WO1998045352A1 - LINEARE ALTERNIERENDE FUNKTIONALISIERTE α-OLEFIN/CO-COPOLYMERE UND DEREN VERWENDUNG FÜR DIE HERSTELLUNG VON IONENSELEKTIVEN MEMBRANEN - Google Patents

LINEARE ALTERNIERENDE FUNKTIONALISIERTE α-OLEFIN/CO-COPOLYMERE UND DEREN VERWENDUNG FÜR DIE HERSTELLUNG VON IONENSELEKTIVEN MEMBRANEN Download PDF

Info

Publication number
WO1998045352A1
WO1998045352A1 PCT/EP1998/001553 EP9801553W WO9845352A1 WO 1998045352 A1 WO1998045352 A1 WO 1998045352A1 EP 9801553 W EP9801553 W EP 9801553W WO 9845352 A1 WO9845352 A1 WO 9845352A1
Authority
WO
WIPO (PCT)
Prior art keywords
elements
group
olefin
carbon monoxide
periodic table
Prior art date
Application number
PCT/EP1998/001553
Other languages
English (en)
French (fr)
Inventor
Michael GEPRÄGS
Joachim Queisser
Bernhard Rieger
Martin Möller
Adnan S. Abu-Surrah
Harm-Anton Klok
Peter Eibeck
Markus Schmid
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP98916986A priority Critical patent/EP0971971A1/de
Priority to AU70364/98A priority patent/AU7036498A/en
Priority to JP54229598A priority patent/JP2001518951A/ja
Priority to US09/402,091 priority patent/US6133410A/en
Publication of WO1998045352A1 publication Critical patent/WO1998045352A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/72Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of the groups B01D71/46 - B01D71/70 and B01D71/701 - B01D71/702
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G67/00Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
    • C08G67/02Copolymers of carbon monoxide and aliphatic unsaturated compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • G01N27/3335Ion-selective electrodes or membranes the membrane containing at least one organic component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium

Definitions

  • the present invention relates to linear alternating ⁇ -olefin / CO copolymers, obtainable by polymerizing a monomer mixture containing
  • the invention relates to a process for the preparation of the functionalized ⁇ -olefin / CO copolymers and their use for the production of moldings, films, fibers and coatings.
  • the invention relates to ion-selective membranes that can be produced from the functionalized ⁇ -olefin / CO copolymers and their use as a component of ion-selective electrodes or chemically modified field-effect transistors.
  • the present invention was therefore based on the object of finding new carbon monoxide copolymers which, owing to the selection of the monomer components in the product, are distinguished by a combination of properties which are coordinated with one another and are therefore suitable for complex applications, and in particular the object of the invention was based on the object to provide ion-selective membranes which essentially consist of the carbon monoxide copolymers according to the invention or contain these as an essential component and which do not have the disadvantages described of such membranes or membrane systems.
  • the carbon monoxide copolymers described at the outset have been found. Furthermore, a process for the production of the carbon monoxide copolymers according to the invention and their use for the production of fibers, moldings, coatings, films and ion-selective membranes were found. In addition, ion-selective membranes based on the carbon monoxide copolymers according to the invention and their use as a component of ion-selective electrodes or chemically modified field-effect transistors have been found.
  • ⁇ -olefin / CO copolymers which can be prepared by copolymerizing the components
  • ⁇ -Olefin / CO copolymers which are obtainable by copolymerization of carbon monoxide (a)), a functionalized 1-alkene (b)) of the general formula (I), are particularly preferred
  • k independently of one another 2, 3 or 4,
  • q an integer in the range from 4 to 24, in particular in the range from 6 to 16
  • the copolymers according to the invention are composed of units which are based on the monomers carbon monoxide and one or more ⁇ -olefinically unsaturated compounds.
  • the different monomer units are generally in strict alternation.
  • the sequence of carbon monoxide and olefin component is usually also strict alternating, the crown ether-functionalized alkene monomers being incorporated into the linear copolymer chain essentially in a statistical distribution with respect to the olefin incorporation positions in question.
  • Suitable ⁇ -olefinically unsaturated components are propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 1-heptenyl, 1-octenyl, 1-nonenyl, 1-decenyl, 1 -Dodecenyl, 1-hexadecenyl, 1-octadecenyl or the 1-eicosaenyl radical.
  • Compounds b) are preferably used, the ⁇ -olefinically unsaturated portion of which goes back to C 5 - to Ci 8 ⁇ l-alkenyl residues, C - to -C 4 -1-alkenyl residues are particularly preferred.
  • crown ethers include, in addition to crown ethers, cryptands, podands and coronands, as described, for example, in F. Vogtle, Supramolecular Chemistry, BG Teubner, Stuttgart, 1989).
  • Crown ether units A having 5 to 10 oxygen atoms and cryptand units A containing 3 to 6 oxygen atoms are preferred, and benzene and / or cyclohexane rings can also be integrated into the macrocycles framework, mostly via linkages on adjacent ring carbon atoms.
  • the units A are covalent, usually linked to the olefinically unsaturated monomer via a single bond.
  • ether, ester, amide or carbamate groups or a carbon / carbon atom can be used as bridging structural elements. be used fertilizer.
  • a common connecting unit is the ester group, the carboxylic acid residue forming this group preferably originating from component A and the hydroxyl group from the ⁇ -olefinically unsaturated monomer unit.
  • suitable compounds b) can be formally obtained from alcohols, such as allyl alcohol, but-3-en-1-ol, pent-4-en-1-ol, hex-5-en-1-ol, hept-6-en-1 -ol, oct-7-en-l-ol, non-8-en-l-ol, dec-8-en-l-ol, dodec-11-en-l-ol, hexadec-15-en-l -ol, octadec-17-en-l-ol or Eicos-19-en-l-ol, and crown ethers or cryptands provided with carboxylic acid groups can be derived.
  • alcohols such as allyl alcohol, but-3-en-1-ol, pent-4-en-1-ol, hex-5-en-1-ol, hept-6-en-1 -ol, oct-7-en-l-ol, non-8-en-l-ol, dec-8
  • a crown ether with a covalently bonded carboxylic acid group can be obtained, for example, by acylation of benzo-15-crown-5 (for nomenclature and synthesis, see V. Percec, R. Rodenhouse, Macromolecules 1989, 22, 4408) and subsequent oxidation using sodium hypobromite (see M. Bourgoin, KH Wong, JY Hui, J. Smid, J. Am. Chem. Soc. 1975, 97, 3462).
  • Preferred ester-bonded olefinically unsaturated compounds b) fall, for example, under the general formula (I)
  • k independently of one another 2, 3 or 4,
  • q an integer in the range from 4 to 24, in particular 6 to 16
  • crown ether functionality meets the following conditions:
  • a suitable monomer compound b) for the preparation of the copolymers according to the invention is accordingly, for example, 4 '- (dec-10-enylcarboxylate) benzo-15-crown-5.
  • ternary and higher copolymer systems containing functionalized 1-alkenes b) are also accessible.
  • Suitable as monomers c) for non-binary copolymers are in particular C 2 - to C 24 -1-alkenes.
  • Examples include ethene, propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonen, 1-decene, 1-dodecene, 1-hexadecene, 1-octadecene or 1 -Icos.
  • Propene, 1-butene, 1-pentene, 1-hexene-1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-hexadecene and a 1-octadecene, in particular propene are preferred 1-hexene, 1-dodecene and 1-octadecene are used.
  • Particularly preferred among the latter compounds are C ß - to C ⁇ 2 -1 alkenes.
  • conjugated or isolated C ⁇ - to C 2 o-dienes for example 1,4-hexadiene and 1,5-hexadiene, are also suitable as olefinically unsaturated compounds c).
  • Preferred terpolymers are based on carbon monoxide (a)), a compound (b)) which falls under the general formula (I)
  • k independently of one another 2, 3 or 4,
  • q an integer in the range from 4 to 24, in particular from 6 to 16
  • terpolymers which can be prepared from carbon monoxide, a compound of the general formula (I)
  • ternary carbon monoxide copolymers are in particular the systems based on carbon monoxide / propene / 4 '- (undec-10-enylcarbonate), benzo-15-crown-5, carbon monoxide / l-hexene / 4' - (undec-10-enylcarboxylate) benzo-15-crown-5, carbon monoxide / 1-dodecene / 4 '- (undec-10-enylcarboxylate) benzo-15-crown-5 and carbon monoxide / 1-dodecadecen / 4' - (undec-10- enyl carboxylate) benzo-15-crown-5 and ins special carbon monoxide / 1-hexene / 4 '- (undec-10-enyl carboxylate) benzo-15-crown-5 and carbon monoxide / 1-dodecene / 4' - (undec-10-enyl carboxylate
  • the average molecular weights M w (measured by the method of gel permeation chromatography (GPC) at 25 ° C. with Microstyragel (Waters) as column material and chloroform as solvent against the polystyrene standard) of the carbon monoxide copolymers according to the invention are usually in the range from 5000 to 200000 g / mol, but copolymers with average molecular weights of up to 300000 g / mol and even 400000 g / mol can also be obtained.
  • short-chain monomer components c such as propene
  • M w average molecular weights
  • long-chain alkenes such as l-octadecene
  • the terpolymers according to the invention are distinguished, inter alia, by their thermoplastic elastomeric properties and accordingly have Tg values in the range from 20 to -90 ° C.
  • Examples of carbon monoxide copolymers with a particularly suitable thermoplastic elastomeric property profile are those terpolymers whose component b) is based on an ⁇ -olefin functionalized with benzo-15-crown-5 and whose component c) is based on a C 1 -C 12 -alkene.
  • Terpolymers according to the present invention are also to be understood as meaning compounds in which the molar proportion of component b) in the total copolymer is 0.01 mol%. As a rule, however, molar proportions of 5 or 10% or above are readily accessible.
  • the proportion of head-to-tail linked units in the terpolymers according to the invention is generally in the range from 1 to 80% and is for carbon monoxide copolymers containing, for example, a benzo-15-crown-5 functionality and C 3 - to C 2 - 1-alkenes, usually in the range of 40 to 70%.
  • the molecular weight distribution M w / M n (weight average / number average) of the copolymers according to the invention, measured using the gel permeation chromatography (GPC) method analogous to the preceding description, is generally from 1.2 to 4, but preferably assumes a value less than 2.5.
  • the molar ratio of carbon monoxide to the sum of the structural units attributable to the olefinically unsaturated monomers in the binary and higher carbon monoxide copolymers according to the invention is generally 1: 1.
  • the polymer materials according to the invention Due to their impact modifying properties and their biocompatible behavior, the polymer materials according to the invention have a variety of possible uses, e.g. in the field of polymer blend technology or medical technology.
  • carbon monoxide can be copolymerized with olefinically unsaturated compounds in a virtually alcohol-free or water-free polymerization medium in the presence of a catalyst whose active composition is formed from
  • M is a metal from Group VIIIB of the Periodic Table of the Elements
  • E 1 , E 2 an element from group VA of the periodic table of the elements
  • a bridging structural unit consisting of one, two, three or four substructural units from elements of group IVA, VA, VIA of the periodic table of the elements,
  • R 1 to R 4 substituents selected from the group consisting of C ⁇ ⁇ to C 2 o _ carbonaceous organic and C 3 - to C 3 o -organosilicon radicals, where the radicals one element or more elements of Group IVA, VA, VIA and VIIA of the Periodic Table of the Elements can contain
  • a further method for producing the linear, thermoplastic, elastomeric copolymers according to the invention is the copolymerization of carbon monoxide with olefinically unsaturated compounds in a virtually alcohol-free or water-free polymerization medium in the presence of a catalyst, the active mass of which is formed
  • E 1 , E 2 an element from group VA of the periodic table of the elements
  • Z is a bridging structural unit from one, two, three or four substructure units from
  • R 1 to R 4 substituents selected from the group of Ci to C 20 carbon organic and C 3 to
  • C3o-organosilicon radicals the radicals being one or more elements of the group IVA, VA, VIA and VIIA of the Periodic Table of the Elements can contain
  • the polymerizations for the preparation of the carbon monoxide copolymers according to the invention can be carried out either batchwise or continuously in the presence of a polymerization catalyst from A '), or i), ii), iii) and optionally B') or iv).
  • Possible polymerization catalysts are metal compounds of the eighth subgroup of the Periodic Table of the Elements (VIIIB), which exist as defined metal complexes (II) or in situ from a metal salt i) of the metals of Group VIIIB of the Periodic Table of the Elements, proton and / or Lewis acids ii ) and a chelate compound iii) of the formula (III) can be formed.
  • activators B ') or iv) can be added to the metal compounds.
  • Suitable metals M are the metals from group VIIIB of the periodic table of the elements, that is, in addition to iron, cobalt and nickel, primarily the platinum metals such as ruthenium, rhodium, osmium, iridium and platinum and very particularly palladium.
  • the metals nickel, palladium and platinum are generally formally charged twice positively, the metals cobalt, rhodium and iridium are generally formally singly charged and the metals iron, ruthenium and osmium are generally formally uncharged in the complexes.
  • the elements E 1 and E 2 of the chelate ligand are the elements of the 5th main group of the Periodic Table of the Elements (group VA), that is to say nitrogen, phosphorus, arsenic, antimony or bismuth. Nitrogen or phosphorus, in particular phosphorus, are particularly suitable.
  • the chelate ligand or the chelate compound (III) can contain different elements E 1 and E 2 , for example nitrogen and phosphorus, but preferably it contains the same elements E 1 and E 2 and in particular E 1 and E 2 are phosphorus.
  • the bridging structural unit Z is an atomic grouping that connects the two elements E 1 and E 2 to one another.
  • Substructure units consisting of one atom or a plurality of interconnected atoms from group IVA, VA or VIA of the periodic table of the Elements usually form the bridge between E 1 and E 2 .
  • Possible free valences of these bridge atoms can be saturated in a variety of ways, for example by substitution with hydrogen or with elements from group IVA, VA, VIA or VIIA of the periodic table of the elements. These substituents can form ring structures with one another or with the bridge atom.
  • elements from group IVA of the periodic table of the elements such as methylene (-CH 2 -), 1,2-ethylene (-CH 2 -CH 2 -), 1, 3-propylene (-CH2-CH 2 -CH 2 -),
  • 1,2-Ethylene, 1,3-propylene and 1,4-butylene may be mentioned as particularly suitable bridging structural units.
  • Suitable carbon-organic radicals R 1 to R 4 are, independently of one another, aliphatic, cycloaliphatic and aromatic with 1 to 20 C atoms, for example the methyl, ethyl, 1-propyl, 1-butyl, 1- Pentyl, 1-hexyl and 1-octyl groups and their structural analogues.
  • Linear arylalkyl groups with 1 to 10 carbon atoms in the alkyl radical and 6 to 20 carbon atoms in the aryl radical are also suitable, such as benzyl.
  • Aryl radicals may be mentioned as further radicals R 1 to R 4 , for example tolyl, anisyl, preferably ortho-anisyl, xylyl and other substituted phenyl groups, in particular phenyl.
  • Suitable cycloaliphatic radicals are C 3 - to Cio-monocyclic systems such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cyclohexyl is particularly preferred.
