WO1998049535A1 - Verfahren zur prüfung der verbundfestigkeit metallkeramischer systeme - Google Patents

Verfahren zur prüfung der verbundfestigkeit metallkeramischer systeme Download PDF

Info

Publication number
WO1998049535A1
WO1998049535A1 PCT/DE1998/001115 DE9801115W WO9849535A1 WO 1998049535 A1 WO1998049535 A1 WO 1998049535A1 DE 9801115 W DE9801115 W DE 9801115W WO 9849535 A1 WO9849535 A1 WO 9849535A1
Authority
WO
WIPO (PCT)
Prior art keywords
bond strength
alloy
ceramic
ceramic systems
metal ceramic
Prior art date
Application number
PCT/DE1998/001115
Other languages
English (en)
French (fr)
Inventor
Jürgen KOSPER
Original Assignee
Kosper Juergen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kosper Juergen filed Critical Kosper Juergen
Publication of WO1998049535A1 publication Critical patent/WO1998049535A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0012Constant speed test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0032Generation of the force using mechanical means

Definitions

  • the invention relates to a method for conditioning alloy surfaces which can be used in any quantitative method for testing the bond strength of metal-ceramic systems, in particular metal-ceramic systems for dental restorations, in order to be able to make a meaningful comparison between the bond strength values of different metal-ceramic systems.
  • Quantitative methods for testing the bond strength of metal-ceramic systems are divided into tensile, shear, bending and torsion tests depending on the direction of force with regard to the interface between alloy and ceramic veneer.
  • a common feature of all quantitative test methods is that the materials to be joined must be processed in accordance with the manufacturer's instructions.
  • the alloy surfaces to be veneered are usually blasted with corundum of a certain grain size for a certain time with a certain jet pressure before the ceramic fires.
  • the decisive disadvantage is that similar, but in no way identical, roughness depths are achieved on different alloys.
  • the comparability of the results when testing the bond strength is made particularly difficult by the lack of a surface standard or a surface standard of the alloys that can be fired.
  • the invention is based on the object of specifying a method for conditioning alloy surfaces of metal-ceramic systems which makes it possible to obtain reproducible bond strength values in any quantitative method for testing the bond strength of metal-ceramic systems and which enables an exact comparison between these bond strength values.
  • the object is achieved in that the alloy surfaces to be veneered are conditioned by a polishing process before the ceramic materials are fired.
  • material is removed from the alloy surfaces to be veneered until the test specimens on the alloy surface have the same chemical composition that the interior of the alloy has.
  • the roughness of the alloy surfaces to be veneered is minimized during the polishing process, so that the surface standard can be defined as the surface standard for the alloy surfaces of different alloys, which has the same chemical composition as the alloy itself with a minimum roughness depth.
  • An advantageous embodiment of the method provides that the polishing process is first carried out step by step with a reduced grain size of the polishing agent down to a grain size of approximately 3 ⁇ m until the alloy surface appears smooth and homogeneous, and that the material with the finest grain size remains so long (a few hours) is removed until reaching the interior of the alloy is recognizable by the recurrence of inhomogeneities. Then these inhomogeneities are polished away with the finest grain.
  • the process according to the invention is distinguished by the advantage that With this surface quality of the bonding alloys when testing the bond strength of metal-ceramic systems, an exact comparison of the bond strengths of metal-ceramic systems can be made within any quantitative test method.
  • Bond strength of metal-ceramic systems is one of the most common methods in the Federal Republic of Germany, namely the bending shear test according to DIN draft 13927 from April 1989.
  • metal plates with the dimensions 25 mm x 3 ( ⁇ 0.1) mm x 0.5 (+0.05) mm according to the manufacturer's specifications are centered on one side with a Ceramic block of 8 (+0.1) mm long and 1 (+0.1) mm thick consisting of bonding agent, base and dentine material fired.
  • the test specimens are placed with the ceramic block facing downwards on the two supports of a universal testing machine (Zwick 1425) at a distance of 20 mm and loaded with a wedge-shaped punch from the top until the ceramic block has flaked off.
  • Zwick 1425 universal testing machine
  • the feed rate of the stamp is 1.5 (+ _ 0.5) mm / min.
  • the force that builds up when the test specimen bends is recorded in a measurement diagram as a function of the time required for the test specimen to bend until the ceramic block flakes off.
