WO1998054091A1 - Zeolita itq-3 - Google Patents

Zeolita itq-3 Download PDF

Info

Publication number
WO1998054091A1
WO1998054091A1 PCT/ES1998/000155 ES9800155W WO9854091A1 WO 1998054091 A1 WO1998054091 A1 WO 1998054091A1 ES 9800155 W ES9800155 W ES 9800155W WO 9854091 A1 WO9854091 A1 WO 9854091A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
crystalline material
source
reaction mixture
zeolite
Prior art date
Application number
PCT/ES1998/000155
Other languages
English (en)
French (fr)
Inventor
Miguel-Angel Camblor Fernandez
Avelino Corma Canos
Luis-Angel Villaescusa Alonso
Original Assignee
Consejo Superior De Investigaciones Cientificas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Cientificas
Priority to DK98921501T priority Critical patent/DK1016626T3/da
Priority to JP50028299A priority patent/JP2002511046A/ja
Priority to ES98921501T priority patent/ES2165678T3/es
Priority to US09/424,897 priority patent/US6500404B1/en
Priority to DE69802001T priority patent/DE69802001T2/de
Priority to EP98921501A priority patent/EP1016626B1/en
Priority to AT98921501T priority patent/ATE206689T1/de
Publication of WO1998054091A1 publication Critical patent/WO1998054091A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/005Silicates, i.e. so-called metallosilicalites or metallozeosilites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/04Thermal processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • Zeolites are microporous crystalline materials of variable composition characterized by a crystalline network of TO tetrahedra (where T represents atoms with a formal oxidation state +3 or +4, such as Si, Ti, Al, Ge, B, Ga, .. .) that share all its vertices giving rise to a three-dimensional structure that contains channels and / or cavities of molecular dimensions.
  • T represents atoms with a formal oxidation state +3 or +4, such as Si, Ti, Al, Ge, B, Ga, .. .
  • the crystalline network formed has negative charges that are compensated by the presence in the channels or cavities of organic or inorganic cations.
  • the chemical composition of the zeolites can be represented by the following empirical formula: x (M .. n XO 2 ): yYO 2 : zR: wH 2 O
  • M is one or more organic or inorganic charge cations + n;
  • X is one or more trivalent elements; And it is one or several tetravalent elements, generally Si; and R is one or more organic substances.
  • M, X, Y and R and the values of x, y, z, and w can, in general, be varied by post-synthesis treatments, the chemical composition of a zeolite (as synthesized or after calcination) ) has a characteristic range of each zeolite and its method of production.
  • a zeolite is also characterized by its crystalline structure, which defines a system of channels and cavities and gives rise to a specific X-ray diffraction pattern. In this way, the zeolites differ
  • SUBSTITUTE SHEET RULE 26 each other by its range of chemical composition plus its X-ray diffraction pattern. Both characteristics (crystalline structure and chemical composition) also determine the physicochemical properties of each zeolite and its applicability in different industrial processes.
  • the present invention relates to a microporous crystalline material of a zeolitic nature, called ITQ-3, its method of production and its applications.
  • ITQ-3 a microporous crystalline material of a zeolitic nature
  • the material is characterized by its chemical composition and its X-ray diffraction pattern.
  • the chemical composition of ITQ-3 can be represented by the empirical formula:
  • x has a value of less than 0.15, and can be equal to zero; and has a value of less than 0.1, and can also be equal to zero; M is H + or an inorganic cation of charge + n; X is a chemical element with an oxidation state +3 (such as Al, Ga, B, Cr) and Y is a chemical element with an oxidation state +4 (such as Ti, Ge, V).
  • ITQ-3 has the composition, in a calcined and anhydrous state.
  • X is a trivalent element and x has a value less than 0.1 and can be equal to zero, in which case the material can be described by the formula SiO 2 . It is possible, however, depending on the method of synthesis and its calcination or subsequent treatments, the existence of defects in the crystalline network, which are manifested by the presence of Si-OH groups (silanoles).
  • ITQ-3 has a very low concentration of this type of defects (silane concentration less than 15% with respect to the total Si atoms, preferably less than 6%, measured by resonance spectroscopy nuclear magnetic of 29 Si in magic angle).
  • the X-ray diffraction pattern of ITQ-3 as synthesized obtained by the powder method, using a slit of varying divergence and the radiation K ⁇ of the Cu, is characterized by the following values of angle 2 ⁇ and relative intensities (I / U):
  • the positions and relative intensities of the peaks depend to some extent on the chemical composition of the material (the pattern represented in Table I refers to the material whose network is exclusively composed of silicon oxide, SiO 2 and synthesized using a quaternary ammonium cation as structure managing agent).
  • the relative intensities may also be affected by phenomena of preferential orientation of the crystals, produced in the preparation of the sample, while the precision in the measurement of interplanar spacing depends on the quality of alignment of the goniometer.
  • the present invention also relates to the method of preparation of ITQ-3 This comprises a heat treatment at a temperature between 80 and 200 ° C, preferably between 130 and 180 ° C, of a reaction mixture containing a source of SiO 2 (as , for example, tetraethylorthosilicate, colloidal silica, amorphous silica), an organic cation in the form of hydroxide, preferably N, N-dimethyl-6-azonium-1, 3,3-trimethylbicyclo (3.2.1.) octane (I ), hydrofluoric acid and water.
  • a source of SiO 2 as , for example, tetraethylorthosilicate, colloidal silica, amorphous silica
  • an organic cation in the form of hydroxide preferably N, N-dimethyl-6-azonium-1, 3,3-trimethylbicyclo (3.2.1.) octane (I )
  • hydrofluoric acid
  • SUBSTITUTE SHEET RULE 26 characterized by its relatively low pH, pH ⁇ 12, preferably pH ⁇ 11, and can also be neutral or slightly acidic.
  • it is a source of another tetravalent element Y and / or trivalent X, preferably Ti or Al.
  • This element can be done prior to heating the reaction mixture or at an intermediate time during said heating.
  • ITQ-3 crystals up to 15% by weight with respect to the set of inorganic oxides, preferably up to 10% by weight
  • the composition of the reaction mixture in the form of oxides responds to the general formula
  • X is one or more trivalent elements, preferably Al; And it is one or several tetravalent elements; R is an organic cation, preferably N, N-dimethyl-6-azonium-1, 3,3-trimethyl-6-bicyclo (3.2.1.) Octane hydroxide, and the values of r, a, x, and and w are in the ranges
  • the heat treatment of the reaction mixture can be carried out in static or with stirring of the mixture. Once the crystallization is finished
  • SUBSTITUTE SHEET RULE 26 Separate the solid product and dry. Subsequent calcination at temperatures between 400 and 650 ° C, preferably between 450 and 600 ° C, causes the decomposition of the organic residues occluded in the zeolite and leaves the zeolitic channels free.
  • This method of synthesis of zeolite ITQ-3 has the particularity that it does not require the introduction into the reaction medium of alkali cations.
  • the organic cation R is the only cation that compensates for network charges when the zeolite contains a trivalent element in its crystalline network.
  • x has a value of less than 0.15, and can be equal to zero; and has a value of less than 0.1, and can also be equal to zero;
  • X is a chemical element with oxidation state +3 and Y is a chemical element with oxidation state +4.
  • the crystalline material of the present invention can be used in various applications, for example, in processes of separation of linear and branched paraffin compounds.
  • a mixture of isobutane and n-butane or isopentane and n-pentane can be enriched in the most branched isomer by selective adsorption of the linear paraffin by the microporous material object of the present invention.
  • Said material is particularly suitable for application in this type of process due to its high adsorption capacity (micropore volume determined by adsorption of
  • the n-olefins can be separated by selective adsorption of mixtures containing normal and isoolefins, enriching the output stream in isoolefins.
  • this material would allow the separation of organic compounds, containing or not heteroatoms, and with sizes smaller than about 5-5.5% present in mixtures, also containing organic compounds of larger sizes.
  • ITQ-3 would allow selective adsorption of organic compounds with a kinetic diameter of less than 5-5.5 present in polar media, such as aqueous media.
  • this material prepared in acid form and containing or not supported transition metals such as Pt, Pd or Ni, allows the cracking and selective hydrocracking of linear alkanes against branched or larger hydrocarbons , being therefore suitable as a catalyst or catalytic cracking additive and as a catalyst in "selectoforming" processes, which entails hydrocracking the current from the reforming unit in order to eliminate n-paraffins.
  • ITQ-3 gives good results as a catalyst for alkanes and alkenes in order to produce high yields of ethylene, propylene and butene, being therefore suitable as a catalyst for production processes of short olefins by catalytic steam cracking ("catalytic steam” cracking ").
  • catalytic steam cracking
  • its possibilities of selectively cracking linear paraffins make it a good catalyst for dewaxing processes.
  • this material is a good catalyst in processes of transformation of methanol into olefins.
  • SUBSTITUTE SHEET RULE 26 As described in example 1, 12.08g of tetraethylorthosilicate (TEOS) is added and stirred, allowing the evaporation of ethanol produced in the hydrolysis of TEOS, together with some water. After 6 hours of agitation (weight loss 18.99g) 0.57g of water and 1.21 g of HF (aq.) (48%, Aldrich) are added. The paste obtained is introduced into an autoclave coated internally with polytetrafluoroethylene and remains at 150 ° C and in rotation (60 rpm) for 19 days. Then, the autoclave is cooled, the content is filtered and the solid is washed with water and dried at 100 ° C.
  • TEOS tetraethylorthosilicate
  • N2 adsorption measures indicate a surface area of 455 m2 / g (BET method) and a micropore volume of 0.23 cc / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Saccharide Compounds (AREA)