  • Suitable branched aliphatic radicals are C 3 to C 20, preferably C 3 to C 2 alkyl radicals, such as the i-propyl, i-butyl, s-butyl, neopentyl and t-butyl group.
  • Particularly suitable branched aliphatic radicals are the t-butyl group, the i-propyl group and the s-butyl group.
  • Alkyl groups with branching located further outside are also suitable as substituents R 1 to R 4 , such as the i-butyl, the 3-methyl-but-2-yl and 4-methylpentyl group.
  • the substituents R 1 to R 4 can also, independently of one another, contain atoms from the group IVA, VA, VIA or VIIA of the Periodic Table of the Elements, for example halogen, oxygen, Sulfur, nitrogen, silicon, here for example the bis (trimethylsilylmethyl group.
  • Functional groups which are inert under the polymerization conditions can also be considered in this context.
  • Preferred hetero substituents R 1 to R 4 are C 3 - to C 3 o-organosilicon radicals, that is to say tetravalent silicon atoms which are bonded to E 1 or E 2 on the one hand and their other valences with three carbon-organic radicals such as alkyl and / or Aryl radicals are saturated, the sum of the carbon atoms of these three silicon-bonded radicals being in the range from three to thirty. Examples include the trimethylsilyl, t-butyldimethylsilyl or triphenylsilyl group, especially the trimethylsilyl group.
  • chelate ligands or chelate compound (III) Preferably used as chelate ligands or chelate compound (III), 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane or 1,4-bis (diphenylphosphino) butane.
  • Chelate compounds (III) are 1,3-bis (diphenylphosphino) propane and 1,4-bis (diphenylphosphino) utane.
  • Lewis bases ie compounds, preferably organic compounds with at least one lone pair of electrons or water, are generally suitable as formally uncharged ligands L 1 , L 2 .
  • Lewis bases whose free electron pair or whose free electron pairs are located on a nitrogen or oxygen atom, ie nitriles, R-CN, ketones, ethers or preferably water, are particularly suitable.
  • Suitable Lewis bases are ci- to ci-nitriles such as acetonitrile, propionitrile, benzonitrile or C 3 - to cio-ketones such as acetone, acetylacetone or C 2 - to cio-ethers such as dimethyl ether, diethyl ether or tetrahydrofuran.
  • ligands L 1 , L 2 in (II) are those of the formula (IV)
  • T means hydrogen or a Ci to Ci 5 carbon organic provided with a Lewis basic group
  • C 1 to C 5 organic carbon radicals T are, for example, linear or also cyclic CH 2 -) - n units, in which n is 1 to 10, that is methylene, 1,2-ethylene, 1,3-propylene, 1,4-butylene, 1,5-pentylene, 1,6-hexylene, 1,7-heptylene, 1,8-octylene , 1,9-nonylene or 1, 10-decylene.
  • Suitable Lewis base groups are ethers, esters, ketones, amines, phosphines and in particular nitrile (-C ⁇ N) or tertiary amines.
  • R ' is Ci to Cio-alkyl or C 3 - to C ⁇ represents 0 cycloalkyl, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, cyclopentyl , Cyclohexyl.
  • R 'can also mean C 8 to C 10 aryl, such as phenyl or naphthyl.
  • the ligands T-OH, apart from water, are bound to the metal M in (II) via the already defined Lewis base group.
  • Suitable anions X in (II) are, for example, perchlorate, sulfate, phosphate, nitrate and carboxylates, such as, for example, acetate, trifluoroacetate, trichloroacetate, propionate, oxalate, citrate, benzoate, and conjugated anions of organosulfonic acids, for example methylsulfonate, trifluoromethylsulfonate and p -Toluenesulfonate, also tetrafluoroborate, tetraphenylborate, tetrakis (pentafluorophenyl) borate, hexafluorophosphate, hexa luoroarsenate or hexafluoroantimonate.
  • Perchlorate, trifluoroacetate, sulfonates such as methyl sulfonate, trifluoromethyl sulfonate, p-toluenesulfonate, tetrafluoroborate or hexafluorophosphate and in particular trifluoroacetate, perchlorate or p-toluenesulfonate are preferably used as the anion X.
  • the metal complexes of the general formula (II) are generally prepared by processes known from the literature, such as in Makromol. Chem. 1993, 194, p. 2579. Tetrakis-ligand-metal complexes, such as tetrakis-acetonitrile-palladium-bistrafluoroborate, can usually be reacted with the chelate compounds (III) and the ligands L 1 , L 2 or TOH to give the metal complexes (II).
  • a preferred method for producing aquo complexes (II) is the reaction of the chelate phosphane-acetonitrile metal complexes with water. The reaction is generally carried out in a solvent, for example dichloromethane, acetonitrile, water, at temperatures in the range from -78 to 40.degree.
  • the metals M are usually used in the form of their salts and brought into contact with the chelate compound iii) of the general formula (III) and the acids ii). This can be done before the catalytically active composition obtained in this way comes into contact with the monomer and, if appropriate, further activator iv), generally outside the polymerization reactor.
  • the reaction of the individual components metal salt i), chelate compound iii) of the general formula (III), acid ii) and optionally activator component iv) can also be carried out in the polymerization reactor in the presence of the monomers.
  • Suitable salts of customarily divalent metals M are halides, sulfates, phosphates, nitrates and carboxylates, such as acetates, propionates, oxalates, citrates, benzoates, and sulfonic acid salts such as, for example, methyl sulfonates, trifluoromethyl sulfonate and p-toluenesulfonate. Carboxylates, sulfonic acid derivatives and in particular acetates are preferably used.
  • catalyst components i) are palladium dicarboxylates, preferably palladium diacetate, palladium dipropionate, palladium bis (trifluoroacetate) and palladium oxalate, and also palladium sulfonates, preferably palladium bis (trifluoromethanesulfona), palladium bis (methanesulfonate), palladium bis (p-toat), in particular one uses palladium diacetate.
  • catalyst components ii) are palladium dicarboxylates, preferably palladium diacetate, palladium dipropionate, palladium bis (trifluoroacetate) and palladium oxalate, and also palladium sulfonates, preferably palladium bis (trifluoromethanesulfona), palladium bis (methanesulfonate), palladium bis (p-toat), in particular one uses palladium diacetate.
  • Suitable protonic acids ii) are strong mineral acids, such as sulfuric acid and perchloric acid, and also strong organic acids, for example trichloro and trifluoroacetic acid, and also the sulfonic acids methanesulfonic acid, p-toluenesulfonic acid and benzenesulfonic acid, that is to say in each case those acids which are preferably less than a pKa value 3 have.
  • the acidic salts of strong acids with weak bases such as ammonium salts of the aforementioned acids, are also suitable.
  • Suitable Lewis acids are halides of the elements of group IIIA of the periodic table of the elements, for example boron trifluoride, boron trichloride, aluminum trifluoride, aluminum trichloride, halides of the elements of group VA of the periodic table of the elements, such as phosphorus pentafluoride, antimony pentafluoride, and halides of the metals subgroup IVB of the Periodic Table of the Elements, such as titanium tetrachloride or zirconium tetrachloride.
  • Other suitable Lewis acids are organically substituted Lewis acids, for example tris (pentafluorophenyDboran.
  • the preferred Lewis acids used are boron trifluoride, antimony pentafluoride or tris (pentafluorophenyDborane.
  • Particularly preferred components ii) are those which have a weakly coordinating conjugated anion, i.e. an anion which forms only a weak bond to the central metal of the complex, such as tetrafluoroborate, hexafluorophosphate, perchlorate, trifluoroacetate, trifluoromethylsulfonate, p-tosylate and borates, such as pyrocatecholate borate and tetraarylborate, with 2, 5-dimethylphenyl in particular being the aryl group, Bistrifluoromethylphenyl- or Pentafluorphenyl- come into question.
  • a weakly coordinating conjugated anion i.e. an anion which forms only a weak bond to the central metal of the complex
  • a weakly coordinating conjugated anion i.e. an anion which forms only a weak bond to the central metal of the complex
  • a weakly coordinating conjugated anion i.e. an anion which forms
  • suitable catalyst components i) and ii) are those as are generally known for systems with bisphosphines from EP-A 501 576 and 516 238.
  • the catalyst systems contain a chelate compound R 1 R 2 E 1 -ZE 2 R 3 R 4 (III), which was already described in the discussion of the metal complexes (II).
  • the ratio of the catalyst constituents i), ii) and iii) to one another is generally chosen so that the molar ratio of the metal compound i) to the acid ii) is 0.01: 1 to 100: 1, preferably 0.1: 1 to 1: 1 and the molar ratio of the metal compound i) to component iii) is 0.01: 1 to 10: 1, preferably 0.1: 1 to 2: 1.
  • the activator component B ') or iv) is generally a chemical compound which contains at least one hydroxyl group in the molecule.
  • These include above all ci- to cio alcohols, such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, s-butanol, t-butanol, n-hexanol, n-octanol, n- Decanol, cyclohexanol, phenol or water.
  • Methanol and / or water is preferably used as activator component B ') or iv).
  • the molar ratio of activator component B ') or iv) to metal M is in the range from 0 to 1500, preferably in the range from 0 to 1300. It has proven advantageous not to exceed the maximum ratio in the polymerization reaction, since otherwise the average molecular weights M w of the carbon monoxide copolymers formed may be too low.
  • the polymerization reactions can be carried out in the gas phase in a fluidized bed or stirred, in suspension, in liquid and in supercritical monomers and in solvents which are inert under the polymerization conditions.
  • the polymerization reactions can be carried out in a virtually alcohol-free or water-free polymerization medium. This means that the reaction mixture of monomers, catalyst and optionally inert solvent or suspending agent, except optionally the activator component B ') or iv), no further amount of alcohol or water has been or will be added.
  • Suitable inert solvents and suspending agents are those which contain no hydroxyl group in the molecule, i.e. ethers such as diethyl ether, tetrahydrofuran, aromatic solvents such as benzene, toluene, ethylbenzene, chlorobenzene, aliphatic hydrocarbons such as i-butane or chlorinated aliphatic hydrocarbons such as dichloromethane, 1, 1 , 1-trichloromethane or mixtures of the compounds mentioned.
  • ethers such as diethyl ether, tetrahydrofuran
  • aromatic solvents such as benzene, toluene, ethylbenzene, chlorobenzene
  • aliphatic hydrocarbons such as i-butane or chlorinated aliphatic hydrocarbons such as dichloromethane, 1, 1 , 1-trichloromethane or mixtures of the compounds mentioned.
  • a particularly well-suited polymerization process has been the introduction of the catalyst in the inert solvent, optionally subsequent addition of activator component B ') or iv) and the subsequent addition of the monomers and polymerization at a temperature in the range from 20 to 100 ° C. and a pressure in Range from 1000 to 10000 kPa.
  • the carbon monoxide copolymers according to the invention can be processed by means of injection molding, blow molding, spinning, rotary molding, extrusion or spin coating.
  • the coating of metallic, ceramic and other surfaces e.g. those made of plastic materials.
  • the carbon monoxide copolymers according to the invention are suitable for the production of fibers, films, moldings and coatings. Furthermore, the carbon monoxide copolymers according to the invention are suitable for the production of ion-selective membranes.
  • films or foils can be produced which are particularly suitable as ion-selective membranes.
  • These membranes can be used, among other things, as a component of small-format analysis devices, such as ion-selective electrodes (cf. J. Moody, BB Saad, JDR Thomas, Selective Electrode Rev.
  • CHEMFETs chemically modified field-effect transistors
  • CHEMFETs chemically modified field-effect transistors
  • the membranes according to the invention are characterized in particular by the fact that no plasticizer is required and that the activation energy for the transport of ions is minimized due to the presence of polar CO groups in the polymer.
  • the hydrophobic surface character ter obtained whereby the process of fouling in the aqueous phase is significantly suppressed or completely prevented.
  • membranes based on the carbon monoxide copolymers of the invention provide easy access to e.g. Sensor components with a long service life that can be easily produced on an industrial scale.
  • Molecular weights M w and molecular weight distributions M w / M n were determined by GPC in CHCI 3 using a Waters 590 HPLC pump, Waters Microstyragelsaulen with pore sizes of 10 5 , 10 4 and 10 3 ⁇ , a Waters 410 differential refractometer and a Waters 486 UV detector determined.
  • the DSC data were determined using the Perkin Elmer DSC 7 device equipped with a Perkin Elmer TAC 7 / DX thermal controller; Cyclohexane, indium and gallium were used for the calibration.
  • IR spectra were recorded on a Bruker IFS 66V spectrometer.
  • the test samples were prepared by drawing a thin film on KBr plates from a dichloromethane solution.
  • the catalyst used was [Pd [dppp] (NCCH3) 2 ] (BF 4 ) 2 , produced from [Pd [NCCH 3 ) 4 ] (BF 4 ) 2 (from Aldrich) and 1,3-bis (diphenylphosphino) propane ( ⁇ dppp) (from Strem Chemicals) according to FY Xu,
  • the polymerizations were carried out in 50 or 100 ml steel autoclaves by stirring at room temperature and a CO pressure of 6.1 ⁇ 10 6 Pa in 25 ml dichloromethane.
  • the amount of the activator (methanol) added in each case, the amount of ⁇ -olefin and catalyst used and the reaction conditions can be found in Table 1.
  • the polymerization was terminated by degassing the autoclave and adding an excess of methanol. The solvent was then removed, the residue was taken up in dichloromethane and catalyst residues were removed via a short silica gel column.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Polyethers (AREA)