  • a shear bond strength value is calculated for the test specimen from the force F Bru c h determined when the ceramic block flake off, taking into account the effective modulus of elasticity of the alloy and the thickness of the alloy plate.
  • Metal-ceramic systems are considered useful in the bending shear test if they have a shear bond strength> ⁇ 25 N / mm 2 .
  • the non-precious metal firing alloy based on nickel Remanium CS from Dentaurum was combined with the Biodent metal ceramic from De Trcy / Dentsply.
  • the test specimens were produced in accordance with the specifications of the bending shear test according to the manufacturer's instructions, which means that the alloy plates were first produced using the lost wax and casting process of a dental cast, and the correct size was set with the aid of dental abrasives .
  • the alloy platelets were then conditioned in front of the ceramic fires by means of a blasting process with corundum of the size 250 ⁇ m for 30 seconds with 5 bar jet pressure.
  • the ceramic fires were carried out in the Multimal MC II kiln from De Trey / Dcntspy, whereby the adhesion promoter GUH was first fired in an adhesive firing and the base material GU in a top firing in accordance with the firing control schedule of the biodcnt metal ceramic. This was followed by two vacuum fires with a dentine material DU. The correct size of the ceramic blocks was set with the help of diamond-coated grinding wheels. Finally, a glaze was carried out.
  • the vacuum fires and the glaze firings were also carried out in accordance with the fire management table for Biodent-Mclallceramic, whereby the information in the "Yellow List" from De Trey Detsply regarding the use of Biodenl-Metallic ceramics for the Remanium CS alloy were taken into account.
  • the alloy plates were placed in front of the ceramic fires instead of the one according to the manufacture
  • FIG. 1 shows the measurement diagram of a conventional bending shear test in accordance with DIN draft 13927, in which the force built up when the test specimen deflected was recorded as a function of the time required for the specimen to deflect until the ceramic block flake off.
  • the following parameters apply to test specimens 8 to 10 and 1 to 5:
  • the feed speed of the wedge-shaped punch is 1.5 (+ 0.5) mm / min.
  • the paper feed for recording the time required for the bending of the test specimen is 5 cm / min, which means that 1 cm of paper is conveyed in 12 seconds.
  • the shear bond strength values of the test specimens are of the order of 40 N / mm 2 .
  • FIG. 2 shows the measurement diagram of the bending-shear test according to the invention, in which the alloy surfaces to be veneered were conditioned before the ceramic fires by the polishing process described above.
  • the dimensions of the alloy plates were set to 25 mm x
  • test specimens 1 * to 5 * The following parameters apply to test specimens 1 * to 5 *:
  • the feed speed of the wedge-shaped punch is 1.5 (+0.5) mm / min.
  • the paper feed for recording the time required for the bending of the test specimen is 10 cm / min, which means that 1 cm paper in 6
  • Figure 2 is striking that the force-time curves of the test specimens 1 *, 2 * and 5 * are approximately twice as steep as those of the test specimens 8 to 10 and 1 to 5 (the paper feed must be taken into account for the time measurement).
  • the forces F bru when the ceramic block of test specimens 1 *, 2 * and 5 * flake off, are clearly above half the forces F b ⁇ uch of test specimens 8 to 10 and 1 to 5.
  • polishing discs developed for the processing of composite fillings are particularly suitable for this application of removing material from alloy surfaces. These discs are used one after the other in the technical handpiece at maximum speed from coarse to fine grain. Processing with the finest grit is particularly important. As soon as the alloy surface appears smooth and homogeneous, the alloy surface is removed with the finest grain for a few hours until inhomogeneities appear again on the alloy surface, which can be interpreted as reaching the interior of the alloy. These inhomogeneities are finally polished away with the finest grain.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Konditionierung von Legierungsoberflächen von metallkeramischen Systemen anzugeben, das es gestattet, in einem beliebigen quantitativen Verfahren zur Prüfung der Verbundfestigkeit metallkeramischer Systeme reproduzierbare Verbundfestigkeitswerte zu erhalten, und das einen exakten Vergleich zwischen diesen Verbundfestigkeitswerten ermöglicht. Erfindungsgemäß gelingt die Lösung der Aufgabe dadurch, daß die zu verblendenden Legierungsoberflächen vor dem Aufbrennen der Keramikmassen durch einen Poliervorgang konditioniert werden. Die Erfindung betrifft ein Verfahren zur Konditionierung von Legierungsoberflächen, das in einem beliebigen quantitativen Verfahren zur Prüfung der Verbundfestigkeit metallkeramischer Systeme, insbesondere metallkeramischer Systeme für dentale Restaurationen, angewendet werden kann, um einen sinnvollen Vergleich zwischen den Verbundfestigkeitswerten verschiedener metallkeramischer Systeme vornehmen zu können.