Abstract

La presente invención se refiere a un material cristalino microporoso de naturaleza zoelítica denominado ITQ-3, al procedimiento de su preparación y a su utilización eu procesos de separación y transformación de compuestos orgánicos. En estado calcinado y anhidro, la composición química del material corresponde a la fórmula empírica: x(M1/nxo2):yYO2:SiO2 donde x posee un valor inferior a 0.15, pudiendo ser igual a cero; y tiene un valor inferior a 0.1, pudiendo ser igual a cero- M es H+ o un catión inorgánico de carga +n; X es un elemento químico de estado de oxidación (Al. Ge, B, Cr) e Y es un elemento químico de estado de oxidación +4(Ti, Ge, V). Cuando x=0 e y=0 el material puede describirse con una nueva forma polimórfica de la sílice de carácter microporoso. El material de esta invención se caracteriza también por su patrón de difracción de rayos X característico y sus propiedades microporosas. El proceso de preparación se caracteriza por el uso de uno o varios aditivos orgánicos a una mezcla de reacción que se hace cristalizar mediante calentamiento.

Description

TÍTULO ZEOLITA ITQ-3.
CAMPO DE LA TÉCNICA • Materiales cristalinos microporosos.
Antecedentes
Las zeolitas son materiales cristalinos microporosos de composición variable caracterizados por una red cristalina de tetraedros TO (donde T representa átomos con estado de oxidación formal +3 o +4, como por ejemplo Si, Ti, Al, Ge, B, Ga,...) que comparten todos sus vértices dando lugar a una estructura tridimensional que contiene canales y/o cavidades de dimensiones moleculares. Cuando algunos de los átomos T presentan un estado de oxidación inferior a +4, la red cristalina formada presenta cargas negativas que se compensan mediante la presencia en los canales o cavidades de cationes orgánicos o inorgánicos. En dichos canales y cavidades pueden alojarse también moléculas orgánicas y H2O, por lo que, de manera general, la composición química de las zeolitas puede representarse mediante la siguiente fórmula empírica: x(M..nXO2):yYO2:zR:wH2O
donde M es uno o varios cationes orgánicos o inorgánicos de carga +n; X es uno o varios elementos trivalentes; Y es uno o varios elementos tetravalentes, generalmente Si; y R es una o varias sustancias orgánicas. Aunque la naturaleza de M, X, Y y R y los valores de x, y, z, y w pueden, en general, ser variados mediante tratamientos postsíntesis, la composición química de una zeolita (tal y como se sintetiza o después de su calcinación) posee un rango característico de cada zeolita y de su método de obtención.
Por otro lado, una zeolita se caracteriza además por su estructura cristalina, que define un sistema de canales y cavidades y da lugar a un patrón de difracción de rayos X específico. De esta manera, las zeolitas se diferencian
HOJA DE SUSTITUCIÓN REGLA 26 entre sí por su rango de composición química más su patrón de difracción de rayos X. Ambas características (estructura cristalina y composición química) determinan además las propiedades fisicoquímicas de cada zeolita y su aplicabilidad en diferentes procesos industriales.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a un material cristalino microporoso de naturaleza zeolítica, denominado ITQ-3, a su método de obtención y a sus aplicaciones. El material se caracteriza por su composición química y por su patrón de difracción de rayos X. En su forma anhidra y calcinada, la composición química de ITQ-3 puede representarse mediante la fórmula empírica:
x(M1/nXO2):yYO2:SiO_
en la cual x posee un valor inferior a 0,15, pudiendo ser igual a cero; y tiene un valor inferior a 0,1 , pudiendo ser asimismo igual a cero; M es H+ o un catión inorgánico de carga +n; X es un elemento químico con estado de oxidación +3 (como, por ejemplo, Al, Ga, B, Cr) e Y es un elemento químico con estado de oxidación +4 (como, por ejemplo, Ti, Ge, V). Cuando x=0 e y=0 el material puede ser descrito como una nueva forma polimórfica de la sílice (SiO2) caracterizada por su carácter microporoso. En una forma preferida de la presente invención, ITQ-3 tiene la composición, en estado calcinado y anhidro
x(HXO2):SiO2
donde X es un elemento trivalente y x posee un valor inferior a 0.1 y puede ser igual a cero, en cuyo caso el material puede ser descrito mediante la fórmula SiO2. Es posible, sin embargo, en función del método de síntesis y de su calcinación o tratamientos posteriores, la existencia de defectos en la red cristalina, que se manifiestan por la presencia de grupos Si-OH (silanoles).
HOJA DE SUSTITUCIÓN REGLA 26 Estos defectos no han sido incluidos en las fórmulas empíricas anteriores. En una forma preferida de la presente invención, ITQ-3 presenta una muy baja concentración de este tipo de defectos (concentración de silanoles inferior al 15% con respecto al total de átomos de Si, preferiblemente inferior al 6%, medido por espectroscopia de resonancia magnética nuclear de 29Si en ángulo mágico).
El patrón de difracción de rayos X de ITQ-3 tal y como se sintetiza obtenido por el método de polvo, utilizando una rendija de divergencia variable y la radiación Kα del Cu, se caracteriza por los siguientes valores de ángulo 2Θ e intensidades relativas (I/U):
Tabla I
Figure imgf000005_0001
8.54 100
9.28 85
10.07 15 1 1.04 5 12.41 5 13.60 7 1401 3 15.70 14 17.02 11 17.58 15 18.10 85 18.84 20 19.29 30 19.56 30 20.20 65 20.35 70 20.94 25
22.08 5
HOJA DE SUSTIT IÓN REGLA 26 22.25 5
22.93 5
23.21 5
23.73 60
23.90 20
24.07 35
24.11 25 24.47 25 25.04 90 25.49 45
26.12 10 26.63 8 27.14 10
27.83 10 28.23 10 28.85 10
29.08 10 30.33 20 31.53 25 32.43 15
32.84 20 34.37 5