Abstract

Lineare alternierende α-Olefin/CO-Copolymere, erhältlich durch Polymerisation eines Monomerengemisches, enthaltend: a) Kohlenmonoxid; b) 1-Alkene, die mit einer kovalent gebundenen Kronenether- oder Kryptandeinheit A, enthaltend mindestens 5-Heteroatome, ausgewählt aus der Gruppe, bestehend aus Stickstoff, Sauerstoff, Schwefel und/oder Selen, im Polyheteroatomgerüst funktionalisiert sind, und ggf. c) C2 - bis C24-1-Alkene.

Description

Lineare alternierende funktionalisierte α-Olefin/CO-Copolymere und deren Verwendung f r die Herstellung von ionenselektiven Membranen
Beschreibung
Die vorliegende Erfindung betrifft lineare alternierende α-Ole- fin/CO-Copolymere, erhaltlich durch Polymerisation eines Monomerengemisches, enthaltend
a) Kohlenmonoxid,
b) 1-Alkene, die mit einer kovalent gebundenen Kronenether- oder Kryptandeinheit A, enthaltend mindestens 5-Heteroatome, ausgewählt aus der Gruppe, bestehend aus Stickstoff, Sauerstoff, Schwefel oder Selen, im Polyheteroatomger st funktionalisiert sind, und ggf.
c) C2- bis C24-1-Alkene.
Des Weiteren betrifft die Erfindung ein Verfahren zur Herstellung der funktionalisierten α-Olefin/CO-Copolymere sowie deren Verwendung für die Herstellung von Formkorpern, Folien, Faser^ und Beschichtungen. Außerdem betrifft die Erfindung ionenselektive Membranen, herstellbar aus den funktionalisierten α-Olefin/ CO-Copolymeren und deren Verwendung als Bestandteil von ionenselektiven Elektroden oder chemisch modifizierten Feldeffekt-Transistoren.
Binare und ternare α-Olefin/CO-Copolymere (Kohlenmonoxidcopoly- mere) finden sich in der Fachliteratur hinlänglich beschrieben. Beispielsweise offenbart die EP-B 121 965 Ethen/CO-Copolymere, die EP-A 416 681 Ethen/Propen/CO-Copolymere. Ebenso wie Kohlen- monoxideopolymere aus Kohlenmonoxid und 1-Buten bzw. 1-Hexen (vgl. US 5 352 767) finden sich auch bereits Kohlenmonoxidter- polymere mit langerkettigeren α-Olefinen beschrieben (vgl. unveröffentlichte Deutsche Patentanmeldung 19649072.3).
Wahrend sich herkömmliche Kohlenmonoxid/Ethen-Copolymere durch ihre Harte, aber auch durch Sprodigkeit auszeichnen und mittlerweile als technische Kunststoffe zum Einsatz kommen, gelingt bei Kohlenmonoxidcopolymeren mit hohen mittleren Molekulargewichten Mw (oberhalb 80000 g/mol) (vgl. die unveröffentlichte deutsche Patentanmeldung 196 10 358.4) oder mit Kohlenmonoxidcopolymeren, enthaltend langkettige α-Olefineinheiten (> Cζ ) auch ein Zugang zu Formmassen mit einem thermoplastisch elastomeren Eigenschafts- profil, d.h. zu Copolymeren, deren Glasübergangstemperaturwerte (Tg-Werte) kleiner 20°C sind.
Die Einsatzbreite der bekannten Kohlenmonoxid-Copolymere wird durch die Auswahl der sie bildenden Monomerkomponenten in engen Grenzen gehalten.
Es wäre daher wünschenswert, gerade solche Monomerkomponenten einbauen zu können, die helfen, die auf das Kohlenmonoxidgerüst zurückgehenden Nachteile, z.B. die Sprödigkeit, abzustellen und die gleichzeitig die Möglichkeit bieten, unter Ausnutzung der durch eben dieses Grundgerüst vorgegebenen Eigenschaften, d.h. hydrophobes Verhalten zu zeigen und dabei trotzdem relativ polar zu sein, zu neuen Formmassen zu gelangen, die auch für komplexe Spezialanwendungen geeignet sind.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, neue Kohlenmonoxidcopolymere zu finden, die bereits aufgrund der Auswahl der Monomerkomponenten sich im Produkt durch eine Kombina- tion an aufeinander abgestimmten Eigenschaften auszeichnen und daher für komplexe Anwendungen in Frage kommen, insbesondere lag der Erfindung die Aufgabe zugrunde, ionenselektive Membranen zur Verfügung zu stellen, die im wesentlichen aus den erfindungsgemäßen Kohlenmonoxidcopolymeren bestehen oder diese als essentiellen Bestandteil enthalten und die die geschilderten Nachteile derartiger Membranen oder Membransysteme nicht aufweisen.
Demgemäß wurden die eingangs beschriebenen Kohlenmonoxidcopolyme- ren gefunden. Des weiteren wurde ein Verfahren zur Herstellung der erfindungsgemäßen Kohlenmonoxidcopolymeren sowie deren Verwendung für die Herstellung von Fasern, Formkörpern, Beschichtungen Folien und ionenselektiven Membranen gefunden. Außerdem wurden ionenselektive Membranen auf der Basis von den erfindungs- gemäßen Kohlenmonoxidcopolymeren sowie deren Verwendung als Bestandteil von ionenselektiven Elektroden oder chemisch modifizierten Feldeffekt-Transistoren gefunden.
Bevorzugt sind α-Olefin/CO-Copolymere, die herstellbar sind durch Copolymerisation der Komponenten
a) Kohlenmonoxid,
b) ein 1-Alken, das mit einer kovalent gebundenen Kronenether- einheit A, enthaltend 5 bis 10 Sauerstoffatome, funktionali- siert ist, und c ) ein C2 - bis C2o-l-Alken .
Besonders bevorzugt sind α-Olefin/CO-Copolymere, die erhaltlich sind durch Copolymerisation von Kohlenmonoxid (a) ) , einem funk- tionalisierten 1-Alken (b) ) der allgemeinen Formel (I)
CH2= CH(CH2)qO(0)C A (I) ,
worin
Figure imgf000005_0001
G = (CH2)kO)p (Q 0)ι (CH2 ) '
Figure imgf000005_0002
worin die Substituenten und Indizes die folgende Bedeutung haben:
Q = 1,2-Cyclohexyl oder 1,2-Phenyl,
k = unabhängig voneinander 2 , 3 oder 4 ,
P = 1, 2, 3 oder 4,
1 = 0 oder 1 ,
r = 1, 2, 3 oder 4 und
q = eine ganze Zahl im Bereich von 4 bis 24, insbesondere im Bereich von 6 bis 16
und einem C3- bis Cιβ-1-Alken (c) )
Die erfindungsgemaßen Copolymere sind aus Einheiten aufgebaut, die auf die Monomeren Kohlenmonoxid und eine oder mehrere α-olefinisch ungesättigte Verbindungen zurückgehen. In den erfindungsgemaßen binaren Copolymeren liegen die unterschiedli- chen Monomereinheiten in der Regel streng alternierend vor. Bei den ternaren und höheren Copolymersystemen ist die Abfolge von Kohlenmonoxid und Olefinkomponente in der Regel ebenfalls streng alternierend, wobei die Kronenether-funktionalisierten Alkenmonomeren in Bezug auf die in Betracht kommenden Olefineinbaupositio- nen im wesentlichen in statistischer Verteilung in die lineare Copolymerkette eingebaut werden.
Als α-olefinisch ungesättigte Verbindungen b) kommen grundsatzlich alle mit einer kovalent gebundenen Kronenethereinheit funktionalisierten Monomere dieser Verbindungsklasse in Betracht.
Als α-olefinisch ungesättigter Anteil geeignet sind zum Beispiel der Propenyl-, 1-Butenyl-, 1-Pentenyl-, 1-Hexenyl-, 1-Heptenyl-, 1-Octenyl-, 1-Nonenyl-, 1-Decenyl-, 1-Dodecenyl- , 1-Hexadecenyl-, 1-Octadecenyl oder der 1-Eicosaenylrest . Bevorzugt werden Verbindungen b) eingesetzt, deren α-olefinisch ungesättigter Anteil zurückgeht auf C5- bis Ci8~l-Alkenylreste, besonders bevorzugt sind C - bis Cι4-1-Alkenylreste.
Grundsätzlich fallen unter Kronenether im Sinne der vorliegenden Erfindung neben Kronenethern auch Kryptanden, Podanden und Coro- nanden, wie sie z.B. in F. Vogtle, Supramolekulare Chemie, B.G. Teubner, Stuttgart, 1989) beschrieben sind. Unter einer Kronene- thereinheit sind z.B. solche macrocyclischen Polyetherverbindun- gen zu verstehen, die über eine sich wiederholende Einheit -0-(CH2)h- verfugen (mit h = 2 , 3 oder 4). Beispielsweise fallen hierunter die in C.J. Pedersen, J. A . Chem. Soc. 1967, 89, 7017-7036 beschriebenen cyclischen Polyether.
Zu den Kryptanden sind grundsatzlich alle bicyclischen poly- heteroaromatischen Macrocyclen und insbesondere alle makropoly- cyclischen Azapolyether, in denen zwei Bruckenkopf-Stickstoff- atome durch ein oder mehrere Sauerstoffatome enthaltende Br cken verbunden sind, zu zahlen. Neben anderen sind als geeignete Kryptanden zu nennen: [2.2.2]-, [2.2.1]-, [2.1.1]- und [l.l.l]-Kryptand (bzgl. der Nomenklatur von Kryptanden siehe F. Vόgtle, Supramolekulare Chemie, B.G. Teubner, Stuttgart, 1989, S. 47) .
Bevorzugt sind Kronenethereinheiten A mit 5 bis 10 Sauerstoff- atomen und Kryptandeinheiten A, enthaltend 3 bis 6 Sauerstoff- atome, wobei auch Benzol- und/oder Cyclohexanringe, zumeist über Verknüpfungen an benachbarten Ringkohlenstoffatomen, in das Macrocyclengerust integriert sein können.
Die Einheiten A sind kovalent, in der Regel über eine Einfach- bindung mit dem olefinisch ungesättigten Monomer verbunden. Als verbruckende Strukturelemente können zum Beispiel Ether-, Ester-, Amid- oder Carbamatgruppen oder eine Kohlenstoff/Kohlenstoff in- düng verwendet werden. Eine gangige Verbindungseinheit ist die Estergruppe, wobei der diese Gruppe bildende Carbonsaurerest bevorzugt der Komponente A und die Hydroxygruppe der α-olefinisch ungesättigten Monomereinheit entstammt.
Demgemäß können geeignete Verbindungen b) formal aus Alkoholen, wie Allylalkohol, But-3-en-l-ol, Pent-4-en-l-ol, Hex-5-en-l-ol, Hept-6-en-l-ol, Oct-7-en-l-ol, Non-8-en-l-ol, Dec-8-en-l-ol, Dodec-11-en-l-ol , Hexadec-15-en-l-ol , Octadec-17-en-l-ol oder Eicos-19-en-l-ol, und mit Carbonsauregruppen versehenen Kronenethern oder Kryptanden abgeleitet werden.
Einen Kronenether mit einer kovalent gebundenen Carbonsauregruppe erhalt man zum Beispiel durch Acylierung von Benzo-15-krone-5 (bzgl. Nomenklatur und Synthese, siehe V. Percec, R. Rodenhouse, Macromolecules 1989, 22, 4408) und anschließender Oxidation mittels Natriu hypobromit (vgl. M. Bourgoin, K.H. Wong, J.Y. Hui, J. Smid, J. Am. Chem. Soc. 1975, 97, 3462).
Für die Verknüpfung von Carbonsaure- und Alkoholkomponente zur Herstellung der Verbindung b) kann gleichfalls auf etablierte Methoden zurückgegriffen werden (vgl. Vogel 's Handbook of Practical Organic Chemistry, 5. Aufl., Longman Scientific & Technical, 1989) .
Bevorzugte esterverbruckte olefinisch ungesättigte Verbindungen b) fallen zum Beispiel unter die allgemeine Formel (I)
CH2= CH(CH2)qO(0)C A (I)
worin
Figure imgf000007_0001
G = -4^((CH2)kO) (Q — 0)ι (CH2)k-
worin die Substituenten und Indizes die folgende Bedeutung haben: Q = 1 , 2 -Cyclohexyl oder 1 , 2 -Phenyl ,
k = unabhängig voneinander 2 , 3 oder 4 ,
P = 1 , 2 , 3 oder 4 ,
1 = 0 oder 1 ,
r = 1, 2, 3 oder 4 und
q = eine ganze Zahl im Bereich von 4 bis 24, insbesondere 6 bis 16
bedeuten.
Besonders bevorzugt sind von den vorgenannten Verbindungen jene, die unter die allgemeine Formel (I) fallen
CH2= CH(CH2)qO(0)C A
Figure imgf000008_0001
worin die Kronenetherfunktionalitat den nachfolgenden Bedingungen genügt:
Figure imgf000008_0002
G = (CH2CH20)3 (CH2CH2)
Als geeignete Monomerverbindung b) für die Herstellung der erfindungsgemaßen Copolymeren kommt demgemäß zum Beispiel 4'-(Un- dec-10-enylcarboxylat)benzo-15-krone-5 in Betracht.
Als Verbindungen b) kommen aber nicht nur einheitliche Monomer- Chargen in Frage, sondern ebenfalls Verbindungsgemische, wobei es unerheblich ist, ob die Unterschiede im α-olefmisch ungesättigten Monomerrest oder be der Kronenether- oder Kryptandkomponente oder in beiden Teilen gleichzeitig auftreten. Die beschriebenen funktionalisierten 1-Alkene b) können mit Kohlenmonoxid zu den erfindungsgemäßen linearen alternierenden Copolymeren umgesetzt werden.
Darüber hinaus sind ebenfalls ternare und höhere Copolymersysteme enthaltend funktionalisierte 1-Alkene b) zuganglich.
Für den Fall erfindungsgemaßer ternarer Copolymere kommen als weitere Monomerkomponente c) grundsatzlich alle α-olefinisch ungesättigten Verbindungen dieser Verbindungsklasse in Betracht.
Geeignet als Monomere c) für nicht -binare Copolymere, insbesondere ternare Kohlenmonoxidcopolymere sind insbesondere C2- bis C24-1-Alkene.
