WO1998046828A1 - Verfahren zur herstellung von papier, pappe und karton - Google Patents

Verfahren zur herstellung von papier, pappe und karton Download PDF

Info

Publication number
WO1998046828A1
WO1998046828A1 PCT/EP1998/001947 EP9801947W WO9846828A1 WO 1998046828 A1 WO1998046828 A1 WO 1998046828A1 EP 9801947 W EP9801947 W EP 9801947W WO 9846828 A1 WO9846828 A1 WO 9846828A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
cationic polymers
surfactants
cardboard
cationic
Prior art date
Application number
PCT/EP1998/001947
Other languages
English (en)
French (fr)
Inventor
Friedrich Linhart
Jaroslav Melzer
Hubert Meixner
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AT98922636T priority Critical patent/ATE221595T1/de
Priority to CA002286709A priority patent/CA2286709C/en
Priority to EP98922636A priority patent/EP0975837B1/de
Priority to US09/403,008 priority patent/US6303002B1/en
Priority to DE59805005T priority patent/DE59805005D1/de
Priority to AU75216/98A priority patent/AU7521698A/en
Priority to JP54342698A priority patent/JP2001518994A/ja
Publication of WO1998046828A1 publication Critical patent/WO1998046828A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/02Agents for preventing deposition on the paper mill equipment, e.g. pitch or slime control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S162/00Paper making and fiber liberation
    • Y10S162/04Pitch control

Definitions

  • the invention relates to a process for the production of paper, cardboard and cardboard from paper materials which contain adhesive contaminants by adding surfactants and cationic polymers with a charge density of at least 1.5 meq / g (measured at pH 7) and dewatering paper materials with fixation the sticky contaminants in the finished paper.
  • the polymers must have a charge density of at least 1.5 meq and a low molecular weight of approximately 10,000.
  • DE-A-195 152 273 discloses a method for controlling the settling of adhesive contaminants from pulp suspensions.
  • the control of the settling of the stickis is achieved by adding an effective amount of an alkoxylation product to the pulp suspension that can be obtained by reacting alkylene oxides with OH groups containing Cio-C 2 -carboxylic acids or their derivatives.
  • EP-A-0 649 941 also discloses a method for controlling the settling of adhesive contaminants from pulp suspensions.
  • polymers which contain N-vinylforma id-, alkyl-substituted N-vinylcarboxamide or the vinylamine units resulting therefrom by hydrolysis.
  • the adhesive contaminants are preferably deposited on sieves, felts, rollers and other moving parts of the paper machine. These contaminants also impair the effectiveness of the retention aids commonly used in paper manufacture. As the above-mentioned prior art shows, the adhesive contaminants can be fixed, for example, in the finished paper. If you work as a process aid in the absence of fixing agents, there are various ways in which faults can become noticeable. For example, imperfections are formed in the paper web, mostly in the form of thin spots to holes, which can cause tears in the paper machine but also in the printing press.
  • the main sources of interference for stickies are mainly dispersions, natural colloidal systems such as starch, casein and dextrins as well as hot melt adhesive.
  • these are resins, lignin residues, adhesives from the back sizing of books, from adhesives from adhesive labels and envelopes as well as white pitch, i.e. Binder made from coating and printing inks.
  • the adhesive contaminants are only insufficiently removed from the mixture of materials when processing waste paper fibers.
  • substances with a large surface area have been added to the paper stock for a long time, e.g. B.
  • the present invention has for its object to provide an improved process for the production of paper, cardboard and cardboard, starting from paper materials which contain impurities dissolved in water and water-insoluble adhesive contaminants.
  • the object is achieved according to the invention with a process for the production of paper, cardboard and cardboard from paper materials which contain adhesive impurities, by adding surfactants and cationic polymers with a charge density of at least 1.5 meq / g (measured at pH 7) and dewatering the paper stock with fixation of the adhesive impurities in the finished paper if the molecular weight M w of the cationic polymers is at least 15,000.
  • the molecular weight M w of the cationic polymers is preferably 50,000 to 1,000,000.
  • the invention also relates to the use of 0.005 to 0.5% by weight of surfactants and 0.01 to 1.0% by weight of cationic polymers with a molecular weight M w of at least 15,000 and a charge density of at least 1.5 meq / g (measured at pH 7), the data in% by weight being based on dry paper stock, in the manufacture of paper, cardboard and cardboard as an additive to the paper stock for fixing impurities which are dissolved in water and water-insoluble ones sticky contaminants, in the finished paper.
  • wood pulp includes wood pulp, thermomechanical material (TMP), chemothermomechanical material (CTMP), pressure grinding, semi-pulp, high-yield pulp and refiner mechanical pulp (RMP).
  • TMP thermomechanical material
  • CMP chemothermomechanical material
  • RMP refiner mechanical pulp
  • suitable pulps are sulfate, sulfite and sodium pulps.
  • unbleached pulps are referred to as unbleached kraft pulp.
  • Suitable annual plants for the production of paper materials are, for example, rice, wheat, sugar cane and kenaf. Waste paper alone or in a mixture with other fibers is also used to produce the pulps.
  • Waste paper also includes so-called coated scrap, which gives rise to white pitch due to the content of binder for coating and printing inks.
  • coated scrap which gives rise to white pitch due to the content of binder for coating and printing inks.
  • stickies from adhesive labels and envelopes as well as adhesives from the back sizing of books and so-called hotmelts give rise to the formation of so-called stickies.
  • the fibers mentioned can be used alone or in a mixture with one another.
  • the pulps of the type described above contain varying amounts of water-soluble and water-insoluble contaminants.
  • the contaminants can be quantified, for example, with the help of the COD value or also with the help of the so-called cationic requirement.
  • the quantity of a cationic one is called a cationic one Understand polymers, which is necessary to bring a defined amount of white water to the isoelectric point. Since the cationic requirement depends very much on the composition of the cationic polymer used for the determination, one is used for standardization according to Example 3 of
  • DE-C-2 434 816 obtained condensation product that can be obtained by grafting a polyamidoamine from adipic acid and diethylenetriamine with ethyleneimine and subsequent crosslinking with a polyethylene glycol dichlorohydrin ether.
  • the pulps containing the impurities have, for example, COD values of 300 to 40,000, preferably 1,000 to 30,000 mg of oxygen per kg of the aqueous phase and a cationic requirement of more than 50 mg of the cationic polymer mentioned per liter of white water.
  • the surfactants can be anionic, nonionic or cationic. You can also use mixtures of mutually compatible surfactants that do not lead to precipitation, for. B. mixtures of anionic and nonionic surfactants or mixtures of nonionic and cationic surfactants.
  • Suitable anionic surfactants are, for example, naphthalenesulfonic acid / formaldehyde condensates, ligninsulfonates, Ci * to C 22 alkylbenzenesulfonic acids, benzenesulfonic acid, fatty alcohol sulfates of fatty alcohols with 6-28 C atoms and alkyl sulfonates, preferably with 6-22 C atoms in the alkyl group.
  • Suitable nonionic surfactants are, for example, the adducts of ethylene oxide and, if appropriate, propylene oxide with fatty alcohols, fatty acids, fatty amines and Ci to Cis alkylphenols.
  • Suitable fatty alcohols are derived, for example, from alcohols with 6-22 carbon atoms, e.g. B. n-octanol, isooctanol, dodecyl alcohol, lauryl alcohol, palmityl alcohol, stearyl alcohol, behenyl alcohol, tallow fatty alcohol and castor oil.
  • fatty acids come into consideration, which are preferably derived from fatty acids having 6 to 22 carbon atoms, e.g. B. lauric acid, stearic acid, palimitic acid, behenic acid,
  • Tallow fatty acid and oleic acid are fatty amines, which have, for example, 6 to 22 carbon atoms in the molecule, for. B. palmitylamine, tallow fatty amine and oleylamine.
  • fatty amines which have, for example, 6 to 22 carbon atoms in the molecule
  • B. palmitylamine tallow fatty amine and oleylamine.
  • suitable starting materials for the production of surfactants are Ci to Ci ⁇ alkylphenols such as nonylphenol or
  • Dodecylphenol The fatty alcohols, fatty acids, fatty amines and alkylphenols mentioned above are reacted with ethylene oxide and optionally propylene oxide to produce surfactants, 2 to 50 moles of ethylene oxide and optionally propylene oxide being added to one mole of the hydrophobic component, for example.
  • block copolymers which can be obtained by first reacting the abovementioned hydrophobic compounds with ethylene oxide, then with propylene oxide and then with ethylene oxide. It is also possible to use block copolymers which contain blocks of propylene oxide-ethylene oxide-propylene oxide bonded to the above-mentioned hydrophobic components.
  • Preferred surfactants are the adducts of 1 to 40 moles of ethylene oxide and optionally 1 to 20 moles of propylene oxide with one mole of a Cio to C 22 fatty alcohol or a fatty alcohol mixture and naphthalenesulfonic acid-formaldehyde condensates and mixtures of naphthalenesulfonic acid-formaldehyde Condensates and ethoxylated and optionally propoxylated fatty alcohols with 10 - 22 C atoms.
  • the surfactants are used, for example, in amounts of 0.05 to 0.5, preferably 0.01 to 0.2% by weight, based on dry paper stock.
  • the cationic polymers can be derived from synthetic and natural cationic polymers.
  • Suitable natural polymers are, for example, cationic polysaccharides, cationic starch, cationic amylose and derivatives thereof, cationic amylopectin and its derivatives and guar derivatives.
  • Synthetic cationic polymers include, for example, polyethyleneimines. You will e.g. B. prepared by polymerization of ethylene imine in aqueous solution in the presence of acid-releasing compounds, acids or Lewis acids. Polyethyleneimines are commercially available, for example they have molecular weights from 200 to 2,000,000, preferably from 200 to 1,000,000. Polyethyleneimines with molecular weights from 500 to 800,000 are particularly preferably used in the process according to the invention. Another class of synthetic cationic compounds are polymers containing vinylamine units. For their preparation, for example, open-chain N-vinylcarboxamides of the formula are used
  • the monomers mentioned can be polymerized either alone, as a mixture with one another or together with other monoethylenically unsaturated monomers. Homopolymers or copolymers of N-vinylformamide are preferably used.
  • Suitable monoethylenically unsaturated monomers which are copolymerized with the N-vinylcarboxamides are all compounds which can be copolymerized therewith.
  • Examples include vinyl esters of saturated carboxylic acids of 1 to 6 carbon atoms such as vinyl formate, vinyl acetate, vinyl propionate and vinyl butyrate.
  • Suitable comonomers are ethyleni ⁇ ch unsaturated C 3 - to C ß-carboxylic acids, for example acrylic acid, acrylic acid, methacrylic acid, maleic acid, crotonic acid, itaconic acid and vinyl ester and of the said carboxylic acids, their alkali metal and alkaline earth metal salts, esters, amides and nitriles, for example methyl, Methyl methacrylate, ethyl acrylate and ethyl methacrylate.
  • C 3 - to C ß-carboxylic acids for example acrylic acid, acrylic acid, methacrylic acid, maleic acid, crotonic acid, itaconic acid and vinyl ester and of the said carboxylic acids, their alkali metal and alkaline earth metal salts, esters, amides and nitriles, for example methyl, Methyl methacrylate, ethyl acrylate and ethyl methacrylate.