Las posiciones e intensidades relativas de los picos dependen en cierta medida de la composición química del material (el patrón representado en la Tabla I se refiere al material cuya red está compuesta exclusivamente por óxido de silicio, SiO2 y sintetizado usando un catión de amonio cuaternario como agente director de estructura). Las intensidades relativas pueden estar también afectadas por fenómenos de orientación preferente de los cristales, producidos en la preparación de la muestra, mientras que la precisión en la medida del espaciado interplanar depende de la calidad de alineamiento del goniómetro.
HOJA DE SUSTITUCIÓN REGLA 26 Además, la calcinación da lugar a cambios significativos en el patrón de difracción de rayos X, debido a la eliminación de compuestos orgánicos retenidos durante la síntesis en los poros de la zeolita, por lo que en la Tabla II se representa el patrón de difracción de ITQ-3 calcinada de composición SiO2.
Tabla II
2Θ l/lo(%)
8.66 100
9.10 82
10.14 32
11.08 4
12.51 6
15.87 4
16.93 6
17.26 5 17.81 7
18.27 46 18.81 9
19.51 17 20.10 21 20.38 11 20.74 10 22.17 9
22.26 8 23.90 9 24.04 12 24.17 15
24.27 11 24.42 10 24.84 10 25.12 40
25.52 7
HOJA DE SUSTITUCIÓN REGLA 26 25.62 7
27.23 8
27.53 5 27.91 4
28.12 4 28.27 5 28.48 4 28.67 6
30.54 10
30.83 6
31.13 7 31.79 13 32.48 6
32.84 4 33.06 8 33.46 3 33.48 3 34.15 4 34.26 4 34.64 3 34.77 3
La presente invención se refiere también al método de preparación de ITQ-3 Este comprende un tratamiento térmico a temperatura entre 80 y 200°C, preferentemente entre 130 y 180°C, de una mezcla de reacción que contiene una fuente de SiO2 (como, por ejemplo, tetraetilortosilicato, sílice coloidal, sílice amorfa), un catión orgánico en forma de hidróxido, preferentemente hidróxido de N,N-dimetil-6-azonio-1 ,3,3-trimetilbiciclo(3.2.1.)octano (I), ácido fluorhídrico y agua. Alternativamente, es posible utilizar el catión orgánico en forma de sal (por ejemplo, un haluro, preferiblemente cloruro) y sustituir el ácido fluorhídrico por una sal de flúor, preferentemente NH4F. La mezcla de reacción se
HOJA DE SUSTITUCIÓN REGLA 26 caracteriza por su pH relativamente bajo, pH<12, preferiblemente pH<11 , pudiendo ser asimismo neutro o ligeramente ácido.
Opcionalmente es
Figure imgf000009_0001
una fuente de otro elemento tetravalente Y y/o trivalente X, preferentemente Ti o Al. La adición de este elemento puede realizarse anteriormente al calentamiento de la mezcla de reacción o en un tiempo intermedio durante dicho calentamiento. En ocasiones puede ser conveniente además introducir en algún momento de la preparación cristales de ITQ-3 (hasta un 15% en peso respecto del conjunto de óxidos inorgánicos, preferiblemente hasta un 10% en peso) como promotores de la cristalización (sembrado). La composición de la mezcla de reacción en forma de óxidos responde a la fórmula general
rR2O:aHF:xHXO2:yYO2:SiO2:wH2θ
donde X es uno o varios elementos trivalentes, preferiblemente Al; Y es uno o varios elementos tetravalentes; R es un catión orgánico, preferiblemente hidróxido de N,N-dimetil-6-azonio-1 ,3,3-trimetil-6-biciclo(3.2.1.)octano, y los valores de r, a, x, y y w están en los rangos
r=0,05-1 ,0, preferiblemente 0,1-0,75 a =0-1.5, preferiblemente 0.1 -1.5 x=0-0,15 y=0-0,1 w=3-100, preferiblemente 5-50, más preferiblemente 7-50
El tratamiento térmico de la mezcla de reacción puede realizarse en estático o con agitación de la mezcla. Una vez finalizada la cristalización se
HOJA DE SUSTITUCIÓN REGLA 26 separa el producto sólido y se seca. La posterior calcinación a temperaturas entre 400 y 650°C, preferiblemente entre 450 y 600°C, produce la descomposición de los restos orgánicos ocluidos en la zeolita y deja libres los canales zeolíticos. Este método de síntesis de la zeolita ITQ-3 tiene la particularidad de que no requiere la introducción en el medio de reacción de cationes alcalinos. Como consecuencia el catión orgánico R es el único catión que compesa cargas de red cuando la zeolita contiene un elemento trivalente en su red cristalina. Por tanto, una simple calcinación para descomponer el catión orgánico deja a la zeolita en forma acida, sin necesidad de recurπr a procesos de intercambio catiónico. Además, la ausencia de cationes alcalinos en la mezcla de reacción permite sintetizar el material conteniendo elementos como el Ti(IV), que no sería posible introducir en la red en presencia de estos cationes (ver, por ejemplo, M.A. Camblor, A. Corma, J. Pérez-Pariente, Zeolites, vol. 13, 82-87, 1993). El material una vez calcinado responde, por tanto, a la fórmula general
x(HXO2):yYO2:SiO2
en la cual x posee un valor inferior a 0,15, pudiendo ser igual a cero; y tiene un valor inferior a 0,1 , pudiendo ser asimismo igual a cero; X es un elemento químico con estado de oxidación +3 e Y es un elemento químico con estado de oxidación +4.
El material cristalino de la presente invención puede ser utilizado en diversas aplicaciones, como por ejemplo, en procesos de separación de compuestos parafinas lineales y ramificadas. Así, una mezcla de isobutano y n- butano o isopentano y n-pentano pueden ser enriquecidas en el isómero más ramificado por adsorción selectiva de la parafina lineal por el material microporoso objeto de la presente invención. Dicho material es particularmente adecuado para su aplicación en este tipo de procesos por su elevada capacidad de adsorción (volumen de microporo determinado por adsorción de
HOJA DE SUSTITUCIÓN REGLA 26 N2=0.23cm3/g) y su tamaño de poro pequeño (máxima apertura 5.5Á, determinado por adsorción de Ar, utilizando el formalismo de Horvath-Kawazoe). Igualmente y utilizando preferentemente el polimorfo pura sílice se pueden separar por adsorción selectiva las n-olefinas de mezclas conteniendo normal e isoolefinas, enriqueciendo en isoolefinas la corriente de salida. En general, este material permitiría la separación de compuestos orgánicos, conteniendo o no heteroátomos, y con tamaños inferiores a unos 5-5.5 % presentes en mezclas conteniendo además compuestos orgánicos de tamaños mayores. Debido a las características hidrofóbicas del polimorfo de sílice, la ITQ-3 permitiría la adsorción selectiva de compuestos orgánicos con diámetro cinético inferior a 5-5.5 presentes en medios polares, como por ejemplo en medios acuosos.
