WO1998049879A1 - Power cable heat exchanger for computing device - Google Patents

Power cable heat exchanger for computing device Download PDF

Info

Publication number
WO1998049879A1
WO1998049879A1 PCT/US1998/008162 US9808162W WO9849879A1 WO 1998049879 A1 WO1998049879 A1 WO 1998049879A1 US 9808162 W US9808162 W US 9808162W WO 9849879 A1 WO9849879 A1 WO 9849879A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal
heat
cable
heat dissipation
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US1998/008162
Other languages
English (en)
French (fr)
Inventor
Rakesh Bhatia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Priority to AU72550/98A priority Critical patent/AU7255098A/en
Priority to JP54711898A priority patent/JP3830169B2/ja
Publication of WO1998049879A1 publication Critical patent/WO1998049879A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops

Definitions

  • the present invention pertains to the field of heat removal from electronic components. More particularly, this invention relates to heat removal from a portable computing device.
  • a portable computing device typically includes a base and a screen which are rotatably attached by a hinge.
  • the base usually has an input device such as a keyboard or a touchpad as well as a number of electronic components.
  • Integrated circuits with the highest clock frequency are typically located in close proximity to each other within the computer base.
  • heat generating computer system components take the form of integrated circuits. Such integrated circuits are typically mounted on a motherboard or another circuit board within the base the portable computer system.
  • a processor is one component that generates a large amount of heat in a typical processor system.
  • Other electrical components which also generate heat include memory circuits, power supply circuits, and circuit boards such as video card. Maintaining operating temperatures of computer system components below certain levels is important to ensure performance, reliability, and safety.
  • Most integrated circuits have specified maximum operating temperatures, above which the manufacturer does not recommend operation. Transistors, the building blocks of integrated circuits, tend to slow down as operating temperature increases. Thus, a computer system that operates its integrated circuits close to or beyond recommended timings may fail as temperature increases.
  • integrated circuits may be physically damaged if temperatures elevate beyond those recommended. Such physical damage obviously can impact system reliability.
  • the computer system casing should be kept at a temperature which is safe for human contact. This may necessitate spreading of heat throughout a computer system base or efficiently expelling heat to avoid hot spots near certain components such as a processor.
  • heat sinks, fans, and heat pipes are employed to dissipate heat from integrated circuits and other electronic components.
  • Increases in heat generation are often accommodated by simply increasing the quantity or size of these heat dissipation elements.
  • the relatively small size of a portable computing device complicates heat dissipation by limiting airflow, crowding heat generating components, and reducing the space available for heat dissipation devices.
  • the computer base size is generally kept to a minimum, and the computer base contains both the input device and numerous other electronic components, there may be inadequate space to dissipate enough heat to keep the electronic components within their acceptable range of operating temperatures. Additionally, heat dissipation through the bottom of the base is limited because the computer is usually operated on a relatively flat low conductance surface.
  • One prior art method for removing heat from the base of a portable computing device involves transferring heat from the base of the device to the display. The technique of transferring heat to the display is limited due to the thermal and mechanical difficulties involved with transferring heat through the hinge of the computing device. Additionally, using this technique, all of the heat is dissipated by the portable computing device.
  • a power supply "brick” (an enlarged, often rectangular, portion of the cable) is often included at some point in the power supply cable to perform a power conversion.
  • a brick may include a transformer and a rectifier circuit to convert alternating current power to direct current power.
  • the brick is typically located at either the end of the power cable which plugs into the outlet or at some intermediate point in the cable.
  • the prior art does not take advantage of the power supply brick as a type of cable connector which may be used as a means of heat dissipation. Nor does the prior art utilize other connectors or attachments, such as networking cards, to dissipate heat.
  • a heat exchange apparatus for a computing device includes a heat dissipation mechanism.
  • the heat dissipation mechanism in the heat dissipating cable connector is removably thermally coupled to a heat transfer element which is configured to transfer heat from an electronic component to the heat dissipation mechanism.
  • Figure 1 illustrates one embodiment of a computing device using a power cable for heat dissipation according to the present invention.
  • Figure 2 illustrates another embodiment of the present invention in which a computing device uses an attachment abutting the computing device for power dissipation.
  • FIGS 3a and 3b illustrate embodiments of thermal mating connectors which may be used in some embodiments of the present invention.
  • Figure 4 illustrates one embodiment of a heat dissipating power supply brick using thermally conductive fibers.
  • Figure 5a illustrates a technique for thermally coupling an end of the thermal cable to heat conductive plates for one embodiment of the present invention.