  • carboxylic acid esters are derived from glycols or polyalkylene glycols, only one OH group being esterified in each case, for example hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate and acrylic acid monoesters of a polyalkylene glycol 500 10000.
  • esters of ethylenically unsaturated carboxylic acids with amino alcohols such as, for example, dimethylaminoethyl acrylate, dimethylaminoethyl ethacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylamino propyl acrylate, dimethylaminopropyl methacrylate, diethylamino propyl acrylate acrylate, acrylate acrylate.
  • the basic acrylates can be used in the form of the free bases, the salts with mineral acids such as hydrochloric acid, sulfuric acid or nitric acid, the salts with organic acids such as formic acid, acetic acid, propionic acid or the sulfonic acids or in quaternized form.
  • Suitable quaternizing agents are, for example, dimethyl sulfate, diethyl sulfate, methyl chloride, ethyl chloride or benzyl chloride.
  • Suitable comonomers are amides of ethylenically unsaturated carboxylic acids such as acrylamide, methacrylamide and N-alkyl mono- and diamides of monoethylenically unsaturated carboxylic acids with alkyl residues of 1 to 6 carbon atoms, for example N-methylacrylamide, N, N-dimethyl acrylamide, N- Methyl methacrylamide, N-ethyl acrylamide, N-propyl acrylamide and tert.
  • amides of ethylenically unsaturated carboxylic acids such as acrylamide, methacrylamide and N-alkyl mono- and diamides of monoethylenically unsaturated carboxylic acids with alkyl residues of 1 to 6 carbon atoms, for example N-methylacrylamide, N, N-dimethyl acrylamide, N- Methyl methacrylamide, N-ethyl acrylamide, N-propyl acrylamide and ter
  • Butyl acrylamide and basic (meth) acrylic amides such as dimethylaminoethyl acrylamide, dimethylaminoethyl methacrylamide, diethylaminoethyl acrylamide, diethylaminoethyl methacrylamide, dimethylaminopropylacrylamide, diethylaminopropylacrylamide, dimethylaminopropyl methacrylamide and diethylaminopropyl methacrylamide.
  • N-vinylpyrrolidone N-vinylcaprolactam
  • acrylonitrile methacrylonitrile
  • N-vinylimidazole substituted N-vinylimidazoles
  • N-vinyl-2-methylimidazole N-vinyl-4-methylimidazole
  • N-vinyl-5-methylimidazole N-vinyl-2-ethylimidazole
  • N-vinylimidazolines such as N-vinylimidazoline, N-vinyl-2- methylimidazoline and N-vinyl-2-ethylimidazoline.
  • N-vinylimidazoles and N-vinylimidazolines are also used in neutralized or in quaternized form with mineral acids or organic acids, the quaternization preferably being carried out with dimethyl sulfate, diethyl sulfate, methyl chloride or benzyl chloride.
  • Diallyldialkylammonium halides such as e.g. Diallyldimethy1ammonium chloride.
  • Monomers containing sulfo groups such as, for example, vinylsulfonic acid, allylsulfonic acid, methallylsulfonic acid, styrene sulfonic acid, the alkali metal or ammonium salts of these acids or 3-sulfopropyl acrylic acid are also suitable as comonomers.
  • copolymers contain, for example
  • polymers containing vinylamine units In order to prepare polymers containing vinylamine units, one preferably starts from homopolymers of N-vinylformamide or from copolymers which are obtained by copolymerizing
  • the polymers described above are hydrolysed by known processes by the action of acids, bases or enzymes. This results from the copolymerized monomers of the formula I given above by splitting off the group CR 2
  • R 2 has the meaning given for it in formula I, polymers, the vinylamine units of the formula
  • the homopolymers of the N-vinylcarboxamides of the formula I and their copolymers can be hydrolyzed to 5 to 100, preferably 10 to 100, mol%. In most cases, the degree of hydrolysis of the homopolymers and copolymers is 20 to 90 mol%. The degree of hydrolysis of the homopolymers is synonymous with the vinylamine units in the polymers. In the case of copolymers which, for. B. Containing vinyl esters in copolymerized form, in addition to the hydrolysis of the N-vinylformamide units, hydrolysis of the ester groups can occur with formation of vinyl alcohol units. This is particularly the case when the hydrolysis of the copolymers is carried out in the presence of sodium hydroxide solution.
  • a polymerized acrylonitrile is also chemically changed during the hydrolysis. This creates, for example, amide groups or carboxyl groups.
  • the vinylamine units containing polymers can optionally contain up to 20 mol% of amidine units which, for. B. by intramolecular reaction of an amino group with an adjacent amide group z. B. polymerized. N-vinylformamide is formed.
  • Suitable cationic polymers are crosslinked polyethyleneimines, for example by reacting polyethyleneimines with crosslinking agents such as ethylene dichloride, epichlorohydrin or Bis (chlorohydrin) ethers of polyalkylene oxides with 2 - 100 ethylene oxide units are available.
  • crosslinking agents such as ethylene dichloride, epichlorohydrin or Bis (chlorohydrin) ethers of polyalkylene oxides with 2 - 100 ethylene oxide units are available.
  • Water-soluble, crosslinked polyamidoamines grafted with ethyleneimine are also suitable as cationic polymers.
  • Condensation products of this type are obtainable, for example, according to the teaching of DE-B-2 434 816 by testing polyamidoamines with ethyleneimine and crosslinking the polyamidoamines grafted with ethyleneimine.
  • Suitable crosslinkers are preferably ⁇ , ⁇ -bis (chlorohydrin) ethers of polyalkylene oxides having 2 to 100 alkylene oxide units.
  • the polyalkylene oxides are preferably derived from ethylene oxide and / or propylene oxide. They can be formed from block copolymers of ethylene oxide and propylene oxide. Products of this type are commercially available.
  • Dicyandiamide-formaldehyde resins condensation products made from dimethylamine and epichlorohydrin, condensation products made from dimethylamine and dichloroalkanes such as dichloroethane or dichloropropane and condensation products made from dichloroethane and ammonia are also suitable.
  • Reaction products of this type are known, for example, from EP-A-0 411 400 and DE-A-2 162 567.
  • Suitable cationic synthetic polymers are obtainable by crosslinking polyamidoamines with epichlorohydrin or other bifunctional compounds.
  • the crosslinking takes place in an aqueous medium and is at most carried out to such an extent that the condensation products formed are still water-soluble.
  • cationic polyacrylamides which can be obtained, for example, by polymerizing acrylamide or methacrylamide with cationic monomers such as esters from acrylic acid or methacrylic acid and amino alcohols, eg. B. dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylaminopropyl acrylate and dimethylaminopropyl methacrylate are available.
  • cationic monomers such as esters from acrylic acid or methacrylic acid and amino alcohols
  • the basic acrylates mentioned can be used in the form of the free bases, in the form of the salts with organic or inorganic acids or in quaternized form in the copolymerization. From this group of monomers, dimethylaminoethyl acrylate is preferably used in the form of the methochloride.
  • Other suitable basic comonomers for acrylamide and methacrylamide are, for example, acrylamidopropyltrimethylammonium salts and diallyldimethylammonium halides.
  • the above-mentioned basic comonomers can also be processed into homopolymers and used as cationic synthetic polymers in the process according to the invention. Cationic polymers are preferably used
  • the molecular weight M w of the cationic polymers is at least 15,000 and is preferably in the range from 50,000 to
  • the molecular weight M w of the cationic polymers is determined by light scattering.
  • the cationic polymers have a charge density of at least 1.5, preferably 4 to 15 meq / g (measured at pH 7).
  • the cationic polymers are used in amounts of 0.01 to 1.0, preferably 0.02 to 0.5% by weight, based on
  • a surfactant to the suspension and then a cationic polymer as a fixative.
  • the surfactant and fixing agent can also be added to the paper stock separately from one another or in the form of a mixture.
  • 30 tel depends on the paper stock used and is, for example, 1: 2 to 5: 1.
  • surfactants and cationic polymers are used
  • Fixation of stickies, white pitch and other sticky impurities in the paper can be done, for example, by extracting the sheets formed from pulp containing impurities or the filtered fiber material using conventional organic extraction agents such as ethyl acetate, methylene chloride or hydrocarbon.
  • the retention aids have a higher molecular weight than the fixing agents.
  • the molar mass of the retention aids is more than 2,000,000.
  • Suitable retention aids of this type are usually used in the paper industry. These are, for example, cationic polyacrylamides, for example copolymers of acrylamide and dimethylaminoethyl acrylate methochloride or partially hydrolyzed polyvinylformamides with a vinylamine unit content of 5 to 50 mol%.
  • Microparticle systems which are described in EP-A 0 335 575 are also suitable, a high-molecular cationic synthetic polymer being added to the paper stock, the macro flakes formed being broken up by shearing the paper stock and then bentonite being added.
  • Fixing agent is added to at least 20% hydrolyzed polyvinylformamides with a molecular weight of 50,000 to 1,000,000 and then metered in as retention agents to at least 5 to 50% hydrolyzed poly-N-vinylformamides with a molecular weight of more than 3,000,000.
  • the parts given in the examples are parts by weight, the data in% relate to the weight of the substances, unless the other information indicates otherwise.
  • the chemical oxygen demand (COD value) was determined according to DIN 38409.
  • the molecular weights M w were measured using light scattering.
  • Polymer A polydiallyldimethylammonium chloride with a charge density of 8 meq / g and a molecular weight M w of 200,000 D.
  • Polymer C Modified polyethyleneimine with a charge density of 11 meq / g (determined at pH 7) and a molar mass of
  • Surfactant 1 adduct of 7 moles of ethylene oxide with 1 mole of nonylphenol
  • Surfactant 2 adduct of 6 moles of ethylene oxide and 4 moles of propylene oxide with 1 mole of a C 13 / C 15 alcohol
  • a pulp with a consistency of 2.1 g / l and a freeness of 51 ° SR is made from a thermomechanical material (100% TMP).
  • the pH of the pulp is 7.0.
  • the amounts of surfactant given in the table are then added, the mixture is then mixed with one of the polymers A to C shown in the table as a fixing agent and, with the aid of a retention and drainage agent, is based on a commercially available, crosslinked polyamidoamine modified with ethyleneimine (Polymin®SK) leaves in a rapid-foiling sheet former and then dries them.
  • Polymin®SK crosslinked polyamidoamine modified with ethyleneimine

Landscapes

  • Paper (AREA)
  • Machines For Manufacturing Corrugated Board In Mechanical Paper-Making Processes (AREA)
  • Laminated Bodies (AREA)

Abstract

Verfahren zur Herstellung von Papier, Pappe und Karton aus Papierstoffen, die klebende Verunreinigungen enthalten, durch Zusatz von Tensiden und kationischen Polymeren mit einer Ladungsdichte von mindestens 1,5 meq/g (gemessen bei pH 7) und einer Molmasse Mw der kationischen Polymeren von mindestens 15 000 und Entwässern der Papierstoffe unter Fixierung der klebenden Verunreinigungen im fertigen Papier.

Description

Verfahren zur Herstellung von Papier, Pappe und Karton
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Papier, Pappe und Karton aus Papierstoffen, die klebende Verunreinigungen enthalten, durch Zusatz von Tensiden und kationischen Polymeren mit einer Ladungsdichte von mindestens 1,5 meq/g (gemessen bei pH 7) und entwässernder Papierstoffe unter Fixierung der klebenden Verunreinigungen im fertigen Papier.
Das obenbeschriebene Verfahren ist aus TAPPI Proceedings, Recycling Symposium 1994, 67-77 bekannt. Gemäß den Angaben in dieser Literaturstelle müssen die Polymeren eine Ladungsdichte von mindestens 1,5 meq und eine niedrige Molmasse von ungefähr 10 000 haben.
Aus der US-A-5 292 403 ist ein Verfahren zur Inhibierung der Ablagerung von organischen Verunreinigungen bei der Papierherstellung bekannt, wobei man zum Papierstoff eine Mischung aus einem geladenen Polymer und einem entgegengesetzt geladenen oberflächenaktiven Mittel zusetzt und den Papierstoff entwässert.
Aus der WO-A-96/34913 ist ein Verfahren zur Inhibierung der Ablagerung von Pitch bekannt, wobei man kationisch modifizierte Guar- Derivate und ein nicht ionisches Polymer verwendet.
Aus der DE-A-195 152 273 ist ein Verfahren zur Kontrolle des Absetzens klebender Verunreinigungen aus PapierstoffSuspensionen bekannt. Die Kontrolle des Absetzens der Stickis wird dadurch erreicht, daß man der Papierstof Suspension eine wirksame Menge eines Alkoxylierungsprodukts zusetzt, daß durch Umsetzung von Alkylenoxiden mit OH-Gruppen enthaltenden Cio - C2-Carbonsäuren oder deren Derivaten erhältlich ist.
Aus der EP-A-0 649 941 ist ebenfalls ein Verfahren zur Kontrolle des Absetzens klebender Verunreinigungen aus PapierstoffSuspensionen bekannt. Zur Inhibierung der Ablagerung von Pitch verwendet man Polymere, die N-Vinylforma id- , alkylsubstituierte N-Vinylcarbonsäureamid- oder die daraus durch Hydrolyse entstehenden Vinylamineinheiten enthalten.
Aufgrund der Wiederverwendung von Fasern aus Altpapier zur Her- Stellung von Papier, Pappe und Karton gelangen klebende Verunreinigungen, sogenannte Stickies und White Pitch (aus Papierstreich- farben stammende Bindemittel) in den Wasserkreislauf von Papier- maschinen und verursachen dadurch Produktionsstörungen. Die klebenden Verunreinigungen lagern sich dabei bevorzugt an Sieben, Filzen, Walzen und anderen bewegten Teilen der Papiermaschine ab. Diese Verunreinigungen beeinträchtigen außerdem die Wirksamkeit der bei der Papierherstellung üblicherweise eingesetzten Reten- tionsmittel. Wie der oben angegebene Stand der Technik zeigt, kann man die klebenden Verunreinigungen beispielsweise im fertigen Papier fixieren. Wenn man in Abwesenheit von Fixiermitteln als Prozesshilfsmittel arbeitet, können sich Störungen auf unter - schiedliche Weise bemerkbar machen. Es bilden sich beispielsweise Fehlstellen in der Papierbahn, meist in Form von dünnen Stellen bis hin zu Löchern, die Abrisse in der Papiermaschine aber auch in der Druckmaschine verursachen können.
Als Störstoffquellen für Stickies kommen neben Harzen und Lignin- bes andteilen, die bei der Faserherstellung durch Kochung und mechanischer Aufbereitung aus dem Holz herausgelöst werden, hauptsächlich Dispersionen, natürliche kolloidale Systeme, wie Stärke, Kasein und Dextrine sowie Schmelzkleber in Betracht. Im einzelnen handelt es sich hierbei um Harze, Ligninreste, Klebstoffe aus Rückenleimung von Büchern, aus Klebern von Haftetiketten und Briefumschlägen sowie um White- Pitch, d.h. Bindemittel aus Streich- und Druckfarben. Die klebenden Verunreinigungen werden bei der Aufbereitung von Altpapierfasern in den meisten Fällen nur ungenügend aus dem Stoffgemisch entfernt. Um die Klebrigkeit der unerwünschten Verunreinigungen zu reduzieren, hat man dem Papierstoff bereits seit langer Zeit Substanzen mit einer großen Oberfläche zugesetzt, z. B. Talkum, Kreide oder Bentonit. Die klebenden Verunreinigungen sollen dadurch in ihrer Klebrig- keit deutlich reduziert werden, vgl. TAPPI Press 1990, Vol. 2, Seiten 508 und 512. Nachteilig der so behandelnden klebrigen Verunreinigungen ist jedoch ihre Scherempfindlichkeit und die begrenzte Retention dieser Teilchen bei der Papierherstellung. Gelegentlich eingesetzte Dispergiermittel wie Ligninsulfonate, Naphthalinsulfonate, Nonylphenole oder alkoxylierte Fettalkohole verhindern zwar eine Agglomeration von Stickies zu Teilchen mit einer für den Papierherstellungsprozess störenden Größe, jedoch tritt bei Einsatz dieser Prozeßhilfsmittel gelegentlich ein starkes Schäumen der Papierstoffe auf.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein verbessertes Verfahren zur Herstellung von Papier, Pappe und Karton zur Verfügung zu stellen, wobei man von Papierstoffen ausgeht, die in Wasser gelöste Störstoffe und wasserunlösliche klebende Verunreinigungen enthalten. Die Aufgabe wird erfindungsgemäß gelöst mit einem Verfahren zur Herstellung von Papier, Pappe und Karton aus Papierstoffen, die klebende Verunreinigungen enthalten, durch Zusatz von Tensiden und kationischen Polymeren mit einer Ladungsdichte von mindestens 1,5 meq/g (gemessen bei pH 7) und Entwässern der Papierstoffe unter Fixierung der klebenden Verunreinigungen im fertigen Papier, wenn die Molmasse Mw der kationischen Polymeren mindestens 15 000 beträgt. Die Molmasse Mw der kationischen Polymere beträgt vorzugsweise 50 000 bis 1 000 000.
Gegenstand der Erfindung ist außerdem die Verwendung von 0,005 bis 0,5 Gew.- Tensiden und 0,01 bis 1,0 Gew. -% kationischen Polymeren mit einer Molmasse Mw von mindestens 15 000 und einer Ladungsdichte von mindestens 1,5 meq/g (gemessen bei pH 7) , wobei die Angaben in Gew.-% jeweils auf trockenen Papierstoff bezogen sind, bei der Herstellung von Papier, Pappe und Karton als Zusatz zum Papierstoff zur Fixierung von Störstoffen, die in Wasser gelöst sind, sowie von wasserunlöslichen klebenden Verunreinigungen, im fertigen Papier.
Als Faserstoffe zur Herstellung der Pulpen kommen sämtliche dafür gebräuchlichen Qualitäten in Betracht, z. B. Holzstoff, gebleichter und ungebleichter Zellstoff sowie Papierstoffe aus allen Ein- jahrespflanzen. Zu Holzstoff gehören beispielsweise Holzschliff, thermomechanischer Stoff (TMP) , chemothermomechanischer Stoff (CTMP) , Druckschliff, Halbzellstoff, Hochausbeute-Zellstoff und Refiner Mechanical Pulp (RMP) . Als Zellstoffe kommen beispielsweise Sulfat-, Sulfit und Natronzellstoffe in Betracht. Vorzugs¬ weise verwendet man die ungebleichten Zellstoffe, die auch als ungebleichter Kraftzellstoff bezeichnet werden. Geeignete Einjah- respflanzen zur Herstellung von Papierstoffen sind beispielsweise Reis, Weizen, Zuckerrohr und Kenaf . Zur Herstellung der Pulpen wird auch Altpapier allein oder in Mischung mit anderen Fasern verwendet. Zu Altpapier gehört auch sogenannter gestrichener Aus- schuß, der aufgrund des Gehalts an Bindemittel für Streich- und Druckfarben Anlaß für den White Pitch gibt. Anlaß zur Bildung von sogenannten Stickies geben die aus Haftetiketten und Briefumschlägen stammenden Kleber sowie Klebstoffe aus der Rückenleimung von Büchern sowie sogenannte Hotmelts.
Die genannten Faserstoffe können allein oder in Mischung untereinander verwendet werden. Die Pulpen der obenbeschriebenen Art enthalten wechselnde Mengen an wasserlöslichen und wasserunlöslichen Störstoffen. Die Störstoffe können beispielsweise mit Hilfe des CSB-Wertes oder auch mit Hilfe des sogenannten kationischen Bedarfs quantitativ erfaßt werden. Unter kat- ionischem Bedarf wird dabei diejenige Menge eines kationischen Polymeren verstanden, die notwendig ist, um eine definierte Menge des Siebwassers zum isoelektrischen Punkt zu bringen. Da der kat- ionische Bedarf sehr stark von der Zusammensetzung des jeweils für die Bestimmung verwendeten kationischen Polymeren abhängt, verwendet man zur Standardisierung ein gemäß Beispiel 3 der
DE-C-2 434 816 erhaltenes Kondensationsprodukt, daß durch Propfen eines Polyamidoamins aus Adipinsäure und Diethylentriamin mit Ethylenimin und anschließender Vernetzung mit einem Polyethylen- glykoldichlorhydrinether erhältlich ist. Die Störstoffe ent- haltenden Pulpen haben beispielsweise CSB-Werte von 300 bis 40 000, vorzugsweise 1 000 bis 30 000 mg Sauerstoff pro kg der wässrigen Phase und einen kationischen Bedarf von mehr als 50 mg des genannten kationischen Polymeren pro Liter Siebwasser.
Die Tenside können anionisch, nichtionisch oder kationisch sein. Man kann auch Mischungen aus miteinander verträglichen Tensiden einsetzen, die nicht zu Ausfällungen führen, z. B. Mischungen aus anionischen und nichtionischen Tensiden oder Mischungen aus nichtionischen und kationischen Tensiden. Geeignete anionische Tenside sind beispielsweise Naphthalinsulfonsäure-Formaldehyd- Kondensate, Ligninsulfonate, Ci* bis C22-Alkylbenzolsulfonsäuren, Benzolsulfonsäure, Fettalkoholsulfate von Fettalkoholen mit 6 - 28 C-Atomen und Alkylsulfonate, mit vorzugsweise 6 - 22 C- Atomen in der Alkylgruppe.
Geeignete nichtionische Tenside sind beispielsweise die Anlagerungsprodukte von Ethylenoxid und gegebenenfalls Propylenoxid an Fettalkohole, Fettsäuren, Fettamine und Ci- bis Cis -Alkylphenole. Geeignete Fettalkohole leiten sich beispielsweise von Alkoholen mit 6 - 22 C-Atomen ab, z. B. n-Octanol, Isooctanol, Dodecyl- alkohol, Laurylalkohol , Palmitylalkohol, Stearylalkohol, Behenyl - alkohol, Taigfettalkohol und Rizinusöl. Als weitere Komponente zur Herstellung von Tensiden kommen Fettsäuren in Betracht, die sich vorzugsweise von Fettsäuren mit 6 - 22 C-Atomen ableiten, z. B. Laurinsäure, Stearinsäure, Palimitinsäure, Behensäure,
Taigfettsäure und Ölsäure. Weitere Ausgangsstoffe zur Herstellung von Tensiden sind Fettamine, die beispielsweise 6 bis 22 C-Atome im Molekül aufweisen, z. B. Palmitylamin, Talgfettamin und Oleyl - amin. Weitere geeignete Ausgangsstoffe zur Herstellung von Tensiden sind Ci- bis Ciβ -Alkylphenole wie Nonylphenol oder
Dodecylphenol . Die oben genannten Fettalkohole, Fettsäuren, Fettamine und Alkylphenole werden zur Herstellung von Tensiden mit Ethylenoxid und gegebenenfalls Propylenoxid umgesetzt, wobei man beispielsweise an ein Mol der hydrophoben Komponente 2 bis 50 Mol Ethylenoxid und gegebenenfalls Propylenoxid anlagert. Vorzugsweise setzt man beispielsweise ein Mol der in Betracht kommenden Fettalkohole, Fettsäuren, Fettamine oder Alkylphenole mit 1 bis 50 mol Ethylenoxid und gegebenenfalls 1 bis 30 mol Propylenoxid um. Für spezielle Anwendungen kann man auch Blockcopolymerisate einsetzen, die dadurch erhältlich sind, daß man die o.g. hydrophoben Verbindungen zunächst mit Ethylenoxid, dann mit Propylen- oxid und anschließend mit Ethylenoxid umsetzt. Ebenso kann man Blockcopolymerisate verwenden, die Blöcke von Propylenoxid-Ethylenoxid-Propylenoxid an die obengenannten hydrophoben Komponenten gebunden enthalten.
Bevorzugt eingesetzte Tenside sind die Anlagerungsprodukte von 1 bis 40 mol Ethylenoxid und gegebenenfalls 1 bis 20 mol Propylenoxid an ein Mol eines Cio- bis C22 -Fettalkohols oder eines Fett- alkoholgemisches sowie Naphthalinsulfonsäure-Formaldehyd-Konden- sate sowie Mischungen aus Naphthalinsulfonsäure-Formaldehyd-Kon- densaten und ethoxylierten und gegebenenfalls propoxylierten Fettalkohole mit 10 - 22 C-Atomen.
Die Tenside werden beispielsweise in Mengen von 0,05 bis 0,5, vorzugsweise 0,01 bis 0,2 Gew. -%, bezogen auf trockenen Papier- stoff eingesetzt.
Die kationischen Polymeren können sich von synthetischen und natürlichen kationischen Polymeren ableiten. Geeignete natürliche Polymere sind beispielsweise kationische Polysaccharide, kationische Stärke, kationische Amylose und Derivate davon, kationisches Amylopektin und deren Derivate sowie Guar-Derivate.
Zu den synthetischen kationischen Polymeren gehören beispielsweise Polyethylenimine. Sie werden z. B. durch Polymerisation von Ethylenimin in wässriger Lösung in Gegenwart von säureabspaltenden Verbindungen, Säuren oder Lewissäuren hergestellt. Polyethylenimine sind im Handel erhältlich, sie haben beispielsweise Molmassen von 200 bis 2 000 000, vorzugsweise von 200 bis 1 000 000. Besonders bevorzugt werden bei dem erfindungsgemäßen Verfahren Polyethylenimine mit Molmassen von 500 bis 800 000 eingesetzt. Eine weitere Klasse von synthetischen kationischen Verbindungen sind Vinylamineinheiten enthaltende Polymerisate. Zu ihrer Herstellung geht man beispielsweise von offenkettigen N-Vinylcarbonsäureamiden der Formel
CH2= CH N (I)
^ C R2 aus, in der R1 und R2 gleich oder verschieden sein können und für Wasserstoff und Ca.- bis C6 -Alkyl stehen. Geeignete Monomere sind beispielsweise N-Vinylformamid (R1=R2=H in Formel I) N-Vinyl-N- methylformamid, N-Vinylacetamid, N-Vinyl-N-methylacetamid, N- Vinyl-N-ethylacetamid, N-Vinyl-N-methylpropionamid und N-Vinyl- propionamid. Zur Herstellung der Polymerisate können die genannten Monomeren entweder allein, in Mischung untereinander oder zusammen mit anderen monoethylenisch ungesättigten Monomeren polymerisiert werden. Vorzugsweise geht man von Homo- oder Copolymerisaten des N-Vinylformamids aus.
Als monoethylenisch ungesättigte Monomere, die mit den N-Vinyl- carbonsäureamiden copolymerisiert werden, kommen alle damit copolymerisierbaren Verbindungen in Betracht. Beispiele hierfür sind Vinylester von gesättigten Carbonsäuren von 1 bis 6 Kohlen- Stoffatomen wie Vinylformiat, Vinylacetat, Vinylpropionat und Vinylbutyrat . Weitere geeignete Comonomere sind ethyleniεch ungesättigte C3- bis Cß-Carbonsäuren, beispielsweise Acrylsäure, Meth- acrylsäure, Maleinsäure, Crotonsäure, Itaconsäure und Vinylester- säure sowie deren Alkalimetall- und Erdalkalimetallsalze, Ester, Amide und Nitrile der genannten Carbonsäuren, beispielsweise Methylacrylat, Methylmethacrylat, Ethylacrylat und Ethylmeth- acrylat. Weitere geeignete Carbonsäureester leiten sich von Glykolen oder bzw. Polyalkylenglykolen ab, wobei jeweils nur eine OH-Gruppe verestert ist, z.B. Hydroxyethylacrylat, Hydroxyethyl - methacrylat, Hydroxypropylacrylat, Hydroxybutylacrylat , Hydroxy- propylmethacrylat, Hydroxybutylmethacrylat sowie Acrylsäuremono- ester von Polyalkylenglykolen einer Molmasse von 500 bis 10000. Weitere geeignete Comonomere sind Ester von ethylenisch ungesättigten Carbonsäuren mit Aminoalkoholen wie beispielsweise Dimethylaminoethylacrylat, Dimethylaminoethyl ethacrylat, Diethylaminoethylacrylat, Diethylaminoethylmethacrylat , Dimethyl - aminopropylacrylat, Dimethylaminopropylmethacrylat, Diethylamino- propylacrylat, Dimethylaminobutylacrylat und Diethylaminobutyl - acrylat. Die basischen Acrylate können in Form der freien Basen, der Salze mit Mineralsäuren wie Salzsäure, Schwefelsäure oder Salpetersäure, der Salze mit organischen Säuren wie Ameisensäure, Essigsäure, Propionsäure oder der Sulfonsäuren oder in quater- nierter Form eingesetzt werden. Geeignete Quaternierungsmittel sind beispielsweise Dimethylsul at, Diethylsulfat, Methylchlorid, Ethylchlorid oder Benzylchlorid.
Weitere geeignete Comonomere sind Amide ethylenisch ungesättigter Carbonsäuren wie Acrylamid, Methacrylamid sowie N-Alkylmono- und Diamide von monoethylenisch ungesättigten Carbonsäuren mit Alkyl - resten von 1 bis 6 C-Atomen, z.B. N-Methylacrylamid, N,N-Dime- thylacrylamid, N-Methylmethacrylamid, N-Ethylacrylamid, N-Propyl- acrylamid und tert. Butylacrylamid sowie basische (Meth)acryl- amide, wie z.B. Dimethylaminoethylacrylamid, Dimethylaminoethyl - methacrylamid, Diethylaminoethylacrylamid, Diethylaminoethylmeth- acrylamid, Dimethylaminopropylacrylamid, Diethylaminopropylacryl- a id, Dimethylaminopropylmethacrylamid und Diethylaminopropyl- methacrylamid.
Weiterhin sind als Comonomere geeignet N-Vinylpyrrolidon, N-Vi- nylcaprolactam, Acrylnitril, Methacrylnitril, N-Vinylimidazol so- wie substituierte N-Vinylimidazole wie z.B. N-Vinyl-2-methyl- imidazol, N-Vinyl-4 -methylimidazol, N-Vinyl-5-methylimidazol, N-Vinyl-2-ethylimidazol und N-Vinylimidazoline wie N-Vinylimida- zolin, N-Vinyl-2-methylimidazolin und N-Vinyl-2-ethylimidazolin. N-Vinylimidazole und N-Vinylimidazoline werden außer in Form der freien Basen auch in mit Mineralsäuren oder organischen Säuren neutralisierter oder in quaternierter Form eingesetzt, wobei die Quaternierung vorzugsweise mit Dimethylsulfat, Diethylsulfat, Methylchlorid oder Benzylchlorid vorgenommen wird. In Frage kommen auch Diallyldialkylammoniumhalogenide wie z.B. Diallyldime- thy1ammoniumchloride.
Außerdem kommen als Comonomere Sulfogruppen enthaltende Monomere wie beispielsweise Vinylsulfonsäure, Allylsulfonsäure, Methallyl- sulfonsäure, Styrolsulfonsäure, die Alkalimetall- oder Ammonium- salze dieser Säuren oder Acrylsäure- 3 -sulfopropylester in Frage.
Die Copolymerisate enthalten beispielsweise
99 bis 1 mol-% N-Vinylcarbonsäureamide der Formel I und - 1 bis 99 mol-% andere, damit copolymerisierbare monoethylenisch ungesättigte Monomere
in einpolymerisierter Form.
Um Vinylamineinheiten enthaltende Polymerisate herzustellen, geht man vorzugsweise von Homopolymerisaten des N-Vinylformamids oder von Copolymerisaten aus, die durch Copolymerisieren von
N-Vinylformamid mit
Vinylformiat , Vinylacetat, Vinylpropionat, Acrylnitril oder N-Vinylpyrrolidon und anschließende Hydrolyse der Homo- oder der Copolymerisate unter Bildung von Vinylamineinheiten aus den einpolymerisierten N-Vinylformamideinheiten erhältlich sind, wobei der Hydrolysegrad z. B. 5 bis 100 mol-% beträgt.
Die Hydrolyse der oben beschriebenen Polymerisate erfolgt nach bekannten Verfahren durch Einwirkung von Säuren, Basen oder Enzymen. Hierbei entstehen aus den einpolymerisierten Monomeren der oben angegebenen Formel I durch Abspaltung der Gruppierung C R2
(II),
wobei R2 die dafür in Formel I angegebene Bedeutung hat, Polymerisate, die Vinylamineinheiten der Formel
CH2 CH
N (III)
/ \
H Rl
enthalten, in der R1 die in Formel I angegebene Bedeutung hat.
Die Homopolymerisate der N-Vinylcarbonsäureamide der Formel I und ihre Copolymerisate können zu 5 bis 100, vorzugsweise 10 bis 100 mol-% hydrolysiert sein. In den meisten Fällen beträgt der Hydrolysegrad der Homo- und Copolymerisate 20 bis 90 mol-%. Der Hydrolysegrad der Homopolymerisate ist gleichbedeutend mit dem Gehalt der Polymerisate an Vinylamineinheiten. Bei Copolymeri- saten, die z. B. Vinylester einpolymerisiert enthalten, kann neben der Hydrolyse der N-Vinylformamideinheiten eine Hydrolyse der Estergruppen unter Bildung von Vinylalkoholeinheiten eintre- ten. Dies ist insbesondere dann der Fall, wenn man die Hydrolyse der Copolymerisate in Gegenwart von Natronlauge durchführt. Ein- polymerisiertes Acrylnitril wird ebenfalls bei der Hydrolyse chemisch verändert. Hierbei entstehen beispielsweise Amidgruppen oder Carboxylgruppen. Die Vinylamineinheiten enthaltenden Polyme- risate können gegebenenfalls bis zu 20 mol-% Amidineinheiten enthalten, die z. B. durch intramolekulare Reaktion einer Amino- gruppe mit einer benachbarten Amidgruppe z. B. von einpolymerisierten. N-Vinylformamid entsteht.
Weitere geeignete kationische Polymere sind vernetzte Polyethylenimine, die beispielsweise durch Umsetzung von Polyethylen- iminen mit Vernetzern wie Ethylendichlorid, Epichlorhydrin oder Bis (chlorhydrin) ethern von Polyalkylenoxiden mit 2 - 100 Ethylen- oxideinheiten erhältlich sind.
Als kationische Polymere kommen außerdem wasserlösliche, mit Ethylenimin gepropfte, vernetzte Polyamidoamine in Betracht. Kondensationsprodukte dieser Art sind beispielsweise nach der Lehre der DE-B-2 434 816 dadurch erhältlich, daß man Polyamidoamine mit Ethylenimin propft und die so erhältlichen mit Ethylenimin gepropften Polyamidoamine vernetzt. Als Vernetzer kommen vorzugsweise α,ω-Bis (chlorhydrin) ether von Polyalkylenoxiden mit 2 bis 100 Alkylenoxid-Einheiten in Betracht. Die Polyalkylenoxide leiten sich vorzugsweise von Ethylenoxid und/oder Propylenoxid ab. Sie können aus Blockcopolymerisaten von Ethylenoxid und Propylenoxid gebildet werden. Produkte dieser Art sind im Handel erhältlich. Außerdem eignen sich Dicyandiamid-Formaldehyd-Harze, Kondensationsprodukte aus Dimethylamin und Epichlorhydrin, Kondensationsprodukte aus Dimethylamin und Dichloralkanen wie Dichlorethan oder Dichlorpropan sowie Kondensationsprodukte aus Dichlorethan und Ammoniak. Reaktionsprodukte dieser Art sind beispielsweise aus der EP-A-0 411 400 und der DE-A-2 162 567 bekannt.
Weitere geeignete kationische synthetische Polymere sind dadurch erhältlich, daß man Polyamidoamine mit Epichlorhydrin oder ande- ren bifunktionellen Verbindungen vernetzt. Die Vernetzung erfolgt in wäßrigem Medium und wird höchstens so weit geführt, daß die entstehenden Kondensationsprodukte noch wasserlöslich sind.
Eine weitere Gruppe von kationischen synthetischen Polymeren sind kationische Polyacrylamide, die beispielsweise durch Polymerisie- ren von Acrylamid oder Methacrylamid mit kationischen Monomeren wie Estern aus Acrylsäure oder Methacrylsäure und Aminoalkoholen, z. B. Dimethylaminoethylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethylacrylat, Diethylaminoethylmethacrylat, Dimethyl - aminopropylacrylat und Dimethylaminopropylmethacrylat erhältlich sind. Die genannten basischen Acrylate können in Form der freien Basen, in Form der Salze mit organischen oder anorganischen Säuren oder in quaternierter Form bei der Copolymerisation eingesetzt werden. Vorzugsweise verwendet man aus dieser Gruppe von Monomeren Dimethylaminoethylacrylat in Form des Methochlorids . Weitere geeignete basische Comonomere für Acrylamid und Methacrylamid sind beispielsweise Acrylamidopropyltrimethylammonium- salze und Diallyldimethylammoniumhalogenide. Die obengenannten basischen Comonomeren können jedoch auch zu Homopolymerisaten verarbeitet und als kationische synthetische Polymere bei dem erfindungsgemäßen Verfahren eingesetzt werden. Bevorzugt verwendete kationische Polymere sind
Vinylamineinheiten enthaltende Polymerisate wasserlösliche, vernetzte Polyamidoamine 5 - wasserlösliche, mit Ethylenimin gepfropfte, vernetzte Polyamidoamine unvernetzte Polyamidoamine vernetzte Polyethylenimine
Polydiallyldimethylammononiumhalogenide und/oder 10 - kationische Polyacrylamide
Dicyandiamid-Formaldehyd-Kondensate.
Die Molmasse Mw der kationischen Polymeren beträgt mindestens 15.000 und liegt vorzugsweise in dem Bereich von 50.000 bis
15 1 000 000. Die Molmasse Mw der kationischen Polymeren wird durch Lichtstreuung bestimmt. Die kationischen Polymeren haben eine Ladungsdichte von mindestens 1,5, vorzugsweise 4 bis 15 meq/g (gemessen bei pH 7) . Die kationischen Polymeren werden in Mengen von 0,01 bis 1,0, vorzugsweise 0,02 bis 0,5 Gew.-%, bezogen auf
20 trockenen Papierstoff eingesetzt.
Um die in Wasser gelösten Störstoffe sowie die in Wasser unlöslichen klebenden Verunreinigungen (z.B. Stickies und White- Pitch) möglichst weitgehend aus dem Wasserkreislauf von Papiermaschinen
25 zu eliminieren, setzt man zur StoffSuspension zunächst ein Tensid und anschließend ein kationischen Polymer als Fixiermittel zu. Tensid und Fixiermittel können jedoch auch dem Papierstoff gleichzeitig getrennt voneinander oder in Form einer Mischung zugegeben werden. Das Verhältnis von Fixiermittel zu Retentionsmit-
30 tel richtet sich nach dem jeweils verwendeten Papierstoff und beträgt beispielsweise 1:2 bis 5:1.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens verwendet man außer Tensiden und kationischen Polymeren
35 noch zusätzlich ein Retentionsmittel . Man erreicht dadurch eine noch weitergehende Entfernung der klebenden Verunreinigungen aus dem Papierstoff. Die feinverteilten klebrigen Verunreinigungen werden dabei überraschenderweise nicht koaguliert, sondern in feinverteilter Form am Papierstoff reteniert. Die verbesserte
40 Fixierung von Stickies, White- Pitch und sonstiger klebender Verunreinigungen im Papier kann beispielsweise durch eine Extraktion der aus störstoffhaltigen Pulpen gebildeten Blätter bzw. des ab- filtrierten Fasermaterials unter Verwendung üblicher organischer Extraktionsmittel wie Essigester, Methylenchlorid oder Kohlenwas-
45 serstoffen quantitativ ermittelt werden. Als Retentionsmittel kommen Verbindungen in Becracht, die aus den gleichen Monomeren hergestellt sein können wie die als Fixier - mittel zu verwendenden kationischen synthetischen Polymeren. Die Retentionsmittel haben jedoch ein höheres Molekulargewicht als die Fixiermittel. Beispielsweise beträgt die Molmasεe der Retentionsmittel mehr als 2 000 000. Geeignete Retentionsmittel dieser Art werden üblicherweise in der Papierindustrie verwendet. Es handelt sich hierbei beispielsweise um kationische Polyacrylamide, z.B. um Copolymerisate aus Acrylamid und Dimethylamino- ethylacrylatmethochlorid oder um teilhydrolysierte Polyvinylform- amide mit einem Gehalt an Vinylamineinheiten von 5 bis 50 Mol-%. Außerdem eignen sich Micropartikelsysteme, die in der EP-A 0 335 575 beschrieben werden, wobei man zum Papierstoff ein hochmolekulares kationisches synthetisches Polymer zufügt, die gebildeten Makroflocken durch Scheren des Papierstoffs zerteilt und anschließend Bentonit zugibt.
Von besonderem Vorteil ist eine Verfahrensweise, bei der man als Tenside Naphthalinsulfonsäure-Formaldehyd-Kondensate oder Anlage- rungsprodukte von Ethylenoxid und ggf. Propylenoxid an Fett- alkohole mit 10 bis 22 C-Atomen oder an Ci-Cig-Alkylphenole und als synthetische kationische polymere Fixiermittel zu mindestens 20 % hydrolysierte Polyvinylformamide einer Molmasse von 50 000 bis 1 000 000 zusetzt und anschließend als Retentionsmittel zu mindestens 5 bis 50 % hydrolysierte Poly-N-Vinylformamide mit einer Molmasse von mehr als 3 000 000 dosiert.
Die in den Beispielen angegebenen Teile sind Gewichtsteile, die Angaben in % beziehen sich auf das Gewicht der Stoffe, falls aus den übrigen Angaben nichts anderes hervorgeht. Der chemische Sauerstoffbedarf (CSB-Wert) wurde nach DIN 38409 bestimmt. Die Molmassen Mw wurden mit Hilfe der Lichtstreuung gemessen.
Beispiele
Als kationische Polymere wurden folgende Stoffe eingesetzt:
Polymer A: Polydiallyldimethylammoniumchlorid mit einer Ladungs - dichte von 8 meq/g und einer Molmasse Mw von 200 000 D. Polymer B: Dicyandiamid-Formaldehyd-Harz mit einer Ladungsdichte von 4 meq/g (gemessen bei pH 7) Molmasse Mw = 500 000. Polymer C: Modifiziertes Polyethylenimin mit einer Ladungεdichte von 11 meq/g (bestimmt bei pH 7) und einer Molmasse von
700 000. Folgende Tenside wurden verwendet:
Tensid 1: Anlagerungsprodukt von 7 Mol Ethylenoxid an 1 Mol Nonylphenol
Tensid 2 : Anlagerungsprodukt von 6 Mol Ethylenoxid und 4 Mol Propylenoxid an 1 Mol eines C13/C15 -Alkohols
Beispiele 1 bis 6
Man stellt eine Pulpe mit einer Stoffdichte von 2,1 g/1 und einem Mahlgrad von 51°SR (Schopper-Riegler) aus einem thermomechanisehen Stoff (100 % TMP) her. Der pH-Wert der Pulpe beträgt 7,0. Man fügt dann die in der Tabelle angegebenen Mengen an Tensid zu, versetzt die Mischung danach mit einem der in der Tabelle angegebenen Polymeren A bis C als Fixiermittel und stellt unter Zuhilfenahme eines Retentions- und Entwässerungsmittels auf Basis eines handelsüblichen, mit Ethylenimin modifizierten, vernetzten Polyamidoamins (Polymin®SK) in einem Rapid-Köten-Blattbildner Blätter her und trocknet sie anschließend.
8 g der getrockneten Blätter werden anschließend in einer Soxlettapparatur 4 Stunden mit 70 mm Dichlorethan extrahiert. Nach der Extraktion isoliert man aus dem Extraktionsmittel die ursprünglich in der Pulpe vorhandenen klebenden Verunreinigungen, die im Papier fixiert worden sind. Die Menge an klebenden Verunreinigungen ist als Gewichtsprozent Störstoff im Papier in der Tabelle angegeben.
Vergleichsbeispiele 1 bis 6
Zum Vergleich werden wie oben unter den Beispielen beschrieben, Blätter hergestellt, wobei man die in Tabelle 1 angegebenen Zusätze (Tensid oder Polymer dosiert) und anschließend das Reten- tionsmittel zum Papierstoff zugibt. Man verfährt dann wie in den Beispielen 1 bis 6 beschrieben und bestimmt den Anteil des Stör- stoffgehalts im Papier. Die Ergebnisse sind in der Tabelle angegeben. Tabelle
Figure imgf000015_0001

Claims

Patentansprüche
1. Verfahren zur Herstellung von Papier, Pappe und Karton aus Papierstoffen, die klebende Verunreinigungen enthalten, durch Zusatz von Tensiden und kationischen Polymeren mit einer Ladungsdichte von mindestens 1,5 meq/g (gemessen bei pH 7) und Entwässern der Papierstoffe unter Fixierung der klebenden Verunreinigungen im fertigen Papier, dadurch gekennzeichnet, daß die Molmasse Mw der kationischen Polymeren mindestens 15 000 beträgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Molmasse Mw der kationischen Polymeren 50 000 bis 1 Million beträgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man als kationische Polymere
- Vinylamineinheiten enthaltende Polymerisate wasserlösliche, vernetzte Polyamidoamine wasserlösliche, mit Ethylenimin gepfropfte, vernetzte
Polyamidoamine unvernetzte Polyamidoamine - vernetzte Polyethylenimine
Polydiallyldimethylammononiumhalogenide und/oder kationische Polyacrylamide
Dicyandiamid-Formaldehyd-Kondensate.
einsetzt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man die kationischen Polymeren in Mengen von 0,01 bis 1,0 Gew.- , bezogen auf trockenen Papierstoff, ein- setzt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man die kationischen Polymeren in Mengen von 0,02 bis 0,5 Gew.-%, bezogen auf trockenen Papierstoff, ein- setzt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekenn¬ zeichnet, daß man als Tenside Naphthalinsulfonsäure-Formalde¬ hyd-Kondensate oder die Anlagerungsprodukte von Ethylenoxid und gegebenenfalls Propylenoxid an Fettalkohole mit 6 bis 22 C-Atomen oder an Ci- bis C1B-Alkylphenole einsetzt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man die Tenside in Mengen von 0,005 bis 0,5 Gew.-%, bezogen auf trockenen Papierstoff, einsetzt.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß man die Tenside in Mengen von 0,01 bis 0,2 Gew.-%, bezogen auf trockenen Papierstoff einsetzt.
9. Verwendung von 0,005 bis 0,5 Gew.-% Tensiden und 0,01 bis 1,0 Gew. -% kationischen Polymeren mit einer Molmasse Mw von mindestens 15 000 und einer Ladungsdichte von mindestens 1,5 meq/g (gemessen bei pH 7), wobei die Angaben in Gew. -% jeweils auf trockenen Papierstoff bezogen sind, bei der Herstellung von Papier, Pappe und Karton als Zusatz zum Papier- stoff zur Fixierung von Störstoffen, die in Wasser gelöst sind, sowie von wasserunlöslichen klebenden Verunreinigungen, im fertigen Papier.
PCT/EP1998/001947 1997-04-16 1998-04-02 Verfahren zur herstellung von papier, pappe und karton WO1998046828A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT98922636T ATE221595T1 (de) 1997-04-16 1998-04-02 Verfahren zur herstellung von papier, pappe und karton
CA002286709A CA2286709C (en) 1997-04-16 1998-04-02 Method for producing paper, pulpboard and cardboard
EP98922636A EP0975837B1 (de) 1997-04-16 1998-04-02 Verfahren zur herstellung von papier, pappe und karton
US09/403,008 US6303002B1 (en) 1997-04-16 1998-04-02 Method for producing paper, pulpboard and cardboard
DE59805005T DE59805005D1 (de) 1997-04-16 1998-04-02 Verfahren zur herstellung von papier, pappe und karton
AU75216/98A AU7521698A (en) 1997-04-16 1998-04-02 Method for producing paper, pulpboard and cardboard
JP54342698A JP2001518994A (ja) 1997-04-16 1998-04-02 紙、板紙および厚紙の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19715832.3 1997-04-16
DE19715832A DE19715832A1 (de) 1997-04-16 1997-04-16 Verfahren zur Herstellung von Papier, Pappe und Karton

Publications (1)

Publication Number Publication Date
WO1998046828A1 true WO1998046828A1 (de) 1998-10-22

Family

ID=7826659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/001947 WO1998046828A1 (de) 1997-04-16 1998-04-02 Verfahren zur herstellung von papier, pappe und karton

Country Status (10)

Country Link
US (1) US6303002B1 (de)
EP (1) EP0975837B1 (de)
JP (1) JP2001518994A (de)
AT (1) ATE221595T1 (de)
AU (1) AU7521698A (de)
CA (1) CA2286709C (de)
DE (2) DE19715832A1 (de)
ES (1) ES2181220T3 (de)
WO (1) WO1998046828A1 (de)
ZA (1) ZA983137B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262488A (ja) * 2000-01-12 2001-09-26 Hymo Corp 成紙の汚れを防止する方法
US8025767B2 (en) 2001-06-11 2011-09-27 Basf Aktiengesellschaft Wet strength enhancers for paper
DE102011088201A1 (de) 2011-12-10 2013-06-13 Friedrich-Schiller-Universität Jena Verfahren zur Prozesswasserreinigung in der Papierindustrie

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403839B1 (ko) * 1998-04-27 2003-11-01 악조 노벨 엔.브이. 제지 방법
JP4731660B2 (ja) * 2000-06-06 2011-07-27 ソマール株式会社 抄紙方法
US6673205B2 (en) * 2001-05-10 2004-01-06 Fort James Corporation Use of hydrophobically modified polyaminamides with polyethylene glycol esters in paper products
JP4925234B2 (ja) * 2001-08-10 2012-04-25 ハイモ株式会社 製紙原料処理方法
DE10142200A1 (de) * 2001-08-29 2003-03-20 Voith Paper Patent Gmbh Verfahren zur Bildung einer Faserstoffbahn
CN100379923C (zh) * 2002-04-08 2008-04-09 西巴特殊化学水处理有限公司 白树脂沉积物处理方法
US7547376B2 (en) * 2002-07-19 2009-06-16 Kao Corporation Paper improver
US6723207B2 (en) * 2002-08-05 2004-04-20 Johnsondiversey, Inc. Method of treating paper making rolls
US20050039873A1 (en) * 2003-08-18 2005-02-24 Curham Kevin D. High HLB non-ionic surfactants for use as deposition control agents
DE102004044379B4 (de) * 2004-09-10 2008-01-10 Basf Ag Verfahren zur Herstellung von Papier, Pappe und Karton und Verwendung einer Retentionsmittelkombination
DE102004058587A1 (de) * 2004-12-03 2006-06-14 Basf Ag Verfahren zur Herstellung von Papieren mit hohen Flächengewichten
US20060272789A1 (en) * 2005-06-02 2006-12-07 Steven Szep Method of treating papermaking fabric
JP4748794B2 (ja) * 2006-04-03 2011-08-17 伯東株式会社 ピッチコントロール剤及びピッチコントロール方法
JP5219546B2 (ja) * 2008-02-21 2013-06-26 ハイモ株式会社 粘着性物質による障害作用抑制方法
FI20115690A0 (fi) * 2011-06-30 2011-06-30 Kemira Oyj Fiksatiivikoostumus, sakeamassakoostumus ja menetelmä hydrofobisten ja/tai anionisten aineiden kiinnittämiseksi kuituihin
CN105452563B (zh) 2012-09-26 2018-06-29 凯米罗总公司 吸收剂材料、包括吸收剂材料的产品、组合物和制备吸收剂材料的方法
US9598819B2 (en) * 2013-11-08 2017-03-21 Solenis Technologies, L.P. Surfactant based brown stock wash aid treatment for papermachine drainage and dry strength agents
CN106290807B (zh) * 2016-08-11 2018-10-16 玖龙纸业(东莞)有限公司 一种胶粘物涂布测试纸及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0359590A2 (de) * 1988-09-16 1990-03-21 Grace Dearborn Inc. Kontrolle von Ablagerungen auf Papiermaschinenfilzen und dergleichen
US5246548A (en) * 1992-01-13 1993-09-21 Dearborn Chemical Company Limited Pitch control
JPH0657685A (ja) * 1991-08-28 1994-03-01 Arakawa Chem Ind Co Ltd 紙の抄造法
US5292403A (en) * 1993-03-10 1994-03-08 Betz Paperchem, Inc. Method for inhibiting the deposition of organic contaminants in pulp and papermaking processes
EP0649941A1 (de) * 1993-10-21 1995-04-26 Nalco Chemical Company Pechkontrolle in der Papierherstellung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2162567A1 (de) 1970-12-23 1972-07-20 Sandoz Ag Verfahren zur Herstellung von kationischen wasserlöslichen, hitzehärtbaren, stark verzweigten Harzen
DE2434816C3 (de) 1974-07-19 1981-01-22 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von stickstoffhaltigen Kondensationsprodukten und deren Verwendung als Retentionsmittel, Flockungsmittel und Entwässerungsbeschleuniger bei der Papierherstellung
US4785030A (en) * 1986-12-18 1988-11-15 The Procter & Gamble Company Cationic latex compositions capable of producing elastomers with hydrophilic surfaces
EP0335575B2 (de) 1988-03-28 2000-08-23 Ciba Specialty Chemicals Water Treatments Limited Herstellung von Papier und Pappe
DE3925439A1 (de) 1989-08-01 1991-02-07 Bayer Ag Basische kondensate
GB2251868B (en) * 1990-12-24 1994-07-27 Grace W R & Co Pitch control
US5368692A (en) * 1992-01-22 1994-11-29 Vinings Industries Inc. Method for controlling pitch
DE19515273A1 (de) 1995-04-26 1996-10-31 Henkel Kgaa Verfahren zur Kontrolle des Absetzens klebender Verunreinigungen aus Papierstoff-Suspensionen
US5618861A (en) 1995-05-01 1997-04-08 Ashland Inc. Pitch control composition and process for inhibiting pitch deposition
US5792366A (en) * 1996-10-03 1998-08-11 Cytec Technology Corp. Aqueous dispersions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0359590A2 (de) * 1988-09-16 1990-03-21 Grace Dearborn Inc. Kontrolle von Ablagerungen auf Papiermaschinenfilzen und dergleichen
JPH0657685A (ja) * 1991-08-28 1994-03-01 Arakawa Chem Ind Co Ltd 紙の抄造法
US5246548A (en) * 1992-01-13 1993-09-21 Dearborn Chemical Company Limited Pitch control
US5292403A (en) * 1993-03-10 1994-03-08 Betz Paperchem, Inc. Method for inhibiting the deposition of organic contaminants in pulp and papermaking processes
EP0649941A1 (de) * 1993-10-21 1995-04-26 Nalco Chemical Company Pechkontrolle in der Papierherstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 9413, Derwent World Patents Index; Class A14, AN 94-107406, XP002075388 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262488A (ja) * 2000-01-12 2001-09-26 Hymo Corp 成紙の汚れを防止する方法
JP4505131B2 (ja) * 2000-01-12 2010-07-21 ハイモ株式会社 成紙の汚れを防止する方法
US8025767B2 (en) 2001-06-11 2011-09-27 Basf Aktiengesellschaft Wet strength enhancers for paper
DE102011088201A1 (de) 2011-12-10 2013-06-13 Friedrich-Schiller-Universität Jena Verfahren zur Prozesswasserreinigung in der Papierindustrie
DE102011088201B4 (de) * 2011-12-10 2017-02-02 Friedrich-Schiller-Universität Jena Verfahren zur Prozesswasserreinigung in der Papierindustrie

Also Published As

Publication number Publication date
EP0975837B1 (de) 2002-07-31
CA2286709C (en) 2008-08-05
JP2001518994A (ja) 2001-10-16
DE19715832A1 (de) 1998-10-22
ES2181220T3 (es) 2003-02-16
EP0975837A1 (de) 2000-02-02
US6303002B1 (en) 2001-10-16
ATE221595T1 (de) 2002-08-15
DE59805005D1 (de) 2002-09-05
AU7521698A (en) 1998-11-11
ZA983137B (en) 1999-10-15
CA2286709A1 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
EP0975837B1 (de) Verfahren zur herstellung von papier, pappe und karton
EP0980450B1 (de) Verfahren zur herstellung von papier, pappe und karton
EP0910701B1 (de) Verfahren zur herstellung von papier und karton
EP0972110B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP2443284B1 (de) Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
EP1792010B1 (de) Verfahren zur herstellung von papier, pappe und karton
US11535985B2 (en) Method for manufacture of paper or board and paper or board obtained by the method
EP1819876A2 (de) Papierleimungsmittel
EP0438707A1 (de) Verfahren zur Herstellung von Papier, Pappe und Karton
US20130014908A1 (en) Method for producing paper, paperboard and cardboard
EP1727937A1 (de) Wässrige dispersion von reaktivleimungsmitteln, verfahren zu ihrer herstellung und ihre verwendung
EP1399623A1 (de) Nassfestausrüstungsmittel für papier
EP2443282A1 (de) Verfahren zur reduktion von ablagerungen in der trockenpartie bei der herstellung von papier, pappe und karton
EP0000922B1 (de) Verfahren zur Herstellung eines nicht-gewebten Faservlieses aus Fasern und einem Latex, und das so hergestellte nicht-gewebte Fasermaterial
EP2334871A1 (de) Verfahren zur herstellung von papier, pappe und karton unter verwendung von endo-beta-1,4-glucanasen als entwässerungsmittel
DE10237911A1 (de) Verwendung von Vinylamineinheiten enthaltenden Polymeren als Promoter für die Alkyldiketenleimung
EP1141483A1 (de) Modifizierte kationische polymere, verfahren zu ihrer herstellung und ihre verwendung bei der papierherstellung
EP0960140A1 (de) Verfahren zur herstellung von carbamateinheiten enthaltenden polymerisaten und ihre verwendung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR BY CA CN CZ GE HU ID IL JP KR KZ LT LV MX NO NZ PL RO RU SG SI SK TR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998922636

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2286709

Country of ref document: CA

Ref country code: CA

Ref document number: 2286709

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 543426

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09403008

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998922636

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998922636

Country of ref document: EP