Beispielsweise seien genannt Ethen, Propen, 1-Buten, 1-Penten, 1-Hexen, 1-Hepten, 1-Octen, 1-Nonen, 1-Decen, 1-Dodecen, 1-Hexa- decen, 1-Octadecen oder 1-Eicosen. Bevorzugt werden Propen, 1-Bu- ten, 1-Penten, 1-Hexen- 1-Hepten, 1-Octen, 1-Nonen, 1-Decen, 1-Dodecen, 1-Hexadecen und ein 1-Octadecen, insbesondere Propen, 1-Hexen, 1-Dodecen und 1-Octadecen eingesetzt. Besonders bevorzugt werden unter den letztgenannten Verbindungen Cß- bis Cι2-1-Alkene eingesetzt.
Außer den bereits genannten Alkenen eignen sich als olefinisch ungesättigte Verbindungen c) auch konjugierte oder isolierte Cς- bis C2o-Diene, beispielsweise 1,4-Hexadien und 1 , 5-Hexadien.
Bevorzugte Terpolymere gehen zurück auf Kohlenmonoxid (a) ) , eine Verbindung (b) ) , die unter die allgemeinen Formel (I) fallt
CH2= CH(CH2)gO(0)C A (I]
worin
Figure imgf000009_0001
G = (CH2)k
Figure imgf000009_0002
worin die Substituenten und Indizes die folgende Bedeutung haben:
Q = 1,2-Cyclohexyl oder 1,2-Phenyl,
k = unabhängig voneinander 2, 3 oder 4,
p = 1, 2, 3 oder 4 ,
1 = 0 oder 1,
r = 1, 2, 3 oder 4 und
q = eine ganze Zahl im Bereich von 4 bis 24, insbesondere von 6 bis 16
und ein C3- bis Ci8-1-Alken (c) ) .
In einer besonders bevorzugten Ausfuhrungsform werden Terpolymere eingesetzt, die herstellbar sind aus Kohlenmonoxid, einer Verbindung der allgemeinen Formel (I)
CH2= CH(CH2)qO(0)C A (I) ,
mit q = 8 oder 9
worin
Figure imgf000010_0001
G = (CH2CH20)3 (CH2CH2)-
und einem Cs~ bis Ci2~Alken.
Unter den ternären Kohlenmonoxidcopolymeren sind insbesondere die Systeme basierend auf Kohlenmonoxid/Propen/4 ' - (Undec-10-enylcar- boxylat)benzo-15-krone-5 , Kohlenmonoxid/l-Hexen/4 ' - (Undec-10- enylcarboxylat)benzo-15-krone-5, Kohlenmonoxid/1-Dodecen/4 ' - (Un- dec-10-enylcarboxylat)benzo-15-krone-5 und Kohlenmonoxid/1-Dode- cadecen/4 ' - (Undec-10-enylcarboxylat)benzo-15-krone-5 sowie ins- besondere Kohlenmonoxid/l-Hexen/4' - (Undec-lO-enylcarboxylat)ben- zo-15-krone-5 und Kohlenmonoxid/1-Dodecen/4 ' - (Undec-10-enylcarbo- xylat)benzo-15-krone-5 zu nennen.
Die mittleren Molekulargewichte Mw (gemessen mit der Methode der Gelpermeationschromatographie (GPC) bei 25°C mit Microstyragel (Waters) als Saulenmaterial und Chloroform als Losungsmittel gegen Polystyrol-Standard) der erfindungsgemaßen Kohlenmonoxidcopo- lymere liegen üblicherweise im Bereich von 5000 bis 200000 g/mol, es können aber auch Copolymere mit mittleren Molekulargewichten bis 300000 g/mol und sogar 400000 g/mol erhalten werden.
Wahrend sich mit kurzkettigeren Monomerkomponenten c) , wie Propen, in der Regel ohne weiteres mittlere Molekulargewichte Mw großer 100000 g/mol realisieren lassen, liegen die in Gegenwart von langkettigen Alkenen, wie l-Octadecen, erzielten Resultate allerdings zumeist darunter.
Die erfindungsgemaßen Terpolymere zeichnen sich u.a. durch ihre thermoplastisch elastomeren Eigenschaften aus und verfugen demgemäß über Tg-Werte im Bereich von 20 bis -90°C. Beispielhaft seien als Kohlenmonoxidcopolymere mit besonders geeignetem thermoplastisch elastomeren Eigenschaftsprofil diejenigen Terpolymere hervorgehoben, deren Komponente b) auf ein mit Benzo-15-krone-5 funktionalisiertes α-Olefin und deren Komponente c) auf ein C - bis Ci2-Alken zurückgehen.
Unter Terpolymere gemäß der vorliegenden Erfindung sind auch bereits solche Verbindungen zu verstehen, bei denen der molare Anteil der Komponente b) am Gesamtcopolymer bei 0,01 mol-% liegt. In der Regel sind aber molare Anteile von 5 oder 10 % oder auch darüber ohne weiteres zuganglich.
Der Anteil an Kopf-Schwanz verknüpften Einheiten liegt bei den erfindungsgemaßen Terpolymeren im allgemeinen im Bereich von 1 bis 80 % und befindet sich für Kohlenmonoxid-Copolymere, enthaltend z.B. eine Benzo-15-Krone-5-Funktionalitat und C3- bis Cι2-1-Alkene, üblicherweise im Bereich von 40 bis 70 %.
Die Molekulargewichtsverteilung Mw/Mn (Gewichtsmittelwert/Zahlenmittelwert) der erfindungsgemaßen Copolymere, gemessen mit der Methode der Gelpermeationschromatographie (GPC) analog vorangegangener Beschreibung, betragt im allgemeinen 1,2 bis 4, nimmt jedoch bevorzugt einen Wert kleiner als 2,5 an. Das molare Verhältnis von Kohlenmonoxid zur Summe der auf die olefinisch ungesättigten Monomeren zurückzuführenden Struktureinheiten in den erfindungsgemäßen binären und höheren Kohlenmonoxidcopolymeren liegt im allgemeinen bei 1 : 1.
Die erfindungsgemäßen Polymermaterialien besitzen aufgrund ihrer schlagzähmodifizierenden Eigenschaften und ihres biokompatiblen Verhaltens vielfältige Anwendungsmöglichkeiten, z.B. im Bereich der Polymerblend-Technologie oder der Medizintechnik.
Zur Herstellung der erfindungsgemäßen linearen, thermoplastischen, elastomeren Copolymere kann Kohlenmonoxid mit olefinisch ungesättigten Verbindungen in einem praktisch alkohol- oder wasserfreien Polymerisa ionsmedium in Gegenwart eines Kataly- sators copolymerisiert werden, dessen aktive Masse gebildet wird aus
A' ) einem Metallkomplex der allgemeinen Formel (II)
2®
R1 mm R2
E1 ^ 7
Z m X1> (II)
^ L2
R3 R4 in der die hervorgehobenen Pfeile eine koordinative Bindung darstellen und die Substituenten und Indizes folgende Bedeutung haben:
M ein Metall aus der Gruppe VIIIB des Periodensystems der Elemente
E1, E2 ein Element aus der Gruppe VA des Periodensystems der Elemente,
eine verbrückende Struktureinheit aus einer, zwei, drei oder vier Substruktureinheiten von Elementen der Gruppe IVA, VA, VIA des Periodensystems der Elemente,
R1 bis R4 Substituenten, ausgewählt aus der Gruppe bestehend aus Cι~ bis C2o_kohlenstofforganischen und C3- bis C3o-siliciumorganischen Resten, wobei die Reste ein Element oder mehrere Elemente der Gruppe IVA, VA, VIA und VIIA des Periodensystems der Elemente enthalten können,
L1 , L2 formal ungeladene Lewis-Basenliganden
X ein- oder zweiwertige Anionen
m, n 1 oder 2 ,
wobei m x n = 2
B' ) einer Aktivatorkomponente, welche eine Hydroxylgruppe im Molekül enthalt, die bezogen auf M in (II), in einer Menge von 0 bis 1500 Molaquivalente eingesetzt wird.
Als ein weiteres Verfahren zur Herstellung der erfindungsgemaßen linearen, thermoplastischen, elastomeren Copolymere kommt die Copolymerisation von Kohlenmonoxid mit olefinisch ungesättigten Verbindungen in einem praktisch alkohol- oder wasserfreien Polymerisationsmedium in Gegenwart eines Katalysators in Frage, dessen aktive Masse gebildet wird aus
i) einem Salz eines Metalls M der Gruppe VIIIB des Periodensystems der Elemente,
ii) einer Verbindung oder mehreren Verbindungen ausgewählt aus der Gruppe der Protonensauren und Lewissauren,
iii) einer Chelatverbindung der allgemeinen Formel (III)
R1R2E1-Z-E2R3R4 (III),
in der die Substituenten und Indizes folgende Bedeutung haben:
E1 , E2 ein Element aus der Gruppe VA des Periodensystems der Elemente,
Z eine verbruckende Struktureinheit aus einer, zwei, drei oder vier Substruktureinheiten von
Elementen der Gruppe IVA, VA, VIA des Periodensystems der Elemente,
R1 bis R4 Substituenten ausgewählt aus der Gruppe der Ci- bis C20-kohlenstofforganischen und C3- bis
C3o-siliciumorganischen Reste, wobei die Reste ein Element oder mehrere Elemente der Gruppe IVA, VA, VIA und VIIA des Periodensystems der Elemente enthalten können,
d) einer Aktivatorkomponente B' ) , welche eine Hydroxygruppe im Molekül enthält, die, bezogen auf M in (II), in einer Menge von 0 bis 1500 Molaquivalenten eingesetzt wird.
Die Polymerisationen zur Herstellung der erfindungsgemäßen Kohlenmonoxid-Copolymeren können sowohl ansatzweise als auch kontinuierlich in Gegenwart eines Polymerisationskatalysators aus A'), bzw. i), ii), iii) und fakultativ B') bzw. iv) durchgeführt werden.
Als Polymerisationskatalysatoren kommen Metallverbindungen der achten Nebengruppe des Periodensystems der Elemente (VIIIB) in Frage, die als definierte Metallkomplexe (II) vorliegen oder in situ aus einem Metallsalz i) der Metalle der Gruppe VIIIB des Periodensystems der Elemente, Protonen- und/oder Lewissauren ii) und einer Chelatverbindung iii) der Formel (III) gebildet werden können. Gegebenenfalls können den Metallverbindungen Aktivatoren B' ) bzw. iv) zugesetzt werden.
Als Metalle M eignen sich die Metalle der Gruppe VIIIB des Periodensystems der Elemente, also neben Eisen, Cobalt und Nickel vornehmlich die Platinmetalle wie Ruthenium, Rhodium, Osmium, Iridium und Platin sowie ganz besonders Palladium. Die Metalle Nickel, Palladium und Platin liegen im allgemeinen formal zweifach positiv geladen, die Metalle Cobalt, Rhodium und Iridium im allgemeinen formal einfach positiv geladen und die Metalle Eisen, Ruthenium und Osmium im allgemeinen formal ungeladen in den Komplexen vor.
Als Elemente E1 und E2 des Chelatliganden, im folgenden auch Chelatverbindung (III) genannt, kommen die Elemente der V. Hauptgruppe des Periodensystems der Elemente (Gruppe VA) , also Stickstoff, Phosphor, Arsen, Antimon oder Bismut in Betracht. Besonders geeignet sind Stickstoff oder Phosphor, insbesondere Phosphor. Der Chelatligand oder die Chelatverbindung (III) kann unterschiedliche Elemente E1 und E2 enthalten, so zum Beispiel Stickstoff und Phosphor, vorzugsweise enthalt er/sie jedoch gleiche Elemente E1 und E2 und insbesondere sind E1 und E2 Phosphor .
Die verbrückende Struktureinheit Z ist eine Atomgruppierung, die die beiden Elemente E1 und E2 miteinander verbindet. Substruktur- einheiten aus einem Atom oder mehreren miteinander verbundenen Atomen aus der Gruppe IVA, VA oder VIA des Periodensystems der Elemente bilden üblicherweise die Brücke zwischen E1 und E2. Mögliche freie Valenzen dieser Bruckenatome können mannigfaltig abgesattigt sein, so zum Beispiel durch Substitution mit Wasserstoff oder mit Elementen aus der Gruppe IVA, VA, VIA oder VIIA des Periodensystems der Elemente. Diese Substituenten können untereinander oder mit dem Bruckenatom Ringstrukturen bilden.
Gut geeignete verbruckende Struktureinheiten Z sind solche mit einem, zwei , drei oder vier Elementen aus der Gruppe IVA des Periodensystems der Elemente wie Methylen (-CH2-) , 1,2-Ethylen (-CH2-CH2-) , 1,3-Propylen (-CH2-CH2-CH2-) , 1,4-Butylen, 1,3-Di- silapropylen (-R5R6Si-CH2-SiR5R6- , worin R5, R6 Ci- bis Cι0-Alkyl, C6- bis Cio-Aryl bedeuten), Ethyliden (CH3(H)C=), 2-Propyliden ((CH3)2C=), Diphenylmethylen ((C6H5)2C=) oder ortho-Phenylen.
Als besonders geeignete verbruckende Struktureinheiten seien 1,2-Ethylen, 1,3-Propylen und 1,4-Butylen genannt.
Als kohlenstofforganische Reste R1 bis R4 kommen, unabhängig von- einander, aliphatische sowie cycloaliphatische und aromatische mit 1 bis 20 C-Atomen in Betracht, beispielsweise die Methyl-, Ethyl-, 1-Propyl-, 1-Butyl-, 1-Pentyl, 1-Hexyl- und 1-Octylgruppe sowie deren Strukturanaloga. Ferner sind lineare Arylalkylgruppen mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest geeignet, wie Benzyl. Als weitere Reste R1 bis R4 seien Arylreste genannt, zum Beispiel Tolyl , Anisyl, vorzugsweise ortho-Anisyl, Xylyl und andere substituierte Phenylgruppen, insbesondere Phenyl.
Als cycloaliphatische Reste kommen C3- bis Cio-monocyclische Systeme wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl in Betracht, besonders bevorzugt ist Cyclohexyl.
Als verzweigte aliphatische Reste eignen sich C3- bis C20-» vorzugsweise C3- bis Ci2-Alkylreste, wie die i-Propyl-, i-Butyl-, s-Butyl-, Neopentyl- und t-Butylgruppe.
Besonders geeignete verzweigte aliphatische Reste sind die t-Butylgruppe, die i-Propylgruppe und die s-Butylgruppe.