  • Figures 5b-5c illustrate cross-sectional and side views, respectively, of a thermal and electrical cable used with one embodiment of the present invention.
  • the present invention provides a heat exchanger for a computing device.
  • numerous specific details such as component types, heat conductive materials, and heat dissipation component locations, are set forth in order to provide a more thorough understanding of the present invention. It will be appreciated, however, by one skilled in the art that the invention may be practiced without such specific details.
  • the present invention provides numerous techniques for removing heat from a portable computing device through a power cable connector or another attachment. With the ability to remove additional heat, it may become possible to operate components such as a processor in a portable computing device at a higher power level by either increasing the supplied voltage, reducing clock throttling, or increasing the operating frequency of the processor. As a result, a portable computing device may be able to obtain higher performance while a power cable or other attachment is connected.
  • a portable computing device 105 may be a laptop computer, a notebook computer, or any other computing device which may need additional cooling capacity when connected to a power outlet or other attachment.
  • the portable computing device includes a base 115 and a display 110 hingedly mounted at one edge of the base 115. Additionally, the portable computing device 105 includes an electronic component 120 mounted on a circuit board 127.
  • the electronic component 120 is a processor and the circuit board 127 is a motherboard; however, other components or regions of the portable computing device may be cooled according to the present invention. In a typical laptop or notebook computer, many other components are present.
  • ROM drive audio and video hardware, connectivity (i.e., network and modem) hardware, as well as a power supply may all be present.
  • connectivity i.e., network and modem
  • power supply i.e., power supply
  • These or other individual components as well as circuit boards or regional heat sinks within the portable computing device 105 may be cooled according to the present invention.
  • a heat transfer element 125 conveys heat away from the electronic component 120 to a receptacle 130.
  • the receptacle is formed at an exterior surface of the base 115, although the surface may be recessed and/or the receptacle may be protected by a covering or a door when not in use.
  • the receptacle may be either formed as a separate component and affixed to the base, or may form a part of the base housing itself.
  • the receptacle includes a thermal mating connector 135, and a plurality of electrical connectors 140a, 140b, and 140c.
  • the receptacle 130 is recessed into the housing of the portable computing device 105 and includes male electrical and thermal connectors.
  • female connectors, or a combination of male and female connectors may be used.
  • a plug 160 includes a plurality of electrical connectors 155a, 155b, and 155c which cooperatively engage the connectors 140a, 140b, and
  • a thermal mating connector 150 thermally engages the thermal mating connector 135 when the plug mates with the receptacle.
  • a thermal-electrical cable 165 connected to the plug 160 carries a set of electrical conductors 182 and a flexible thermal conductor 170 to a cable connector, power supply brick 190.
  • Receptacles and plugs are well known mechanisms and any appropriate prior art connector, receptacle, or plug structure may be used.
  • the mechanical engaging structures may be changed, as may the number, type, or arrangement of the particular electrical connectors used.
  • thermal connectors may be used.
  • the heat transfer element 125 is a heat pipe with an open cylindrical end for the thermal mating connector 135.
  • the open cylindrical end is adapted to engage one end of a flexible heat pipe extending from the plug 160.
  • the engaging portion flexible heat pipe may be mounted in a similarly shaped copper or other rigid heat conductive connector to ensure proper mating with the receptacle.
  • an end portion of the heat pipe may be encased in a metal connector.
  • the flexible heat pipe or a heat conductive connector attached thereto forms the thermal mating connector 150
  • the flexible heat pipe forms the flexible thermal conductor 170 extending through the thermal-electric cable 165 and into the power supply brick 190.
  • the power supply brick 190 is also a heat dissipation brick because it contains heat dissipation mechanisms in addition to power supply components. In alternate embodiments, these components could be supplied in separate housings or completely independently of each other. The combination, however, advantageously reduces the number of components outside the portable computing device 105 and allows the use of active (i.e., requiring electricity) heat dissipation mechanisms. Additionally, in other embodiments, the brick may take different shapes (cylindrical, square, or otherwise), and may perform either no function beyond heat dissipation or one or more additional functions such as power conversion or a data communication function.
  • the power supply brick 190 includes a power supply circuit 180.
  • a plug 195 supplies alternating current from an electrical outlet to the power supply 180 through a power cable 197.
  • the power supply 180 provides power from the power supply circuit 180 to the portable computing device 105 via the electrical conductors 182 and the electrical connectors 155a, 155b, and 155c.
  • the power supply also supplies power to a fan 185 via a second set of conductors 184.
  • the fan 185 cools a heat sink 177 which is attached to a portion 172 of the flexible thermal conductor 170 by a top heat dissipation plate 175a.
  • the heat dissipation plates 175a and 175b are copper.