Desde el punto de vista de su uso como catalizador, este material preparado en forma acida y conteniendo o no metales de transición soportados tales como Pt, Pd o Ni, permite el craqueo e hidrocraqueo selectivo de alcanos lineales frente a ramificados o a hidrocarburos de mayor tamaño, siendo por tanto adecuado como catalizador o aditivo de craqueo catalítico y como catalizador en procesos del tipo "selectoforming", que conlleva el hidrocraqueo de la corriente proveniente de la unidad de reformado con el fin de eliminar las n-parafinas.
Igualmente la ITQ-3 da buenos resultados como catalizador de alcanos y alquenos con el fin de producir altos rendimientos de etileno, propileno y buteno, siendo por tanto adecuado como catalizador para procesos de producción de olefinas cortas por craqueo catalítico con vapor ("catalytic steam cracking"). Además, sus posibilidades de craquear selectivamente las parafinas lineales lo convierten en un buen catalizador para procesos de desparafinado ("dewaxing"). Por último este material es un buen catalizador en procesos de transformación de metanol en olefinas.
HOJA DE SU EJEMPLOS
Ejemplo 1 :
Este ejemplo ilustra la preparación de hidróxido de N,N-dimetil-6-azonio- 1 ,3,3,-trimetilbiciclo(3.2.1.)octano. En un matraz de 500ml se introduce 38.32g de 1 ,3,3,-trimetil-6-azabiciclo
(3.2.1.) octano (Aldrich), 220 g de CHCI3 (SDS, grado síntesis) y 82.50g de carbonato potásico sesquihidrato (99%, Aldrich). Sobre esta mezcla se añade con agitación, gota a gota y en baño de hielo, unos 31 mi de CH3I (99% Aldrich). Después de siete días de agitación a temperatura ambiente se filtra y el líquido se evapora en un rotavapor. Después de lavar el sólido obtenido con acetato de etilo y secarlo, se obtiene 71.37g de un sólido cuyo espectro de resonancia magnética nuclear en CDCI3 indica que es el producto de sustitución nucleofílica, es decir, ioduro del catión orgánico correspondiente a la dimetilación de la amina. El análisis químico del producto (45.5%C, 4.42%N, 7.54%H; Teórico: 46.61 %C, 4.53%N, 7.82%H) corrobora este resultado.
La forma hidróxido del agente director de estructura se obtiene mediante intercambio aniónico usando una resina Dowex 1 (Sigma) previamente lavada con agua destilada hasta pH=7. A una disolución de 9.27g del producto anterior en 194.02g de agua se le añade 221.73g de resina y se deja en agitación unas 12 horas. Después de filtrar la resina se valora la disolución con HCI (aq.), usando fenolftaleína como indicador, encontrándose una eficiencia en el intercambio del 96.62%. Esta disolución puede concentrarse en el rotavapor para su utilización en síntesis de ITQ-3, y su concentración final se obtiene mediante una nueva valoración.
Ejemplo 2:
Este ejemplo ilustra la preparación de ITQ-3 puramente silícea, utilizando hidróxido de N,N-dimetil-6-azónio-1 ,3,3,-trimetilbiciclo(3.2.1.)octano como agente orgánico director de estructura. A 23.02g de una disolución conteniendo 1.26 moles de hidróxido de N,N dimetil-6-azonio-1 ,3,3,-trimetilbiciclo(3.2.1.)octano por 1000g, obtenida de la
HOJA DE SUSTITUCIÓN REGLA 26 forma descrita en el ejemplo 1 , se le añade 12.08g de tetraetilortosilicato (TEOS) y se agita, permitiéndose la evaporación del etanol producido en la hidrólisis del TEOS, junto con algo de agua. Tras 6 horas de agitación (pérdida de peso 18.99g ) se añaden 0.57g de agua y 1.21 g de HF (aq.) (48%, Aldrich). La pasta obtenida se introduce en un autoclave recubierto internamente de politetrafluoretileno y permanece a 150°C y en rotación (60rpm) durante 19 días. Entonces, el autoclave se enfría, el contenido se filtra y el sólido se lava con agua y se seca a 100°C. Su patrón de difracción de rayos X se recoge en la Tabla 1. Después de calcinar a 580°C el sólido blanco obtenido presenta el difractograma de la Tabla 2. El análisis químico por espectroscopia de absorción atómica del material calcinado revela, dentro de los límites de detección de la técnica y el error experimental, que el producto obtenido es sílice (SiO2). Medidas de espectroscopia MAS RMN de 29Si indican que el material calcinado contiene una muy baja proporción de defectos de conectividad, como se deduce de la relación SiOH a Si total (calculada como el cociente entre el área del pico centrado a (101ppm y el área total de todos los picos). Medidas de adsorción de N2 indican un área superficial de 455 m2/g (método B.E.T.) y un volumen de microporo de 0.23 cc/g. El espectro de RMN de 13C en estado sólido del material tal y como se prepara demuestra claramente la presencia del catión orgánico ocluido en la red cristalina inorgánica, así como el análisis elemental, que da cuenta de que las relaciones molares son prácticamente las del catión orgánico ( C/N=11.8, H/N=23.4 ).
Ejemplos 3-6: Estos ejemplos ilustran la preparación de ITQ-3 pura sílice o conteniendo
Al, en presencia o en ausencia de semillas.
Se siguió el mismo procedimiento experimental que en el ejemplo 2. Las condiciones de síntesis se recogen en la Tabla 3. En los ejemplos 4 y 5 se utilizó aluminio metálico y nitrato de aluminio nonahidrato respectivamente como fuente de aluminio. El formalismo OHef se define como la diferencia entre los moles de OH añadidos y los empleados por el aluminio para estar en
HOJA DE SUSTIT CIÓN REGLA 26 coordinación tetraédrica. Todas las cristalizaciones fueron llevadas a cabo en agitación (60 r.p.m.). En todos los casos se obtuvo ITQ-3 de alta cristalinidad.
Tabla 3
Relaciones molares Semillas mplo i S¡02/Al203 τ/s¡o2 Ohef/F H20/Si02 %(S¡02) T(°C) t(dias) Si/AI(sólido)
3 0.48 1 14.6 2.7 135 14
4 60 0.52 1 15 - 150 35 38.8
5 104 0.55 1 17.4 4.7 135 14 55.8
6 53 0.69 1 16.5 4.7 135 13 32.7
DE S