Description

Verfahren zur Prüfung der Verbundfestigkeit metallkeramischer Systeme
Die Erfindung betrifft ein Verfahren zur Konditionierung von Legicrungs- oberflächen, das in einem beliebigen quantitativen Verfahren zur Prüfung der Verbundfestigkeit metallkeramischer Systeme, insbesondere metallkeramischer Systeme für dentale Restaurationen, angewendet werden kann, um einen sinnvollen Vergleich zwischen den Verbundfestigkeitswerten verschiedener mctallkeramischcr Systeme vornehmen zu können.
Quantitative Verfahren zur Prüfung der Verbundfestikeit metallkeramischer Systeme werden je nach Kraftrichtung bezüglich der Grenzfläche von Legierung zu keramischer Verblendung in Zug-, Scher-, Biege- und Torsi- onsprüfungen eingeteilt.
Allen quantitativen Prüfverfahren ist gemeinsam, daß die zu verbindenden Werkstoffe gemäß den Herstellerangaben zu verarbeiten sind. Die zu verblendenden Legierungsoberflächen werden vor den Keramikbränden in der Regel mit Korund einer bestimmten Körnung eine gewisse Zeit lang mit einem bestimmten Strahldruck abgestrahlt. Als entscheidender Nachteil ist deshalb anzusehen, daß auf verschiedenen Legierungen zwar ähnliche, jedoch keinesfalls identische Rauhtiefen erzielt werden. Die Vergleichbarkeit der Ergebnisse bei der Prüfung der Verbundfestigkeit wird insbeson- dere durch das Fehlen einer Oberflächennorm bzw. eines Obcrflächenstandards der aufbrennfähigen Legierungen erschwert. Bcim Vergleich von Verbundfestigkeitswerten mctallkeramischer Systeme, deren Legierungsoberflächen eine definierte Rauhtiefe aufweisen, könnte exakter beurteilt werden, bei welchem metallkeramischen System die physikalischen Parameter (Wärmeausdehnungskoeffizient, Elastizitätsmo- dul) von Verblendkeramik und Aufbrennlegierung am besten aufeinander abgestimmt sind.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Konditionierung von Legierungsoberflächen von metallkeramischen Systemen anzuge- ben, das es gestattet, in einem beliebigen quantitativen Verfahren zur Prüfung der Verbundfestigkeit metallkeramischer Systeme reproduzierbare Verbundfestigkeitswerte zu erhalten, und das einen exakten Vergleich zwischen diesen Verbundfestigkeitswerten ermöglicht.
Erfindungsgemäß gelingt die Lösung der Aufgabe dadurch, daß die zu verblendenden Legierungsoberflächen vor dem Aufbrennen der Keramikmassen durch einen Poliervorgang konditioniert werden. Dabei wird während des Poliervorganges solange Material von den zu verblendenden Legierungsoberflächen abgetragen, bis die Prüfkörper an der Legierungs- oberfläche die gleiche chemische Zusammensetzung aufweisen, die das Innere der Legierung aufweist. Gleichzeitig werden während des Poliervorganges die Rauhtiefen der zu verblendenden Legierungsoberflächen minimiert, so daß für die Legierungsoberflächen verschiedener Legierungen als Oberflächennorm diejenige Oberfläche definiert werden kann, die bei minimaler Rauhtiefe dieselbe chemische