WO1998042681A1 - Neue herbizide hydroximsäurederivate - Google Patents

Neue herbizide hydroximsäurederivate Download PDF

Info

Publication number
WO1998042681A1
WO1998042681A1 PCT/EP1998/001440 EP9801440W WO9842681A1 WO 1998042681 A1 WO1998042681 A1 WO 1998042681A1 EP 9801440 W EP9801440 W EP 9801440W WO 9842681 A1 WO9842681 A1 WO 9842681A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
methyl
yloxy
formula
alkoxy
Prior art date
Application number
PCT/EP1998/001440
Other languages
English (en)
French (fr)
Inventor
Olaf Menke
Gerhard Hamprecht
Markus Menges
Robert Reinhard
Peter Schäfer
Cyrill Zagar
Karl-Otto Westphalen
Ulf Misslitz
Helmut Walter
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP98914884A priority Critical patent/EP0971903A1/de
Priority to CA002283672A priority patent/CA2283672A1/en
Priority to AU69213/98A priority patent/AU6921398A/en
Priority to US09/381,474 priority patent/US6387849B1/en
Priority to JP54206898A priority patent/JP2001517231A/ja
Publication of WO1998042681A1 publication Critical patent/WO1998042681A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/52Two oxygen atoms
    • C07D239/54Two oxygen atoms as doubly bound oxygen atoms or as unsubstituted hydroxy radicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/32Oximes
    • C07C251/34Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C251/48Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/12Derivatives of isocyanic acid having isocyanate groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/56One oxygen atom and one sulfur atom