  • aluminum or other heat conductive materials may be used. Additionally, one or both of the plates 175a and 175b may be eliminated and the heat sink 177 may be directly attached to the flexible thermal conductor 170.
  • the portable computing device can receive additional power to improve the performance of certain components such as a microprocessor.
  • the additional heat dissipation mechanism provided by the power cable and brick combination allows such additional power consumption without overheating or damaging components.
  • the attachment abuts the base 115 and the elongated receptacle allows a larger thermal connections, more efficient transfer of heat to the attachment 205 may be achieved than when the heat dissipation mechanism is more distant.
  • the large direct abutment may also increase the thermal mating options.
  • the attachment 205 is a second type of cable connector which abuts the personal computing device 105.
  • the attachment 205 may be a heat dissipation brick or may contain other circuitry for performing other functions such as providing a network or communications interface.
  • the attachment 205 provides heat dissipation using a heat sink 210 and provides power through the power cable 197.
  • the heat sink 210 dissipates heat from a second heat transfer element 220 which mates with a open cylindrical end 226 of the first heat transfer element 125 when the attachment 205 is mated with the base 115.
  • FIG. 3a Further details of one embodiment of this thermal mating are shown in Figure 3a.
  • the open cylindrical end 226 of the heat transfer element 125 is adapted to engage the second heat transfer element 220.
  • both heat transfer element 125 and 220 are cylindrical heat pipes.
  • these heat pipes may be shaped differently and /or may form other engaging heat conductive connections.
  • the heat pipes may be rectangular or differently shaped, and the female end may fully encircle the male end or may have two or more engaging portions which partially surround the male end.
  • the heat sink 210 may be formed by a pair of heat dissipation plates 340 and 350 which are copper in one embodiment.
  • the heat sink may comprise more complicated structures including a fan or other known heat dissipation devices in alternate embodiments.
  • the thermal mating connector arrangement of Figure 3a may be used in a number of embodiments of the present invention. As illustrated by the disconnect in the second heat transfer element 220, the heat dissipation plates 340 and 350 may be in close proximity to this thermal connection (e.g., in the attachment 205 in Figure 2) or more may be separated by a thermal cable (e.g., in the brick of the embodiment of Figure 1).
  • Figure 3b illustrates the use of two plates 340 and 350 to thermally engage the heat transfer element 125 by direct contact. This type of thermal connection may also be used to mate with the flexible heat conductor 170 (rather than the heat transfer element 125 as shown) in the brick 190 of Figure 1. A hardened coating such as molybdenum may be appropriate for these and the prior thermal matings in order to reduce wear on the interfacing parts.
  • Figure 4 illustrates the thermal components in an alternate embodiment of the power supply brick 190 which utilizes a thermally conductive fiber 400 to remove heat from the portable computing device 105.
  • the thermal-electrical cable 165 includes thermally conductive fibers 400 as the flexible heat conductor.
  • Carbon based fibers or any other flexible thermally conductive fiber may be used.
  • the fan 185 is again affixed to the housing of the power supply brick 190.
  • the heat sink 177 is a metal structure such as copper or aluminum. In one embodiment, the fan
  • An elastomer gap 420 provides a conforming surface which reduces thermal contact resistance between the heat sink 177 and the plate 175a.
  • a thermal tape, a thermal grease, or any other suitable thermal interface material may be used for such thermal connections.
  • Figure 5a illustrates one technique for thermally coupling an end of the fibers 400 of the thermal-electrical cable 165 to the heat dissipation plates 175a and 175b.
  • the fibers 400 fan out over and are affixed to the surfaces of the plates 175a and 175b.
  • a thermal epoxy, solder, or any other known bonding technique may be used.
  • This fiber/plate combination may be used as a thermal mating connector in several embodiments of the present invention similarly to the thermal mating techniques illustrated in Figures 3a and 3b.
  • the technique of Figure 5a may be used to form a thermal mating connector at either end of the thermal-electrical cable 165, or in an abutted attachment such as that shown in Figure 2.
  • Figures 5b-5c illustrate one arrangement which may be used for the thermal-electric cable 165 when thermally conductive fiber 400 is used.
  • An electric cable 500 includes an insulation separating electrical conductors from the fibers 400.
  • the electric cable, insulation, and heat conductive fibers are all known in the art.
  • the electrical conductors are separated from the fibers 400 at the end of the cable 165 so the appropriate thermal and electrical connections can be made.
  • the present invention provides a number of air flow heat exchanger solutions for a portable computing device and a docking station. While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art upon studying this disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
PCT/US1998/008162 1997-04-25 1998-04-22 Power cable heat exchanger for computing device Ceased WO1998049879A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU72550/98A AU7255098A (en) 1997-04-25 1998-04-22 Power cable heat exchanger for computing device
JP54711898A JP3830169B2 (ja) 1997-04-25 1998-04-22 コンピュータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/846,113 US5898569A (en) 1997-04-25 1997-04-25 Power cable heat exchanger for a computing device
US08/846,113 1997-04-25