Auch Alkylgruppen mit weiter außen liegender Verzweigung sind als Substituenten R1 bis R4 gut geeignet, wie die i-Butyl-, die 3-Methyl-but-2-yl- und 4-Methylpentylgruppe.
Die Substituenten R1 bis R4 können auch, unabhängig voneinander, Atome aus der Gruppe IVA, VA, VIA oder VIIA des Periodensystems der Elemente enthalten, zum Beispiel Halogen, Sauerstoff, Schwefel, Stickstoff, Silicium, hier beispielsweise die Bis(tri- methylsilyDmethylgruppe. Auch funktioneile Gruppen, die sich unter den Polymerisationsbedingungen inert verhalten, kommen in diesem Zusammenhang in Betracht .
Bevorzugte Heterosubstituenten R1 bis R4 sind C3- bis C3o-siliciumorganische Reste, das heißt tetravalente Silicium- atome, die einerseits an E1 oder E2 gebunden sind und deren übrige Valenzen mit drei kohlenstofforganischen Resten wie Alkyl- und/ oder Arylresten abgesättigt sind, wobei die Summe der Kohlenstoffatome dieser drei an Silicium gebundenen Reste im Bereich von drei bis dreißig liegt. Beispielsweise seien genannt die Tri- methylsilyl-, t-Butyldimethylsilyl- oder Triphenylsilylgruppe, insbesondere die Trimethylsilylgruppe.
Vorzugsweise verwendet man als Chelatliganden oder Chelatverbindung (III), 1, 2-Bis (diphenylphosphino) ethan, 1, 3-Bis (diphenylphosphino) propan oder 1, 4-Bis (diphenylphosphino )butan.
Ganz besonders bevorzugte Verbindungen als Chelatligand oder
Chelatverbindung (III) sind 1 , 3-Bis (diphenylphosphino)propan und 1, 4-Bis (diphenylphosphino) utan.
Als formal ungeladene Liganden L1, L2 sind generell Lewisbasen geeignet, also Verbindungen, vorzugsweise organische Verbindungen mit mindestens einem freien Elektronenpaar oder Wasser.
Gut geeignet sind Lewisbasen, deren freies Elektronenpaar oder deren freie Elektronenpaare sich an einem Stickstoff- oder Sauer- stoffatom befinden, also Nitrile, R-CN, Ketone, Ether oder vorzugsweise Wasser.
Als geeignete Lewisbasen seien genannt Ci- bis Cio-Nitrile wie Acetonitril, Propionitril, Benzonitril oder C3- bis Cio-Ketone wie Aceton, Acetylaceton oder aber C2- bis Cio-Ether, wie Dimethyl- ether, Diethylether oder Tetrahydrofuran.
Insbesondere für Katalysatoren, die keines Aktivators B') bzw. iv) bedürfen sind als Liganden L1 , L2 in (II) solche der Formel (IV)
T-OH (IV)
geeignet. Hierin bedeutet T Wasserstoff oder ein mit einer lewis- basischen Gruppe versehener Ci- bis Ci5-kohlenstofforganischer
Rest. Gut geeignete Cι~ bis Ci5-kohlenstofforganische Reste T sind beispielsweise lineare oder auch cyclische CH2-)-n-Einheiten, worin n 1 bis 10 bedeutet, also Methylen, 1,2-Ethylen, 1, 3-Propylen, 1,4-Butylen, 1, 5-Pentylen, 1,6-Hexylen, 1, 7-Heptylen, 1,8-Octylen, 1,9-Nonylen oder 1, 10-Decylen.
Als lewisbasische Gruppe kommen Ether, Ester, Keton, Amin, Phosphan und insbesondere Nitril (-C≡ N) oder tertiäres Amin in Frage.
Gut geeignete Verbindungen T-OH sind zum Beispiel Wasser oder α-ω-Hydroxynitrile wie NC CH-)-nOH mit n=l bis 10 oder (2-Hydroxymethyl) tetrahydrofuran, sowie (2-Hydroxymethyl) (N-organo)pyrrolidine (IVa) oder (2-Hydroxymethyl) (N-organo) - pipe idine (IVb)
Figure imgf000017_0001
R' R'
(IVa) (IVb)
worin R' Ci- bis Cio-Alkyl oder C3- bis Cι0-Cycloalkyl bedeutet, beispielsweise Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, Cyclopentyl, Cyclohexyl. Weiterhin kann R' auch Cß- bis Cio-Aryl, wie Phenyl, Naphthyl bedeuten.
Im allgemeinen sind die Liganden T-OH, außer Wasser, über die bereits definierte lewisbasische Gruppe an das Metall M in (II) gebunden.
Die Wahl der Anionen X ist im allgemeinen unkritisch. Geeignete Anionen X in (II) sind beispielsweise Perchlorat, Sulfat, Phosphat, Nitrat und Carboxylate, wie beispielsweise Acetat, Tri- fluoracetat, Trichloracetat, Propionat, Oxalat, Citrat, Benzoat, sowie konjugierte Anionen von Organosulfonsäuren, zum Beispiel Methylsulfonat, Trifluormethylsulfonat und p-Toluolsulfonat , weiterhin Tetrafluoroborat, Tetraphenylborat, Tetrakis (pentafluoro- phenyl ) borat , Hexafluorophosphat, Hexa luoroarsenat oder Hexa- fluoroantimonat . Vorzugsweise verwendet man Perchlorat, Trifluor- acetat, Sulfonate wie Methylsulfonat, Trifluormethylsulfonat , p-Toluolsulfonat, Tetrafluoroborat oder Hexafluorophosphat und insbesondere Trifluoracetat , Perchlorat oder p-Toluolsulfonat als Anion X.
Als besonders gut geeignete Metallkomplexe (II) seien genannt (Bis-1,3 (diphenylphosphino)propan-palladium-bis-aceto- nitril) bis (tetrafluoroborat) (≤ [Pd(dppρ) (NCCH3) 2] (BF ) 2, dppp = 1, 3 (Diphenylphosphino)propan) , (Bis-1, 3 (diphenyl- phosphino) -propan-palladium-bis-aquo)bis (tetrafluoroborat) , Bis-1, 3 (Diphenylphosphino) -propan-palladium-bis (3-hydroxypropio- nitril) bis (tetrafluoroborat) , (Bis-1, 4 (diphenylphosphino) - butan-palladium-bis-acetonitril) bis (tetrafluoroborat ) und (Bis-1, 4- (diphenylphosphino) -butan-palladium-bis-aquo)bis- (tetrafluoroborat) .
Die Herstellung der Metallkomplexe der allgemeinen Formel (II) erfolgt im allgemeinen nach literaturbekannten Verfahren, wie in Makromol. Chem. 1993, 194, S. 2579 beschrieben. Üblicherweise können Tetrakis-Ligand-Metallkomplexe, wie Tetrakis-Acetonitril- palladiumbistetrafluoroborat , mit den Chelatverbindungen (III) und den Liganden L1, L2 oder TOH zu den Metallkomplexen (II) umgesetzt werden. Ein bevorzugtes Verfahren zur Herstellung von Aquo- komplexen (II) ist die Umsetzung der Chelatphosphan-Acetonitril- Metallkomplexe mit Wasser. Die Reaktion wird im allgemeinen in einem Losungsmittel, beispielsweise Dichlormethan, Acetonitril, Wasser, bei Temperaturen im Bereich von -78 bis 40°C durchgeführt.
Bei der in-situ Generierung der Polymerisationskatalysatoren setzt man die Metalle M üblicherweise zweiwertig in Form ihrer Salze ein und bringt sie mit der Chelatverbindung iii) der allgemeinen Formel (III) und den Sauren ii) in Berührung. Dies kann vor dem Kontakt der so erhaltlichen katalytisch aktiven Masse mit dem Monomeren und gegebenenfalls weiterem Aktivator iv) geschehen, im allgemeinen außerhalb des Polymerisationsreaktors. Die Umsetzung der Einzelkomponenten Metallsalz i) , Chelatverbindung iii) der allgemeinen Formel (III), Saure ii) und gegebenenfalls Aktivatorkomponente iv) kann aber auch im Polymerisations- reaktor, in Gegenwart der Monomeren, durchgeführt werden.
Als Salze von üblicherweise zweiwertigen Metallen M sind Halogenide, Sulfate, Phosphate, Nitrate und Carboxylate, wie Acetate, Propionate, Oxalate, Citrate, Benzoate, sowie Sulfon- sauresalze wie zum Beispiel Methylsulfonate, Trifluormethylsulfonat und p-Toluolsulfonat geeignet. Vorzugsweise verwendet man Carboxylate, Sulfonsaurederivate und insbesondere Acetate.
Besonders geeignete Katalysatorkomponenten i) sind Palladium- dicarboxylate, vorzugsweise Palladiumdiacetat , Palladiumdi- propionat, Palladiumbis (trifluoracetat ) und Palladiumoxalat , sowie Palladiumsulfonate, vorzugsweise Palladiumbis (trifluor- methansulfona ) , Palladiumbis (methansulfonat ) , Palladiumbis (p-to- luolsulfonat) , insbesondere verwendet man Palladiumdiacetat. Als Katalysatorbestandteile ii) können Lewis- und Protonensauren und deren Mischungen eingesetzt werden.
Geeignete Protonensauren ii) sind starke Mineralsauren, wie Schwefelsaure und Perchlorsaure, sowie starke organische Sauren, beispielsweise Trichlor- und Trifluoressigsaure, sowie die Sulfonsauren Methansulfonsaure, p-Toluolsulfonsaure und Benzol- sulfonsaure, also jeweils solche Sauren, die vorzugsweise einen pKa-Wert kleiner als 3 aufweisen.
Weiterhin sind die sauer wirkenden Salze starker Sauren mit schwachen Basen, wie beispielsweise Ammoniumsalze der vorher genannten Sauren geeignet .
Beispiele für geeignete Lewissauren sind Halogenide der Elemente der Gruppe IIIA des Periodensystems der Elemente, zum Beispiel Bortrifluorid, Bortrichlorid, Aluminiumtπfluorid, Aluminium- trichlorid, Halogenide der Elemente der Gruppe VA des Periodensystems der Elemente, wie Phosphorpentafluorid, Antimonpenta- fluorid, sowie Halogenide der Metalle der Nebengruppe IVB des Periodensystems der Elemente, wie beispielsweise Titantetrachlorid oder Zirconiumtetrachlorid. Weitere geeignete Lewissauren sind organisch substituierte Lewissauren, zum Beispiel Tris (pentafluorphenyDboran.
Vorzugsweise verwendet man als Lewis-Sauren Bortrifluorid, Antimonpentafluorid oder Tris (pentafluorphenyDboran.
Besonders bevorzugte Komponenten ii) sind solche, welche ein schwach koordinierendes konjugiertes Anion besitzen, d.h. ein Anion welches nur eine schwache Bindung zum Zentralmetall des Komplexes ausbildet, wie Tetrafluoroborat, Hexafluorophosphat, Perchlorat , Trifluoracetat, Trifluormethylsulfonat, p-Tosylat und Borate, wie Brenzkatechinatoborat und Tetraarylborat , wobei als Arylgruppe insbesondere 2 , 5-Dimethylphenyl- , 2 , 5-Bistrifluor- methylphenyl- oder Pentafluorphenyl- in Frage kommen.
Im übrigen eignen sich als Katalysatorkomponenten i) und ii) diejenigen, wie sie allgemein für Systeme mit Bisphosphinen aus den EP-A 501 576 und 516 238 bekannt sind.
Als Komponente c) enthalten die Katalysatorsysteme eine Chelatverbindung R1R2E1-Z-E2R3R4 (III) , die bereits bei der Abhandlung der Metallkomplexe (II) beschrieben wurde. Das Verhältnis der Katalysatorbestandteile i), ii) und iii) zueinander wird im allgemeinen so gewählt, daß das molare Verhältnis der Metallverbindung i) zur Saure ii) 0,01 : 1 bis 100 : 1, bevorzugt 0,1 : 1 bis 1 : 1 und das molare Verhältnis der Metallverbindung i) zur Komponente iii) 0,01 : 1 bis 10 : 1, bevorzugt 0,1 : 1 bis 2 : 1 betragt .
Die Aktivatorkomponente B' ) bzw. iv) ist in der Regel eine chemische Verbindung, die mindestens eine Hydroxylgruppe im Molekül enthalt. Hierunter fallen vor allem Ci- bis Cio-Alkohole, wie Methanol, Ethanol, n-Propanol, i-Propanol, n-Butanol, i-Butanol, s-Butanol, t-Butanol, n-Hexanol, n-Octanol, n-Decanol, Cyclo- hexanol, Phenol oder Wasser. Vorzugsweise verwendet man Methanol und/oder Wasser als Aktivatorkomponente B') bzw. iv) .
Das molare Verhältnis von Aktivatorkomponente B') bzw. iv) zu Metall M liegt im Bereich von 0 bis 1500, vorzugsweise im Bereich von 0 bis 1300. Es hat sich als vorteilhaft herausgestellt, das Maximalverhaltnis bei der Polymerisationsreaktion nicht zu uber- schreiten, da sonst die mittleren Molekulargewichte Mw der gebildeten Kohlenmonoxid-Copolymeren zu gering sein können.
Die Zugabe des Aktivators B') bzw. iv) erübrigt sich nur dann, wenn der Katalysator als Lewisbasen-Liganden L1 , L2 solche ent- halt, die eine Hydroxygruppe im Molekül enthalten und die vorher mit der allgemeinen Formel T-OH (IV) genauer definiert worden sind.
Als geeignete Reaktionsparameter zur Herstellung der linearen, thermoplastischen, elastomeren Copolymeren aus Kohlenmonoxid und olefinisch unges ttigten Verbindungen haben sich Drucke von 100 bis 500000 kPa, vorzugsweise 500 bis 350000 kPa und insbesondere 1000 bis 10000 kPa, Temperaturen von -50 bis 400°C, bevorzugt 10 bis 250°C und insbesondere 20 bis 100°C als besonders geeignet erwiesen.
Die Polymerisationsreaktionen lassen sich in der Gasphase in Wirbelschicht oder gerührt, in Suspension, in flussigen und in überkritischen Monomeren und in unter den Polymerisations- bedingungen inerten Losungsmitteln durchfuhren.
Die Polymerisationsreaktionen können im praktisch alkohol- oder wasserfreien Polymerisationsmedium durchgeführt werden. Das bedeutet, daß dem Reaktionsgemisch aus Monomeren, Katalysator und gegebenenfalls inertem Losungs- oder Suspensionsmittel, außer gegebenenfalls der Aktivatorkomponente B' ) bzw. iv) , keine weitere Alkohol- oder Wassermenge zugesetzt wurde oder wird.