Zusammensetzung aufweist, wie die Legierung selbst. Eine vorteilhafte Ausführung des Verfahrens sieht vor, daß der Poliervorgang zunächst stufenweise mit verringerter Körnung des Poliermittels bis zu einer Körnung von etwa 3μm ausgeführt wird, bis die Legierungsoberfläche glatt und homogen erscheint, und daß dann mit der feinsten Körnung noch solange (einige Stunden) Material abgetragen wird, bis das Erreichen des Legierungsinneren am erneuten Auftreten von Inhomogenitäten erkennbar ist. Anschließend werden auch noch diese Inhomogenitäten mit der feinsten Körnung wegpoliert.
Da bei dem erfindungsgemäßen Polierverfahren solange Material von der Legierungsoberfläche abgetragen wird, bis die chemische Zusammensetzung der Legierungsoberfläche der chemischen Zusammensetzung im Inneren der Legierung entspricht, und gleichzeitig die Rauhtiefen der Legierungsoberfläche minimiert werden, zeichnet sich das erfindungsge- mäße Verfahren durch den Vorteil aus, daß mit dieser Oberflächenqualität der Aufbrennlegierungen bei der Prüfung der Verbundfestigkeit metallkeramischer Systeme ein exakter Vergleich der Verbundfestigkeiten metallkeramischer Systeme innerhalb eines beliebigen quantitativen Prüfverfahrens vorgenommen werden kann.
Die Erfindung wird im folgenden anhand eines Ausführungsbeispiles näher erläutert.
Dem Ausführungsbeispiel liegt als quantitatives Verfahren zur Prüfung der
Verbundfestigkeit metallkcramischer Systeme eines der in der Bundesrepu- blik Deutschland gebräuchlichsten Verfahren, nämlich die Biege-Scherprü- fung nach DIN-Entwurf 13927 vom April 1989, zugrunde. Dabei werden Metallplättchen mit den Abmessungen 25 mm x 3 (±0,1) mm x 0,5 (+0,05) mm gemäß Herstellcrangaben auf einer Seite mittig mit einem Keramikblock von 8 (+0,1) mm Länge und 1 (+0,1) mm Dicke bestehend aus Haftvermittler, Grund- und Dentinmasse bebrannt. Die Prüfkörper werden mit dem Keramikblock nach unten mittig auf die beiden in einem Abstand von 20 mm befindlichen Aufleger einer Univer- salprüfmaschine (Zwick 1425) gelegt und mit einem von oben mittig aufgesetzten keilförmigen Stempel bis zum Abplatzen des Keramikblocks belastet. Die Vorschubgeschwindigkeit des Stempels beträgt 1 ,5 (+_ 0,5) mm/min. Die sich beim Durchbiegen des Prüfkörpers aufbauende Kraft wird in Abhängigkeit der für das Durchbiegen des Prüfkörpers benötigten Zeit in einem Meßdiagramm bis zum Abplatzen des Keramikblocks aufzeichnet. Aus der beim Abplatzen des Keramikblocks ermittelten Kraft F Bruch wird unter Einbeziehung des effektiven E-Moduls der Legierung und der Dicke des Legierungsplättchens für den Prüfkörper ein Scherverbundfe- stigkeitswert errechnet. Metallkcramische Systeme gelten in der Biege- Scherprüfung als brauchbar, wenn sie eine Scherverbundfestigkeit >^ 25 N/mm2 aufweisen.
Als melallkeramisches System wurde die Nichtedclmetall-Aufbrenn-Legie- rung auf Nickelbasis Remanium CS der Firma Dentaurum mit der Biodent Metallkeramik der Firma De Trcy/Dentsply kombiniert. Für die herkömmliche Biege-Scherprüfung wurden die Prüfkörper entsprechend den Vorgaben der Biege-Scherprüfung gemäß Herstcllerangaben angefertigt, das heißt, daß zunächst die Legierungsplättchen nach dem Wachsausschmelz- und Gießverfahren eines zahntechnischc Gusses hergestellt wurden, und das richtige Maß mit Hilfe von zahntechnischen Schleifkörpern eingestellt wurde. Dann wurden die Legierungsplättchen vor den Keramikbränden durch einen Abstrahlvorgang mit Korund der Kormgröße 250 μm 30 Sekunden lang mit 5 bar Strahldruck konditionierl. Anschließend wurden die Lcgierungspättchen mit Wasserdampf eines Dampfdruckes von 2,5 bar gereinigt. Die Keramikbrände erfolgten im Brennofen Multimal MC II der Firma De Trey/Dcntspy, wobei zuerst der Haftvermittler GUH in einem Haftbrand und die Grundmasse GU in einem Deckbrand entsprechend der Brandführungstabclle der Biodcnt-Mctallkcramik aufgebrannt wurden. Anschließend folgten zwei Vakuumbrände mit einer Dentinmasse DU. Das richtige Maß der Keramikblöcke wurde mit Hilfe von diamantierten Schleifkörpern eingestellt. Zuletzt wurde ein Glanzbrand durchgeführt. Die Vakuumbrände und der Glanzbrand erfolgten ebenfalls entsprechend der Brandführungstabelle der Biodent-Mclallkeramik, wobei die Angaben der „Gelben Liste" der Firma De Trey Detsply zur Verwendung der Biodenl- Metallkeramik für die Legierung Remanium CS berücksichtigt wurden.
Für die erfindungsgemäße Biege-Scherprüfung wurden die Legierungs- plättchen vor den Keramikbränden anstelle des herstellungsgemäßen
Abstrahlvorganges durch den oben beschriebenen Poliervorgang konditio- nierl. Alle anderen Arbeitsschriltc entsprechen denen der herkömlichen Biege-Scherprüfung.
Figur 1 zeigt das Meßdiagramm einer herkömmlichen Biege-Scherprüfung nach DIN-Entwurf 13927, in dem jeweils die sich beim Durchbiegen des Prüfkörpers aufbauende Kraft in Abhängigkeit von der für das Durchbiegen des Prüfkörpers benötigten Zeit bis zum Abplatzen des Keramikblocks aufgezeichnet wurde. Für die Prüfkörper 8 bis 10 und 1 bis 5 gelten folgende Parameter:
- Die Vorschubgeschwindigkeit des keilförmigen Stempels beträgt 1 ,5 (+ 0,5) mm/min. - Der Papiervorschub zur Erfassung der für das Durchbiegen des Prüfkörpers benötigten Zeit beträgt 5 cm/min, das heißt, daß 1 cm Papier in 12 Sekunden befördert wird.
- In Richtung Ordinate ist jeweils die sich beim Durchbiegen des Prüfkörpers aufbauende Kraft bis zum Abplatzen des Keramikblocks aufgezeichnet, wobei 2,5 cm in Richtung Ordinate 2 N entsprechen.
Die Scherverbundfestigkeitswertc der Prüfkörper liegen in einer Größenordnung von 40 N/mm2.
Figur 2 zeigt das Meßdiagramm der erfindungsgemäßen Biege-Scherprüfung, bei der die zu verblendenden Legierungsoberflächen vor den Keramikbränden durch den oben beschriebenen Poliervorgang konditioniert wurden. Um den Einfluß geometrischer Parameter möglichst gering zu halten, wurden die Abmessungen der Legierungsplättchen auf 25 mm x
3 (+ 0,05) mm x 0,5 (±0,01) mm eingestellt. Die sich jeweils beim Durchbiegen des Prüfköφers aufbauende Kraft wurde ebenfalls in Abhängigkeit der für das Durchbiegen des Prüfkörpers benötigten Zeit bis zum Abplatzen des Keramikblocks aufgezeichnet.
Für die Prüfkörper 1* bis 5* gelten folgende Parameter:
- Die Vorschubgeschwindigkeit des keilförmigen Stempels beträgt 1,5 (+0,5) mm/min.
- Der Papiervorschub zur Erfassung der für das Durchbiegen des Prüfkör- pers benötigten Zeit beträgt 10 cm/min, das heißt, daß 1 cm Papier in 6
Sekunden befördert wird. - In Richtung Ordinate ist jeweils die sich beim Durchbiegen des Prüfkörpers aufbauende Kraft bis zum Abplatzen des Keramikblocks aufgezeichnet, wobei 2,5 cm in Richtung Ordinate 2 N entsprechen. Beim Vergleich der Kraft- Zeit- Kurven der Prüfköφer 8 bis 10 und 1 bis 5 aus Figur 1 mit den Kraft- Zeit-Kurven der Prüfköφer 1 *, 2* und 5* aus
Figur 2 fällt auf, daß die Kraft- Zeit-Kurven der Prüfköφer 1*, 2* und 5* ungefähr doppelt so steil verlaufen wie die der Prüfkörper 8 bis 10 und 1 bis 5 (dabei ist der Papiervorschub für die Zeitmessung zu berücksichtigen). Außerdem liegen die Kräfte Fbru , jeweils beim Abplatzen des Keramikblocks der Prüfköφer 1 *, 2* und 5* deutlich über der Hälfte der Kräfte Fbιuch der Prüfköφer 8 bis 10 und 1 bis 5.
Die im Stand der Technik für polierte Legierungsoberflächen zu erwartenden Kräfte Fbruch jeweils beim Abplatzen des Keramikblocks werden von den Kräften Fbruch der Prüfköφer 1 *, 2* und 5* deutlich übertroffen. Dieser
Sachverhalt kann nur dadurch erklärt werden, daß unter der Bedingung des erfindungsgemäßen Poliervorganges eine sehr gute Abstimmung der physikalischen Parameter (Wärmeausdehnungskoeffizient, Elastizitätsmodul) von der Biodent Metallkeramik und der Aufbrenn-Legierung Remanium CS vorliegt.
Quantitative Verbundfestigkeitsuntersuchungen scheinen bei Anwendung des erfindungsgemäßen Poliervorganges „empfindlicher" auf die Abstimmung der physikalischen Parameter von Verblendkeramik und Aufbrennle- gierung zu reagieren, als herkömmliche quantitative Verbundfestigkeitsuntersuchungen. Für diesen Anwendungsfall des Abtrags von Material an Legierungsoberflächen sind die zur Ausarbeitung von Komposit- Füllungen entwickelten sogenannten Polierdiscs besonders geeignet. Diese Discs werden im Technikhandstück bei maximaler Umdrehungszahl von gröberer zu feiner Körnung nacheinander eingesetzt. Dabei ist insbesondere die Bearbeitung mit der feinsten Körnung wichtig. Sobald die Legierungsoberfläche glatt und homogen erscheint, wird mit der feinsten Körnung noch einige Stunden weiter Legierungsoberfläche abgetragen, bis erneut Inhomogenitäten auf der Legierungsoberfläche auftreten, was als das Erreichen des Legierungsinneren gedeutet werden kann. Diese Inhomogenitäten werden schließlich auch noch mit der feinsten Körnung wegpoliert.

Claims

PATENTANSPRUCHE
1. Verfahren zur Prüfung der Verbundfestigkeit metallkeramischer Systeme, insbesondere metallkeramischer Systeme für dentale Restaurationen, bei denen eine Keramikmasse auf eine durch einen Poliervorgang konditionierte
Legierungsoberfläche aufgebrannt ist, dadurch gekennzeichnet, daß von der Legierungsoberfläche durch einen Poliervorgang bei minimierter Rauhtiefe solange Material abgetragen wird, bis die chemische Zusammensetzung der Legierungsoberfläche der chemischen Zusammensetzung im Inneren der Legierung entspricht.
2. Verfahren nach Anspruch 1, dadurch gekennzeichent, daß der Poliervorgang stufenweise mit verringerter Körnung des Poliermittels bis zu einer Körnung von etwa 3μm ausgeführt wird, bis die Legierungsoberfläche glatt und homogen erscheint, und daß dann mit der feinsten Körnung noch einige Stunden Legierungsoberfläche abgetragen wird, bis das Erreichen des Legierungsinneren am erneuten Auftreten von Inhomogenitäten erkennbar ist und daß diese Inhomogenitäten noch mit der feinsten Körnung wegpoliert werden.
PCT/DE1998/001115 1997-04-30 1998-04-22 Verfahren zur prüfung der verbundfestigkeit metallkeramischer systeme WO1998049535A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19718308.5 1997-04-30
DE1997118308 DE19718308C2 (de) 1997-04-30 1997-04-30 Verfahren zur Prüfung der Verbundfestigkeit metallkeramischer Systeme

Publications (1)

Publication Number Publication Date
WO1998049535A1 true WO1998049535A1 (de) 1998-11-05

Family

ID=7828249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/001115 WO1998049535A1 (de) 1997-04-30 1998-04-22 Verfahren zur prüfung der verbundfestigkeit metallkeramischer systeme

Country Status (2)

Country Link
DE (1) DE19718308C2 (de)
WO (1) WO1998049535A1 (de)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501154A (en) * 1982-04-16 1985-02-26 Daido Metal Company Ltd. Method for measuring an adhesive strength of a multi-layer material
US4548903A (en) * 1984-03-30 1985-10-22 The United States Of America As Represented By The Secretary Of The Air Force Method to reveal microstructures in single phase alloys
US4599827A (en) * 1985-06-24 1986-07-15 The United States Of America As Represented By The Secretary Of The Army Metallographic preparation of particulate filled aluminum metal matrix composite material
US5027650A (en) * 1990-05-08 1991-07-02 Gte Laboratories Incorporated Method for characterization of adhesion between hard materials
DE4119087A1 (de) * 1991-06-10 1992-02-06 Klaus Prof Dr Breuer Verfahren zum pruefen und messen der haftscherfestigkeit flaechenhafter verbindungen
US5546797A (en) * 1995-04-11 1996-08-20 The United States Of America As Represented By The Secretary Of The Navy Constant-depth scratch test for the quantification of interfacial shear strength at film-substrate interfaces
EP0729740A2 (de) * 1995-02-25 1996-09-04 Degussa Aktiengesellschaft Verwendung von Goldlegierungen für Konstruktionselemente in der Dentaltechnik
US5602329A (en) * 1995-08-09 1997-02-11 Massachusetts Institute Of Technology Method and apparatus for measuring fracture toughness of a material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3642211A1 (de) * 1986-12-10 1988-06-23 Mtu Muenchen Gmbh Methode zur temperaturbestimmung
JPH02234047A (ja) * 1989-03-08 1990-09-17 Nec Corp 付着力測定装置
JPH03210455A (ja) * 1990-01-13 1991-09-13 Sumitomo Metal Ind Ltd 溶射被膜の密着強度試験方法
JPH06331536A (ja) * 1993-05-19 1994-12-02 Nippon Steel Corp セラミック薄膜の密着性評価試験法
US5847283A (en) * 1996-07-03 1998-12-08 Massachusetts Institute Of Technology Method and apparatus for the evaluation of a depth profile of thermo-mechanical properties of layered and graded materials and coatings

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501154A (en) * 1982-04-16 1985-02-26 Daido Metal Company Ltd. Method for measuring an adhesive strength of a multi-layer material
US4548903A (en) * 1984-03-30 1985-10-22 The United States Of America As Represented By The Secretary Of The Air Force Method to reveal microstructures in single phase alloys
US4599827A (en) * 1985-06-24 1986-07-15 The United States Of America As Represented By The Secretary Of The Army Metallographic preparation of particulate filled aluminum metal matrix composite material
US5027650A (en) * 1990-05-08 1991-07-02 Gte Laboratories Incorporated Method for characterization of adhesion between hard materials
DE4119087A1 (de) * 1991-06-10 1992-02-06 Klaus Prof Dr Breuer Verfahren zum pruefen und messen der haftscherfestigkeit flaechenhafter verbindungen
EP0729740A2 (de) * 1995-02-25 1996-09-04 Degussa Aktiengesellschaft Verwendung von Goldlegierungen für Konstruktionselemente in der Dentaltechnik
US5546797A (en) * 1995-04-11 1996-08-20 The United States Of America As Represented By The Secretary Of The Navy Constant-depth scratch test for the quantification of interfacial shear strength at film-substrate interfaces
US5602329A (en) * 1995-08-09 1997-02-11 Massachusetts Institute Of Technology Method and apparatus for measuring fracture toughness of a material

Also Published As

Publication number Publication date
DE19718308A1 (de) 1998-11-05
DE19718308C2 (de) 2001-05-23

Similar Documents

Publication Publication Date Title
EP0326097B1 (de) Verfahren zur Vorbereitung einer Substratoberfläche für die Verbindung mit Kunststoff durch Aufbringen einer Schicht und Verwendung von gegebenenfalls silanisiertem und/oder von silanisiertem, siliciumhaltigem Material
Kawai et al. Effect of surface-penetrating sealant on composite wear
DE4028278A1 (de) Silan-behandelte metall-dentalartikel
Burger et al. Effect of thermocycling times on dentin bond strength bond
DE3802043C1 (en) Process for preparing a metal surface for bonding to plastic by applying a silicon-containing layer, and use of silicon-containing material
EP0163067B1 (de) Verfahren zum Aufbürsten von Metall auf die Oberfläche eines Metallkörpers
WO1998049535A1 (de) Verfahren zur prüfung der verbundfestigkeit metallkeramischer systeme
DE3236376C2 (de) Verfahren zum Schützen von metallischen, kraftschlüssig gepaarten Maschinenteilen vor Reibkorrosion
Proano et al. Shear bond strength of repair resin using an intraoral tribochemical coating on ceramometal, ceramic, and resin surfaces
DE102015209745B4 (de) Verfahren zur Herstellung einer Tl-Blisk
DE4227167C2 (de) Dentalklebmassen
WO2004030863A1 (de) Verfahren zur bearbeitung eines vorfabrikates oder eines halbfabrikates eines späteren optischen elementes
DE19751253C2 (de) Vorrichtung zum Polieren optischer Linsen
EP0535542A1 (de) Vorrichtung zum passgenauen Aufbringen und Befestigen zahnmedizinischer Passkörper
Conceição et al. Chemical etching solutions for creating micromechanical retention in resin-bonded retainers
EP0297203B1 (de) Silanisierungsmittel und Verfahren zur Silanisierung
EP0614344B1 (de) Verfahren zur herstellung von zahnersatzteilen
DD247308A1 (de) Mechanisches filter zur unterdrueckung energiereicher, hochfrequenter mechanischer stoerschwingungen
Sturdevant et al. Bond strengths of resin-bonded metal castings
DE102004041687A1 (de) Verfahren zur Herstellung eines Verbundes zwischen Titan und Keramik ohne Bonder für Zahnersatz sowie ein daraus hergestellter Verbund zwischen Titan und Keramik ohne Bonder für Zahnersatz
DE69707573T2 (de) Oberflächenbehandlung von Aluminiumlegierungen mittels Strahlen mit Schleifpulver
DE8806599U1 (de) Antrieb einer Bremsscheibe von Fadenbremsen
DE102017010997B4 (de) Vorrichtung zum gezielten Sandstrahlen von Abschnitten einer Oberfläche
DE4211497C2 (de) Verfahren und Vorrichtung zur Herstellung eines Metall-Kunststoff-Verbundes
DE239881C (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998546486

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase