の補体制御因子 (DAF/CD55) の遺伝子の上流側にブタ補体制御因子 (pMC P) プロモーターを有する請求項 1〜 3の何れかに記載のトランスジエニック哺乳動 物。
5 . ブタ補体制御因子 (pMCP) プロモーターが、 配列番号 1に示される塩基配列 又はその一部である請求項 4記載の卜ランスジエニック哺乳動物。
6 . トランスジエニック哺乳動物が、 家畜又は実験動物である請求項 1〜5の何 れかに記載のトランスジエニック哺乳動物。
7 . トランスジエニック哺乳動物が、 トランスジエニックブタ又はトランスジェ ニックマウスである請求項 6記載のトランスジエニック哺乳動物。
PCT/JP1998/002927 1997-07-14 1998-06-30 Mammiferes transgeniques WO1999003336A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU79355/98A AU7935598A (en) 1997-07-14 1998-06-30 Transgenic mammals
EP98929756A EP1004238B1 (en) 1997-07-14 1998-06-30 Transgenic pigs
CA002297105A CA2297105A1 (en) 1997-07-14 1998-06-30 Transgenic mammals
US09/462,740 US6825395B1 (en) 1997-07-14 1998-06-30 Transgenic non-human mammals expressing the human complement inhibitor (DAF/CD55)
DE69832883T DE69832883T2 (de) 1997-07-14 1998-06-30 Transgene schweine
AT98929756T ATE313256T1 (de) 1997-07-14 1998-06-30 Transgene schweine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/205235 1997-07-14
JP20523597 1997-07-14

Publications (1)

Publication Number Publication Date
WO1999003336A1 true WO1999003336A1 (fr) 1999-01-28

Family

ID=16503653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002927 WO1999003336A1 (fr) 1997-07-14 1998-06-30 Mammiferes transgeniques

Country Status (7)

Country Link
US (1) US6825395B1 (ja)
EP (1) EP1004238B1 (ja)
AT (1) ATE313256T1 (ja)
AU (1) AU7935598A (ja)
CA (1) CA2297105A1 (ja)
DE (1) DE69832883T2 (ja)
WO (1) WO1999003336A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435520B2 (en) 1999-05-10 2013-05-07 Paolo Brenner Combinations of immunosuppressive agents for the treatment or prevention of graft rejections
US12058986B2 (en) 2017-04-20 2024-08-13 Egenesis, Inc. Method for generating a genetically modified pig with inactivated porcine endogenous retrovirus (PERV) elements

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496066A4 (en) * 2002-03-25 2006-09-13 Japan Science & Tech Agency ANTIBODIES RECOGNIZING PROLIFERATIVE HUMAN HEPATIC CELLLULES, PROLIFERATIVE HUMAN HEPATIC CELLS AND FUNCTIONAL HUMAN HEPATIC CELLS
WO2007033221A2 (en) * 2005-09-13 2007-03-22 The General Hospital Corporation Methods and compositions for inhibition of immune responses
US9420770B2 (en) 2009-12-01 2016-08-23 Indiana University Research & Technology Corporation Methods of modulating thrombocytopenia and modified transgenic pigs
WO2012078968A2 (en) 2010-12-10 2012-06-14 Lifeline Scientific, Inc. Machine perfusion with complement inhibitors
CN116059378A (zh) 2014-12-10 2023-05-05 明尼苏达大学董事会 用于治疗疾病的遗传修饰的细胞、组织和器官

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2060561T3 (es) 1989-10-12 1996-08-01 Imutran Ltd Material biologico modificado.
WO1993002188A1 (en) 1991-07-15 1993-02-04 Oklahoma Medical Research Foundation Universal donor cells
WO1997000951A1 (fr) * 1995-06-20 1997-01-09 Nippon Meat Packers, Inc. Adn codant pour un inhibiteur du complement, d'origine porcine
US6166288A (en) 1995-09-27 2000-12-26 Nextran Inc. Method of producing transgenic animals for xenotransplantation expressing both an enzyme masking or reducing the level of the gal epitope and a complement inhibitor
EP0940467B1 (en) * 1996-05-17 2005-12-28 Nippon Meat Packers, Inc. Promoters for swine complement inhibitors