Claims

REIVINDICACIONES
1. Un material cristalino microporoso de naturaleza zeolítica con un patrón de difracción de rayos X substancialmente concordante con el establecido en las Tablas I y II para el material tal y como se sintetiza y después de calcinación, respectivamente y con una composición química en el estado calcinado y anhidro que puede representarse por la siguiente fórmula empírica
x(M..π2):yYO2:S¡O2
en la cual x posee un valor inferior a 0,15, pudiendo ser igual a cero; y tiene un valor inferior a 0,1 , pudiendo ser asimismo igual a cero; M es H1 o un catión inorgánico de carga +n; X es un elemento químico con estado de oxidación +3 (como, por ejemplo, Al, Ga, B, Cr) e Y es un elemento químico con estado de oxidación +4 (como, por ejemplo, Ti, Ge, V).
2. Una zeolita de acuerdo con la reivindicación 1 cuya composición química en el estado calcinado y anhidro puede representarse por la siguiente fórmula empírica
Figure imgf000015_0001
en la cual X es un elemento trivalente (Al, B, Ga, Cr,...), Y es un elemento tetravalente diferente del Si (Ti, Ge, V,...), x posee un valor inferior a 0,15, pudiendo ser igual a cero, y posee un valor inferior a 0,1 , pudiendo ser asimismo igual cero, y donde el catión H1 puede ser intercambiado por otros cationes orgánicos o inorgánicos mono-, di- o trivalentes.
3. Una zeolita de acuerdo con la reivindicación 1 cuya composición química en el estado calcinado y anhidro puede representarse por la siguiente fórmula empírica x(HAIO2):SiO2
HOJA DE SUSTITUCIÓN (REGLA 26 en la cual x posee un valor inferior a 0,15, pudiendo ser igual a cero y donde el catión H1 puede ser intercambiado por otros cationes orgánicos o inorgánicos mono-, di- o trivalentes.
4. Una zeolita de acuerdo con la reivindicación 1 cuya composición química en el estado calcinado y anhidro puede representarse como SiO2.
5. Un método para sintetizar la zeolita de las reivindicaciones anteriores en la que una mezcla de reacción que contiene una fuente de SiO2, un catión orgánico R1 (preferentemente N,N-dimetil-6-azónio-1 ,1 ,3- trimetilbiciclo(3.2.1.)octano), una fuente de flúor F', una fuente de uno o varios elementos tetravalentes Y diferentes al Si, una fuente de uno o varios elementos trivalentes X y agua se somete a calentamiento con o sin agitación a temperatura entre 80 y 200°C, preferentemente entre 130 y 180°C, hasta conseguir su cristalización, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los rangos
X2θ3/SiO2=0-0,1 , preferiblemente 0-0.05 ROH/SiO2=0,05-2.0, preferiblemente 0,2-1.50
F7Si=0-2, preferiblemente 0.2-1.50 YO2/SiO2=0-0,1 H2O/SiO2=3-100, preferiblemente 5-50 , más preferiblemente 7-50.
6. Un método para sintetizar la zeolita de las reivindicaciones anteriores en la que una mezcla de reacción que contiene una fuente de SiO2, un catión orgánico fír (preferentemente), una fuente de aniones fluoruro, una fuente de uno o varios elementos trivalentes X y agua se somete a calentamiento con o sin agitación a temperatura entre 80 y 200°C, preferentemente entre 130 y 180°C, hasta conseguir su cristalización, y en el que la mezcla de reacción tiene una
HOJA DE SUST composición, en términos de relaciones molares de óxidos, comprendida entre los rangos
X2θ3/SiO2=0-0,1 , preferiblemente 0-0.05
ROH/SiO2=0,05-2.0, preferiblemente 0,2-1.5 F7S¡=0-2, preferiblemente 0.2-1.5
H2O/SiO2=3-100, preferiblemente 5-50, más preferiblemente 7-50.
7. Un método para sintetizar la zeolita de las reivindicaciones 1 y 3 en la que una mezcla de reacción que contiene una fuente de SiO2, un catión orgánico R* (preferentemente N,N dimetil-6-azónio-1 ,1 ,3-trimetilbiciclo(3.2.1.)octano), una fuente de aniones fluoruro, una fuente de Al y agua se somete a calentamiento con o sin agitación a temperatura entre 80 y 200°C, preferentemente entre 130 y 180°C, hasta conseguir su cristalización, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los rangos
AI2θ3/SiO2=0-0,1 , preferiblemente 0-0.05 ROH/SiO2=0,05-2.0, preferiblemente 0,2-1.5 F7Si=0-2, preferiblemente 0.2-1.5 H2O/SiO2=3-100, preferiblemente 5-50, más preferiblemente 7-50.
8. Un método para sintetizar la zeolita de las reivindicaciones 1 y 4 en la que una mezcla de reacción que contiene una fuente de SiO2, un catión orgánico R1 (preferentemente N,N-dimetil-6-azónio-1 ,1 ,3-trimetilbiciclo(3.2.1.)octano), una fuente de aniones fluoruro y agua se somete a calentamiento con o sin agitación a temperatura entre 80 y 200°C, preferentemente entre 130 y 180°C, hasta conseguir su cristalización, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los rangos
HOJA DE SUSTITUCIÓN REGLA 26 ROH/SiO2=0,05-2.0, preferiblemente 0,2-1.5
F7Si=0-2, preferiblemente 0.2-1.50
H2O/S¡O2=3-100, preferiblemente 5-50, más preferiblemente 7-50.
9. Un método para sintetizar la zeolita de las reivindicaciones 1 y 2 en la que una mezcla de reacción que contiene una fuente de SiO2, un catión orgánico Rr (preferentemente N,N-dimetil-6-azonio-1 ,3,3-trimetilbiciclo(3.2.1.)octano), una fuente de anión fluoruro, una fuente de uno o varios elementos tetravalentes Y diferentes al Si, y agua se somete a calentamiento con o sin agitación a temperatura entre 80 y 200°C, preferentemente entre 130 y 180°C, hasta conseguir su cristalización, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los rangos
ROH/SiO2=0,05-2.0
, preferiblemente 0,2-1.5 F7Si=0-2, preferiblemente 0.2-1.5 YO2/SiO2=0-0,1 H2O/SiO2=3-100, preferiblemente 5-50, más preferiblemente 7-50.