Geeignete inerte Losungs- und Suspensionsmittel sind solche, die keine Hydroxygruppe im Molekül enthalten, also Ether wie Diethylether , Tetrahydrofuran, aromatische Lösungsmittel wie Benzol, Toluol, Ethylbenzol, Chlorbenzol, aliphatische Kohlenwasserstoffe wie i-Butan oder chlorierte aliphatische Kohlenwasserstoffe wie Dichlormethan, 1, 1, 1-Trichlormethan oder Gemische der genannten Verbindungen.
Als besonders gut geeignetes Polymerisationsverfahren hat sich die Vorlage des Katalysators im inerten Lösungsmittel, gegebenenfalls anschließende Zugabe der Aktivatorkomponente B' ) bzw. iv) und die anschließende Zugabe der Monomeren und Polymerisation bei einer Temperatur im Bereich von 20 bis 100°C und einem Druck im Bereich von 1000 bis 10000 kPa herausgestellt.
Die erfindungsgemäßen Kohlenmonoxid-Copolymeren lassen sich mittels Spritzguß, Blasformen, Verspinnen, Rotationsformen, Extrusion oder Spincoating verarbeiten. Außerdem gelingt die Beschichtung metallischer, keramischer und anderer Oberflächen, z.B. solchen aus Kunststoffmaterialien.
Die erfindungsgemäßen Kohlenmonoxid-Copolymeren eignen sich zur Herstellung von Fasern, Folien, Formkörpern und Beschichtungen. Des weiteren eignen sich die erfindungsgemäßen Kohlenmonoxid-Copolymeren zur Herstellung von ionenselektiven Membranen.
Infolge des beschriebenen kontrollierten Einbaus von Kronenetherfunktionalitäten in das Kohlenmonoxidcopolymergerüst und der Möglichkeit der Einflußnahme auf das thermoplastisch elastomere Verhalten dieser Copolymere über das Molekulargewicht und/oder den Einbau langkettiger Olefinbausteine lassen sich Filme bzw. Folien herstellen, die in besonderer Weise als ionenselektive Membranen geeignet sind. Diese Membranen können u.a. als Bestandteil kleinformatiger Analysevorrichtungen, wie den ionenselektiven Elektroden (vgl. J. Moody, B.B. Saad, J.D.R. Thomas, Selective Electrode Rev. 1988, 10, 71) oder in chemisch modifizierten Feldeffekt- Transistoren (abgekürzt: CHEMFETs) (s.a. D.N. Reinhoudt, J.F.J. Engbersen, Z. Brzόzka, H.N. van den Vlekkert, G.W.N. Honig, H.A.J. Holterman, U.H. Verkerk, Anal. Chem. 1994, 66, 3618) eingesetzt werden. Die erfindungsgemäßen Membranen zeichnen sich vor allem dadurch aus, daß kein Plastifizierer erforderlich ist und daß die Aktivierungsenergie für den Transport von Ionen aufgrund der Anwesenheit polarer CO-Gruppen im Polymerisat minimiert wird. Gleichzeitig bleibt allerdings der hydrophobe Oberflächencharak- ter erhalten, wodurch der Prozeß des Fouling in wassriger Phase erheblich zurückgedrängt oder vollständig unterbunden wird.
Demgemäß eroffnen Membranen auf der Basis der erfindungsgemaßen Kohlenmonoxidcopolymere einen einfachen Zugang zu z.B. Sensorbauteilen mit hoher Lebensdauer, die unproblematisch großtechnisch hergestellbar sind.
Die Erfindung wird anhand der nachfolgenden Beispiele naher be- schrieben.
Beispiele
I . Meßmethoden und Gerate
Die Molekulargewichte Mw und die Molekulargewichtsverteilungen Mw/Mn wurden durch GPC in CHCI3 unter Verwendung einer Waters 590 HPLC-Pumpe, Waters Microstyragelsaulen mit Porengroßen von 105, 104 und 103Ä, einem Waters 410 Differentialrefractometer und einem Waters 486 UV-Detektor ermittelt.
1H-NMR- und 13C-NMR-Messungen wurden mit dem Spektrometer Bruker AC 200 durchgeführt.
Die DSC-Daten wurden mit dem Gerat Perkin Eimer DSC 7, ausgerüstet mit einem Perkin Eimer TAC 7/DX Thermocontroller bestimmt; Cyclohexan, Indium und Gallium wurden für die Kalibrierung benutzt.
Schmelzpunkte wurden mit einer Mettler FP82HT Heizplatte und einem Mettler FP90 Prozessor unter Verwendung eines Zeiss Axio- skop Pol Mikroskops bestimmt.
IR-Spektren wurden an einem Bruker IFS 66V Spektrometer aufgenom- men. Die Meßproben wurden durch Aufziehen eines dünnen Films auf KBr-Platten aus einer Dichlormethanlosung hergestellt.
Als Katalysator wurde [Pd[dppp] (NCCH3) 2] (BF4) 2, hergestellt aus [Pd[NCCH3)4] (BF4)2 (Fa. Aldrich) und 1 , 3-Bis (Diphenylphos- phino) -propan (Δdppp) (Fa. Strem Chemicals) gemäß F.Y. Xu,
A.X. Zhao, J.C.W. Chien, Makromol. Chem. 1993, 194, 2597, eingesetzt.
Toluol, Dichlormethan und Triethylamin wurden vor Gebrauch über Natrium, Benzophenon bzw. Calciumhydrid oder KOH destilliert. Methanol wurde durch Destillation über Magnesiumdrahten gereinigt. II. Herstellung von 4 ' - (Undec-10-enylcarboxylat) -benzo-15-krone-5 (V) (Komponente b) )
Eine Mischung aus 4 ' -Benzo-15-krone-5-carbonsaure (10 g, 32 mmol) , erhaltlich aus Benzo-15-krone-5 nach M. Bourgoin, K.H. Wong, J.Y. Hui, J. Smid, J. Am. Chem. Soc. 1975, 97, 3462, und Thionylchlorid (50 ml, 293 mmol) wurde für 6 h unter Ruckfluß gehalten, überschüssiges Thionylchlorid wurde abdestilliert und der Rückstand in Dichlormethan (40 ml) gelost. Undec-10-en-l-ol (6,54 g, 38,4 mmol), gelost in Dichlormethan (20 ml), wurde mit Triethylamin (6,8 ml, 48 mmol) in Dichlormethan (20 ml) versetzt und die Mischung tropfenweise bei Raumtemperatur zum Reaktionsgemisch gegeben. Die Reaktion wurde nach 12 h unter Ruckfluß durch Abkühlen und dreimaligem Waschen mit Wasser abgebrochen.
Die organische Phase wurde abgetrennt, über MgS04 getrocknet, das organische Losungsmittel entfernt und die erhaltene Rohmasse an Silicagel mit zunächst Dichlormethan und anschließend Dichlorme- than/Methanol 95/5 (v/v) chromatographiert (Ausbeute: 11,5 g) , Smp. : 42 - 43°C.
IR (KBr) 1712 cn l (C=0) . XH NMR (CDC13): δ = 1.25 (m, - (CR2 ) β~ , 12H) , 1.70 (m, -CH2CH202C-, 2H) , 2.0 (m, CH=CHCH2-, 2H) 3.70 (s, -0CH2CH20CH2CH20-, 8H) , 3.85 (d, ArOCH2CH20- , 4H) , 4.10 (d, ArOCH2CH20-, 4H) , 4.20 (t, -CH202CAr, 2H) , 4,85 (m, CH=CH2-, 2H) , 5.70 (m, CH=CH2-, 1H) , 6.80 (d, ArH, 1H) , 7.45 (s, ArH, 1H) , 7.60 (d, ArH, 1H) . 13C NMR (CDCI3): δ = 25.84, 28.57, 28.71, 28.89, 29.20 und 29.26 (- (C_H2) - ) , 33.59 (CH2=CHC_H2- ) , 64.73 (-C_H202CAr) , 68.46, 68.89, 69.10, 69.24, 70.15, 70.25 und 70.99 (Kronenether- kohlenstoffatome) , 111.92, 114.49, 123.05, 123.66, 148.29 und 152.95 (aromat. C) , 113.96 (C_H2=CH-), 138,93 (CH=£H2-), 166.15 (£=0) .
III. Terpolymerisation von 4 ' - (Undec-10-enylcarbon- saure) benzo-15-krone-5 (V) und Kohlenmonoxid mit Propen (C3), 1-Hexen (C6) , 1-Dodecen (C12) und 1-Octadecen (C18)
Allgemeine Verfahrensvorschrift:
Die Polymerisationen wurden in 50 oder 100 ml Stahlautoklaven durch Rühren bei Raumtemperatur und einem CO-Druck von 6,1 x 106 Pa in 25 ml Dichlormethan durchgeführt. Die Menge des jeweils zugegebenen Aktivators (Methanol), die Menge an eingesetztem α-Olefin und Katalysator sowie die Reaktionsbedingungen sind der Tabelle 1 zu entnehmen. Die Polymerisation wurde durch Entgasen des Autoklaven und Zugabe eines Überschusses an Methanol abgebrochen. Anschließend wurde das Losungsmittel entfernt, der Ruckstand in Dichlormethan aufgenommen und über eine kurze Silicagelsaule von Katalysatorresten befreit. Durch (mehrmaliges) Ausfallen der Produkte in einer Dichlormethanlosung mittels Zugabe von Methanol wurden letzte Spuren an nicht umgesetztem 4 ' -Undec-10-enylcarbon- saure)benzo-15-krone-5 und α-Olefin (für C3 , C6, C12) entfernt. Entfernen des Losungsmittels im Vakuum lieferte das gewünschte Terpolymer. Nicht umgesetztes 1-Octadecen wurde mittels Chromatographie an Silicagel (0,063 - 0,100 mm) unter Verwendung von Dichlormethan sowie Dichlormethan/Methanol (90/10 v/v) entfernt. Die Produkteigenschaften con C3, C6, C12, C18 sind dem Abschnitt IV. sowie Tabelle 2 zu entnehmen.
IV. Spektroskopische Daten
C3: lH NMR (CDC13): δ = 1.05 (breit, -CH3 , 3H) , 2.20-2.50 (breit, -CH-, 1H), 2.70-3.20 (breit, -CH2-, 2H) , 3.70 (s, -OCH2CH2θCH2CH20-, 8H), 3.85 (d, ArOCH2CH20- , 4H) , 4.10 (d,
ArOCH2CH20-, 4H) , 4.20 (t , -CH202CAr, 2H) , 6.80 (d, ArH, 1H) , 7.45 (s, ArH, 1H) , 7.60 (d, ArH, 1H) . 13C NMR (CDC13): δ = 16.20 (-£H3), 39.86 ( -£H2-Gerüst ) , 44.46 (-£H-Gerust ) , 207.5 (£=0 Gerüst, Schwanz-Schwanz Verknüpfung), 212.0 (£=0 Gerüst, Kopf- Schwanz Verknüpfung), 215.6 (£=0 Gerüst, Kopf-Kopf Verknüpfung).
C6: !H NMR (CDCI3): δ = 0.85 (t, -CH3, 3H) , 1.00-1.80 (breit, -(CH2)3-, 6H) , 2.20-2.60 (breit, -CH-, 1H) , 2.70-3.20 (breit, -CH2-, 2H) , 3.70 (s, -OCH2CH2OCH2CH2O- , 8H) , 3,85 (d, ArOCH2CH20- , 4H) , 4.10 (d, ArOCH2CH20-, 4H) , 4.20 (t, -CH202CAr, 2H) , 6.80 (d, ArH, 1H), 7,45 (s, ArH, 1H) , 7,60 (d, ArH, 1H) . 13C NMR (CDCI3): δ = 13.50 (-£H3), 22.30 (-£H2CH3), 23.19, 25.61, 26.38, 28.84, 30.54 und 32.29 (-(£H2)n-/ 41-42 (-£H-Gerust ) , 43-45 ( -£H2-Gerüst ) , 68.20, 68.64, 68.86, 69.00, 69.91, 70.00 und 70.74 (Kronenether- kohlenstoffatome) , 111.65, 114.18, 122.74, 123.44, 148.06 und 152.73 (aromat. C) , 165.83 (£=0 Ester) , 208-211 (£=0 Gerüst, Schwanz-Schwanz Verknüpfung), 212-214 (£=0 Gerüst, Kopf-Schwanz Verknüpfung), 214-216 (£=0 Gerüst, Kopf-Kopf Verknüpfung) .
C12: !H NMR (CDCI3): δ = 0,85 (t, -CHj , 3H) , 1.0-1.80 (breit, -(CH2)9-, 18H) , 2.20-2.70 (breit, -CH- , 1H) , 2.70-3.20 (breit, -CH2-, 2H), 3.70 (s, -OCH2CH2OCH2CH2O-, 8H) , 3.85 (d, ArOCH2CH20- , 4H) , 4.10 (d, ArOCÜ2CH20- , 4H) , 4.20 (t, -CH.2θ2CAr, 2H) , 6.80 (d, ArH, 1H), 7.45 (S, ArH, 1H) , 7.60 (d, ArH, 1H) . 13C NMR (CDCI3): δ = 13.70 (-£H3), 22.30 (-£HCH3), 23.27, 26.60, 28.98, 29.23, 30.91 und 31.54 (-(£H2)n-» 41-42 (-£H-Gerust ) , 43-45 (-£H2-Gerust) , 68.17, 68.58, 68.86, 69.91 und 70.74 (Kronenetherkohlenstoffa- tome), 111.52, 114.14, 122.73, 123.37, 148.05 und 152.70 (aromat. C) , 165.60 (£=0 Ester) , 207-209 (£=0 Gerüst, Schwanz-Schwanz Verknüpfung) , 210-212 (£=0 Gerüst, Kopf-Schwanz Verknüpfung), 212-215 (£=0 Gerüst, Kopf-Kopf Verknüpfung) . 5
C18: !H NMR (CDC13): δ = 0.85 (t, -CH3 , 3H) , 1.0-1.80 (breit, -(CH2)i5-/ 30 H) , 2.20-2.70 (breit, -CH- , IH) , 2.70-3.20 (breit, -CH2-, 2H) , 3.70 (s, -OCH2CH2OCH2CH2O-, 8H) , 3,85 (d, ArOCH2CH20- , 4H), 4.10 (d, ArOCH.2CH20- , 4H) , 4.20 (t, -CH.202CAr, 2H) , 6.80 (d,
10 ArH, IH) , 7.45 (s, ArH, IH) , 7.60 (d, ArH, IH) . 13C NMR (CDCI3): = 13.76 (-£H3), 22.36 (-£H2CH3), 23.42, 24.30, 25.71, 26.68, 28.44, 29.08, 29.41, 31.03 und 31.62 (-(£H2)n-, 41-42 (-£H-Ge- rust), 43-45 (-£H2-Gerust ) , 68.10, 68.52, 68.84, 69.83 und 70.60 (Kronenetherkohlenstoffatome) , 111.57, 114.14, 122.86, 123.47,
15 147.95 und 152.56 (aromat. C) , 165.60 (£=0 Ester), 207-209 (£--0 Gerüst, Schwanz-Schwanz Verkn pfung), 210-212 (£=0 Gerüst, Kopf- Schwanz Verknüpfung), 212-215 (£=0 Gerüst, Kopf-Kopf Verknüpfung) .
20
25
30
35
40
45 Tabelle 1: Polymerisationsbedingungen
Figure imgf000026_0001
Molverhältnis von Aktivator (Methanol) zu Palladium.
Polymerisationsdauer.
Kohlenmonoxidverbrauch. Der Anfangsdruck betrug in allen Fällen 6xl06 Pa.
Isolierte Ausbeute des Rohproduktes nach Ausfällung und Chromatographie.
100 ml Autoklav.
50 ml Autoklav.
Tabelle 2: Terpolymereigenschatten
Figure imgf000027_0001
Figure imgf000027_0002
a) Mw (Mw/Mn) gemessen mittels GPC in Chloroform (gegen einen Polystyrolstandard) . b) (V) : bestimmt über den Anteil an Benzo-15-krone-5-Einheiten (mol-%) .
Kopf-Schwanz-Einheiten: Regioregularität bestimmt anhand der Kopf-Schwanz-Abfolgen mit Hilfe von 13C NMR. d) C=0 Infrarotabsorptionsbande. e) Bestimmt aus dem zweiten Lauf (lOK/min) mit Hilfe der Tangentenmethode (DSC) . f) Tg nicht bestimmbar. g) Tm nicht bestimmbar, h) kein Signal detektierbar mittels 13C NMR.