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"STRIDES OF MEDICINE.", STRIDES OF MEDICINE, XX, JP, vol. 170., no. 09., 27 August 1994 (1994-08-27), JP, pages 744/745., XP002921846 *
"STRIDES OF MEDICINE.", STRIDES OF MEDICINE, XX, JP, vol. 176., no. 07., 17 February 1996 (1996-02-17), JP, pages 444/445., XP002921845 *
OKABE M.: "DEVELOPMENT OF TRANSGENIC MICE WHEREIN HUMAN COMPLEMENT CONTROL FACTOR HAS BEEN EXPRESSED IN FISICAL 1995, PREPARATION OF EXPERIMENTAL MODELS TO BE USED IN COMMON AMONG HETEROGRAFTING, VIRUS RECEPTOR AND REPRODUCTION IMMUNITY.", DEVELOPMENT OF TRANSGENIC MICE WHEREIN HUMAN COMPLEMENT CONTROLFACTOR, XX, XX, 23 April 1996 (1996-04-23), XX, pages COMPLETE., XP002921842 *
SHUJI HAYASHI, Collection of Research Results of Prize Winners Awarded with Kanae Bounty for Medical Science and Kanae Great in Aid of Medical Science (in Japanese), Vol. 23, (Japan), (1996). *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435520B2 (en) 1999-05-10 2013-05-07 Paolo Brenner Combinations of immunosuppressive agents for the treatment or prevention of graft rejections
US12058986B2 (en) 2017-04-20 2024-08-13 Egenesis, Inc. Method for generating a genetically modified pig with inactivated porcine endogenous retrovirus (PERV) elements

Also Published As

Publication number Publication date
EP1004238A4 (en) 2000-12-06
EP1004238B1 (en) 2005-12-21
DE69832883T2 (de) 2006-08-24
ATE313256T1 (de) 2006-01-15
US6825395B1 (en) 2004-11-30
AU7935598A (en) 1999-02-10
CA2297105A1 (en) 1999-01-28
DE69832883D1 (de) 2006-01-26
EP1004238A1 (en) 2000-05-31

Similar Documents

Publication Publication Date Title
DE69534227T2 (de) Stoffe und verfahren zur beherrschung der hyperakuten abstossung von menschlichen transplantaten
Pursel et al. Status of research with transgenic farm animals
DE69534295T3 (de) Fibrinogenproduktion in transgenen tieren
JP3145377B2 (ja) ペプチドの産生方法
JP2009103704A (ja) 抗アレルギー薬の評価方法
JP2002510973A (ja) ヒトFc受容体を発現するトランスジェニック動物
DE69535604T2 (de) Transgenes fibrinogen
JPH08504562A (ja) ウシ種による組み換えポリペプチドの製造及びトランスジェニック法
JP5507555B2 (ja) 豚のαS1カゼイン遺伝子、そのプロモーター、及びその用途
US20170218336A1 (en) Enhanced expression of human or humanized immunoglobulin in non-human transgenic animals
WO2013063076A1 (en) Compositions for and methods of modulating complications, risks and issues with xenotransplantation
WO1999003336A1 (fr) Mammiferes transgeniques
KR20050067138A (ko) 레트로바이러스 벡터에 의한 유전자 도입 조류에서의 유전자 발현법 및 그것에 의해 얻어지는 유전자 도입 조류
EP0451823A2 (de) DNA-Konstrukte zur Expression von Proteinen in der Milchdrüse transgener Säugetiere
EP1712126B1 (en) Method of constructing a transgenic bird.
Besenfelder et al. Generation and application of transgenic rabbits
CN107937439B (zh) 基因的应用及动物模型的构建方法
JPH11239430A (ja) トランスジェニック哺乳動物
JPH10502816A (ja) α−ラクトアルブミン遺伝子構造物
Lee et al. Integration and Expression of Goat ${\beta}-Casein/hGH $ Hybrid Gene in a Transgenic Goat
AU2003268864B2 (en) Transgenic non-human mammals expressing the human complement inhibitor (DAF/CD55)
WO2024204445A1 (ja) 魚類の製造方法、魚類および魚類の配偶子の製造方法
Pal et al. Transgenesis and Biopharming
JP4683821B2 (ja) ヒト組織因子を産生するノックイン非ヒト動物
KR20100113594A (ko) 영장류 동물의 초기 배아에의 외래 유전자 도입법 및 상기 도입법을 포함하는 트랜스제닉 영장류 동물을 작출하는 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2297105

Country of ref document: CA

Ref country code: CA

Ref document number: 2297105

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 79355/98

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1998929756

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09462740

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998929756

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998929756

Country of ref document: EP