10. Un método de síntesis del material cristalino de las reivindicaciones 1-4 de acuerdo con las reivindicaciones 5-9 en el que el catión orgánico es añadido en forma de hidróxido o en forma de una mezcla de hidróxido y otra sal, preferentemente un haluro, y el anión fluroruo es añadido en forma de ácido fluorhídrico o de una sal, preferiblemente fluoruro amónico, de manera que el pH de la mezcla es igual o inferior a 12, preferiblemente inferior a 11 y puede ser incluso neutro o ligeramente ácido.
11.- Un método de síntesis de un material cristalino microporoso de acuerdo con la reivindicación 10 y anteriores, en el que tal material cristalino posee un patrón
HOJA DE SUSTITUCIÓN REGLA 26 de difracción de rayos X substancialmente concordante con el establecido en las Tablas I y II para el material tal y como se sintetiza y después de calcinación, respectivamente, y con una composición química en el estado calcinado y anhidro que puede representarse por la siguiente fórmula empírica
Figure imgf000019_0001
en la cual x posee un valor inferior a 0,15, pudiendo ser igual a cero; y tiene un valor inferior a 0,04, pudiendo ser asimismo igual a cero; M es H o un catión inorgánico de carga +n; X es un elemento químico con estado de oxidación +3 (como, por ejemplo, Al, Ga, B, Cr) e Y es un elemento químico con estado de oxidación +4 (como, por ejemplo, Ti, Ge, V).
12. Un método para sintetizar la zeolita de las reivindicaciones 1-4 y 11 según el procedimiento de las reivindicaciones 5-10 donde a la mezcla de reacción se le añade una cantidad de material cristalino (preferentemente con las características del material de las reivindicaciones 1 -4 y 11 ) como promotor de la cristalización, estando dicha cantidad comprendida en el rango 0 a 15% en peso con respecto al total de sílice añadida, preferentemente 0,05 a 5%.
13. Un método para sintetizar la zeolita de las reivindicaciones 1-4 y 11 según el procedimiento de las reivindicaciones 5-10 y 12 donde la mezcla de reacción está esencialmente libre de cationes alcalinos, siendo la única limitación a esta condición el posible contenido en impurezas alcalinas de los reactivos empleados.
14. Un método para sintetizar la zeolita de las reivindicaciones 1-3 y 11 según el procedimiento de las reivindicaciones 5, 6, 7, 9, 10 y 12, donde se introduce una fuente de un elemento tetravalente distinto al Si o de un elemento trivalente en una etapa intermedia durante el calentamiento de la mezcla de reacción.
HOJA DE SUSTITUCIÓN (REGLA 26)
15. Uso del material cristalino microporoso de las reivindicaciones 1-4 y 11 en procesos de separación de iso- y normal parafinas, por adsorción selectiva de las normal parafinas.
16. Uso del material cristalino microporoso de las reivindicaciones 1-4 y 11 en procesos de separación de isobutano y n-butano por adsorción selectiva del n- butano.
17. Uso del material cristalino microporoso de las reivindicaciones 1-4 y 11 en procesos de separación de isopentano y n-pentano por adsorción selectiva del n-pentano.
18. Uso del material cristalino microporoso de las reivindicaciones 1-4 y 11 en procesos de separación de iso- y normal olefinas, por adsorción selectiva de las n-olefinas.
19. Uso del material cristalino microporoso de las reivindicaciones 1-4 y 11 en procesos de separación de isobuteno y normal buteno, por adsorción selectiva del n-buteno.
20. Uso del material cristalino microporoso de las reivindicaciones 1-4 y 11 en procesos de separación de isopenteno y normal penteno, por adsorción selectiva del n-penteno.
21. Uso del material cristalino microporoso de las reivindicaciones 1-4 y 11 en procesos de separación de compuestos orgánicos conteniendo o no heteroátomos y con diámetro cinético inferior a 5-5.5A (, por adsorción selectiva de los mismos en mezclas conteniendo compuestos con diámetro cinético mayor de 5-5.5Á
HOJA DE SUSTITUCIÓN REGLA 26
22. Uso del material cristalino microporoso de la reivindicación 4 en procesos de separación de compuestos orgánicos de diámetro cinético menor a 5.5Á presentes en corrientes polares y en especial acuosas, con el objeto de purificar dichas corrientes.
23. Uso del material cristalino microporoso de las reivindicaciones 1-4 y 11 como catalizador para el craqueo e hidrocraqueo selectivo de parafinas y/o olefinas lineales.
24. Uso del material cristalino microporoso de las reivindicaciones 1-4 y 11 como catalizador de postreformado de gasolina.
25. Uso del material cristalino microporoso de las reivindicaciones 1-4 y 11 como catalizador para producir correintes con alto contenido en etileno, propileno y buteno por craqueo en presencia o en ausencia de vapor de agua.
26. Uso del material cristalino microporoso de las reivindicaciones 1-4 y 11 como catalizador en procesos de desparafinado por craqueo selectivo de n- parafinas.
27. Uso del material cristalino microporoso de las reivindicaciones 1-4 y 11 como catalizador en procesos de transformación de metanol en olefinas.
HOJA DE SUSTITUCIÓN REGLA 26
PCT/ES1998/000155 1997-05-31 1998-05-29 Zeolita itq-3 WO1998054091A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DK98921501T DK1016626T3 (da) 1997-05-31 1998-05-29 Zeolit ITQ-3
JP50028299A JP2002511046A (ja) 1997-05-31 1998-05-29 ゼオライトitq−3
ES98921501T ES2165678T3 (es) 1997-05-31 1998-05-29 Zeolita itq-3.
US09/424,897 US6500404B1 (en) 1997-05-31 1998-05-29 Zeolite ITQ-3
DE69802001T DE69802001T2 (de) 1997-05-31 1998-05-29 Zeolith iiq-3
EP98921501A EP1016626B1 (en) 1997-05-31 1998-05-29 Zeolite itq-3
AT98921501T ATE206689T1 (de) 1997-05-31 1998-05-29 Zeolith iiq-3

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES009701229A ES2135329B1 (es) 1997-05-31 1997-05-31 Zeolita itq-3.
ESP9701229 1997-05-31

Publications (1)

Publication Number Publication Date
WO1998054091A1 true WO1998054091A1 (es) 1998-12-03

Family

ID=8299583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1998/000155 WO1998054091A1 (es) 1997-05-31 1998-05-29 Zeolita itq-3

Country Status (9)

Country Link
US (1) US6500404B1 (es)
EP (1) EP1016626B1 (es)
JP (1) JP2002511046A (es)
AT (1) ATE206689T1 (es)
DE (1) DE69802001T2 (es)
DK (1) DK1016626T3 (es)
ES (2) ES2135329B1 (es)
WO (1) WO1998054091A1 (es)
ZA (1) ZA984690B (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001009036A1 (es) * 1999-07-29 2001-02-08 Consejo Superior De Investigaciones Cientificas Zeolita itq-10
WO2001044109A1 (en) * 1999-12-15 2001-06-21 Chevron U.S.A. Inc. Zeolite ssz-50
US6488741B2 (en) 2001-01-23 2002-12-03 The Trustess Of The University Of Pennsylvania Light hydrocarbon separation using 8-member ring zeolites

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2156827B1 (es) * 1999-07-15 2002-03-01 Univ Valencia Politecnica Oxido acido microporoso con propiedades cataliticas. itq-18.
US6554023B2 (en) 2001-06-13 2003-04-29 Baxter International Inc. Vacuum demand flow valve
US6863261B2 (en) 2002-03-12 2005-03-08 Baxter International Inc. Valve stop
US7122500B2 (en) 2003-09-22 2006-10-17 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion processes
EP1843847B1 (en) 2005-01-31 2018-06-13 ExxonMobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion processes
ES2263369B1 (es) * 2005-02-02 2007-12-16 Universidad Politecnica De Valencia Material cristalino microporoso de naturaleza zeolitica, zeolita itq-32, procedimiento de preparacion y uso.
ES2284379B1 (es) * 2006-02-28 2008-11-01 Universidad Politecnica De Valencia Un material cristalino microporoso, zeolita itq-37, procedimiento de preparacion y uso.
CA2584876A1 (en) * 2007-02-02 2008-08-02 Albemarle Netherlands Bv A crystalline microporous material of zeolitic nature
EA025413B1 (ru) 2007-11-12 2016-12-30 Эксонмобил Апстрим Рисерч Компани Способ и система для обработки газового потока
WO2009134543A1 (en) 2008-04-30 2009-11-05 Exxonmobil Upstream Research Company Method and apparatus for removal of oil from utility gas stream
JP5889288B2 (ja) 2010-05-28 2016-03-22 エクソンモービル アップストリーム リサーチ カンパニー 一体型吸着器ヘッド及び弁設計及びこれと関連したスイング吸着法
TWI495501B (zh) 2010-11-15 2015-08-11 Exxonmobil Upstream Res Co 動力分餾器及用於氣體混合物之分餾的循環法
WO2012161828A1 (en) 2011-03-01 2012-11-29 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
AU2012259377B2 (en) 2011-03-01 2016-12-01 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
WO2012118755A1 (en) 2011-03-01 2012-09-07 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contractor and swing adsorption processes related thereto
US9034079B2 (en) 2011-03-01 2015-05-19 Exxonmobil Upstream Research Company Methods of removing contaminants from hydrocarbon stream by swing adsorption and related apparatus and systems
US9162175B2 (en) 2011-03-01 2015-10-20 Exxonmobil Upstream Research Company Apparatus and systems having compact configuration multiple swing adsorption beds and methods related thereto
WO2012118757A1 (en) 2011-03-01 2012-09-07 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
AU2012223486A1 (en) 2011-03-01 2013-08-15 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
AU2015294518B2 (en) 2014-07-25 2019-06-27 Exxonmobil Upstream Research Company Apparatus and system having a valve assembly and swing adsorption processes related thereto
KR20170053682A (ko) 2014-11-11 2017-05-16 엑손모빌 업스트림 리서치 캄파니 페이스트 임프린트를 통한 고용량 구조체 및 모노리스
SG11201703809RA (en) 2014-12-10 2017-06-29 Exxonmobil Res & Eng Co Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
JP2018503507A (ja) 2014-12-23 2018-02-08 エクソンモービル アップストリーム リサーチ カンパニー 構造化吸着剤塔、その製造方法及びその使用
US9861929B2 (en) 2015-05-15 2018-01-09 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
WO2016186726A1 (en) 2015-05-15 2016-11-24 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10124286B2 (en) 2015-09-02 2018-11-13 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
EP3344371B1 (en) 2015-09-02 2021-09-15 ExxonMobil Upstream Research Company Process and system for swing adsorption using an overhead stream of a demethanizer as purge gas
EP3368188A1 (en) 2015-10-27 2018-09-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto having a plurality of valves
EA201891043A1 (ru) 2015-10-27 2018-10-31 Эксонмобил Апстрим Рисерч Компани Устройство и система для осуществления процессов короткоцикловой адсорбции и способ, относящийся к ним
EP3368189A1 (en) 2015-10-27 2018-09-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto having a plurality of valves
CN108883357A (zh) 2015-11-16 2018-11-23 埃克森美孚上游研究公司 吸附剂材料和吸附二氧化碳的方法
US10427088B2 (en) 2016-03-18 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
EP3463620A1 (en) 2016-05-31 2019-04-10 ExxonMobil Upstream Research Company Apparatus and system for swing adsorption processes
WO2017209860A1 (en) 2016-05-31 2017-12-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
CA3033235C (en) 2016-09-01 2022-04-19 Exxonmobil Upstream Research Company Swing adsorption processes for removing water using 3a zeolite structures
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
CA3045034C (en) 2016-12-21 2021-06-29 Exxonmobil Upstream Research Company Self-supporting structures having active materials
JP7021226B2 (ja) 2016-12-21 2022-02-16 エクソンモービル アップストリーム リサーチ カンパニー 発泡幾何構造および活性材料を有する自己支持構造
US11331620B2 (en) 2018-01-24 2022-05-17 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
WO2019168628A1 (en) 2018-02-28 2019-09-06 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10597299B2 (en) 2018-06-07 2020-03-24 Chevron U.S.A. Inc. Synthesis of ITE framework type molecular sieves
WO2020131496A1 (en) 2018-12-21 2020-06-25 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
EP3962641A1 (en) 2019-04-30 2022-03-09 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Rapid cycle adsorbent bed
WO2021019314A1 (en) 2019-07-29 2021-02-04 Chevron Usa Inc. Molecular sieve ssz-118, its synthesis and use
WO2021071755A1 (en) 2019-10-07 2021-04-15 Exxonmobil Upstream Research Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
EP4045173A1 (en) 2019-10-16 2022-08-24 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Dehydration processes utilizing cationic zeolite rho