Publications (1)

Publication Number Publication Date
WO1998049879A1 true WO1998049879A1 (en) 1998-11-05

Family

ID=25296982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/008162 Ceased WO1998049879A1 (en) 1997-04-25 1998-04-22 Power cable heat exchanger for computing device

Country Status (4)

Country Link
US (1) US5898569A (enExample)
JP (1) JP3830169B2 (enExample)
AU (1) AU7255098A (enExample)
WO (1) WO1998049879A1 (enExample)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349481A (ja) * 1999-03-31 2000-12-15 Internatl Business Mach Corp <Ibm> コンピューター冷却装置、コンピューター、及びコンピューターアッセンブリ
EP1032250A3 (en) * 1999-02-25 2001-04-04 International Business Machines Corporation Cable and heat sink

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111748A (en) * 1997-05-15 2000-08-29 Intel Corporation Flat fan heat exchanger and use thereof in a computing device
JPH11121666A (ja) * 1997-10-20 1999-04-30 Fujitsu Ltd マルチチップモジュールの冷却装置
AU3098399A (en) * 1998-03-20 1999-10-11 Speck Product Design Thermally efficient portable computer system and method incorporating thermal connection port and dock
JP4015754B2 (ja) * 1998-06-23 2007-11-28 株式会社東芝 冷却装置および冷却装置を有する電子機器
JP3076314B2 (ja) * 1998-11-04 2000-08-14 新潟日本電気株式会社 携帯型情報処理装置の冷却方式
KR100543440B1 (ko) * 1998-12-01 2006-03-23 삼성전자주식회사 교류/직류 전압 변환 장치 및 그것을 구비하는 휴대용 전자 시스템
JP2000172378A (ja) * 1998-12-04 2000-06-23 Sony Corp 冷却補助装置、冷却補助方法、電子機器、および情報処理装置
EP1162533A4 (en) * 1999-03-11 2007-10-17 Fujitsu Ltd ELECTRICAL DEVICE AND ELECTRICAL PART
US6172871B1 (en) * 1999-03-31 2001-01-09 International Business Machines Corporation Method and system in a data processing system for efficiently cooling a portable computer system
US6229704B1 (en) * 1999-10-19 2001-05-08 Dell Usa, L.P. Thermal connection system for modular computer system components
US6307746B1 (en) * 1999-12-06 2001-10-23 Gateway, Inc. Power adapter having a thermal cooling assembly for a digital information appliance
US6445580B1 (en) * 2000-06-09 2002-09-03 International Business Machines Corporation Adaptable heat dissipation device for a personal computer
US6445086B1 (en) * 2000-06-28 2002-09-03 David H. Houston Electronic power supply for personal computer and method
US6597569B1 (en) * 2000-06-29 2003-07-22 Intel Corporation Partitioned computer platform
US6657859B1 (en) * 2000-06-30 2003-12-02 Intel Corporation Device bay heat exchanger for a portable computing device
DE20013029U1 (de) * 2000-07-27 2000-12-14 Yu, Ming-Chuan, Taoyuan Kühlunterlage für Notebook
USD449048S1 (en) 2000-08-02 2001-10-09 Ming-Chuan Yu Cooling rack for notebook computer
US6385046B1 (en) * 2000-09-14 2002-05-07 Sun Microsystems, Inc. Heat sink assembly having inner and outer heatsinks
US6459575B1 (en) * 2001-05-15 2002-10-01 Hewlett-Packard Company Cooling module for portable computer
US6415612B1 (en) 2001-06-29 2002-07-09 Intel Corporation Method and apparatus for external cooling an electronic component of a mobile hardware product, particularly a notebook computer, at a docking station having a thermoelectric cooler
US6674640B2 (en) * 2001-07-02 2004-01-06 Intel Corporation Increased thermal capability of portable electronic device in stationary or docked mode
US6674643B2 (en) * 2001-08-09 2004-01-06 International Business Machines Corporation Thermal connector for transferring heat between removable printed circuit boards
JP4512296B2 (ja) * 2001-08-22 2010-07-28 株式会社日立製作所 可搬型情報処理装置の液冷システム
US6754072B2 (en) 2001-09-24 2004-06-22 International Business Machines Corporation Portable device for cooling a laptop computer
US6741465B2 (en) * 2002-03-29 2004-05-25 Intel Corporation Cooling method and apparatus for handheld devices
US6542370B1 (en) * 2002-05-02 2003-04-01 Waffer Technology Corporation Heat dissipating device for a CPU
TWI250203B (en) * 2002-12-31 2006-03-01 Hon Hai Prec Ind Co Ltd Thermal interface material
TW557119U (en) * 2003-01-24 2003-10-01 Delta Electronics Inc Casing structure capable of dissipating heat for electronic apparatus
TW200500838A (en) * 2003-02-19 2005-01-01 Nisvara Inc System and apparatus for heat removal