Claims

Patentansprüche
1. Lineare alternierende α-Olefin/CO-Copolymere, erhältlich durch Polymerisation eines Monomerengemisches, enthaltend
a) Kohlenmonoxid,
b) 1-Alkene, die mit einer kovalent gebundenen Kronenether- oder Kryptandeinheit A, enthaltend mindestens 5-Hetero- atome, ausgewählt aus der Gruppe, bestehend aus Stickstoff, Sauerstoff, Schwefel und/oder Selen, im Polyheteroatomgerüst funktionalisiert sind, und ggf.
c) C2- bis C24-1-Alkene.
2. Lineare alternierende α-Olefin/CO-Coplymere nach Anspruch 1, dadurch gekennzeichnet, daß
a) Kohlenmonoxid,
b) ein 1-Alken, das mit einer kovalent gebundenen Kronenethereinheit A, enthaltend 5 bis 10 Sauerstoffatome funktionalisiert ist, und
c ) ein C2- bis C2o-l-Alken
bedeuten .
3. Linear alternierende α-Olefin/CO-Copolymere nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß
a) Kohlenmonoxid,
b) eine Verbindung der allgemeinen Formel (I) CH2=CH(CH2)qO(0)C A (I) ,
worin
Figure imgf000029_0001
G = ( (CH2)kO)p (Q 0)ι (CH2)k-
Figure imgf000029_0002
worin die Substituenten und Indizes die folgende Bedeutung haben:
Q = 1,2-Cyclohexyl oder 1,2-Phenyl,
k = unabhängig voneinander 2 , 3 oder 4 ,
p = 1, 2, 3 oder 4,
1 = 0 oder 1,
1 , 2 , 3 oder 4 und
q = eine ganze Zahl im Bereich von 4 bis 24 und
c) ein C3- bis Cιβ-1-Alken bedeuten.
4. Lineare alternierende α-Olefin/CO-Copolymere nach den Ansprü- chen 1 bis 3, dadurch gekennzeichnet, daß
a) Kohlenmonoxid,
b) eine Verbindung der allgemeinen Formel (i;
CH2= CH(CH2)qO(0)C A ;D
mit q = 8 oder 9 und
worin
Figure imgf000030_0001
G = (CH2CH20)3 (CH2CH2)
bedeutet und
c) ein Cδ- bis Cι2-1-Alken darstellen.
5. Verfahren zur Herstellung von linearen alternierenden α-Ole- fin/CO-Copolymeren gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Copolymerisation von Kohlenmonoxid a) mit den olefinischen Monomeren b) und ggf. c) in einem praktisch alkohol- oder wasserfreien Polymerisationsmedium in Gegenwart eines Katalysators durchgeführt wird, dessen aktive Masse gebildet wird aus
A') einem Metallkomplex der allgemeinen Formel (II)
Ri R2
El
Ll
M m X] #> (II)
E2 <≠ L2
R3 R4
in der die Substituenten und Indizes folgende Bedeutung haben :
M ein Metall aus der Gruppe VIIIB des Periodensystems der Elemente
E1, E2 ein Element aus der Gruppe VA des Periodensystems der Elemente,
eine verbrückende Struktureinheit aus einer, zwei, drei oder vier Substruktureinheiten von Elementen der Gruppe IVA, VA, VIA des Periodensystems der Elemente, R1 bis R4 Substituenten, ausgewählt aus der Gruppe bestehend aus Ci- bis C2o-kohlenstofforganischen und C3- bis C3o-siliciumorganischen Resten, wobei die Reste ein Element oder mehrere Elemente der Gruppe IVA, VA, VIA und VIIA des
Periodensystems der Elemente enthalten können,
L1, L2 formal ungeladene Lewis-Basenliganden
X ein- oder zweiwertige Anionen
m, n 1 oder 2 ,
wobei m x n = 2 , und
B') einer Aktivatorkomponente, welche eine Hydroxylgruppe im Molekül enthalt, die, bezogen auf M in (II) , in einer Menge von 0 bis 1500 Molaquivalenten eingesetzt wird.
6. Verfahren zur Herstellung von linearen alternierenden α-Ole- fin/CO-Copolymeren gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Copolymerisation in Gegenwart eines Katalysators durchgeführt wird, dessen aktive Masse gebildet wird aus
i) einem Salz eines Metalls M der Gruppe VIIIB des Periodensystems der Elemente,
ii) einer Verbindung oder mehreren Verbindungen ausgewählt aus der Gruppe der Protonensauren und Lewissauren,
iii) einer Chelatverbindung der allgemeinen Formel (III)
R1R2E1-Z-E2R3R4 (III),
in der die Substituenten und Indizes folgende Bedeutung haben:
E1, E2 ein Element aus der Gruppe VA des Perioden- Systems der Elemente,
Z eine verbruckende Struktureinheit aus einer, zwei, drei oder vier Substruktureinheiten von Elementen der Gruppe IVA, VA, VIA des Periodensystems der Elemente, R1 bis R4 Substituenten ausgewählt aus der Gruppe der
Ci- bis C2o_kohlenstofforganischen und C3- bis C3o-siliciumorganischen Reste, wobei die Reste ein Element oder mehrere Elemente der Gruppe IVA, VA, VIA und VIIA des Periodensystems der
Elemente enthalten können,
iv) einer Aktivatorkomponente B'), welche eine Hydroxylgruppe im Molekül enthalt, die, bezogen auf M in (II), in einer Menge von 0 bis 1500 Molaquivalenten eingesetzt wird.
7. Verwendung der linearen alternierenden α-Olefin/CO-Copolyme- ren gemäß den Ansprüchen 1 bis 4 zur Herstellung von Fasern, Folien, Formkorpern, ionenselektiven Membranen und Beschich- tungen .
8. Fasern, Folien, Formkorper und Beschichtungen aus den linearen alternierenden α-Olefin/CO-Copolymeren gemäß den Ansprü
Figure imgf000032_0001
9. Ionenselektive Membran enthaltend α-Olefin/CO-Copolymere gemäß den Ansprüchen 1 bis 4.
10. Verwendung der ionenselektiven Membran gemäß Anspruch 9 als wesentlicher Bestandteil von ionenselektiven Elektroden oder chemisch modifizierten Feldeffekt-Transistoren.
PCT/EP1998/001553 1997-04-04 1998-03-18 LINEARE ALTERNIERENDE FUNKTIONALISIERTE α-OLEFIN/CO-COPOLYMERE UND DEREN VERWENDUNG FÜR DIE HERSTELLUNG VON IONENSELEKTIVEN MEMBRANEN WO1998045352A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98916986A EP0971971A1 (de) 1997-04-04 1998-03-18 LINEARE ALTERNIERENDE FUNKTIONALISIERTE $g(a)-OLEFIN/CO-COPOLYMERE UND DEREN VERWENDUNG FÜR DIE HERSTELLUNG VON IONENSELEKTIVEN MEMBRANEN
AU70364/98A AU7036498A (en) 1997-04-04 1998-03-18 Linear alternating functionalized alpha-olefin/co-copolymers and their use in preparing ion-selective membranes
JP54229598A JP2001518951A (ja) 1997-04-04 1998-03-18 直鎖状の官能化されたα−オレフィン/COの交互コポリマーおよびそのイオン選択性膜の製造での使用
US09/402,091 US6133410A (en) 1997-04-04 1998-05-18 Linear alternating functionalized α-olefin/CO-copolymers and their use in preparing ion-selective membranes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19714031A DE19714031A1 (de) 1997-04-04 1997-04-04 Lineare alternierende funktionalisierte alpha-Olefin/CO-Copolymere und deren Verwendung für die Herstellung von ionenselektiven Membranen
DE19714031.9 1997-04-04

Publications (1)

Publication Number Publication Date
WO1998045352A1 true WO1998045352A1 (de) 1998-10-15

Family

ID=7825497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/001553 WO1998045352A1 (de) 1997-04-04 1998-03-18 LINEARE ALTERNIERENDE FUNKTIONALISIERTE α-OLEFIN/CO-COPOLYMERE UND DEREN VERWENDUNG FÜR DIE HERSTELLUNG VON IONENSELEKTIVEN MEMBRANEN

Country Status (6)

Country Link
US (1) US6133410A (de)
EP (1) EP0971971A1 (de)
JP (1) JP2001518951A (de)
AU (1) AU7036498A (de)
DE (1) DE19714031A1 (de)
WO (1) WO1998045352A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133410A (en) * 1997-04-04 2000-10-17 Basf Aktiengesellschaft Linear alternating functionalized α-olefin/CO-copolymers and their use in preparing ion-selective membranes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429040B1 (en) * 2000-04-06 2002-08-06 Agere Systems Guardian Corp. Device comprising a bipolar semi-conducting film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135224A (ja) * 1983-01-24 1984-08-03 Idemitsu Kosan Co Ltd ポリケトンの製造方法
EP0512647A2 (de) * 1991-05-08 1992-11-11 Shell Internationale Researchmaatschappij B.V. Verfahren zur Herstellung linearer, alternierender Polymere aus Kohlenmonoxid und einem oder mehreren Olefinen
US5241036A (en) * 1991-09-04 1993-08-31 National Science Council Side-chain liquid crystalline polymer containing crown ether based mesogens
EP0562698A1 (de) * 1986-10-30 1993-09-29 Shell Internationale Researchmaatschappij B.V. Olefin/CO-Copolymere
DE19518737A1 (de) * 1995-05-22 1996-11-28 Basf Ag Kohlenmonoxid/Olefin-Copolymere

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE49010T1 (de) * 1983-04-06 1990-01-15 Shell Int Research Verfahren zur herstellung von polyketonen.
US5077384A (en) * 1989-08-17 1991-12-31 Shell Oil Company Carbon monoxide/olefin copolymer having wide molecular weight distribution
US5216120A (en) * 1991-02-26 1993-06-01 Shell Oil Company Polymerization of co/olefin with catalyst comprising palladium compound, lewis acid and bronsted acid
US5210177A (en) * 1991-05-31 1993-05-11 Shell Oil Company Polymerization of co/olefin with tetra ethyl diphosphine
US5352767A (en) * 1992-01-08 1994-10-04 University Of Massachusetts - Amherst Alpha-olefin/carbon monoxide attenuating copolymers and improved catalyst and method for copolymerizing the same
DE19610358A1 (de) * 1996-03-15 1997-09-18 Basf Ag Thermoplastische elastomere Kohlenmonoxid/Olefin-Copolymere
DE19649072A1 (de) * 1996-11-28 1998-06-04 Basf Ag Thermoplastische, elastomere Kohlenmonoxid/Olefin-Copolymere
DE19714031A1 (de) * 1997-04-04 1998-10-08 Basf Ag Lineare alternierende funktionalisierte alpha-Olefin/CO-Copolymere und deren Verwendung für die Herstellung von ionenselektiven Membranen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135224A (ja) * 1983-01-24 1984-08-03 Idemitsu Kosan Co Ltd ポリケトンの製造方法
EP0562698A1 (de) * 1986-10-30 1993-09-29 Shell Internationale Researchmaatschappij B.V. Olefin/CO-Copolymere
EP0512647A2 (de) * 1991-05-08 1992-11-11 Shell Internationale Researchmaatschappij B.V. Verfahren zur Herstellung linearer, alternierender Polymere aus Kohlenmonoxid und einem oder mehreren Olefinen
US5241036A (en) * 1991-09-04 1993-08-31 National Science Council Side-chain liquid crystalline polymer containing crown ether based mesogens
DE19518737A1 (de) * 1995-05-22 1996-11-28 Basf Ag Kohlenmonoxid/Olefin-Copolymere

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 255 (C - 253) 21 November 1984 (1984-11-21) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133410A (en) * 1997-04-04 2000-10-17 Basf Aktiengesellschaft Linear alternating functionalized α-olefin/CO-copolymers and their use in preparing ion-selective membranes

Also Published As

Publication number Publication date
DE19714031A1 (de) 1998-10-08
AU7036498A (en) 1998-10-30
JP2001518951A (ja) 2001-10-16
EP0971971A1 (de) 2000-01-19
US6133410A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
DD250713A5 (de) Neue katalysator-zusammensetzung und verfahren zur polymerisation von ethen und kohlenmonoxid
EP1330309B1 (de) Katalysatorsystem und verfahren zur carbonylierung
DE10211664A1 (de) Verfahren zur Herstellung hochverzweigter Polymere
WO1996037523A1 (de) Polymere aus olefinisch ungesättigten monomeren
DE19727271A1 (de) Funktionalisierte Kohlenmonoxidcopolymere
WO1998045352A1 (de) LINEARE ALTERNIERENDE FUNKTIONALISIERTE α-OLEFIN/CO-COPOLYMERE UND DEREN VERWENDUNG FÜR DIE HERSTELLUNG VON IONENSELEKTIVEN MEMBRANEN
EP0886662B1 (de) Thermoplastische elastomere kohlenmonoxid/olefin-copolymere
EP1091995B1 (de) Katalysatorsysteme auf der basis von übergangsmetallkomplexen für die kohlenmonoxidcopolymerisation in einem wässrigen medium
DE19649072A1 (de) Thermoplastische, elastomere Kohlenmonoxid/Olefin-Copolymere
WO2000063277A1 (de) Verfahren zur herstellung von kohlenmonoxidcopolymeren in wässrigem medium unter verwendung wasserlöslicher metallkomplexe und lösungsvermittlern
EP1071689B1 (de) Cis-verbrückte metallkomplexe und diese enthaltende katalysatorsysteme
CH621137A5 (de)
EP0710260B1 (de) Verfahren zur herstellung von polyketonen
DE19518737A1 (de) Kohlenmonoxid/Olefin-Copolymere
WO1998025991A1 (de) Katalysatorsysteme für die herstellung von copolymerisaten aus kohlenmonoxid und olefinisch ungesättigten verbindungen
DE19846053A1 (de) Verfahren zur Herstellung von linearen, alternierenden Kohlenmonoxidcopolymeren
EP0324998A2 (de) Modifizierte Polyketone
DE19829519A1 (de) Wasserlösliche Übergangsmetallkomplexe
JP3221741B2 (ja) ポリマー分離
JPH08283403A (ja) ポリケトンの製造方法
EP2778188A1 (de) Verfahren zur Herstellung von Olefin-CO-Terpolymeren
EP2778189A1 (de) Semi-batch Verfahren zur Herstellung von Olefin-CO-Copolymeren
DE19651786A1 (de) Katalysatorsysteme für die Herstellung von Copolymerisaten aus Kohlenmonoxid und olefinisch ungesättigten Verbindungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR BY CA CN CZ GE HU ID IL JP KR KZ LT LV MX NO NZ PL RO RU SG SI SK TR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998916986

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09402091

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 542295

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1998916986

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1998916986

Country of ref document: EP