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991011258A1 (en) * 1990-01-26 1991-08-08 Chevron Research And Technology Company New zeolite ssz-31
WO1994008899A1 (en) * 1992-10-09 1994-04-28 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Zeolite ssz-35

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1064890A (en) * 1975-06-10 1979-10-23 Mae K. Rubin Crystalline zeolite, synthesis and use thereof
US5268161A (en) * 1992-10-09 1993-12-07 Chevron Research And Technology Company Process for preparing molecular sieves using a 1,3,3,8,8-pentamethyl-3-azoniabicyclo [3.2.1] octane template
DE4424815A1 (de) * 1994-07-14 1996-01-18 Basf Ag Kristalline Festkörper mit RUB-13 Struktur
US5939044A (en) * 1996-12-31 1999-08-17 Chevron U.S.A. Inc. Zeolite SSZ-36

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991011258A1 (en) * 1990-01-26 1991-08-08 Chevron Research And Technology Company New zeolite ssz-31
WO1994008899A1 (en) * 1992-10-09 1994-04-28 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Zeolite ssz-35

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAMBLOR M.A. ET AL.: "Synthesis and structure of ITQ-3, the first pure silica polymorph with a two-dimensional system of straigh eight-ring channels", ANGEW. CHEM. INT. ED. ENGL.,, vol. 36, no. 23, 1997, pages 2659 - 2661, XP000918850, DOI: doi:10.1002/anie.199726591 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001009036A1 (es) * 1999-07-29 2001-02-08 Consejo Superior De Investigaciones Cientificas Zeolita itq-10
ES2155797A1 (es) * 1999-07-29 2001-05-16 Univ Valencia Politecnica Zeolita itq-10
US6649141B2 (en) 1999-07-29 2003-11-18 Consejo Superior De Investigaciones Cientificas Zeolite ITQ-10
WO2001044109A1 (en) * 1999-12-15 2001-06-21 Chevron U.S.A. Inc. Zeolite ssz-50
US6488741B2 (en) 2001-01-23 2002-12-03 The Trustess Of The University Of Pennsylvania Light hydrocarbon separation using 8-member ring zeolites

Also Published As

Publication number Publication date
JP2002511046A (ja) 2002-04-09
ES2135329A1 (es) 1999-10-16
ES2135329B1 (es) 2000-05-16
ZA984690B (en) 1998-12-21
EP1016626A1 (en) 2000-07-05
DE69802001D1 (de) 2001-11-15
ATE206689T1 (de) 2001-10-15
DK1016626T3 (da) 2002-01-28
DE69802001T2 (de) 2002-06-13
US6500404B1 (en) 2002-12-31
ES2165678T3 (es) 2002-03-16
EP1016626B1 (en) 2001-10-10

Similar Documents

Publication Publication Date Title
WO1998054091A1 (es) Zeolita itq-3
US6776975B2 (en) Crystalline aluminosilicate zeolitic composition: UZM-4M
Martín et al. High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NO x
ES2718573T3 (es) Tamiz molecular SCM-11, procedimiento para producir el mismo y uso del mismo
ES2711549T3 (es) Tamiz molecular SCM-10, procedimiento para producirlo y uso del mismo
WO1997019021A1 (es) Zeolita itq-1
CN102256899A (zh) 菱沸石型沸石及其生产方法
JP7283046B2 (ja) 金属含有cha型ゼオライト及びその製造方法
WO2018110559A1 (ja) Gis型ゼオライト
US5350722A (en) MTW-type zeolite and its preparation process
US5171556A (en) Beta type zeolite and its preparation process
WO2000037360A1 (es) Zeolita itq-7
JPS581045B2 (ja) 結晶性アルミノシリケ−ト
JPH0153206B2 (es)
US5192520A (en) Synthesis of aluminosilicate zeolites of faujasite structure
JP6759596B2 (ja) Afx型ゼオライト及びその製造方法
WO1998029332A2 (es) Zeolita itq-4
WO2008092984A1 (es) Material cristalino microporoso de naturaleza zeolítica, zeolita itq-39, procedimiento de preparación y usos
WO2001009036A1 (es) Zeolita itq-10
US6409986B1 (en) Zeolite ITQ-5
CN112551543B (zh) 在氢氧化物和溴化物形式的含氮有机结构化剂的混合物存在下制备izm-2沸石的方法
JP2021178746A (ja) ゼオライトの製造方法、ゼオライト、触媒、及び吸着剤
ES2748650B2 (es) Material cristalino de naturaleza zeolítica IDM-1
WO2019215751A1 (en) Ordered and hierarchically porous zeolite crystal and a method for preparation thereof
JPH04108607A (ja) レビーン沸石型のゼオライトおよびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998921501

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09424897

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998921501

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998921501

Country of ref document: EP