FR2855711B1 (fr) * 2003-05-26 2005-08-05 Canon Europa Nv Systeme et dispositif de dissipation de chaleur dans un equipement electronique
JP4311538B2 (ja) * 2003-06-27 2009-08-12 株式会社日立製作所 ディスク記憶装置の冷却構造
US20050168941A1 (en) * 2003-10-22 2005-08-04 Sokol John L. System and apparatus for heat removal
TWI260966B (en) * 2004-10-28 2006-08-21 Quanta Comp Inc Heat dissipation device
TWI265775B (en) * 2005-04-15 2006-11-01 High Tech Comp Corp Portable electronic device and heat dissipation method and cradle thereof
JP2007088282A (ja) * 2005-09-22 2007-04-05 Mitsubishi Electric Corp 周辺機器及び電子機器
US20080253082A1 (en) * 2007-04-12 2008-10-16 Lev Jeffrey A Cooling system with flexible heat transport element
US8198757B2 (en) * 2009-03-04 2012-06-12 International Business Machines Corporation Energy savings for a system powering a lower voltage device from a higher voltage power source, and wherein the system includes a power plug that outputs power to a converter, and a switch actuator
US8208250B2 (en) * 2009-04-08 2012-06-26 Intel Corporation External thermal solution for a mobile computing device
CN102231085A (zh) * 2009-10-22 2011-11-02 鸿富锦精密工业(深圳)有限公司 笔记本电脑外置散热装置
TWI381268B (zh) * 2009-12-04 2013-01-01 Wistron Neweb Corp 通用序列匯流排裝置
TWM391129U (en) * 2010-04-19 2010-10-21 Wistron Corp Power supply having heat dissipation function and its combination with an electronic device
US8405975B2 (en) * 2011-01-11 2013-03-26 Dell Products L.P. Dual mode portable information handling system cooling
CN102346530A (zh) * 2011-06-27 2012-02-08 苏州天擎电子通讯有限公司 一种带有风扇功能的笔记本电脑适配器
US8632354B2 (en) * 2011-08-16 2014-01-21 Micron Technology, Inc. Interconnection systems
US20130309899A1 (en) * 2012-05-15 2013-11-21 Motorola Mobility, Inc. Connector and system for cooling electronic devices
US8982560B2 (en) * 2012-12-28 2015-03-17 Intel Corporation Thermal management of an electronic device
US9060433B2 (en) 2013-01-04 2015-06-16 International Business Machines Corporation Thermal dissipative retractable flex assembly
US9268376B2 (en) * 2013-01-09 2016-02-23 Google Technology Holdings LLC Mobile computing device dock station with headset jack heat pipe interface
US8926360B2 (en) * 2013-01-17 2015-01-06 Cooper Technologies Company Active cooling of electrical connectors
US9093764B2 (en) 2013-01-17 2015-07-28 Cooper Technologies Company Electrical connectors with force increase features
CN103970309A (zh) * 2013-01-31 2014-08-06 鸿富锦精密电子(天津)有限公司 鼠标垫
DE102013207000A1 (de) * 2013-04-18 2014-10-23 Robert Bosch Gmbh Steuergerät für ein Kraftfahrzeug mit einem zum Wärmetransport ausgebildeten Steckanschluss
US9642289B2 (en) * 2013-09-19 2017-05-02 Infineon Technologies Austria Ag Power supply and method
US9414527B2 (en) 2014-11-06 2016-08-09 International Business Machines Corporation Thermal spreading for an externally pluggable electronic module
US20170049004A1 (en) * 2015-08-10 2017-02-16 Yu-Wen Tsai Heat Dissipation Device With Charging Function
CN206100746U (zh) * 2016-07-11 2017-04-12 嘉基电子科技(苏州)有限公司 散热器组合装置
US10928855B2 (en) 2018-12-20 2021-02-23 Dell Products, L.P. Dock with actively controlled heatsink for a multi-form factor Information Handling System (IHS)
CN109874279A (zh) * 2019-03-29 2019-06-11 联想(北京)有限公司 电子设备
US11665854B2 (en) * 2020-03-27 2023-05-30 Thales Defense & Security, Inc. Thermal mitigation device for application in radio batteries and/or adaptors and methods of use thereof
JP2022021539A (ja) * 2020-07-22 2022-02-03 キヤノン株式会社 電子機器および電子機器システム
JP7657645B2 (ja) * 2021-04-16 2025-04-07 キヤノン株式会社 電子機器
JP7693374B2 (ja) * 2021-04-16 2025-06-17 キヤノン株式会社 放熱装置
GB2639242A (en) * 2024-03-13 2025-09-17 Harting Int Innovation Ag Connector for cooling and energizing electronic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007858A (en) * 1990-04-20 1991-04-16 Amp Incorporated Electrical connector for flat power cable
US5037313A (en) * 1989-06-28 1991-08-06 Telefonaktiebolaget L M Ericsson Active plug-in function unit
US5077637A (en) * 1989-09-25 1991-12-31 The Charles Stark Draper Lab., Inc. Solid state directional thermal cable
US5148354A (en) * 1990-05-29 1992-09-15 Ford Motor Company Connector for use with a printed circuit board

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255109A (en) * 1992-04-23 1993-10-19 Pc Tech Inc. Heat dissipating LCD display
US5441576A (en) * 1993-02-01 1995-08-15 Bierschenk; James L. Thermoelectric cooler
US5430609A (en) * 1993-09-02 1995-07-04 Kikinis; Dan Microprocessor cooling in a portable computer
US5522712A (en) * 1993-12-08 1996-06-04 Winn; Ray Low-powered cooling fan for dissipating heat
US5424913A (en) * 1994-01-11 1995-06-13 Dell Usa, L.P. Heat sink/component access door for portable computers
US5427502A (en) * 1994-03-28 1995-06-27 Deere & Company Fan shroud aspirator
US5550710A (en) * 1994-09-09 1996-08-27 Hitachi Computer Products (America), Inc. Packaging and cooling structure for the personal processor module
US5475563A (en) * 1994-10-27 1995-12-12 Compaq Computer Corporation PCMCIA card heat removal apparatus and methods
US5513070A (en) * 1994-12-16 1996-04-30 Intel Corporation Dissipation of heat through keyboard using a heat pipe
US5598320A (en) * 1995-03-06 1997-01-28 Ast Research, Inc. Rotable and slideble heat pipe apparatus for reducing heat build up in electronic devices
US5559675A (en) * 1995-03-28 1996-09-24 Twinhead International Corp. Computer CPU heat dissipating and protecting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037313A (en) * 1989-06-28 1991-08-06 Telefonaktiebolaget L M Ericsson Active plug-in function unit
US5077637A (en) * 1989-09-25 1991-12-31 The Charles Stark Draper Lab., Inc. Solid state directional thermal cable
US5007858A (en) * 1990-04-20 1991-04-16 Amp Incorporated Electrical connector for flat power cable
US5148354A (en) * 1990-05-29 1992-09-15 Ford Motor Company Connector for use with a printed circuit board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1032250A3 (en) * 1999-02-25 2001-04-04 International Business Machines Corporation Cable and heat sink
US6452093B1 (en) 1999-02-25 2002-09-17 International Business Machines Corporation Cable and heat sink
JP2000349481A (ja) * 1999-03-31 2000-12-15 Internatl Business Mach Corp <Ibm> コンピューター冷却装置、コンピューター、及びコンピューターアッセンブリ