Definitions

  • the present invention relates to new substituted hydroximic acid derivatives of the formula I.
  • R 1 is hydrogen, C ⁇ -C 4 alkyl, amino, C ⁇ -C 4 alkylamino or di (C ⁇ -C-alkyl1) amino;
  • R 3 is hydrogen, halogen or -CC alkyl
  • R 4 is hydrogen or halogen
  • R 6 C ! -C 6 alkyl, C 2 -C 6 alkenyl, C 3 -C 6 alkynyl or phenyl-C ⁇ -C 6 alkyl, where the phenyl ring can be unsubstituted or can carry one to three substituents, each selected from the Group consisting of cyano, nitro, halogen, -CC alkyl, -C 6 -haloalkyl, C ! -C 6 alkoxy, C 2 -C 6 alkenyloxy, C 3 -C 6 alkynyloxy and (-C-C 6 alkoxy) carbonyl;
  • R 7 is a Cj_-C 6 alkyl, C 2 -C 6 alkenyl, C 3 -C 6 alkynyl or phenyl-C ⁇ -Cg-alkyl group, these 4 groups being unsubstituted or one or two substituents can wear, each selected from the group consisting of halogen, C ⁇ -C alkoxy, C ⁇ -C 3 alkoxyimino, (C ⁇ -C 3 alkoxy) carbonyl, (C 1 -C 4 alkylamino) carbonyl, di (C 1 -C 3 alkyl) aminocarbonyl and CO-N (C 1 -C 3 alkyl) - (C 1 -C 3 alkoxy), the 4 last-mentioned radicals in turn being a (C ⁇ -C 3 alkoxy) carbonyl or C ⁇ -C alkoxy group can carry;
  • the invention also relates to the use of the compounds I as herbicides and / or for the desiccation / defoliation of plants, herbicidal compositions and agents for the desiccation / defoliation of plants which contain the compounds I as active substances, processes for the preparation of the compounds I and herbicidal agents and agents for the desiccation / defoliation of plants using the compounds I, methods for combating undesired plant growth and for the desiccation / defoliation of plants with the compounds I, and new intermediates of the formula VII.
  • R n is hydrogen, hydroxymethyl or C ⁇ -C - [halo- gen-] alkyl
  • R ° is hydrogen, nitro, halogen, C ⁇ -C 6 - [halogeno] alkyl or hydroxymethyl
  • C ! -C is alkyl, C 2 -C 3 haloalkyl, C 3 -C 6 cycloalkyl, phenyl or benzyl.
  • the compounds of the formula I can contain one or more centers of chirality and are then present as mixtures of enantiomers or diastereomers.
  • the invention relates both to the pure enantiomers or diastereomers and to their mixtures.
  • Agriculturally useful salts include, in particular, the salts of those cations or the acid addition salts of those acids whose cations or anions do not adversely affect the herbicidal activity of the compounds I. So come as cations in particular the ions of the alkali metals, preferably sodium and potassium, the alkaline earth metals, preferably calcium, magnesium and barium, and the transition metals, preferably manganese, copper, zinc and iron, as well as the ammonium ion, if desired one to four C ⁇ -C 4 alkyl substituents and / or can carry a phenyl or benzyl substituent, preferably diisopropylammonium, tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium, furthermore phosphonium ions, sulfonium ions, preferably tri (C 1 -C 4 -alkyl) sulfonium, preferably sulfoxonium Tri (-C
  • Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, phosphate, nitrate, hydrogen carbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of C 1 -C 4 -alkanoic acids, preferably Formate, acetate, propionate and butyrate.
  • phenyl rings - like the meaning halogen - are collective terms for individual lists of the individual group members.
  • All carbon chains, i.e. all alkyl, haloalkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy, alkylamino and phenylalkyl Parts can be straight or branched.
  • Halogenated substituents preferably carry one to five identical or different halogen atoms.
  • Halogen for: fluorine, chlorine, bromine or iodine, preferably for fluorine or chlorine;
  • -C-C 4 alkyl for: CH 3 , C 2 H 5 , CH 2 -C 2 H 5 , CH (CH 3 ) 2 , nC 4 H 9 , CH (CH 3 ) -C 2 H 5 , CH-CH (CH 3 ) or C (CH 3 ) 3 ;
  • Ci-C ⁇ -Al yl and the alkyl part of -CC 6 alkoxy -CC 6 alkyl for: methyl, ethyl, n-propyl, 1-methylethyl, n-butyl, 1-methylpropyl, 2- Methylpropyl, 1, 1-dimethylethyl, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1, 1-dimethylpropyl, 1,2- Dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1, 1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2, 2-dimethylbutyl, 2, 3-dimethylbutyl, 3, 3-dimethylbutyl, 1-ethylbutyl, 2-eth
  • -C 1 -C 6 haloalkyl for: -C 6 alkyl as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example CH 2 F, CHF 2 , CF 3 , CH 2 C1, CH (C1), C (C1) 3 , chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 2, 2-difluoroethyl, 2, 2, 2-trifluoroethyl, 2-chloro-2-fluoroethyl ,
  • C 2 -C 6 ⁇ alkenyl for: ethenyl, prop-1-en-l-yl, prop-2-en-l-yl, 1-methylethenyl, n-buten-1-yl, n-buten-2-yl , n-buten-3-yl, 1-methyl-prop-1-en-1-yl, 2-methyl-prop-1-en-1-yl, 1-methyl-prop-2-en-1-yl , 2-methyl-prop-2-en-l-yl, n-penten-1-yl, n-penten-2-yl, n-penten-3-yl, n-penten-4-yl, 1-methyl - but-1-en-l-yl, 2-methyl-but-l-en-l-yl, 3-methyl-but-1-en-l-yl, l-methyl-but-2-en-l -yl, 2-methyl-but-2-en-1-yl, 3-methyl-but-2-en-1-yl, 1-methyl-
  • C 3 -C 6 alkynyl for: prop-1-in-l-yl, prop-2-in-3-yl, n-but-1-in-l-yl, n-but-l-in-4 -yl, n-but-2-in-l-yl, n -
  • Phenyl-Ci-Cg-alkyl e.g. for: benzyl, 1-phenyleth-l-yl, 2-phenyleth-1-yl, 1-phenylprop-l-yl, 2-phenylprop-l-yl, 3-phenyl- prop-1-yl, l-phenylprop-2-yl, 2-phenylprop-2-yl, 1-phenyl-but-l-yl, 2-phenylbut-l-yl, 3-phenylbut-l-yl, 4- Phenylbut-l-yl, l-phenylbut-2-yl, 2-phenylbut-2-yl, 1-phenylbut-3-yl, 2-phenylbut-3-yl, l-phenyl-2-methyl- prop-3-yl, 2-phenyl-2-methyl-prop-3-yl, 3-phenyl-2-methyl-prop-3-yl and 2-benzyl-prop-2-yl, preferably for phenyl-C
  • (C] . -C 6 alkoxy) carbonyl for: C00CH 3 , COOC 2 H 5 , COOCH 2 -C 2 H 5 , COOCH (CH 3 ) 2 , COO (nC 4 H 9 ), COOCH (CH 3 ) - C 2 H 5 , COOCH 2 -CH (CH 3 ) 2 , COOC (CH 3 ) 3 , COO (nC 5 Hn), 1-methylbutoxycarbonyl, 2-methylbutoxycarbonyl, 3-methylbutoxycarbonyl, 2,2-dimethylpropoxycarbonyl , 1-ethylpropoxycarbonyl, n-hexoxycarbonyl, 1, 1-dimethylpropoxycarbonyl, 1, 2-dimethylpropoxycarbonyl, 1-methylpentoxycarbonyl, 2-methylpentoxycarbonyl, 3-methylpentoxycarbonyl, 4-methylpentoxycarbonyl, 1, 1-dimethylbutoxycarbonyl, 1, 2 -Dimethylbutoxycarbonyl, 1,
  • C 2 -C 6 ⁇ alkenyloxy for: ethenyloxy, prop-1-en-l-yloxy, prop-2-en-l-yloxy, 1-methylethenyloxy, n-buten-1-yloxy, n-buten-2-yloxy, n-buten-3-yloxy, 1-methyl-prop-1-en-1-yloxy, 2-methyl-prop-1-en-1-yloxy, 1-methyl-prop-2-en-1-yloxy, 2-methyl-prop-2-en-l-yloxy, n-penten-1-yloxy, n-penten-2-yl-oxy, n-penten-3-yloxy, n-penten-4-yloxy, 1- Methyl-but-1-en-l-yloxy, 2-methyl-but-l-en-l-yloxy, 3-methyl-but-1-en-l-yloxy, l-methyl-but-2-en- l-yloxy, 2-methyl-but-2-
  • C 3 -C 6 alkynyloxy for: prop-1-in-l-yloxy, prop-2-in-l-yloxy, n-but-1-in-l-yloxy, n-but-l-in-3 -yloxy, n-but-l-in-4-yloxy, n-but-2-in-l-yloxy, n-pent-1-in-l-yloxy, n-pent-l-in-3-yloxy , n-pent-1-in-4-yloxy, n-pent-1-in-5-yloxy, n-pent-2-in-1-yl-oxy, n-pent-2-in-4-yloxy , n-Pent-2-in-5-yloxy, 3-methyl-but-l-in-3-yloxy, 3-methyl-but-l-in-4-yloxy, n-hex-1-in-l -yl-oxy, n-hex-1-in-3-yloxy
  • C 1 -C 3 alkyl aminocarbonyl for: CO-N (CH 3 ) 2 , CO-N (C 2 H 5 ) 2 , CO-N (nC 3 H 7 ) 2 , CO-N [CH ( CH 3 ) 2 ] 2 , CO-N (CH 3 ) -C 2 H 5 , CO-N (CH 3 ) -CH 2 -C 2 H 5 , CO-N (CH 3 ) -CH (CH 3 ) 2 , C0- N (C 2 H 5 ) -CH 2 -C 2 H 5 , CO-N (C 2 H 5 ) -CH (CH 3 ) 2 or CO-N (nC 3 H 7 ) -CH (CH 3 ) 2 , especially for CO-N (CH 3 ) 2 or CO-N (C 2 H 5 ) 2 .
  • Preferred compounds I are those in which the substituents have the following meanings:
  • R 1 is methyl or amino
  • R 2 trifluoromethyl or trifluoroethyl
  • R 3 is hydrogen
  • R 4 halogen, especially fluorine
  • R 5 cyano or chlorine
  • R 7 -C ⁇ C-alkyl with one or two substituents, each selected from the group consisting of -C-C 3 alkoxyimino, (-C-C 3 alkoxy) carbonyl, (C ⁇ -C 3 alkylamino) carbonyl,
  • connection 1.1. according to Table 1 the meaning of R 6 2.1. and R 7 has the meaning 3.3. has been cited below as 1.1./2.1./3.3.
  • hydroximic acid derivatives I according to the invention can be obtained in various ways, preferably by one of the processes described below.
  • Suitable solvents are, for example, protic solvents such as the lower alcohols, preferably ethanol, if desired in a mixture with water, or Ethers, preferably 1, 2-dimethoxyethane, tetrahydrofuran and dioxane, aliphatic ketones, preferably acetone, amides, preferably dimethylformamide, sulfoxides, preferably dimethyl sulfoxide, ureas such as tetramethylurea and 1,3-dimethyltetrahydro-2 (1H) -pyriminoinone, carboxylic acid esters such as ethyl acetate, or halogenated aliphatic or aromatic hydrocarbons such as dichloromethane and chlorobenzene.
  • protic solvents such as the lower alcohols, preferably ethanol, if desired in a mixture with water, or Ethers, preferably 1, 2-dimethoxyethane, tetrahydrofuran and dioxane, aliphatic keto
  • the alkylation is normally carried out with the halide, preferably the chloride or bromide, the sulfate, a sulfonate, preferably a methanesulfonate (mesylate) such as trifluoromethanesulfonate (triflate) or a benzenesulfonate such as p-toluenesulfonate (tosylate) and p-bromobenzenesulfonate (brosylate) , or with a diazo compound, e.g. Diazomethane.
  • a diazo compound e.g. Diazomethane.
  • Inorganic bases are suitable as bases, e.g. Carbonates such as potassium carbonate and sodium carbonate, hydrogen carbonates such as potassium and sodium bicarbonate, alkali metal hydrides such as sodium hydride and potassium hydride, and organic bases, e.g. Amines such as triethylamine, pyridine and N, N-diethylaniline, or alkali alcoholates such as sodium methoxide, sodium ethoxide and potassium tert. -butanolate.
  • bases e.g. Carbonates such as potassium carbonate and sodium carbonate, hydrogen carbonates such as potassium and sodium bicarbonate, alkali metal hydrides such as sodium hydride and potassium hydride, and organic bases, e.g. Amines such as triethylamine, pyridine and N, N-diethylaniline, or alkali alcoholates such as sodium methoxide, sodium ethoxide and potassium tert. -butanolate.
  • Amines such as triethy
  • reaction temperature of (-78 ° C) to the boiling point of the reaction mixture is recommended, in particular from (-60) to 60 ° C.
  • the alkylation of the compounds of the formula III results in addition to the substituted hydroximic acid derivatives I according to the invention and also the corresponding amide nitrogen-substituted cinnamic hydroxamide derivatives.
  • the ratio in which the two products are formed depends on the reaction temperature, the alkylating agent, the base used and also on the particular starting compound III.
  • the desired compound I can normally be separated from the by-products in a manner known per se, e.g. by crystallization or chromatography.
  • the alcohol / thiol derivatives used are advantageously the alcohols / thiols R 7 YH or their salts, in particular those of the alkali or alkaline earth metals.
  • Suitable solvents or diluents are e.g. aliphatic or cyclic ethers such as diethyl ether and tetrahydrofuran, aliphatic ketones such as acetone, hydrocarbons such as n-pentane, cyclohexane and petroleum ether, aromatic hydrocarbons such as benzene and toluene, halogenated aliphatic or aromatic hydrocarbons such as dichloromethane and chlorobenzene, esters such as ethyl acetate, amides such as dimethyl form - Amide and N-methyl-pyrrolidone, sulfoxides such as dimethyl sulfoxide, and mixtures of these solvents.
  • the alcohols and alcohol derivatives themselves are also suitable as solvents or diluents.
  • the quantitative ratio of V to alcohol / thiol or alcohol / thiol derivative R 7 YH is not critical. Approximately equimolar amounts are usually used. However, it may also be expedient to use the alcohol / thiol or the alcohol / thiol derivative in excess, so that it also serves as a solvent or diluent. In general, a reaction temperature of (-78) ° C to the boiling point of the respective reaction mixture is recommended, in particular from 0 to 80 ° C.
  • the base can be used in a catalytic, substoichiometric, stoichiometric amount or in excess, up to 5 times the molar amount, based on V.
  • hydroximinohalides of the formula V can be obtained, for example, by halogenating the corresponding carbonyl compounds of the formula III.
  • This halogenation is usually carried out in an inert solvent or diluent, in particular aprotic organic liquids, for example aliphatic or aromatic hydrocarbons such as n-hexane, benzene, toluene and o-, m-, p-xylene, halogenated aliphatic hydrocarbons such as Methylene chloride, chloroform and 1,2-dichloroethane, halogenated aromatic hydrocarbons such as chlorobenzene, tertiary amines such as N, N-dimethylaniline, or nitriles such as acetonitrile.
  • aprotic organic liquids for example aliphatic or aromatic hydrocarbons such as n-hexane, benzene, toluene and o-, m-, p-xylene, halogenated aliphatic hydrocarbons such as Methylene chloride, chloroform and 1,2-dichloroethane, halogenated
  • halogenating agents are thionyl chloride, phosphorus pentachloride, phosphorus oxychloride, phosphorus pentabromide or phosphorus oxybromide.
  • thionyl chloride thionyl chloride
  • phosphorus pentachloride phosphorus oxychloride
  • phosphorus pentabromide phosphorus pentabromide
  • phosphorus oxybromide phosphorus oxybromide.
  • the use of a mixture of phosphorus pentachloride and phosphorus oxychloride or of phosphorus pentabromide and phosphorus oxybromide can also be particularly advantageous, in which case an excess of phosphorus oxychloride or phosphorus oxybromide can be used without a diluent.
  • thionyl chloride When using thionyl chloride as halogenating agent, it is advisable to add a catalytic amount of dimethylformamide.
  • halogenating agent and starting compound III are required.
  • an excess of halogenating agent up to about 8 times the molar amount, based on III, has a favorable effect on the course of the reaction.
  • the reaction temperature is generally from 0 ° C. to the reflux temperature of the reaction mixture, preferably from 20 to 120 ° C.
  • the reaction usually takes place in two stages by first reacting the nitrile VI with an alcohol / thiol R 7 YH and reacting the imido ester obtained, if desired without isolation from the reaction mixture, with a hydroxylamine H 2 N-OR 6 .
  • the reaction of VI with R 7 YH can be carried out in an inert solvent or diluent or solvent-free in an excess of the alcohol / thiol.
  • An acidic or "Lewis” acidic catalyst is often beneficial, preferably in an approximately catalytic amount or in an amount of up to about 200 mol%, based on the amount of VI.
  • Inert solvents or diluents are particularly suitable organic solvents, for example aliphatic or cyclic ethers such as diethyl ether, tetrahydrofuran and dimethoxyethane, aliphatic, cyclic or aromatic hydrocarbons such as n-pentane, petroleum ether, cyclohexane, toluene and the xylenes, amides such as dimethylformamide and N-methylpyrrolidone, halogenated hydrocarbons such as dichloromethane, Chlorobenzene and 1,2-dichloromethane, or mixtures of the solvents mentioned.
  • aliphatic or cyclic ethers such as diethyl ether, tetrahydrofuran and dimethoxyethane
  • aliphatic, cyclic or aromatic hydrocarbons such as n-pentane, petroleum ether, cyclohexane, toluene and the xylenes
  • Suitable acidic catalysts are inorganic, preferably anhydrous acids, e.g. As hydrogen chloride, hydrogen bromide, nitric acid, sulfuric acid, also oleum, or perchloric acid, and organic acids such as acetic acid, propionic acid, p-toluenesulfonic acid and trifluoroacetic acid.
  • Examples of "Lewis" acidic catalysts are titanium tetrachloride, tin (II) chloride, iron (III) chloride, aluminum trichloride, ethyl aluminum dichloride, titanium tetraisopropoxide and boron trifluoroetherate.
  • R 7 YH is not critical. Usually 1 to 10 mol alcohol / thiol per mol VI are sufficient for an optimal conversion of VI. If you work solvent-free in the alcohol / thiol in question, this can also be present in a large excess.
  • the imidoester is obtained as a salt in the first stage, it is advisable to release the neutral compound before the reaction with the hydroxylamine H 2 N-OR 6 is carried out.
  • Hydroxylamines which are available in the form of their salts, in particular as hydrochlorides, hydrobromides or sulfates, or are obtained as salts in the preparation, can be released before their reaction by adding a suitable base, the bases mentioned in method a) being particularly suitable .
  • the reaction of the imido ester obtained with H 2 N-OR 6 is generally carried out in an inert solvent or diluent.
  • solvents such as methanol, ethanol and isopropanol, nitriles such as acetonitrile, amines such as triethylamine, pyridine and N, N-dimethylaniline, or water are also suitable.
  • Imidoester and hydroxylamine are advantageously reacted with one another in approximately equimolar amounts.
  • the reaction temperature for both stages is generally from (-20) to 120 ° C., in particular from 0 ° C. to the boiling point of the reaction mixture.
  • R 8 is nitro, amino, isocyanato, isothiocyanato, (-C-Cg-alkyl) carbamato or phenylcarbamato,
  • the compounds of formula VII are new. For their part, they can be obtained by one of the processes described above for the preparation of compounds I.
  • the sulfurization is usually carried out in an inert solvent or diluent, for example in an aromatic hydrocarbon such as toluene and the xylenes, in an ether such as diethyl ether, 1,2-dimethoxyethane and tetrahydrofuran, or in an organic amine such as pyridine.
  • an inert solvent or diluent for example in an aromatic hydrocarbon such as toluene and the xylenes, in an ether such as diethyl ether, 1,2-dimethoxyethane and tetrahydrofuran, or in an organic amine such as pyridine.
  • sulfurization reagents are phosphorus (V) sulfide and 2,4-bis (4-methoxyphenyl) -l, 3, 2, 4-dithiadiphosphetan-2, 4-dithione ("Lawesson's reagent”) .
  • the reaction temperature is usually 20 to 200 ° C, preferably 40 ° C to the boiling point of the reaction mixture.
  • the reaction is usually carried out in an inert solvent or diluent in the presence of a condensation aid or without solvent in an excess of the condensation aid.
  • solvents or diluents are organic solvents, e.g. aliphatic or cyclic ethers such as diethyl ether, tetrahydrofuran and dimethoxyethane, aliphatic, cyclic or aromatic hydrocarbons such as n-pentane, petroleum ether, cyclohexane, toluene and the xylenes, alcohols such as methanol, ethanol and i-propanol, amides such as
  • Dimethylformamide and N-methylpyrrolidone Dimethylformamide and N-methylpyrrolidone, nitriles such as acetonitrile, amines such as triethylamine, pyridine and N, N-dimethylaniline, halogenated hydrocarbons such as dichloromethane, chlorobenzene and 1,2-dichloromethane, or water. Mixtures of the solvents mentioned are also suitable.
  • condensation aids come e.g. Oxalyl chloride, carbonyldiimidazole, carbodiimides such as dicyclohexylcarbodiimide, halogenating agents such as thionyl chloride, phosphorus oxychloride, phosgene, phosphorus trichloride and phosphorus pentachloride, or methyl or ethyl chloroformate into consideration.
  • halogenating agent is preferred, an acid halide being formed “in situ”, which then reacts further with the hydroxylamine H 2 N-OR 6 to give the product III.
  • Hydroxylamines which are available in the form of their salts, in particular as hydrochlorides, hydrobromides or sulfates, or are obtained as salts in the preparation, can, before their reaction with VIII, if desired also in the reaction, mixture with the condensation aid and VIII, by adding a suitable base.
  • the bases mentioned for method a) are particularly suitable for this purpose.
  • condensation aid VIII and hydroxylamine H 2 N-OR 6 are not critical. Expediently, approximately equimolar amounts of the starting materials are used. If desired, the condensation aid can also be used in excess, in which case it is even possible to work without an inert solvent.
  • reaction mixtures are generally worked up by methods known per se, for example by removing the solvent, distributing the residue in a mixture of water and a suitable organic solvent and working up the organic phase onto the product.
  • substituted hydroximic acid derivatives of the formula I according to the invention can be obtained in the preparation as isomer mixtures which, if desired, can be obtained by the methods customary for this, e.g. by means of crystallization or chromatography on an optically active adsorbate into which the pure isomers can be separated. Pure optically active isomers can also be produced, for example, from corresponding optically active starting materials.
  • Substituted hydroximic acid derivatives I with CH acidic substituents can be converted into their alkali metal salts in a manner known per se by reaction with a base of the corresponding cation.
  • Salts of I, the metal ion of which is not an alkali metal ion, can usually be prepared by salting the corresponding alkali metal salt in aqueous solution.
  • metal salts such as manganese, copper, zinc, iron, calcium, magnesium and barium salts can be prepared from the sodium salts in a conventional manner, as can ammonium and phosphonium salts using ammonia, phosphonium, sulfonium or sulfoxonium hydroxides.
  • the compounds I and their agriculturally useful salts are suitable - both as isomer mixtures and in the form of the pure isomers - as herbicides.
  • the herbicidal compositions containing I control vegetation very well on non-cultivated areas, particularly when high amounts are applied. In crops such as wheat, rice, corn, soybeans and cotton, they act against weeds and grass weeds without significantly damaging the crop plants. This effect occurs especially at low application rates.
  • the compounds I or compositions containing them can also be used in a further number of crop plants for eliminating undesired plants.
  • the following crops are possible, for example: Allium cepa, pineapple comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var.
  • the substituted hydroximic acid derivatives I are also suitable for the desiccation and / or defoliation of plants.
  • desiccants are particularly suitable for drying out the above-ground parts of crops such as potatoes, rapeseed, sunflower and soybeans. This enables a fully mechanical harvesting of these important crops.
  • the compounds I or the compositions comprising them can be sprayed, for example in the form of directly sprayable aqueous solutions, powders, suspensions, including high-strength aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, sprays or granules. Nebulization, dusting, scattering or pouring can be used.
  • the application forms depend on the purposes; in any case, they should ensure the finest possible distribution of the active compounds according to the invention.
  • mineral oil fractions of medium to high boiling point such as kerosene or diesel oil, furthermore coal tar oils as well as oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, eg paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, alkylated benzenes or their derivatives, alcohols such as methanol, ethanol, propanol, butanol, cyclohexanol, ketones such as cyclohexanone or strongly polar solvents, e.g. B. amines such as N-methylpyrrolidone or water.
  • mineral oil fractions of medium to high boiling point such as kerosene or diesel oil, furthermore coal tar oils as well as oils of vegetable or animal origin
  • aliphatic, cyclic and aromatic hydrocarbons eg paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives
  • Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water.
  • the substituted hydroximic acid derivatives as such or dissolved in an oil or solvent can be homogenized in water by means of wetting agents, adhesives, dispersants or emulsifiers.
  • alkali, alkaline earth, ammonium salts of aromatic sulfonic acids e.g. Lignin, phenol, naphthalene and dibutylnaphthalenesulfonic acid, as well as of fatty acids, alkyl and alkylarylsulfonates, alkyl, lauryl ether and fatty alcohol sulfates, as well as salts of sulfated hexa-, hepta- and octadecanols as well as of fatty alcohol glycol ethers, condensation products of sulfonated naphthalene and its derivatives Formaldehyde, condensation products of naphthalene or of naphthalenesulfonic acids with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctyl, octyl or nonylphenol, alkylphenyl, tributylphen
  • Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active substances together with a solid carrier.
  • Granules e.g. Coated, impregnated and homogeneous granules can be produced by binding the active ingredients to solid carriers.
  • Solid carriers are mineral soils such as silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics, fertilizers such as ammonium sulfate, ammonium phosphate, ammonium nitrate, Urine and vegetable products such as cereal flour, tree bark, wood and nutshell flour, cellulose powder or other solid carriers.
  • concentrations of the active ingredients I in the ready-to-use preparations can be varied over a wide range.
  • Formulations generally contain 0.001 to 98% by weight, preferably 0.01 to 95% by weight, of at least one active ingredient.
  • the Active ingredients are usually used in a purity of 90% to 100%, preferably 95% to 100% (according to the NMR spectrum).
  • Parts by weight of water give an aqueous dispersion which contains 0.02% by weight of the active ingredient.
  • VIII 1 part by weight of the compound 4.11 is dissolved in a mixture consisting of 80 parts by weight of cyclohexanone and 20 parts by weight of Wettol ® EM 31 (nonionic emulsifier based on ethoxylated castor oil; BASF AG). A stable emulsion concentrate is obtained.
  • the active ingredients I or the herbicidal compositions can be applied pre- or post-emergence. If the active ingredients are less compatible with certain crop plants, application techniques can be used in which the herbicidal compositions are sprayed with the aid of sprayers in such a way that the leaves of the sensitive crop plants are not hit as far as possible, while the active ingredients are applied to the leaves of undesirable plants growing below them or the uncovered floor area (post-directed, lay-by).
  • the application rates of active ingredient are 0.001 to 3.0, preferably 0.01 to 1 kg / ha of active substance (a.S.) depending on the control target, season, target plants and growth stage.
  • the substituted hydroximic acid derivatives I can be mixed with numerous representatives of other herbicidal or growth-regulating active compound groups and applied together.
  • the 01 obtained in this way was purified chromatographically on silica gel with methylene chloride as the eluent, then mixed with diisopropyl ether and the precipitate formed was filtered off and washed with petroleum ether. After drying the precipitate at 50 ° C. and reduced pressure, 5.5 g of the desired product C with a melting point of 114-116 ° C. were obtained.
  • hydroxamic acid derivatives can be prepared in an analogous manner.
  • Plastic pots with loamy sand with about 3.0% humus as substrate served as culture vessels.
  • the seeds of the test plants were sown separately according to species.
  • the active ingredients suspended or emulsified in water were applied directly after sowing using finely distributing nozzles.
  • the containers were lightly sprinkled to promote germination and growth, and then covered with clear plastic covers until the plants had grown. This cover causes the test plants to germinate evenly, unless this was affected by the active ingredients.
  • test plants For the purpose of post-emergence treatment, the test plants, depending on the growth habit, were first grown to a height of 3 to 15 cm and only then treated with the active ingredients suspended or emulsified in water. For this purpose, the test plants were either sown directly and grown in the same containers or they were first grown separately as seedlings and transplanted into the test containers a few days before the treatment.
  • the application rate for the post-emergence treatment was 7.8 and 3.9 g / ha a. S.
  • the plants were kept at temperatures of 10 - 25 ° C or 20 - 35 ° C depending on the species.
  • the trial period lasted 2 to 4 weeks. During this time, the plants were cared for and their response to each treatment was evaluated.
  • Evaluation was carried out on a scale from 0 to 100. 100 means no emergence of the plants or complete destruction of at least the aerial parts and 0 means no damage or normal growth.
  • the plants used in the greenhouse experiments are composed of the following types:
  • the young cotton plants were trofn beau leaf treated with aqueous preparations of the active ingredients (with an addition of 0.15 wt .-% of the fatty alcohol alkoxylate Plurafac LF ® 700 1), based on the spray mixture).
  • the amount of water applied was the equivalent of 1000 l / ha. After 13 days, the number of leaves dropped and the degree of defoliation in% were determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Neue Hydroximsäure-Derivate (I), sowie deren Salze, wobei X = O, S; Y = O, S; R1 = H, C¿1?-C4-Alkyl, NH2, C1-C4-Alkylamino oder Di(C1-C4-alkyl)amino; R?2 = C¿1-C3-Halogenalkyl; R3 = H, Halogen, C¿1?-C4-Alkyl; R?4¿ = H, Halogen; R5 = CN, Halogen; R6 = C1-C6-Alkyl, C2-C6-Alkenyl, C3-C6-Alkinyl oder Phenyl-C1-C6-alkyl, wobei der Phenylring dieser Gruppe unsubstituiert sein oder 1-3 Substituenten tragen kann; R7 = eine C¿1?-C6-Alkyl-, C2-C6-Alkenyl-, C3-C6-Alkinyl- oder Phenyl-C1-C6-alkylgruppe, wobei diese 4 Gruppen unsubstituiert sein oder 1 oder 2 Substituenten tragen können; Verwendung: als Herbizide; zur Desikkation/Defoliation von Pflanzen.

Description

Neue herbizide Hydroximsäurederivate
Beschreibung
Die vorliegende Erfindung betrifft neue substituierte Hydroximsäurederivate der Formel I
Figure imgf000003_0001
wobei X und die Substituenten R1 bis R7 folgende Bedeutungen haben:
X Sauerstoff oder Schwefel;
Y Sauerstoff oder Schwefel;
R1 Wasserstoff, Cχ-C4-Alkyl, Amino, Cι-C4-Alkylamino oder Di (Cχ-C -alky1 ) amino ;
R2 Cι-C3-Halogenalkyl;
R3 Wasserstoff, Halogen oder Cι-C -Alkyl;
R4 Wasserstoff oder Halogen;
R5 Cyano oder Halogen;
R6 C!-C6-Alkyl, C2-C6-Alkenyl, C3-C6-Alkinyl oder Phenyl-Cχ-C6-al- kyl, wobei der Phenylring unsubstituiert sein oder einen bis drei Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Halogen, Cι-C -Alkyl, Cι-C6-Halogenalkyl, C!-C6-Alkoxy, C2-C6-Alkenyloxy, C3-C6-Alki- nyloxy und (Cι-C6-Alkoxy)carbonyl;
R7 eine Cj_-C6-Alkyl-, C2-C6-Alkenyl-, C3-C6-Alkinyl- oder Phe- nyl-Cχ-Cg-alkylgruppe, wobei diese 4 Gruppen unsubstituiert sein oder einen oder zwei Substituenten tragen können, jeweils ausgewählt aus der Gruppe bestehend aus Halogen, Cχ-C -Alkoxy, Cι-C3-Alkoxyimino, (Cι-C3-Alkoxy)carbonyl, (Cι-C -Alkylamino)carbonyl, Di(Cι-C -alkyl)aminocarbonyl und CO-N(C1-C3-Alkyl)-(Cι-C3-Alkoxy) , wobei die 4 letzgenannten Reste ihrerseits eine (Cι-C3-Alkoxy)carbonyl- oder Cχ-C -Alk- oxygruppe tragen können;
sowie die landwirtschaftlich brauchbaren Salze der Verbindungen
I.
Außerdem betrifft die Erfindung - die Verwendung der Verbindungen I als Herbizide und/oder zur Desikkation/Defoliation von Pflanzen, herbizide Mittel und Mittel zur Desikkation/Defoliation von Pflanzen, welche die Verbindungen I als wirksame Substanzen enthalten, - Verfahren zur Herstellung der Verbindungen I und von herbizi- den Mitteln und Mitteln zur Desikkation/Defoliation von Pflanzen unter Verwendung der Verbindungen I, Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs und zur Desikkation/Defoliation von Pflanzen mit den Verbindun- gen I, sowie neue Zwischenprodukte der Formel VII.
Aus der EP-A 408 382 sind herbizid wirksame Hydroximsäurederivate der Formel
(C
Figure imgf000004_0001
bekannt, wobei Rn Wasserstoff, Hydroxymethyl oder Cι-C -[Halo- gen-]Alkyl, R° Wasserstoff, Nitro, Halogen, Cι-C6-[ Halogen- ]Alkyl oder Hydroxymethyl, RP Nitro, Cyano oder Halogen, R3 Wasserstoff, Cι-C3-Alkyl, -Alkoxy oder -Alkoxy-Cι-C2-alkyl und Rr Wasserstoff, C!-C -Alkyl, C2-C3-Halogenalkyl, C3-C6-Cycloalkyl, Phenyl oder Benzyl bedeuten.
Aus der DE-A 44 24 791 sind bestimmte Hydroximsäuren der Zimtsäure bekannt. Der vorliegenden Erfindung lag die Aufgabe zugrunde, neue Hydroximsäurederivate mit guter herbizider Wirkung zur Verfügung zu stellen. Die Aufgabe erstreckt sich auch auf die Bereitstellung neuer desikkant/defoliant wirksamer Verbindungen.
Diese Aufgabe wird erfindungsgemäß durch die Hydroximsäurederivate der Formel I gelöst. Bevorzugte Verbindungen der Formel I sind den Unteransprüchen und der nachfolgenden Beschreibung zu entnehmen.
Die Verbindungen der Formel I können je nach Substitutionsmuster ein oder mehrere ChiralitätsZentren enthalten und liegen dann als Enantiomeren- oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomeren oder Diastereomeren als auch deren Gemische.
Unter landwirtschaftlich brauchbaren Salzen kommen vor allem die Salze derjenigen Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen beziehungsweise Anionen die herbizide Wirkung der Verbindungen I nicht negativ beeinträchtigen. So kommen als Kationen insbesondere die Ionen der Alkalimetalle, vorzugsweise Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium, Magnesium und Barium, und der Übergangsmetalle, vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie das Ammoniumion, das gewünschtenfalls ein bis vier Cι-C4-Alkylsubsti- tuenten und/oder einen Phenyl- oder Benzylsubstituenten tragen kann, vorzugsweise Diisopropylammonium, Tetramethylammonium, Tetrabutylammonium, Trimethylbenzylammonium, des weiteren Phos- phoniumionen, Sulfoniumionen, vorzugsweise Tri(Cι~C4-alkyl) sulfo- nium und Sulfoxoniumionen, vorzugsweise Tri(Cι-C -alkyl)sulfoxo- nium, in Betracht.
Anionen von brauchbaren Säureadditionssalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogen- phosphat, Hydrogenphosphat, Phosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat , Benzoat, sowie die Anionen von Cι~C4-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat.
Die für die Substituenten R1 bis R3, R6, R7 oder als Reste an
Phenylringen genannten organischen Molekülteile stellen - wie die Bedeutung Halogen - Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppenmitglieder dar. Sämtliche Kohlenstoffketten, also alle Alkyl-, Halogenalkyl, Alkenyl-, Alkinyl-, Alkoxy-, Alkenyloxy-, Alkinyloxy-, Alkylamino- und Phenylalkyl-Teile können geradkettig oder verzweigt sein. Halogenierte Substituenten tragen vorzugsweise ein bis fünf gleiche oder verschiedene Halogenatome .
Im einzelnen stehen beispielsweise:
Halogen für: Fluor, Chlor, Brom oder Jod, vorzugsweise für Fluor oder Chlor;
Cι-C4-Alkyl für: CH3, C2H5, CH2-C2H5, CH(CH3)2, n-C4H9, CH(CH3)-C2H5, CH-CH(CH3) oder C(CH3)3;
Ci-Cδ-Al yl und der Alkyl-Teil von Cι-C6-Alkoxy-Cι-C6-alkyl für: Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl, 1, 1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethyl- propyl, 1-Ethylpropyl, n-Hexyl, 1, 1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methyl- pentyl, 4-Methylpentyl, 1, 1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2 , 2-Dimethylbutyl, 2 , 3-Dimethylbutyl, 3, 3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Tri- methylpropyl, 1,2 ,2-Trimethylpropyl, 1-Ethyl-l-methylpropyl oder l-Ethyl-2-methylpropyl, vorzugsweise für Cχ-C4-Alkyl, insbesondere für Methyl oder Ethyl;
- Cι-C6-Halogenalkyl für: Cι-C6-Alkyl wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor, Brom und/ oder Jod substituiert ist, also z.B. CH2F, CHF2, CF3, CH2C1, CH(C1) , C(C1)3, Chlorfluormethyl, Dichlorfluormethyl, Chlor- difluormethyl, 1-Fluorethyl, 2-Fluorethyl, 2 , 2-Difluorethyl, 2, 2, 2-Trifluorethyl, 2-Chlor-2-fluorethyl,
2-Chlor-2 , 2-difluorethyl , 2 , 2-Dichlor-2-fluorethyl , 2,2,2-Trichlorethyl, C2Fs, 3-Fluorpropyl, 3-Chlorpropyl oder CF -C F5, vorzugsweise für Cχ-C -Halogenalkyl, insbesondere für Trifluormethyl oder 1, 2-Dichlorethyl;
C2-C6~Alkenyl für : Ethenyl , Prop-1-en-l-yl , Prop-2-en-l-yl , 1-Methylethenyl , n-Buten-1-yl , n-Buten-2-yl , n-Buten-3-yl , 1-Methyl-prop-l-en-l-yl , 2-Methyl-prop-l-en-l-yl , 1-Methyl- prop-2-en-l-yl , 2-Methyl-prop-2-en-l-yl , n-Penten-1-yl , n- Penten-2-yl , n-Penten-3-yl , n-Penten-4-yl , 1-Methyl- but-1-en-l-yl , 2-Methyl-but-l-en-l-yl , 3-Methyl- but-1-en-l-yl , l-Methyl-but-2-en-l-yl , 2-Methyl- but-2-en-l-yl , 3-Methyl-but-2-en-l-yl , 1-Methyl- but-3-en-l-yl , 2-Methyl-but-3-en-l-yl , 3-Methyl- but-3-en-l-yl , 1 , l-Dimethyl-prop-2-en-l-yl , 1 , 2-Dimethyl- prop-1-en-l-yl , 1 , 2-Dimethyl-prop-2-en-l-yl , 1-Ethyl- prop-l-en-2-yl , l-Ethyl-prop-2-en-l-yl , n-Hex-1-en-l-yl , n- Hex-2-en-l-yl , n-Hex-3-en-l-yl , n-Hex-4-en-l-yl , n- Hex-5-en-l-yl , 1-Methyl-pent-l-en-l-yl , 2-Methyl- pent-1-en-l-yl , 3-Methyl-pent-l-en-l-yl , 4-Methyl- pent-1-en-l-yl, l-Methyl-pent-2-en-l-yl , 2-Methyl- pent-2-en-l-yl , 3-Methyl-pent-2-en-l-yl , 4-Methyl- pent-2-en-l-yl, l-Methyl-pent-3-en-l-yl , 2-Methyl- pent-3-en-l-yl, 3-Methyl-pent-3-en-l-yl , 4-Methyl- pent-3-en-l-yl, l-Methyl-pent-4-en-l-yl , 2-Methyl- pent-4-en-l-yl , 3-Methyl-pent-4-en-l-yl , 4-Methyl- pent-4-en-l-yl, 1, l-Dimethyl-but-2-en-l-yl, 1 , 1-Dimethyl- but-3-en-l-yl, 1,2-Dimethyl-but-l-en-l-yl, 1, 2-Dimethyl- but-2-en-l-yl, l,2-Dimethyl-but-3-en-l-yl, 1, 3-Dimethyl- but-1-en-l-yl, l,3-Dimethyl-but-2-en-l-yl, 1, 3-Dimethyl- but-3-en-l-yl, 2 ,2-Dimethyl-but-3-en-l-yl, 2 , 3-Dimethyl- but-1-en-l-yl, 2,3-Dimethyl-but-2-en-l-yl, 2 , 3-Dimethyl- but-3-en-l-yl, 3 , 3-Dimethyl-but-l-en-l-yl, 3 , 3-Dimethyl- but-2-en-l-yl, 1-Ethyl-but-l-en-l-yl, l-Ethyl-but-2-en-l-yl, l-Ethyl-but-3-en-l-yl, 2-Ethyl-but-l-en-l-yl, 2-Ethyl- but-2-en-l-yl, 2-Ethyl-but-3-en-l-yl, 1 , 1 , 2-Trimethyl- prop-2-en-l-yl, l-Ethyl-l-methyl-prop-2-en-l-yl, l-Ξthyl-2-methyl-prop-l-en-l-yl oder l-Ethyl-2-methyl- prop-2-en-l-yl, vorzugsweise für C3- oder C -Alkenyl;
C3-C6-Alkinyl für: Prop-1-in-l-yl, Prop-2-in-3-yl, n- But-1-in-l-yl, n-But-l-in-4-yl, n-But-2-in-l-yl, n-
Pent-1-in-l-yl, n-Pent-l-in-3-yl, n-Pent-l-in-4-yl, n- Pent-l-in-5-yl, n-Pent-2-in-l-yl, n-Pent-2-in-4-yl, n- Pent-2-in-5-yl, 3-Methyl-but-l-in-l-yl, 3-Methyl- but-l-in-3-yl, 3-Methyl-but-l-in-4-yl, n-Hex-1-in-l-yl, n- Hex-l-in-3-yl, n-Hex-l-in-4-yl, n-Hex-l-in-5-yl, n- Hex-l-in-6-yl, n-Hex-2-in-l-yl, n-Hex-2-in-4-yl, n- Hex-2-in-5-yl, n-Hex-2-in-6-yl, n-Hex-3-in-l-yl, n- Hex-3-in-2-yl, 3-Methyl-pent-l-in-l-yl, 3-Methyl- pent-l-in-3-yl, 3-Methyl-pent-l-in-4-yl, 3-Methyl- pent-l-in-5-yl, 4-Methyl-pent-l-in-l-yl, 4-Methyl- pent-2-in-4-yl und 4-Methyl-pent-2-in-5-yl, vorzugsweise für C3- oder C -Alkinyl, insbesondere für Prop-2-in-3-yl;
Phenyl-Ci-Cg-alkyl z.B. für: Benzyl, 1-Phenyleth-l-yl, 2-Phe- nyleth-1-yl, 1-Phenylprop-l-yl, 2-Phenylprop-l-yl, 3-Phenyl- prop-1-yl, l-Phenylprop-2-yl, 2-Phenylprop-2-yl, 1-Phenyl- but-l-yl, 2-Phenylbut-l-yl, 3-Phenylbut-l-yl, 4-Phenyl- but-l-yl, l-Phenylbut-2-yl, 2-Phenylbut-2-yl, 1-Phenyl- but-3-yl, 2-Phenylbut-3-yl, l-Phenyl-2-methyl-prop-3-yl, 2-Phenyl-2-methyl-prop-3-yl, 3-Phenyl-2-methyl-prop-3-yl und 2-Benzyl-prop-2-yl, vorzugsweise für Phenyl-Cχ-C -alkyl, insbesondere für 2-Phenyleth-l-yl;
Cι-C3-Alkoxy sowie die Alkoxy-Teile von (Cι-C3-Alkoxy)carbonyl und CO-N(C1-C3-Alkyl)-(Cι-C3-Alkoxy) für: OCH3, OC2H5, OCH2-C2H5 oder OCH(CH3)2;
C!-C6-Alkoxy und der Alkoxy-Teil von Cx-Cg-Alkoxy-Cx-Cg-alkyl für: Methoxy, Ethoxy, n-Propoxy, 1-Methylethoxy, n-Butoxy, 1-Methyl-propoxy, 2-Methylpropoxy, 1, 1-Dimethylethoxy, n- Pentoxy, 1-Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 1 , 1-Dimethylpropoxy, 1 , 2-Dimethylpropoxy, 2 , 2-Dimethyl- propoxy, 1-Ethylpropoxy, n-Hexoxy, 1-Methylpentoxy, 2-Methyl- pentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1, 1-Dimethyl- butoxy, 1,2-Dimethylbutoxy, 1,3-Dimethylbutoxy, 2,2-Dimethyl- butoxy, 2, 3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1-Ethyl- butoxy, 2-Ethylbutoxy, 1 , 1 , 2-Trimethylpropoxy, 1,2,2-Tri- methylpropoxy, 1-Ethyl-l-methylpropoxy und l-Ethyl-2-methyl- propoxy, vorzugsweise für Cχ-C -Alkoxy, insbesondere für OCH3, OC2H5 oder OCH(CH3)2;
(C].-C6-Alkoxy) carbonyl für: C00CH3, COOC2H5, COOCH2-C2H5, COOCH(CH3)2, COO(n-C4H9), COOCH(CH3)-C2H5, COOCH2-CH(CH3 )2, COOC(CH3)3, COO(n-C5Hn) , 1-Methylbutoxycarbonyl, 2-Methyl- butoxycarbonyl, 3-Methylbutoxycarbonyl, 2,2-Dimethylpropoxy- carbonyl, 1-Ethylpropoxycarbonyl, n-Hexoxycarbonyl, 1 , 1-Dimethylpropoxycarbonyl , 1 , 2-Dimethylpropoxycarbonyl , 1-Methylpentoxycarbonyl, 2-Methylpentoxycarbonyl, 3-Methyl- pentoxycarbonyl, 4-Methylpentoxycarbonyl, 1, 1-Dimethylbutoxy- carbonyl , 1 , 2-Dimethylbutoxycarbonyl , 1 , 3-Dimethylbutoxycar- bonyl, 2, 2-Dimethylbutoxycarbonyl, 2, 3-Dimethylbutoxycarbo- nyl, 3 ,3-Dimethylbutoxycarbonyl, 1-Ethylbutoxycarbonyl, 2-Ethylbutoxycarbonyl, 1,1, 2-Trimethylpropoxycarbonyl , 1,2,2-Trimethylpropoxycarbonyl, 1-Ethyl-l-methyl-propoxycar- bonyl oder l-Ethyl-2-methyl-propoxycarbonyl, vorzugsweise für (Cχ-C4-Alkoxy) carbonyl, insbesondere für C00CH3, COOC2H5 oder COOCH(CH3)2;
C2-C6~Alkenyloxy für: Ethenyloxy, Prop-1-en-l-yloxy, Prop-2-en-l-yloxy, 1-Methylethenyloxy, n-Buten-1-yloxy, n- Buten-2-yloxy, n-Buten-3-yloxy, 1-Methyl-prop-l-en-l-yloxy, 2-Methy1-prop-1-en-1-yloxy, 1-Methyl-prop-2-en-1-yloxy, 2-Methyl-prop-2-en-l-yloxy, n-Penten-1-yloxy, n-Penten-2-yl- oxy, n-Penten-3-yloxy, n-Penten-4-yloxy, 1-Methyl- but-1-en-l-yloxy, 2-Methyl-but-l-en-l-yloxy, 3-Methyl- but-1-en-l-yloxy, l-Methyl-but-2-en-l-yloxy, 2-Methyl- but-2-en-l-yloxy, 3-Methyl-but-2-en-l-yloxy, 1-Methyl- but-3-en-l-yloxy, 2-Methyl-but-3-en-l-yloxy, 3-Methyl- but-3-en-l-yloxy, 1 , l-Dimethyl-prop-2-en-l-yloxy, 1 , 2-Di- methyl-prop-1-en-l-yloxy , 1 , 2-Dimethyl-prop-2-en-l-yloxy , l-Ethyl-prop-l-en-2-yloxy, l-Ethyl-prop-2-en-l-yloxy, n-Hex-1-en-l-yloxy, n-Hex-2-en-l-yloxy, n-Hex-3-en-l-yloxy, n-Hex-4-en-l-yloxy, n-Hex-5-en-l-yloxy, 1-Methyl- pent-1-en-l-yloxy, 2-Methyl-pent-l-en-l-yloxy, 3-Methyl- pent-1-en-l-yloxy, 4-Methyl-pent-l-en-l-yloxy, 1-Methyl- pent-2-en-l-yloxy, 2-Methyl-pent-2-en-l-yloxy, 3-Methyl- pent-2-en-l-yloxy, 4-Methyl-pent-2-en-l-yloxy, 1-Methyl- pent-3-en-l-yloxy, 2-Methyl-pent-3-en-l-yloxy, 3-Methyl- pent-3-en-l-yloxy, 4-Methyl-pent-3-en-l-yloxy, 1-Methyl- pent-4-en-l-yloxy, 2-Methyl-pent-4-en-l-yloxy, 3-Methyl- pent-4-en-l-yloxy, 4-Methyl-pent-4-en-l-yloxy, 1 , 1-Dimethyl- but-2-en-l-yloxy, 1 , l-Dimethyl-but-3-en-l-yloxy, 1 , 2-Dime- thyl-but-1-en-l-yloxy, 1 , 2-Dimethyl-but-2-en-l-yloxy, 1 , 2-Di- methyl-but-3-en-l-yloxy , 1 , 3-Dimethyl-but-l-en-l-yloxy , 1 , 3-Dimethyl-but-2-en-l-yloxy , 1 , 3-Dimethyl-but-3-en-l-yloxy , 2 , 2-Dimethyl-but-3-en-l-yloxy, 2 , 3-Dimethyl-but-l-en-l-yloxy, 2 , 3-Dimethyl-but-2-en-l-yloxy , 2 , 3-Dimethyl-but-3-en-l-yloxy ,
3 , 3-Dimethyl-but-l-en-l-yloxy , 3 , 3-Dimethyl-but-2-en-l-yloxy , 1-Ethyl-but-l-en-l-yloxy, l-Ethyl-but-2-en-l-yloxy, 1-Ethyl- but-3-en-l-yloxy, 2-Ethyl-but-l-en-l-yloxy, 2-Ethyl-but-2- en-1-yloxy, 2-Ethyl-but-3-en-l-yloxy, 1 , 1 , 2-Trimethyl-prop-2- en-1-yloxy, l-Ethyl-l-methyl-prop-2-en-l-yloxy, l-Ethyl-2- methyl-prop-1-en-l-yloxy oder l-Ethyl-2-methyl-prop-2-en-l- yloxy, insbesondere für Prop-2-en-l-yloxy;
C3-C6-Alkinyloxy für: Prop-1-in-l-yloxy, Prop-2-in-l-yloxy, n-But-1-in-l-yloxy, n-But-l-in-3-yloxy, n-But-l-in-4-yloxy, n-But-2-in-l-yloxy, n-Pent-1-in-l-yloxy, n-Pent-l-in-3-yloxy, n-Pent-l-in-4-yloxy, n-Pent-l-in-5-yloxy, n-Pent-2-in-l-yl- oxy, n-Pent-2-in-4-yloxy, n-Pent-2-in-5-yloxy, 3-Methyl- but-l-in-3-yloxy, 3-Methyl-but-l-in-4-yloxy, n-Hex-1-in-l-yl- oxy, n-Hex-l-in-3-yloxy, n-Hex-l-in-4-yloxy, n-Hex-l-in-5-yl- oxy, n-Hex-l-in-6-yloxy, n-Hex-2-in-l-yloxy, n-Hex-2-in-4-yl- oxy, n-Hex-2-in-5-yloxy, n-Hex-2-in-6-yloxy, n-Hex-3-in-l-yl- oxy, n-Hex-3-in-2-yloxy, 3-Methylpent-l-in-l-yloxy, 3-Methyl- pent-l-in-3-yloxy, 3-Methyl-pent-l-in-4-yloxy, 3-Methyl- pent-l-in-5-yloxy, 4-Methyl-pent-l-in-l-yloxy, 4-Methyl- pent-2-in-4-yloxy oder 4-Methylpent-2-in-5-yloxy, insbesondere für Prop-2-in-l-yloxy;
C!-C4-Alkylamino für: NH-CH3, NH-C2H5, NH-CH2-C2H5, NH-CH(CH3)2, NH-(n-C4H9), NH-CH(CH3 )-C2H5, NH-CH2-CH(CH3 ) 2 oder NH-C(CH3)3; (Cι-C3-Alkylamino) carbonyl für: CO-NH-CH3, CO-NH-C2H5, CO-NH- CH2-C2H5 oder CO-NH-CH(CH3 ) 2, insbesondere für CO-NH-CH3 oder CO-NH-C2H5;
- Di (Cι-C3-alkyl) amino für: N(CH3)2, N(C2H5)2, N(n-C3H7)2,
N[CH(CH3)2]2, N(n-C4H9)2, N[CH(CH3 )-C2H5 ]2, N[CH2-CH(CH3 )2 ]2, N[C(CH3)3]2, N(CH3)-C2H5, N(CH3 )-CH2-C2H5 , N(CH3 )-CH(CH3 ) 2 , N(CH3)-(n-C4H9) , N(CH3)-CH(CH3)-C2H5, N(CH3 )-CH2-CH(CH3 )2, N(CH3)-C(CH3)3, N(C2H5)-CH2-C2H5, N(C2H5 ) -CH(CH3 ) 2 , N(C2H5)-(n-C4H9), N(C2H5 )-CH(CH3 )-C2H5, N(C2H5 )-CH2-CH(CH3 ) 2, N(C2H5)-C(CH3)3, N(n-C3H7)-CH(CH3)2, N(n-C3H7 )- (n-C4H9) , ( n-C3H7 ) -CH ( CH3 ) -2H5 , N ( n-C3H7 ) -CH2-CH ( CH3 ) 2 , N(n-C3H7)-C(CH3)3, N[CH(CH3 )2 ]-(n-C4H9 ) , N[CH(CH3)2]-CH(CH3)-C2H5, N[CH(CH3 ) 2 ]-CH2-CH(CH3 ) 2 , N[CH(CH3)2]-C(CH3)3, N(n-C4H9 )-CH(CH3 ) -C2H5, N ( n-C4H9 ) -CH2-CH (CH3 ) 2 , N ( n-C4H9 ) -C ( CH3 ) 3 ,
N[CH(CH3)-C2H5]-CH2-CH(CH3)2, N[C (CH3 ) 3 ]-CH (CH3 )-C2H5 oder N[C(CH3)3]-CH2-CH(CH3)2, insbesondere N(CH3)2 oder N(C2H5)2;
- Di(Cι-C3-alkyl)aminocarbonyl für: CO-N(CH3)2, CO-N(C2H5)2, CO-N(n-C3H7)2, CO-N[CH(CH3)2]2, C0-N(CH3 ) -C2H5, CO-N(CH3)-CH2-C2H5, CO-N(CH3)-CH(CH3)2, C0- N(C2H5 ) -CH2-C2H5 , CO-N(C2H5)-CH(CH3)2 oder CO-N(n-C3H7 )-CH(CH3 ) 2, insbesondere für CO-N(CH3)2 oder CO-N(C2H5)2.
- Cι-C3-Alkoxyimino für: Methoxyimino, Ethoxyimino, n-Propyl- oxyimino oder i-Propyloxyimino.
Bevorzugt werden diejenigen Verbindungen I, in denen die Substi- tuenten folgende Bedeutungen haben:
X Sauerstoff;
R1 Methyl oder Amino;
R2 Trifluormethyl oder Trifluorethyl;
R3 Wasserstoff;
R4 Halogen, insbesondere Fluor;
R5 Cyano oder Chlor;
R6 Cι-C6-Alkyl, C3-C6-Alkenyl, C3-C6-Alkinyl oder Phenyl-Cι-C6-al- kyl, wobei der Phenylring ein bis drei Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Halogen, Cι-C -Alkyl, Cι~C4-Halogenalkyl, Cι_-C4-Alkoxy, C3-C5-Alkenyloxy und C3-Cs-Alkinyloxy; insbesondere ist R6 Cι-C -Alkyl oder Phenyl-Cι-C -alkyl, wobei der Phenylring ein bis drei Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Halogen, Cx^-Alkyl, Cι-C -Halogenalkyl, Cι-C4-Alkoxy, C3-C5-Alkenyloxy und C3-C5-Alkinyloxy;
R7 Cι~C-Alkyl mit einem oder zwei Substituenten, jeweils ausgewählt aus der Gruppe bestehend aus Cι-C3-Alkoxyimino, (Cι-C3-Alkoxy) carbonyl, (Cι-C3-Alkylamino) carbonyl,
Di (Cι-C3-alkyl)aminocarbonyl und CO-N(Cι-C3-Alkyl) - (Cι-C3-Alk- oxy) , wobei die vier letzten Reste ihrerseits wieder eine (Cι-C3-Alkoxy) carbonylgruppe tragen können.
Verbindungen der Formel I, in denen R1 bis R5 die in Tabelle 1 genannte Bedeutungen haben sowie R6 und R7 für jeweils eine Reihe der Tabellen 2 bzw. 3 stehen, sind besonders bevorzugt.
Tabelle 1:
Figure imgf000011_0001
Tabelle 2:
Figure imgf000011_0002
Tabelle 3
Figure imgf000012_0002
Die Verbindung 1.1. gemäß Tabelle 1 bei der R6 die Bedeutung 2.1. und R7 die Bedeutung 3.3. hat wird im folgenden mit 1.1./2.1./3.3 , zitiert.
Die erfindungsgemäßen Hydroximsäurederivate I sind auf verschiedene Weise erhältlich, bevorzugt nach einem der nachstehend be- schriebenen Verfahren.
a) Alkylierung eines Hydroxamsäurederivats der Formel III:
Figure imgf000012_0001
In der Regel arbeitet man in einem inerten Lösungs- oder Verdünnungsmittel, vorzugsweise in Gegenwart einer Base.
Als Lösungsmittel eignen sich beispielsweise protische Lösungsmittel wie die niederen Alkohole, vorzugsweise Ethanol, gewünschtenfalls im Gemisch mit Wasser, oder Ether, vorzugsweise 1, 2-Dime hoxyethan, Tetrahydrofuran und Dioxan, aliphatische Ketone, vorzugsweise Aceton, Amide, vorzugsweise Dimethylformamid, Sulfoxide, vorzugsweise Dimethyl- sulfoxid, Harnstoffe wie Tetramethylharnstoff und 1, 3-Dimethyltetrahydro-2 (1H) -pyrimiάinon, Carbonsäureester wie Essigsäurethylester, oder halogenierte aliphatische oder aromatische Kohlenwasserstoffe wie Dichlormethan und Chlorbenzol .
Die Alkylierung erfolgt normalerweise mit dem Halogenid, vorzugsweise dem Chlorid oder Bromid, dem Sulfat, einem Sulfonat, vorzugsweise einem Methansulfonat (Mesylat) wie Trifluormethansulfonat (Triflat) oder einem Benzolsulfonat wie p-Toluolsulfonat (Tosylat) und p-Brombenzolsulfonat (Bro- sylat) , oder mit einer Diazoverbindung, z.B. Diazomethan.
Als Basen eignen sich anorganische Basen, z.B. Carbonate wie Kaliumcarbonat und Natriumcarbonat, Hydrogencarbonate wie Kalium- und Natriumhydrogencarbonat, Alkalimetallhydride wie Natriumhydrid und Kaliumhydrid, sowie organische Basen, z.B. Amine wie Triethylamin, Pyridin und N,N-Diethylanilin, oder Alkalialkoholate wie Natriummethanolat, Natriumethanolat und Kalium-tert . -butanolat .
Vorzugsweise verwendet man die 0,5- bis 2-fache molare Menge sowohl an Base als auch an Alkylierungsmittel, bezogen auf die Menge an III.
Im allgemeinen empfiehlt sich eine Reaktionstemperatur von (-78°C) bis zur Siedetemperatur des Reaktionsgemisches, insbesondere von (-60) bis 60°C.
Üblicherweise entstehen bei der Alkylierung der Verbindungen der Formel III neben den erfindungsgemäßen substituierten Hydroximsäurederivaten I auch die entsprechenden, Amid-Stick- stoff substituierten Zimthydroxamid-Derivate. Das Verhältnis, in dem die beiden Produkte entstehen, hängt von der Reaktionstemperatur, vom Alkylierungsmittel, der verwendeten Base und auch von der jeweiligen Ausgangsverbindung III ab. Die gewünschte Verbindung I kann normalerweise von den Nebenprodukten auf an sich bekannte Weise getrennt werden, z.B. durch Kristallisation oder Chromatographie.
Alkylierung einer substituierten Hydroximsäure IV entspre - chend der Formel I mit Wasserstoff anstelle von R6:
Figure imgf000014_0001
Hinsichtlich der Reaktionsbedingungen gilt das vorstehend für die Verfahrensvariance a) Gesagte.
Umsetzung eines Hydroximinohaiogenids der Formel V mit einem Alkohol- oder Thiolderivac
Figure imgf000014_0002
(V) Hai
Vorteilhaft verwendet man als Alkohol-/Thiolderivate die AI - kohole/Thiole R7YH oder deren Salze, insbesondere die der Alkali- oder Erdalkalimetalle.
Geeignete Lösungs- oder Verdünnungsmittel sind z.B. aliphatische oder cyclische Ether wie Diethylether und Tetrahydro- furan, aliphatische Ketone wie Aceton, Kohlenwasserstoffe wie n-Pentan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Benzol und Toluol, halogenierte aliphatische oder aromatische Kohlenwasserstoffe wie Dichlormethan und Chlorbenzol, Ester wie Ethylacetat, Amide wie Dimethylform- amid und N-Methyl-pyrrolidon, Sulfoxide wie Dimethylsulfoxid, sowie Mischungen dieser Solventien. Auch die Alkohole und Alkoholderivate selbst kommen als Lösungs- oder Verdünnungsmittel in Betracht.
Das Mengenverhältnis von V zu Alkohol/Thiol oder Alkohol-/ Thiolderivat R7YH ist nicht kritisch. Üblicherweise werden etwa äquimolare Mengen eingesetzt. Es kann aber auch zweckmäßig sein, den Alkohol/Thiol oder das Alkohol-/Thiolderivat in einem Überschuß einzusetzen, so daß es gleichzeitig als Lösungs- oder Verdünnungsmittel dient. Im allgemeinen empfiehlt sich eine Reaktionstemperatur von (-78)°C bis zum Siedepunkt des jeweiligen Reaktionsgemisches, insbesondere von 0 bis 80°C.
Bei der Umsetzung von V mit einem Alkohol/Thiol R7YH oder dessem Derivat arbeitet man besonders vorteilhaft in Gegenwart einer Base, wobei sowohl anorganische Basen, z.B. Carbonate, Hydrogencarbonate oder Alkalimetallhydride, als auch organische Basen, z.B. Amine wie Triethylamin, Pyridin und N,N-Dimethylanilin, oder Alkalimetallalkoholate, in Betracht kommen. Zweckmäßigerweise verwendet man ein Alkoholat/ Thiolat des Alkohols/Thiols R7YH als Base.
Die Base kann in katalytischer, unterstöchiometrischer, stöchiometrischer Menge oder im Überschuß, bis zur 5-fachen molaren Menge, bezogen auf V, eingesetzt werden.
Die Hydroximinohalogenide der Formel V sind beispielsweise durch Halogenierung der entsprechenden Carbonylverbindungen der Formel III erhältlich.
Bei dieser Halogenierung arbeitet man üblicherweise in einem inerten Lösungs- oder Verdünnungsmittel, wobei insbesondere aprotische organische Flüssigkeiten, beispielsweise aliphati- sehe oder aromatische Kohlenwasserstoffe wie n-Hexan, Benzol, Toluol und o-, m-, p-Xylol, halogenierte aliphatische Kohlenwasserstoffe wie Methylenchlorid, Chloroform und 1,2-Dichlor- ethan, halogenierte aromatische Kohlenwasserstoffe wie Chlorbenzol, tertiäre Amine wie N,N-Dimethylanilin, oder Nitrile wie Acetonitril in Betracht kommen.
Als Halogenierungsmittel eignen sich vor allem Thionyl- chlorid, Phosphorpentachlorid, Phosphoroxychlorid, Phosphor- pentabromid oder Phosphoroxybromid. Besonders vorteilhaft kann auch die Verwendung eines Gemisches aus Phosphorpentachlorid und Phosphoroxychlorid oder aus Phosphorpentabromid und Phosphoroxybromid sein, wobei dann ohne Verdünnungsmittel in einem Überschuß an Phosphoroxychlorid oder Phosphoroxybromid gearbeitet werden kann.
Bei Verwendung von Thionylchlorid als Halogenierungsmittel empfiehlt es sich, eine katalytische Menge an Dimethylform- amid zuzusetzen. Besonders bewährt hat sich ein Gemisch aus einem Tetrahalogenmethan wie Tetrachlor- und Tetrabromkohlenstoff, und einem unsubstituierten oder substituierten Triphenylphosphan, z.B. Triphenylphosphan oder Tri-(o-tolyl)-phosphan.
Für eine vollständige Umsetzung benötigt man mindestens äquimolare Mengen an Halogenierungsmittel und Ausgangsverbindung III. Im allgemeinen wirkt sich ein Überschuß an Halogenierungsmittel, bis etwa zur 8-fachen molaren Menge, bezogen auf III, günstig auf den Reaktionsverlauf aus.
Die Reaktionstemperatur liegt im allgemeinen bei 0°C bis zur Rückflußtemperatur des Reaktionsgemisches, vorzugsweise bei 20 bis 120°C.
Überführung eines Nitrils der Formel VI in zwei Stufen in eine Verbindung der Formel I :
Figure imgf000016_0001
Die Reaktion erfolgt üblicherweise in zwei Stufen, indem man das Nitril VI zuerst mit einem Alkohol/Thiol R7YH umsetzt und den hierbei erhaltenen Imidoester, gewünschtenfalls ohne Iso- lierung aus der Reaktionsmischung, mit einem Hydroxylamin H2N-OR6 zur Reaktion bringt.
Die Umsetzung von VI mit R7YH kann in einem inerten Lösungsoder Verdünnungsmittel oder lösungsmittelfrei in einem Über- schuß des Alkohols/Thiols durchgeführt werden. Häufig ist ein saurer oder "Lewis"-saurer Katalysator förderlich, vorzugsweise in etwa katalytischer Menge oder in einer Menge bis etwa 200 mol-%, bezogen auf die Menge an VI.
Als inerte Lösungs- oder Verdünnungsmittel eignen sich besonders organische Lösungsmittel, z.B. aliphatische oder cyclische Ether wie Diethylether, Tetrahydrofuran und Dimeth- oxyethan, aliphatische, cyclische oder aromatische Kohlenwasserstoffe wie n-Pentan, Petrolether, Cyclohexan, Toluol und die Xylole, Amide wie Dimethylformamid und N-Methylpyrroli- don, halogenierte Kohlenwasserstoffe wie Dichlormethan, Chlorbenzol und 1,2-Dichlormethan, oder Mischungen der genannten Solventien.
Als saure Katalysatoren eignen sich anorganische, bevorzugt wasserfreie Säuren, z. B. Chlorwasserstoff, Bromwasserstoff, Salpetersäure, Schwefelsäure, auch Oleum, oder Perchlorsäure, sowie organische Säuren wie Essigsäure, Propionsäure, p-Tolu- olsulfonsäure und Trifluoressigsäure. Beispiele für "Lewis"-saure Katalysatoren sind Titantetrachlorid, Zinn(II)-chlorid, Eisen(III)-chlorid, Aluminiumtrichlorid, Ethylaluminiumdichlorid, Titantetraisopropylat und Bortri- fluoroetherat.
Die Menge an R7YH ist nicht kritisch. Normalerweise sind 1 bis 10 mol Alkohol/Thiol pro mol VI für eine optimale Umsetzung von VI ausreichend. Arbeitet man lösungsmittelfrei in dem betreffenden Alkohol/Thiol, so kann dieser auch in einem größeren Überschuß vorliegen.
Sofern der Imidoester in der ersten Stufe als Salz anfällt, empfiehlt es sich, die Neutralverbindung freizusetzen, bevor die Umsetzung mit dem Hydroxylamin H2N-OR6 vorgenommen wird.
Hydroxylamine, die in Form ihrer Salze, insbesondere als Hydrochloride, Hydrobromide oder Sulfate, erhältlich sind oder bei der Herstellung als Salze anfallen, können vor ihrer Umsetzung durch Zugabe einer geeigneten Base freigesetzt werden, wobei als Basen insbesondere die bei Methode a) genannten geeignet sind.
Die Umsetzung des erhaltenen Imidoesters mit H2N-OR6 erfolgt im allgemeinen in einem inerten Lösungs- oder Verdünnungsmittel. Hierfür kommen neben den vorstehend genannten Solventien zusätzlich Alkohole wie Methanol, Ethanol und Isopropanol, Nitrile wie Acetonitril, Amine wie Triethylamin, Pyridin und N,N-Dimethylanilin, oder auch Wasser in Betracht.
Imidoester und Hydroxylamin werden zweckmäßigerweise in etwa äquimolaren Mengen miteinander umgesetzt. Um den Imidoester möglichst vollständig umzusetzen kann es aber empfehlenswert sein, das Hydroxylamin H2N-OR6 in einem Überschuß, bis etwa 10 mol-%, einzusetzen.
Die Reaktionstemperatur liegt für beide Stufen im allgemeinen bei (-20) bis 120°C, insbesondere bei 0°C bis zur Siedetemperatur des Reaktionsgemisches . e) Überführung eines Oxi s der Formel VII R4
Figure imgf000018_0001
wobei R8 für Nitro, Amino, Isocyanato, Isothiocyanato, (Cι-Cg-Alkyl)carbamato oder Phenylcarbamato steht,
nach einem in der WO 93/06090 beschriebenen Verfahren in die erfindungsgemäßen Hydroximsäurederivate der Formel I.
Die Verbindungen der Formel VII sind neu. Sie sind ihrerseits nach einem der vorstehend zur Herstellung von Verbindungen I beschriebenen Verfahren erhältlich.
f) Schwefelung eines Hydroximsaurederivats der Formel I mit X = Sauerstoff:
I (X - 0) Schwefelung ^ ∑ = g)
Die Schwefelung erfolgt in der Regel in einem inerten Lösungs- oder Verdünnungsmittel, beispielsweise in einem aromatischen Kohlenwasserstoff wie Toluol und den Xylolen, in einem Ether wie Diethylether, 1,2-Dimethoxyethan und Tetra- hydrofuran, oder in einem organischen Amin wie Pyridin.
Als Schwefelungsreagenz eignen sich besonders gut Phos- phor(V)-sulfid und 2,4-Bis (4-methoxyphenyl)-l,3, 2, 4-dithiadi- phosphetan-2 , 4-dithion ( "Lawesson-Reagenz" ) .
Üblicherweise ist die 1- bis 5-facher molare Menge, bezogen auf die zu schwefelnde Ausgangsverbindung, für eine weitgehend vollständige Umsetzung ausreichend.
Die Reaktionstemperatur liegt normalerweise bei 20 bis 200°C, vorzugsweise bei 40°C bis zur Siedetemperatur des Reaktionsgemisches .
Die Hydroxamsäurederivate der Formel III mit Y = Sauerstoff sind z.B. aus Benzoesäuren der Formel VIII zugänglich:
Figure imgf000019_0001
VIII
Die Reaktion wird Üblicherweise in einem inerten Lösungsoder Verdünnungsmittel in Gegenwart eines Kondensationshilfsmittels oder ohne Lösungsmittel in einem Überschuß des Kondensationshilfsmittels vorgenommen .
Als Lösungs- oder Verdünnungsmittel eignen sich insbesondere organische Lösungsmittel, z.B. aliphatische oder cyclische Ether, wie Diethylether, Tetrahydrofuran und Dimethoxyethan, aliphatische, cyclische oder aromatische Kohlenwasserstoffe wie n-Pentan, Petrolether, Cyclohexan, Toluol und die Xylole, Alkohole wie Methanol, Ethanol und i-Propanol, Amide wie
Dimethylformamid und N-Methylpyrrolidon, Nitrile wie Aceto- nitril, Amine wie Triethylamin, Pyridin und N,N-Dimethyl- anilin, halogenierten Kohlenwasserstoffe wie Dichlormethan, Chlorbenzol und 1,2-Dichlormethan, oder Wasser. Auch Mischungen aus den genannten Solventien sind geeignet.
Als Kondensationshilfsmittel kommen z.B. Oxalylchlorid, Carbonyldiimidazol, Carbodiimide wie Dicyclohexylcarbodiimid, Halogenierungsmittel wie Thionylchlorid, Phoshoroxychlorid, Phosgen, Phosphortrichlorid und Phoshorpentachlorid, oder Chlorameisensäuremethylester oder -ethylester in Betracht.
Bevorzugt ist die Verwendung eines Halogenierungsmittels, wobei zuerst "in situ" ein Säurehalogenid entsteht, das dann mit dem Hydroxylamin H2N-OR6 zum Produkt III weiterreagiert.
Es besteht aber auch die Möglichkeit, das Säurehalogenid in einem separaten Verfahrensschritt gezielt herzustellen und, gewünschtenfalls in gereinigter Form, danach mit dem Hydroxylamin HN-OR6 umzusetzen.
Hydroxylamine, die in Form ihrer Salze, insbesondere als Hydrochloride , Hydrobromide oder Sulfate, erhältlich sind oder bei der Herstellung als Salze anfallen, können vor ihrer Umsetzung mit VIII, gewünschtenfalls auch in der Reaktions- mischung mit dem Kondensationshilfsmittel und VIII, durch Zugabe einer geeigneten Base freigesetzt werden.
Als Basen eignen sich hierfür insbesondere die bei Methode a) genannten.
Die Mengen an Kondensationshilfsmittel, VIII und Hydroxylamin H2N-OR6 sind nicht kritisch. Zweckmäßigerweise verwendet man etwa äquimolare Mengen der Ausgangsstoffe. Das Kondensations- hilfsmittel kann gewünschtenfalls auch im Überschuß eingesetzt werden, wobei dann sogar ohne inertes Lösungsmittel gearbeitet werden kann.
Hydroxamsäurederivate III mit Y = Schwefel sind vorteilhaft durch Schwefelung der entsprechenden Derivate III mit Y = Sauerstoff analog Verfahren f) zugänglich.
Hierbei kann die Menge an Schwefelungsreagenz 0,5 bis 5 Mol, bezogen auf 1 Mol der zu schwefelnden Verbindung III (Y = 0), be- tragen.
Alle vorstehend beschriebenen Verfahren werden zweckmäßigerweise bei Atmosphärendruck oder unter dem Eigendruck des jeweiligen Reaktionsgemisches vorgenommen.
Die Aufarbeitung der Reaktionsgemische erfolgt in der Regel nach an sich bekannten Methoden, beispielsweise durch Entfernen des Lösungsmittels, Verteilen des Rückstandes in einem Gemisch aus Wasser und einem geeigneten organischen Lösungsmittel und Aufar- beiten der organischen Phase auf das Produkt hin.
Die erfindungsgemäßen substituierten Hydroximsäurederivate der Formel I können bei der Herstellung als Isomerengemische anfallen, die gewünschtenfalls nach den hierfür üblichen Methoden, z.B. mittels Kristallisation oder Chromatographie an einem optisch aktiven Adsorbat, in die reinen Isomeren getrennt werden können. Reine optisch aktive Isomere lassen sich beispielsweise auch aus entsprechenden optisch aktiven Ausgangsmaterialien herstellen.
Substituierte Hydroximsäurederivate I mit C-H aciden Substituenten lassen sich auf an sich bekannte Weise durch Reaktion mit einer Base des entsprechenden Kations in ihre Alkalimetallsalze überführen. Salze von I, deren Metallion kein Alkalimetallion ist, können üblicherweise durch Umsalzen des entsprechenden Alkalimetall - salzes in wäßriger Lösung hergestellt werden.
Andere Metallsalze wie Mangan-, Kupfer-, Zink-, Eisen-, Calcium- Magnesium- und Bariumsalze können aus den Natriumsalzen in üblicher Weise hergestellt werden, ebenso Ammonium- und Phosphonium- salze mittels Ammoniak, Phosphonium- , Sulfonium- oder Sulfoxoniumhydroxiden.
Die Verbindungen I und deren landwirtschaftlich brauchbaren Salze eignen sich - sowohl als Isomerengemische als auch in Form der reinen Isomeren - als Herbizide. Die I enthaltenden herbiziden Mittel bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Aufwandmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturpflanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf.
In Abhängigkeit von der jeweiligen Applikationsmethode können die Verbindungen I bzw. sie enthaltende Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen: Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus offici- nalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinc- torius, Carya illinoinensis, Citrus limon, Citrus sinensis, Cof- fea arabica (Coffea canephora, Coffea liberica) , Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria ve- sca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossy- pium herbaceum, Gossypium vitifolium) , Helianthus an rus, Hevea brasiliensis, Hordeum vulgäre, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec, Manihot esculenta, Medicago sativa, Musa spec, Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec, Pisum sativum, Prunus avium, Prunus persica, Pyrus commu- nis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Seeale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgäre), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera, Zea mays. Darüber hinaus lassen sich die Verbindungen I auch in Kulturen, die durch Züchtung einschließlich gentechnischer Methoden gegen die Wirkung von Herbiziden ausreichend oder weitgehend tolerant gemacht wurden, einsetzen.
Des weiteren eignen sich die substituierten Hydroximsäure-Deri- vate I auch zur Desikkation und/oder Defoliation von Pflanzen.
Als Desikkantien eignen sie sich insbesondere zur Austrocknung der oberirdischen Teile von Kulturpflanzen wie Kartoffel, Raps, Sonnenblume und Sojabohne. Damit wird ein vollständig mechanisches Beernten dieser wichtigen Kulturpflanzen ermöglicht.
Von wirtschaftlichem Interesse ist ferner die Ernteerleichterung, die durch das zeitlich konzentrierte Abfallen oder Vermindern der Haftfestigkeit am Baum bei Zitrusfrüchten, Oliven oder bei anderen Arten und Sorten von Kern-, Stein- und Schalenobst ermöglicht wird. Derselbe Mechanismus, das heißt die Förderung der Ausbildung von Trenngewebe zwischen Frucht- oder Blatt- und Sproßteil der Pflanzen ist auch für ein gut kontrollierbares Entblättern von Nutzpflanzen, insbesondere Baumwolle, wesentlich.
Außerdem führt die Verkürzung des Zeitintervalls, in dem die einzelnen Baumwollpflanzen reif werden, zu einer erhöhten Faser- qualität nach der Ernte.
Die Verbindungen I bzw. die sie enthaltenden Mittel können beispielsweise in Form von direkt versprühbaren wäßrigen Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldisper- sionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.
Als inerte Zusatzstoffe kommen im Wesentlichen in Betracht: Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Paraffin, Tetrahydronaphthalin, alky- lierte Naphthaline oder deren Derivate, alkylierte Benzole oder deren Derivate, Alkohole wie Methanol, Ethanol, Propanol, Buta- nol, Cyclohexanol, Ketone wie Cyclohexanon oder stark polare Lösungsmittel, z. B. Amine wie N-Methylpyrrolidon oder Wasser. Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die sub- stituierten Hydroximsäure-Derivate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzen- träte hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.
Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsaure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formal- dehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphe- nolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Al- kylphenyl-, Tributylphenylpolyglykolether, Alkylarylpolyether- alkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxy- propylenalkylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.
Pulver-, Streu- und Stäubemittel können durch Mischen oder ge- meinsames Vermählen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.
Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe herge- stellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harn- Stoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.
Die Konzentrationen der Wirkstoffe I in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Die
Formulierungen enthalten im allgemeinen 0,001 bis 98 Gew.-%, vorzugsweise 0,01 bis 95 Gew.-%, mindestens eines Wirkstoffs. Die Wirkstoffe werden dabei üblicherweise in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Sektrum) eingesetzt.
Die folgenden Formulierungsbeispiele verdeutlichen die Herstellung solcher Zubereitungen:
I. 20 Gewichtsteile der Verbindung Nr. 4.01 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.
II. 20 Gewichtsteile der Verbindung Nr. 4.02. werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon,
30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctyl- phenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Ein- gießen und feines Verteilen der Lösung in 100 000
Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.
III. 20 Gewichtsteile des Wirkstoffs Nr. 4.03. werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon,
65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Rizinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.
IV. 20 Gewichtsteile des Wirkstoffs Nr. 4.04. werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutyl- naphthalin-α-sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermählen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser enthält man eine Spritzbrühe, die 0,1 Gew.% des Wirkstoffs enthält. V. 3 Gewichtsteile des Wirkstoffs Nr. 4.08. werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.% des Wirkstoffs enthält.
VI. 20 Gewichtsteile des Wirkstoffs Nr. 4.09. werden mit 2 Gewichtsteilen Calciumsalz der Dodecyibenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kon- densates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.
VII. 1 Gewichtsteil der Verbindung 4.10 wird in einer Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20 Gewichtsteilen ethoxyliertem Isooctylphenol und 10 Gewichtsteilen ethoxyliertem Rizinusöl besteht. Man erhält ein stabiles Emulsionskonzentrat .
VIII. 1 Gewichtsteil der Verbindung 4.11 wird in einer Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexanon und 20 Gewichtsteilen Wettol® EM 31 (nicht ionischer Emulgator auf der Basis von ethoxyliertem Rizinusöl; BASF AG) . Man erhält ein stabiles Emulsionskonzentrat.
Die Applikation der Wirkstoffe I bzw. der herbiziden Mittel kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by) .
Die Aufwandmengen an Wirkstoff betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 3,0, vorzugsweise 0,01 bis 1 kg/ha aktive Substanz (a.S.).
Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die substituierten Hydroximsäurederivate I mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner 1, 2 , -Thiadiazole, 1, 3, 4-Thiadiazole, Amide, Aminophosphorsäure und deren Derivate, Aminotriazole, Anilide, (Het) -Aryloxyalkan- säuren und deren Derivate, Benzoesäure und deren Derivate, Benzo- thiadiazinone, 2-Aroyl-l, 3-cyclohexandione, Hetaryl-Aryl-Ketone, Benzylisoxazolidinone, Meta-CF3-phenylderivate, Carbamate, Chino- linsäure und deren Derivate, Chloracetanilide, Cyclohe- xan-1, 3-dionderivate, Diazine, Dichlorpropionsäure und deren De- rivate, Dihydrobenzofurane, Dihydrofuran-3-one, Dinitroaniline, Dinitrophenole, Diphenylether, Dipyridyle, Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phenyluracile, Imidazole, Imi- dazolinone, N-Phenyl-3, 4 , 5, 6-tetrahydrophthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- oder Heteroaryloxyphenoxypropions u- reester, Phenylessigsäure und deren Derivate, Phenylpropionsäure und deren Derivate, Pyrazole, Phenylpyrazole, Pyridazine, Pyri- dincarbonsäure und deren Derivate, Pyrimidylether, Sulfonamide, Sulfonylharnstoffe, Triazine, Triazinone, Triazolinone, Triazol- carboxamide, Uracile in Betracht.
Außerdem kann es von Nutzen sein, die Verbindungen I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.
Hersteliungsbeispiele
Beispiel 1
3- [2-Fluor-4-Chlor-5 (Oallylhydroxylaminocarbonyl) - phenyl] -2 , 4-dioxo-l-methyl-6-trifluormethyl-1, 2,3, 4-tetrahydro- pyrimidin
+ H2N-OAllyl
Figure imgf000026_0001
Figure imgf000026_0002
3 g Allylhydroxylaminhydrochloridmonohydrat wurden in 100 ml Toluol vorgelegt und bei Raumtemperatur (RT) mit 5,6 g Triethylamin versetzt. Zu dieser Vorlag wurden 9,6 g A, gelöst in 80 ml Toluol, getropft, wobei sich die Lösung auf 35°C erwärmte. Anschließend wurde die Reaktionslösung 5 Std. bei Raumtemperatur gerührt, danach 50 ml Wasser eingespritzt, der ausgefallene Niederschlag abgetrennt und zunächst mit 50 ml Wasser und dann mit 50 ml Petrolether gewaschen. Nach dem Trocknen des Niederschlags bei 50°C und reduziertem Druck wurden 5,5 g des gewünschten Produkts B mit einem Schmelzpunkt von 152-153°C erhalten.
Beispiel 2 3- [2-Fluor-4-Chlor-5-0-benzylhydroxylammocarbonyl) - phenyl] -2 , 4-dιoxo-l-methyl-6-trifluormethyl-l, 2,3, 4-tetranydro- pyrimidin
Figure imgf000027_0001
3,5 g Benzylhydroxylaminhydrochlorid wurden in 90 ml Toluol vorgelegt und bei Raumtemperatur (RT) mit 4,5 g Triethylamin ver- setzt. Zu dieser Vorlage wurden 7,7 g A, gelost in 60 ml Toluol, getropft, wobei sich die Losung auf 30°C erwärmte. Anschließend wurde die Reaktionslosung 5 Std. bei Raumtemperatur gerührt, danach 3 mal mit je 50 ml Wasser gewaschen, über Natriumsulfat getrocknet und das Losungsmittel unter reduziertem Druck abdestil- liert. Das so erhaltene 01 wurde an Kieselgel mit Methylenchlorid als Eluens chrσmatograpnisch gereinigt, anschließend mit Diiso- propylether verr hrt und der sich bildende Niederschlag abfiltriert und mit Petrolether gewaschen. Nach dem Trocknen des Niederschlags bei 50°C und reduziertem Druck wurden 5,5 g des ge- wünschten Produkts C mit einem Schmelzpunkt von 114-116°C erhalten.
Auf analoge Weise lassen sich weitere Hydroxamsaurederivate herstellen.
Beispiel 3
Herstellung von 3- [2-Fluor-4-Chlor-5-methoxyimino (allyloxy)me- thylphenyl] -2, 4-dioxo-l-methyl-6-trifluormethyl-l, 2,3, 4-tetra- hydropyrimidin (Verbindung 4.02)
Figure imgf000028_0001
2 g D wurden in 80 ml Aceton vorgelegt und mit 0,8 g Kaliumcarbo- nat versetzt. Zu diesem Gemisch wurden 0,52 g Allylbromid zugetropft und die Reaktionsmischung 17 Std. bei Raumtemperatur (RT) gerührt. Anschließend wurde das Lösungsmittel bei reduziertem Druck abdestilliert, der Rückstand in 100 ml Methylenchlorid auf- genommen, dreimal mit je 30 ml Wasser gewaschen und über Natriumsulfat getrocknet. Der nach dem Abdestillieren des Lösungsmittels erhaltene Feststoff wurde an Kieselgel chromatographisch gereinigt (Eluens: Methylenchlorid/Ethylacetat = 95:5). Das resultierende Öl wurde mit einem 1 : 1 Gemisch aus Petrolether und Diiso- propylether verrührt, der entstandene Niederschlag abfiltriert und mit Petrolether gewaschen. Nach Trocknen des Niederschlags wurden 0,45 g des gewünschten Produkts E mit einem Schmelzpunkt von 73-75°C erhalten.
Beispiel 4
Herstellung von 3-[2-Fluor-4-Chlor-5-methoxyimino(methoxy)methyl- phenyl]-2, 4-dioxo-l-methyl-6-trifluormethyl-l , 2 , 3 , 4-tetrahydro- pyrimidin ( Verbindung 4.01)
Figure imgf000028_0002
2 g D wurden in 100 ml Aceton vorgelegt und mit 0,7 g Kaliumcar- bonat versetzt. Zu diesem Gemisch wurden 0,83 ml Methyltosylat zugetropft und die Reaktionsmischung 5 Std. am Rückfluß erhitzt. Anschließend wurde das Lösungsmittel bei reduziertem Druck abdestilliert, der Rückstand in 100 ml Methylenchlorid aufgenommen, dreimal mit je 30 ml Wasser gewaschen und über Natriumsulfat ge- trocknet. Der nach dem Abdestillieren des Lösungsmittels erhaltene Feststoff wurde an Kieselgel chromatographisch gereinigt (Eluens: Methylenchlorid/Ethylacetat = 90:10). Das resultierende Öl wurde mit einem 1:1 Gemisch aus Petrolether und Diisopropyl- ether verrührt, der entstandene Niederschlag abfiltriert und mit Petrolether gewaschen. Nach Trocknen des Niederschlags wurden 0,65 g des gewünschten Produkts F mit einem Schmelzpunkt von 5 122-124°C erhalten.
Nach den vorstehend beschriebenen Verfahren wurden die in der nachfolgenden Tabelle 4 aufgeführten Verbindungen hergestellt. Diese stehen beispielhaft für die erfindungsgemäßen Verbindungen 0 der Formel I, die sich nach den in den Beispielen oder in der vorstehenden Beschreibung dargelegten Verfahren herstellen lassen.
Tabelle 4 5
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000030_0002
Beispiel 5
Herstellung von 3-[2-Fluor-4-chlor-5-[ethoxyimino(methylthio)- methyl ] -phenyl ] -2 , 4-dioxo-l-methyl-6-trifluormethyl-l , 2,3, 4-te- trahydropyrimidin
Figure imgf000030_0001
H3CS H
Zu 0,69 g G in 10 ml absolutem Ethanol wurden zunächst 0,22 g Ka- liumcarbonat gegeben und dann 0,23 g Methyljodid getropft. Nach 3 Stunden Rühren bei Raumtemperatur (RT) entfernte man die niedrigsiedenden Anteile. Der Rückstand wurde mit 50 ml gesättigter wässriger Natriumhydrogencarbonat-Lösung versetzt. Aus der wäss- rigen Phase extrahierte man das entstandene Wertprodukt mit 3 x 30 ml Ethylacetat. Anschließend wurden die vereinigten organischen Phasen noch zweimal mit Wasser gewaschen, über Natriumsulfat getrocknet und schließlich eingeengt. Die Reinigung des Rohproduktes erfolgte mittels Mitteldruck-Flüssigkeitschromatographie (MPLC; Eluentengemisch: Cyclohexan/Ethylacetat = 3:1). Ausbeute: 0,11 g der gewünschten Verbindung H als gelbes, sehr zähes Öl.
Vorstufe
3- [ 2-Fluor-4-chlor-5- (ethylhydroxylaminothiocarbonyl ) -phenyl ] -2 , 4-dioxo-l-methyl-6-trifluormethyl-l , 2,3, 4-tetrahydropyri- midin
Figure imgf000031_0001
K
Eine Lösung von 0,54 g G und 0,27 g Lawesson-Reagenz in 5 ml absolutem Tetrahydrofuran wurde 12 Stunden auf Rückflußtemperatur erhitzt. Nach Abkühlen der Reaktionsmischung destillierte man das Lösungsmittel ab. Der Rückstand wurde mit 50 ml. gesättigter wässriger Natriumhydrogencarbonat-Lösung versetzt. Anschließend extrahierte man mit 3 x 30 ml Ethylacetat. Die vereinigten organischen Phasen wurden noch zweimal mit Wasser gewaschen. Ausbeute: 0,69 g Rohprodukt, das ohne weitere Reinigung methyliert wurde.
Auf analoge Weise erhielt man aus :
3- [ 2-Fluor-4-chlor-5- [ ( 2-methylpropyl ) hydroxylaminothio- carbonyl ] -phenyl ]-2 , 4-dioxo-l-methyl-6-trifluormethyl-
1,2,3, 4-tetrahydropyrimidin die entsprechende Verbindung I mit YR7 = SCH3;
3- [ 2-Fluor-4-chlor-5- (propin-3-ylhydroxylaminothiocarbonyl ) - phenyl ]-2,4-dioxo-l-methyl-6-trifluormethyl- 1,2, 3,4-tetra- hydropyrimidin die entsprechende Verbindung I mit YR7 = SCH3 ; Ausbeute: 23 %; Fp. : 68-70°C;
3- [ 2-Fluor-4-chlor-5- ( prop-2-ylhydroxylaminothiocarbo- nyl ) -phenyl ] -2 , 4-dioxo-l-methyl-6-trifluormethyl-l , 2,3,4- tetrahydropyrimidin die entsprechende Verbindung I mit YR7 = SCH3; Ausbeute: 20 %; farbloses Öl.
Anwendungsbeispiele zur herbiziden Wirksamkeit
Die herbizide Wirkung der substituierten Hydroximsäurederivate der Formel I ließ sich durch Gewächshausversuche zeigen:
Als Kulturgefäße dienten Plastiktöpfe mit lehmigem Sand mit etwa 3,0% Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät. Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsich- tigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.
Zum Zweck der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und erst dann mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 7,8 bzw. 3,9 g/ha a. S.
Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 - 25°C bzw. 20 - 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.
Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf .
Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:
Figure imgf000032_0001
Bei einer Aufwandmenge von 7,8 bzw. 3,9 g/ha a.S. zeigte die Verbindung Nr. 4.08 im Nachlaufverfahren eine sehr gute herbizide Wirkung gegen unerwünschte breitblättrige Pflanzen sowie Schadgräser .
Anwendungsbeispiele für die desikkative/defoliante Wirksamkeit
Als Testpflanzen dienten junge, 4-blättrige (ohne Keimblätter) Baumwollpflanzen, die unter Gewächshausbedingungen angezogen wur- den (rel. Luftfeuchtigkeit 50 bis 70 %; Tag-/Nachttemperatur 27/20°C) .
Die jungen Baumwollpflanzen wurden trofnaß mit wässrigen Aufbereitungen der Wirkstoffe (unter Zusatz von 0,15 Gew.-% des Fettalkoholalkoxylats Plurafac® LF 7001), bezogen auf die Spritzbrühe) blattbehandelt. Die ausgebrachte Wassermenge betrug umgerechnet 1000 1/ha. Nach 13 Tagen wurde die Anzahl der abgeworfenen Blätter und der Grad der Entblätterung in % bestimmt.
Bei den unbehandelten Kontrollpflanzen trat kein Blattbefall auf.
1) ein schaumarmes, nichtionisches Tensid der BASF AG

Claims

Patentansprüche
1. Substituierte Hydroximsäurederivate der Formel I
Figure imgf000034_0001
YR7
wobei X und die Substituenten R1 bis R7 folgende Bedeutungen haben :
X Sauerstoff oder Schwefel;
Y Sauerstoff oder Schwefel;
R1 Wasserstoff, Cι-C -Alkyl, Amino, Cι-C4-Alkylamino oder Di (Cι-C4-alkyl ) amino ;
R2 C1-C3-Halogenalkyl;
R3 Wasserstoff, Halogen oder Cι-C4-Alkyl;
R4 Wasserstoff oder Halogen;
R5 Cyano oder Halogen;
R6 Ci-Cg-Alkyl, C2-Cg-Alkenyl, C3-C6-Alkinyl oder Phenyl-
Ci-Cg-alkyl, wobei der Phenylring unsubstituiert sein oder ei- nen bis drei Substituenten tragen kann, jeweils ausgewählt aus der Gruppe bestehend aus Cyano, Nitro, Halogen, Cι-C -Al- kyl, Cx-Cg-Halogenalkyl, Ci-Cg-Alkoxy, C2-Cg-Alkenyloxy, C3-Cg- Alkinyloxy und (Cχ-Cg-Alkoxy) carbonyl;
R7 eine Ci-Cg-Alkyl-, C -C6-Alkenyl-, C3-Cg-Alkinyl- oder Phenyl- Ci-Cg-alkylgruppe, wobei diese 4 Gruppen unsubstituiert sein oder einen oder zwei Substituenten tragen können, jeweils ausgewählt aus der Gruppe bestehend aus Halogen, Cι-C3-Alkoxy, Cι-C3-Alkoxyimino, (Cj.-C3-Alkoxy) carbonyl, (Cι-C3-Alkyl- amino) carbonyl, Di(Cι-C3-alkyl)aminocarbonyl und
CO-N(Cι-C3-Alkyl)-(Cι-C3-Alkoxy) , wobei die 4 letzgenannten Reste ihrerseits eine (Ci~C3-Alkoxy)carbonyl- oder Cj.-C-Alk- oxygruppe tragen können;
sowie die landwirtschaftlich brauchbaren Salze der Verbindun- gen I.
2. Verwendung der substituierten Hydroximsäurederivate der Formel I und der landwirtschaftlich brauchbaren Salze von I, gemäß Anspruch 1, als Herbizide oder zur Desikkation und/oder Defoliation von Pflanzen.
3. Herbizides Mittel, enthaltend eine herbizid wirksame Menge mindestens eines substituierten Hydroximsäurederivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flüssigen und/oder festen Trägerstoff sowie gewünschtenfalls mindestens einen oberflächenaktiven Stoff.
4. Mittel zur Desikkation und/oder Defoliation von Pflanzen, enthaltend eine desikkant und/oder defoliant wirksame Menge mindestens eines substituierten Hydroximsäurederivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flüssigen und/oder festen Trägerstoff sowie gewünschtenfalls mindestens einen oberflächenaktiven Stoff.
5. Verfahren zur Herstellung von herbizid wirksamen Mitteln, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines substituierten Hydroximsäurederivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flüssigen und/oder festen Trägerstoff sowie gewünschtenfalls mindestens einen oberflächenaktiven Stoff mischt.
6. Verfahren zur Herstellung von desikkant und/oder defoliant wirksamen Mitteln, dadurch gekennzeichnet, daß man eine de- sikkant/defoliant wirksame Menge mindestens eines substituierten Hydroximsäurederivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flüssigen und/oder festen
Trägerstoff sowie gewünschtenfalls mindestens einen oberflächenaktiven Stoff mischt.
7. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, da- durch gekennzeichnet, daß man eine herbizid wirksame Menge mindestens eines substituierten Hydroximsäurederivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, auf Pflanzen, deren Lebensraum oder auf Saatgut einwirken läßt.
8. Verfahren zur Desikkation und/oder Defoliation von Pflanzen, dadurch gekennzeichnet, daß man eine defoliant und/oder desikkant wirksame Menge mindestens eines substituierten Hydroximsäurederivates der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, auf Pflanzen einwirken läßt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß man Baumwolle behandelt.
10. Oxime der Formel VII
Figure imgf000036_0001
wobei R8 für Nitro, Amino, Isocyanato, Isothiocyanato, (Cι-Cg-Alkyl)carbamato oder Phenylcarbamato steht.
PCT/EP1998/001440 1997-03-25 1998-03-12 Neue herbizide hydroximsäurederivate WO1998042681A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP98914884A EP0971903A1 (de) 1997-03-25 1998-03-12 Neue herbizide hydroximsäurederivate
CA002283672A CA2283672A1 (en) 1997-03-25 1998-03-12 Novel herbicidal hydroximic acid derivatives
AU69213/98A AU6921398A (en) 1997-03-25 1998-03-12 Novel herbicidal hydroximic acid derivatives
US09/381,474 US6387849B1 (en) 1997-03-25 1998-03-12 Herbicidal hydroximic acid derivatives
JP54206898A JP2001517231A (ja) 1997-03-25 1998-03-12 新規な置換ヒドロキシム酸誘導体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19712408 1997-03-25
DE19712408.9 1997-03-25

Publications (1)

Publication Number Publication Date
WO1998042681A1 true WO1998042681A1 (de) 1998-10-01

Family

ID=7824505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/001440 WO1998042681A1 (de) 1997-03-25 1998-03-12 Neue herbizide hydroximsäurederivate

Country Status (8)

Country Link
US (1) US6387849B1 (de)
EP (1) EP0971903A1 (de)
JP (1) JP2001517231A (de)
AR (1) AR012175A1 (de)
AU (1) AU6921398A (de)
CA (1) CA2283672A1 (de)
WO (1) WO1998042681A1 (de)
ZA (1) ZA982468B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026194A1 (de) * 1998-11-02 2000-05-11 Basf Aktiengesellschaft Neue 1-aryl-4-thiouracile
EP1125931A1 (de) * 2000-02-17 2001-08-22 Hunan Research Institute of Chemical Industry Biozide Alkyl-substituierte (Hetero)aryl-ketoxim-O-ether und Verfahren zu ihrer Herstellung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230357210A1 (en) * 2020-10-29 2023-11-09 Nihon Nohyaku Co., Ltd. Nitrogen-containing condensed heterocyclic compound having an oxime group, agricultural or horticultural herbicide comprising the compound, and method for using the compound or the herbicide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0408382A2 (de) * 1989-07-14 1991-01-16 Nissan Chemical Industries, Limited Urazil-Derivate und diese als wirksamen Stoff enthaltende Unkrautbekämpfungsmittel
EP0542685A1 (de) * 1991-11-13 1993-05-19 Ciba-Geigy Ag Neue 3-Aryluracil-Derivate und deren Verwendung zur Unkrautbekämpfung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0150221B1 (ko) 1989-06-29 1998-10-15 베르너 발데크, 발트라우트 베케레 헤테로 고리 화합물
EP0473551A1 (de) 1990-08-31 1992-03-04 Ciba-Geigy Ag 3-Aryluracil-Derivate, Verfahren zu ihrer Herstellung und diese enthaltende Unkrautbekämpfungsmittel
US5266554A (en) 1990-08-31 1993-11-30 Ciba-Geigy Corporation Heterocyclic compounds
DE4424791A1 (de) 1994-07-14 1996-01-18 Basf Ag Substituierte Zimtoxim- und Zimthydroxamid-Derivate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0408382A2 (de) * 1989-07-14 1991-01-16 Nissan Chemical Industries, Limited Urazil-Derivate und diese als wirksamen Stoff enthaltende Unkrautbekämpfungsmittel
EP0542685A1 (de) * 1991-11-13 1993-05-19 Ciba-Geigy Ag Neue 3-Aryluracil-Derivate und deren Verwendung zur Unkrautbekämpfung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026194A1 (de) * 1998-11-02 2000-05-11 Basf Aktiengesellschaft Neue 1-aryl-4-thiouracile
EP1125931A1 (de) * 2000-02-17 2001-08-22 Hunan Research Institute of Chemical Industry Biozide Alkyl-substituierte (Hetero)aryl-ketoxim-O-ether und Verfahren zu ihrer Herstellung

Also Published As

Publication number Publication date
AU6921398A (en) 1998-10-20
CA2283672A1 (en) 1998-10-01
US6387849B1 (en) 2002-05-14
ZA982468B (en) 1998-09-25
EP0971903A1 (de) 2000-01-19
JP2001517231A (ja) 2001-10-02
AR012175A1 (es) 2000-09-27

Similar Documents

Publication Publication Date Title
WO2003066576A1 (de) Phenylalaninderivate als herbizide
EP1165515A1 (de) Pyridin-2,3-dicarbonsäurediamide
WO2002066471A1 (de) Neue 1, 5-dialkyl-3-(3-oxo-3, 4-dihydro-2h-benzol[1, 4] oxazin-6-yl)-6-thioxo-[1, 3, 5] triazinan-2, 4-dione
WO1998042671A1 (de) Substituierte 2-benz(o)ylpyridin derivate, deren herstellung und deren verwendung als herbizide
EP0891336B1 (de) Substituierte 1-methyl-3-benzyluracile
EP1527052B1 (de) 3-heterocyclyl-substituierte benzoesäurederivate
EP0808310B1 (de) 3-(4-cyanophenyl)uracile
EP0770067B1 (de) Substituierte zimtoxim- und zimthydroxamid-derivate
EP0846113B1 (de) 1-(pyridyl)-pyrazole und ihre verwendung als herbizide
EP0851858B1 (de) Substituierte 2-phenylpyridine als herbizide
WO1998042681A1 (de) Neue herbizide hydroximsäurederivate
WO1998007720A1 (de) Substituierte 2-arylpyridine als herbizide
EP1034166B1 (de) Substituierte 2-phenyl-3(2h)-pyridazinone
EP0728753B1 (de) 5-Tetrahydropyranon-Cyclohexenonoximether und deren Verwendung als Herbizide
EP0958295A1 (de) Substituierte 2-(2,4(1h,3h)-pyrimidindion-3-yl)benzthiazole
EP0843662A1 (de) Substituierte 2-phenylpyridine als herbizide
DE4429006A1 (de) Substituierte Triazolinone als Pflanzenschutzmittel
DE4237984A1 (de) Substituierte 3,4,5,6-Tetrahydrophthalimide, deren Herstellung und Verwendung
EP1140847A1 (de) Substituierte 2-phenylpyridine als herbizide
DE19613548A1 (de) 3-Chlortetrahydroindazolyl-phenylpropionsäure-Derivate als Pflanzenschutzmittel
WO1998038169A1 (de) Substituierte 3-phenylpyrazole
WO2000012495A1 (de) Verwendung von dihydropyrancarbonsäureamiden als herbizide und neue dihydropyrancarbonsäureamide
CH689621A5 (de) 3-(Tetrahydrophthalimido)-zimtalkohol-Derivate, herbizid und desiccant/defoliant wirkende Mittel, deren Herstellung und Verwendung .
DE19610701A1 (de) Tetrahydrophthalimido-Zimtsäurederivate als Pflanzenschutzmittel
DE19944763A1 (de) Verwendung von Dihydropyrancarbonsäureamiden als Herbizide und neue Dihydropyrancarbonsäureamide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR BY CA CN CZ GE HU ID IL JP KR KZ LT LV MX NO NZ PL RO RU SG SI SK TR UA US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998914884

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2283672

Country of ref document: CA

Ref country code: CA

Ref document number: 2283672

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09381474

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 542068

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1998914884

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998914884

Country of ref document: EP