Also Published As

Publication number Publication date
US5898569A (en) 1999-04-27
AU7255098A (en) 1998-11-24
JP2001524265A (ja) 2001-11-27
JP3830169B2 (ja) 2006-10-04

Similar Documents

Publication Publication Date Title
US5898569A (en) Power cable heat exchanger for a computing device
US6118654A (en) Heat exchanger for a portable computing device and docking station
US11573384B2 (en) QSFP-DD (quad small form factor pluggable-double density) modules and methods therefor
US5959836A (en) Airflow heat exchanger for a portable computing device and docking station
US5974556A (en) Circuit and method for controlling power and performance based on operating environment
US20030110779A1 (en) Apparatus and method for augmented cooling of computers
US6674643B2 (en) Thermal connector for transferring heat between removable printed circuit boards
US5419780A (en) Method and apparatus for recovering power from semiconductor circuit using thermoelectric device
US7342783B2 (en) Portable computer with docking station
US6313987B1 (en) Thermal connector for joining mobile electronic devices to docking stations
US6657859B1 (en) Device bay heat exchanger for a portable computing device
US20020080578A1 (en) Portable and plugable thermal and power solution for a notebook or handheld device
CN102150101A (zh) 嵌入式电池单元和热管理的方法和设备
CN111625073A (zh) 一种液冷散热装置及液冷虚拟货币挖矿机
US6604963B2 (en) Power supply system used in desktop computer
US6018460A (en) Flexible thermal conductor with electromagnetic interference shielding capability for electronic components
US20060044763A1 (en) Thermal managed interconnect system for a circuit board
TWI709286B (zh) 轉接裝置及網路卡模組
US9414527B2 (en) Thermal spreading for an externally pluggable electronic module
US20210385938A1 (en) Integrated voltage regulator for high performance devices
US20080101039A1 (en) Passive heat-dissipating type power supply apparatus for increasing heat-dissipating efficiency and fabricating process thereof
TWI258898B (en) Stacked SATA connector
WO2025108036A1 (zh) 主板、计算设备及电源连接器
US20070297142A1 (en) Power supply apparatus having passive heat-dissipation mechanism and fabrication method thereof
JP2000056862A (ja) 電源アダプタおよび電源アダプタ付電子機器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CU CZ CZ DE DE DK DK EE EE ES FI FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 547118

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA