WO1998036904A1 - Discoloration prevention in pyrithione-containing coating compositions - Google Patents

Discoloration prevention in pyrithione-containing coating compositions Download PDF

Info

Publication number
WO1998036904A1
WO1998036904A1 PCT/US1998/001935 US9801935W WO9836904A1 WO 1998036904 A1 WO1998036904 A1 WO 1998036904A1 US 9801935 W US9801935 W US 9801935W WO 9836904 A1 WO9836904 A1 WO 9836904A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
pyrithione
composition
coating composition
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US1998/001935
Other languages
English (en)
French (fr)
Other versions
WO1998036904B1 (en
Inventor
Paul S. Kappock
Patrick Flaherty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arch Chemicals Inc
Olin Corp
Original Assignee
Arch Chemicals Inc
Olin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25188476&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1998036904(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP53664998A priority Critical patent/JP4937431B2/ja
Priority to DE69829951T priority patent/DE69829951T2/de
Priority to DK98904827T priority patent/DK0963291T3/da
Priority to BR9807254-4A priority patent/BR9807254A/pt
Priority to AU62612/98A priority patent/AU6261298A/en
Application filed by Arch Chemicals Inc, Olin Corp filed Critical Arch Chemicals Inc
Priority to EP98904827A priority patent/EP0963291B1/en
Priority to CA002282462A priority patent/CA2282462C/en
Publication of WO1998036904A1 publication Critical patent/WO1998036904A1/en
Publication of WO1998036904B1 publication Critical patent/WO1998036904B1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1687Use of special additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/02Anti-oxidant compositions; Compositions inhibiting chemical change containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/28Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing nitrogen, oxygen and sulfur

Definitions

  • This invention relates generally to coating compositions, and, more specifically, to such compositions that are characterized by enhanced antimicrobial efficacy and resistance to discoloration, both in their wet state and, after drying, in the form of a dry film on a substrate.
  • Sodium pyrithione (also called the sodium salt of l-hydroxy-2-pyridinethione, sodium pyridine-2-thiol-N-oxide, or 2-pyridinethiol-l- oxide, Na salt) is one pyrithione salt having excellent antimicrobial properties, and is typically employed as a biocide and preservative in functional fluids, such as metalworking fluids, lubricants, cosmetics and toiletries.
  • Sodium pyrithione is a well-known commercial product commonly made by reacting 2 -chloropyridine-N-oxide with NaSH and NaOH, as disclosed, for example, in U.S. Patent No. 3,159,640.
  • zinc pyrithione also known as zinc pyridine-2-thiol-N-oxide or bis [l-hydroxy-2 (H) pyridinethionato] -zinc
  • Zinc pyrithione may be made by reacting l-hydroxy-2-pyridinethione or a soluble salt thereof with a zinc salt (e.g., ZnS0 4 ) to form a zinc pyrithione precipitate, as disclosed, for example in U.S. Patent No. 2,809,971.
  • Zinc pyrithione has been employed as a broad-spectrum anti-microbial agent and preservative in metalworking fluids, plastics, paints, adhesives and cosmetics.
  • any ingredient which causes the formulation to vary much from a desired white or color may make the colorant formulators' task very difficult.
  • paint bases i.e., the partially formulated paint before pigment addition
  • adhesives, caulks and sealants any unwanted color in an additive can adversely affect the color of the formulated product, Such discoloration typically adversely affects the desired product color, producing an off -color product.
  • Patents 4,957,658 and 4,818,436 disclose solutions to the above-discussed discoloration problem attributable to the presence of ferric ion plus pyrithione, ih paints and functional fluids (e.g., metalworking fluids) respectively, by adding to the paint or functional fluid an alkali metal or alkaline earth metal salt of 1-hydroxyethane-l , 1-diphosphonic acid.
  • functional fluids e.g., metalworking fluids
  • U.S. Patent 4,161,526 discloses a white to cream yellow pyrithione, pyrithione salt or dipyrithione for application to skin or hair containing from about 0.01 percent to about 1 percent of the zinc salt of an organic carboxylic or inorganic acid, zinc hydroxide or zinc oxide, or a mixture thereof.
  • the composition of the '526 patent is said to be effective in preventing or removing discoloration caused by formation of a colored pyrithione, pyrithione salt, or dipyrithione contaminant (said to be iron pyrithione) in the composition.
  • the '526 patent does not teach a solution to the discoloration problem in compositions unrelated to skin or hair care, and not containing iron pyrithione.
  • unwanted ions such as ferric ion
  • ferric ion can cause a functional problem with respect to the antimicrobial performance of pyrithione. It is believed by the present inventors that this performance problem results from the fact that the pyrithione tends to form a blue precipitate in the presence of ferric ion, and precipitation of pyrithione reduces the amount of available pyrithione throughout the composition, thereby diminishing the biocidal protection thereof.
  • the present inventors have found that the presence of a large amount of zinc oxide in a pyrithione-containing paint can surpress the short- term (or initial stage) of antimicrobial efficacy imparted by the pyrithione to the paint when dried to form a dry film on a substrate. This diminished short term efficacy adversely affects the performance of the paint, particularly in regard to resistance of the paint film to mildew growth.
  • New solutions to the yellow, blue and green discoloration problem in various pyrithione- containing aqueous coating compositions, particularly paints, adhesives, caulks and sealants would be highly desired.
  • Preferred solutions would includes those that enable pyrithione to be utilized in coating compositions containing iron or copper, without encountering any resulting discoloration of the composition, and that is cheaper, longer lasting, and/or uses lower levels of additives than required by the above-discussed prior art.
  • a particularly preferred solution namely one providing improved short-term and long-term antimicrobial resistance of the coating composition and resulting coating against microbial attack, would be highly desired by the paint, adhesives, caulks and sealants manufacturing community. The present invention provides one such solution.
  • the present invention relates to an aqueous coating composition
  • an aqueous coating composition comprising: a) water, b) a base medium, c) a pyrithione salt, in an amount of from 0.01% to 2.0% based upon the weight of the composition, and d) zinc oxide compound selected from the many grades suitable for paint manufacture at a concentration of from 0.001% to 10% based upon the weight of the composition.
  • Typical coating compositions include aqueous compositions of a paint, adhesive, caulk, sealant, latex emulsion, pigment slurry, patching compound, joint compound, or concrete admixture.
  • the present invention relates to a process for inhibiting dry film- discoloration of a pyrithione-containing coating composition, attributable to ultraviolet light degradation of said pyrithione, which comprises incorporating into said coating composition an effective amount of a zinc compound selected from the group consisting of zinc salts of organic acids, zinc salts of inorganic acids, zinc hydroxide, zinc oxide, and combinations thereof.
  • the present invention relates to a process for removing an undesirable discoloration in an aqueous antimicrobial composition containing a dissolved metal ion selected from the group consisting of ferric ion, cupric ion, and combinations thereof, and containing pyrithione, which comprises contacting said composition with a zinc ion in a molar amount at least equal to the amount of said dissolved metal ion in said composition.
  • the present invention relates to an aqueous antimicrobial coating composition, characterized by antimildew efficacy and protected against discoloration attributable to the presence of pyrithione therein, said composition being selected from the group consisting of water- based paints, adhesives, caulks and sealants, and combinations thereof, said composition comprising water, a pyrithione salt or acid, an organic base medium and a zinc compound, said zinc ion being present in said composition in an amount of from 0.001% to 10% based upon the weight of the coating composition.
  • the present invention relates to a coated substrate comprising a substrate selected from the group consisting of wood, metal, plastic substrates, and combinations thereof, and a coating on said substrate, said coating comprising pyrithione and a zinc compound selected from the group consisting of zinc salts of organic acids, zinc salts of inorganic acids, zinc hydroxide, zinc oxide, and combinations thereof
  • a zinc compound such as a zinc salt, zinc oxide or zinc hydroxide
  • a pyrithione compound preferably zinc pyrithione
  • ultraviolet radiation a component of natural, outdoor light, tends to cause yellow discoloration of dry- film coatings containing pyrithione. It has now been found that the presence of zinc oxide within the preferred range of from 0.02% to 0.5% by weight, based upon the weight of the coating composition, in a pyrithione-containing coating composition contributes both to antimicrobial efficacy and avoidance of undesirable blueing or other discoloration of the coating composition, as well as avoidance of undesirable yellowing or other discoloration of the dry film resulting from the coating of a substrate with the coating composition.
  • discoloration as employed herein with respect to pyrithione-containing coating compositions is intended to describe any unacceptable gray, blue, black, purple, green, or color other than the natural color or desired artificial color of the paint or paint base formulation.
  • discoloration is also intended to describe any yellow or brown discoloration of the dry film resulting from coating a substrate with the coating composition. Such yellow or brown discoloration is typically caused by photodegradation of pyrithione in the coating.
  • Discoloration of the coating composition can be attributable to unwanted metal ions (such as iron or copper) entering the coating composition from the starting materials employed in the preparation of the coating composition.
  • Typical starting materials include tap water, and fillers (such as calcium carbonate) used to prepare coating compositions, as well as a source of pyrithione in the form of sodium pyrithione, zinc pyrithione, and combinations thereof. It is noted, for example, that the natural color of sodium pyrithione itself is a clear yellow. It is quite common, however, for iron and/or copper contaminants to be introduced into the aqueous composition from the tap water or fillers used in preparing the coating compositions, causing discoloration of the composition.
  • One way of quantifying the extent of discoloration is by measuring the reflectance color parameters, and calculating a whiteness value from them. Another method is to visually inspect the composition for any signs of off -whiteness, as compared to the desired or white color.
  • the amount of the above described zinc salt of an organic acid or inorganic acid, zinc hydroxide or zinc oxide, or combination thereof, needed to prevent discoloration in the coating composition in which it is employed, and the resulting dry film made by coating a substrate with the coating composition can vary over a wide range of from 0.001% or lower to 10% or greater (advantageously from 0.001% to 3%, more advantageously from 0.02% to 0.5%)," based upon the weight of the coating composition in which it is employed.
  • the amount of zinc oxide preferably should not exceed 0.5% by weight (advantageously from 0.002% to 0.2%) based upon the weight of the coating composition.
  • the pyrithione used in the process and composition of this invention is preferably a pyrithione salt, such as sodium pyrithione, zinc pyrithione, chitosan pyrithione, magnesium disulfide pyrithione, and the like, although pyrithione acid can be used if desired. More preferable pyrithione salts include sodium pyrithione, and zinc pyrithione, most preferably zinc pyrithione.
  • the sodium pyrithione useful in the present invention is a well-known commercial product that is commonly made by reacting 2-chloropyridine-N-oxide with NaSH and NaOH, as illustrated by the disclosures of U.S. Pat. No. 3,159,640.
  • Zinc pyrithione may be made by reacting 1- hydroxy-2-pyridinethione (i.e., pyrithione acid) or a soluble salt thereof with a zinc salt (e.g., ZnS0 4 ) to form a zinc pyrithione precipitate, as illustrated by the disclosures of U.S. Pat. No. 2,809,971.
  • a zinc salt e.g., ZnS0 4
  • aqueous compositions of the present invention are suitable for a variety of uses, such as, for example as soap, shampoo, skin care medicaments, paint, or incorporated into or onto plastic or a woven or non-woven fibers, when formulated to contain the requisite components in addition to the antimicrobial component.
  • the antimicrobial compositions of the present invention are particularly useful in the form of paints, including indoor and outdoor household paints, industrial and commercial paints.
  • the antimicrobial compositions provide desirable results when the antimicrobial component is incorporated into exterior paints of the latex types .
  • the coating compositions of the present invention are suitably applied to a substrate, such as a wood, plastic or metal substrate, and allowed to dry to form a dry coating.
  • the dry film formed by coating and drying the coating composition of the present invention onto a substrate exhibits excellent resistance to the growth of fungus and algae, as show by outdoor exposure tests using boards painted with the coating composition.
  • certain paint formulations namely those that are rich in hydrophilic components, might provide an environment that is more favorable to the growth of both mildew and algae, as compared to the coatings tested. Mildew needs moisture to survive.
  • Hydrophilic materials in a paint film will keep the moisture level of the film higher. This provides a better environment for mildew and also may contribute to accelerated leaching out of hydrophilic materials.
  • the hydrophilic components in these formulations tend to cause relatively soluble antimicrobial additives to leach out of the formulation, thus providing good short-term antimicrobial protection at the expense of longer- term antimicrobial protection due to this leaching effect.
  • zinc pyrithione a relatively water- insoluble antimicrobial additive
  • a relatively water-soluble antimicrobial additive in combination with a relatively water-soluble antimicrobial additive provides an excellent combination of desired short-term and long-term antimicrobial protection in dry paint films made using paint formulations containing high levels of hydrophilic components.
  • Relatively water-soluble antimicrobials that are useful as co-biocides for dry- film efficacy when used in combination with zinc pyrithione in accordance with the present invention include iodopropynyl butylcarbamate (“IPBC”), n- octyl isothiazolin-one (“OIT”), methylene thiocyanate (“MTC”), thiocyanomethylthio benzothiazole (“TCMTB”), thiazolyl benzimidazole (“TBZ”), benzimidazolyl carbamic acid methylester (“BCM”), triazoles, such as chlorophenylethyl dimethylethyl triazole ethanol ( “Tebuconazole” , commercially available from Bayer) , substituted triazines such as tert-butylamino cyclopropylamino methylthio-s-triazine, and dichlorophenyl dimethylurea ("Diur
  • cobiocides are suitably added either alone, or in admixture with zinc pyrithione, to the desired paint, to provide a paint containing a molar ratio of zinc pyrithione to co-biocide of from 1:10 to 10:1.
  • a paint composition will contain, in addition to the antimicrobial component, a resin, a pigment, and various optional additives such as thickening agent (s), wetting agents and the like, as is well known in the art.
  • the resin is preferably selected from the group consisting of vinyl, alkyd, epoxy, acrylic, polyurethane and polyester resins, and combinations of thereof.
  • the resin is preferably employed in an amount of between about 20% and about 80% based upon the weight of the paint or paint base.
  • the paint composition of the present invention optionally additionally contains optional additives which have a favorable influence on the viscosity, the wetting power and the dispersibility, as well as on the stability to freezing and electrolytes and on the foaming properties.
  • the paint preferably contains a swelling agent to cause the paint to gradually "slough off" in its marine environment, thereby causing renewed biocidal efficacy of newly exposed biocide at the surface of the paint in contact with the water medium of the marine ' environment .
  • Illustrative swelling agents are naturally occurring or synthetic clays, such as kaolin, montomorillonite, and bentonite) , clay mica (muscovite) , and chlorite (hectonite) , and the like.
  • clays other swelling agents, including natural or synthetic polymers, such as that commercially available as POLYMERGEL, have been found to be useful in the compositions of the present invention to provide the desired "sloughing off" effect.
  • Swelling agents can be used singly or in combination.
  • the total amount of optional additives is preferably no greater than 20% by weight, more preferably between about 1% and about 5% by weight, based upon the total weight of the paint composition.
  • thickening agents include cellulose 30 derivatives, for example methyl, hydroxyethyl , hydroxypropyl and carboxy ⁇ nethyl cellulose, poly(vinyl alcohol), poly (vinylpyrolidone) , poly (ethyleneglycol) , salts of poly (acrylic acid) and salts of acrylic acid/acrylamide copolymers.
  • Suitable wetting and dispersing agents include sodium polyphosphate, salts of low molecular weight poly (acrylic acid), salts of poly (ethane sulfonic acid) , salts of poly (vinyl phosphonic acid) , salts of poly (maleic acid) and salts of copolymers of maleic acid with ethylene, 1 olefins 3 to 18 carbon atoms and/or styrene.
  • ком ⁇ онент 1.2-diols for example glycol, propylene glycol (1.2) and butylene glycol 1.2) or polymers thereof, or ethoxylated compounds.
  • monomer 1.2-diols for example glycol, propylene glycol (1.2) and butylene glycol 1.2) or polymers thereof, or ethoxylated compounds.
  • the minimum temperature of film formation of the paint composition may be reduced by adding solvents, such as ethylene glycol, butyl glycol, ethyl glycol acetate, ethyl diglycol acetate, butyl diglycol acetate, or alkylated aromatic hydrocarbons.
  • solvents such as ethylene glycol, butyl glycol, ethyl glycol acetate, ethyl diglycol acetate, butyl diglycol acetate, or alkylated aromatic hydrocarbons.
  • defoaming agents there are suitable for example poly (propylene glycol) and polysiloxanes .
  • other biocides can additionally be incorporated into the paint formulations of the present invention.
  • the paint composition of the present invention may be used as a paint for natural or synthetic materials, for example wood, paper, metals, textiles and plastics. It is particularly suitable as an outdoor paint, and is excellent for use as a marine paint .
  • aqueous composition of the present invention is as a latex tile adhesive typically containing, for example, in addition to the antimicrobial component, a latex emulsion, an optional rosin emulsion, an optional plasticizer, an optional antioxidant, and an optional pigment or filler (such as calcium carbonate) .
  • a latex caulk typically containing, in addition to the antimicrobial component, an acrylic latex, a nonionic surfactant, a dispersant, an optional plasticizer, and an optional pigment or filler (such as calcium carbonate) .
  • aqueous antimicrobial compositions of the present invention are useful, in any of the variety of applications described herein, as disinfectants and preservatives, in a liquid or spreadable solid form, alone or in combination with an inert carrier such as water, liquid hydrocarbons, ethanol , isopropanol, or the like. They can be employed using conventional procedures to control bacteria and fungi on various substrates, and can be applied to bacterial or fungal organisms or on substrates in an antimicrobial amount by conventional procedures such as spraying, dipping, drenching impregnation, and the like.
  • a paint was prepared having the following composition:
  • Latex Paint Formulation Containing Zinc Oxide Ingredient Grams Water 240. ,0
  • Colloid 643 2 2. ,0 Triton ® CF-103 5. ,0
  • a paint was prepared having the following composition:
  • the paint was applied by brush in two coats to an unprimed white pine substrate to determine whether the coating supported the growth of mildew on the coating. After four months of outdoor aging, the growth was rated in accordance with the procedure of ASTM D 3274-82 to a rating of 8 (light growth) .
  • a paint was prepared having the following composition:
  • Attapulgite Clay 6 Attapulgite Clay 6, .0
  • a nonionic surfactant a product of Union Carbide Corp.
  • Example 1 demonstrates that the combination of zinc pyrithione and zinc oxide suitably provides total resistance to the growth of mildew on painted wood substrates, whereas zinc oxide or zinc pyrithione alone (Comparative Examples A and B) does not provide such resistance.
  • aqueous latex paint formulation (below) containing zinc pyrithione and one not containing zinc pyrithione were applied to a panel and exposed in a QUV weatherometer for 500 hours.
  • the yellowness index (“YI") was measured at time zero and after 500 hours of exposure.
  • the difference in YI for the paint without zinc pyrithione after 500 hours of exposure was an increase in yellowness of 1.34.
  • the difference in YI for the paint with 0.3% by weight of active zinc pyrithione was an increase of 3.68, indicating an increase in yellowing on exposure to UV with the paint containing zinc pyrithione.
  • Attapulgite Clay 4 .0 4 , ,0
  • Example 2 To determine if a lower concentration of zinc oxide could be used to provide effectiveness in avoiding, eliminating or reducing yellow discoloration caused by ultraviolet in a pyrithione- containing paint, the following experiment was conducted. Following the procedure of Example 2, two paints were prepared as follows: to Example 2 were prepared as follows:
  • Titanium Dioxide 200.0 200 .0
  • zinc pyrithione-containing paint compositions In the presence of ferric ion, zinc pyrithione- containing paint compositions also tended to turn blue to gray, although at a much slower rate than did the sodium pyrithione-containing paints.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Sealing Material Composition (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
PCT/US1998/001935 1997-02-21 1998-02-03 Discoloration prevention in pyrithione-containing coating compositions Ceased WO1998036904A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002282462A CA2282462C (en) 1997-02-21 1998-02-03 Discoloration prevention in pyrithione-containing coating compositions
DE69829951T DE69829951T2 (de) 1997-02-21 1998-02-03 Verfahren zur verhinderung der entfärbung von pyrithion enthaltenden beschichtungszusammensetzungen
DK98904827T DK0963291T3 (da) 1997-02-21 1998-02-03 Forebyggelse af misfarvning i pyrithion-holdige coatingsammensætninger
BR9807254-4A BR9807254A (pt) 1997-02-21 1998-02-03 Prevenção da descoloração em composições de revestimento contendo piritiona
AU62612/98A AU6261298A (en) 1997-02-21 1998-02-03 Discoloration prevention in pyrithione-containing coating compositions
JP53664998A JP4937431B2 (ja) 1997-02-21 1998-02-03 ピリチオン含有コーティング組成物の変色防止
EP98904827A EP0963291B1 (en) 1997-02-21 1998-02-03 Discoloration prevention in pyrithione-containing coating compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US804,225 1997-02-21
US08/804,225 US5939203A (en) 1995-02-03 1997-02-21 Discoloration prevention in pyrithione-containing coating compositions

Publications (2)

Publication Number Publication Date
WO1998036904A1 true WO1998036904A1 (en) 1998-08-27
WO1998036904B1 WO1998036904B1 (en) 1998-10-01

Family

ID=25188476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/001935 Ceased WO1998036904A1 (en) 1997-02-21 1998-02-03 Discoloration prevention in pyrithione-containing coating compositions

Country Status (14)

Country Link
US (1) US5939203A (enExample)
EP (2) EP1348743B1 (enExample)
JP (2) JP4937431B2 (enExample)
KR (1) KR100525583B1 (enExample)
CN (2) CN1250412A (enExample)
AU (1) AU6261298A (enExample)
BR (1) BR9807254A (enExample)
CA (1) CA2282462C (enExample)
DE (1) DE69829951T2 (enExample)
DK (2) DK1348743T3 (enExample)
ID (1) ID22477A (enExample)
MY (1) MY116716A (enExample)
TW (1) TW400367B (enExample)
WO (1) WO1998036904A1 (enExample)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457847B2 (ja) 1997-05-30 2003-10-20 信越化学工業株式会社 防カビ性オルガノポリシロキサン組成物
EP1467702A1 (en) 2001-12-14 2004-10-20 Medtrade Products Ltd. Cosmetic scar management composition
EP1468607A3 (en) * 2003-04-07 2004-12-15 Rohm And Haas Company Microbicidal composition
WO2008141691A1 (en) * 2007-05-17 2008-11-27 Cook Composites & Polymers Company Aqueous dispersion of zinc compound modified polymers
EP2023736A2 (en) 2006-05-26 2009-02-18 Arch Chemicals, Inc. Isothiazolinone biocides enhanced by zinc ions
EP2468095A1 (en) * 2010-12-22 2012-06-27 Dow Global Technologies LLC Synergistic combination of a glyphosate compound and zpt
EP2481285A3 (en) * 2010-11-09 2012-12-26 Dow Global Technologies LLC Synergistic combination of flumetsulam or diclosulam with zinc pyrithione
US8372829B2 (en) 2006-03-03 2013-02-12 Arch Chemicals, Inc. Biocide composition comprising pyrithione and pyrrole derivatives
EP2749167A1 (de) * 2012-12-28 2014-07-02 Sanitized AG Formulierung zur antimikrobiellen Ausrüstung von Polyvinylchlorid-Zusammensetzungen
WO2014102228A1 (de) * 2012-12-28 2014-07-03 Sanitized Ag Formulierung zur antimikrobiellen ausrüstung von polymer-zusammensetzungen
EP1603521B1 (en) * 2003-03-18 2020-06-17 The Procter & Gamble Company Augmentation of pyrithione activity or a polyvalent metal salt of pyrithione activity by zinc-containing layered material
WO2024006517A1 (en) * 2022-07-01 2024-01-04 Arxada, LLC Copper containing compounds and compositions for antimicrobial paint and coating

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7026308B1 (en) 1999-06-25 2006-04-11 The Procter & Gamble Company Topical anti-microbial compositions
EP1189504B1 (en) 1999-06-25 2012-12-19 Arch Chemicals, Inc. Pyrithione biocides enhanced by zinc ions
US7674785B2 (en) * 2000-06-22 2010-03-09 The Procter & Gamble Company Topical anti-microbial compositions
DE10040814A1 (de) * 2000-08-21 2002-03-07 Thor Gmbh Synergistische Biozidzusammensetzung
KR100710557B1 (ko) * 2000-12-16 2007-04-24 에스케이 주식회사 신규한 살균 조성물 및 이의 용도
WO2002085993A1 (fr) * 2001-04-20 2002-10-31 Nickolas Bizzio Procede pour realiser des peintures, surtout en melangeant des quantites predeterminees de produits fluides
DE60239140D1 (de) * 2001-10-10 2011-03-24 Microban Products Co Antimikrobielle strahlungshärtbare beschichtung
US8715540B2 (en) * 2002-01-16 2014-05-06 MG3 Technologies Inc. Aqueous and dry duel-action flame and smoke retardant and microbe inhibiting compositions, and related methods
US7767010B2 (en) * 2002-01-16 2010-08-03 Smt, Inc. Flame retardant and microbe inhibiting methods and compositions
WO2003088965A1 (en) * 2002-04-22 2003-10-30 The Procter & Gamble Company Use of materials having zinc ionophoric behavior
WO2003088957A1 (en) * 2002-04-22 2003-10-30 The Procter & Gamble Company Personal care compositions comprising a zinc containing material in an aqueous surfactant composition
US8470305B2 (en) 2002-06-04 2013-06-25 The Procter & Gamble Company Shampoo containing a gel network
US8361450B2 (en) 2002-06-04 2013-01-29 The Procter & Gamble Company Shampoo containing a gel network and a non-guar galactomannan polymer derivative
US8349301B2 (en) 2002-06-04 2013-01-08 The Procter & Gamble Company Shampoo containing a gel network
US9381148B2 (en) 2003-03-18 2016-07-05 The Procter & Gamble Company Composition comprising particulate zinc material with a high relative zinc lability
US8367048B2 (en) * 2002-06-04 2013-02-05 The Procter & Gamble Company Shampoo containing a gel network
US8361448B2 (en) * 2002-06-04 2013-01-29 The Procter & Gamble Company Shampoo containing a gel network
US8491877B2 (en) * 2003-03-18 2013-07-23 The Procter & Gamble Company Composition comprising zinc-containing layered material with a high relative zinc lability
US9381382B2 (en) * 2002-06-04 2016-07-05 The Procter & Gamble Company Composition comprising a particulate zinc material, a pyrithione or a polyvalent metal salt of a pyrithione and a gel network
US20050202984A1 (en) * 2003-03-18 2005-09-15 Schwartz James R. Composition comprising zinc-containing layered material with a high relative zinc lability
US8349302B2 (en) * 2002-06-04 2013-01-08 The Procter & Gamble Company Shampoo containing a gel network and a non-guar galactomannan polymer derivative
US6893752B2 (en) * 2002-06-28 2005-05-17 United States Gypsum Company Mold-resistant gypsum panel and method of making same
US20040116016A1 (en) * 2002-12-13 2004-06-17 Yadollah Delaviz Method for the addition of anti-microbial compounds to fiberglas insulation products
SE0300642D0 (sv) * 2003-03-11 2003-03-11 Pergo Europ Ab Process for sealing a joint
US20040191331A1 (en) * 2003-03-18 2004-09-30 The Procter & Gamble Company Composition comprising particulate zinc materials having a defined crystallite size
JP2004307482A (ja) * 2003-04-07 2004-11-04 Rohm & Haas Co 殺微生物組成物
JP2004315507A (ja) * 2003-04-07 2004-11-11 Rohm & Haas Co 殺微生物組成物
US7056582B2 (en) * 2003-04-17 2006-06-06 Usg Interiors, Inc. Mold resistant acoustical panel
US20060051402A1 (en) * 2004-09-08 2006-03-09 Abilityone Corporation Splinting orthopedic and rehabilitative product
US20070224135A1 (en) * 2006-03-24 2007-09-27 Xianbin Liu Stable aqueous suspension concentrate for delivery of UV-labile water-insoluble biocides
US8309231B2 (en) 2006-05-31 2012-11-13 Usg Interiors, Llc Acoustical tile
US20090298968A1 (en) * 2008-06-03 2009-12-03 Rafael Bury Decorative composition and method of using it
KR100894446B1 (ko) * 2008-12-05 2009-04-22 (주)종합건축사사무소범건축 수용성 방수도료의 제조방법
JP5476908B2 (ja) * 2009-10-07 2014-04-23 パナソニック株式会社 防かび用塗膜及びその防かび用塗膜処理方法
CN102821940A (zh) 2010-02-17 2012-12-12 亨利有限责任公司 减少微生物的建筑屏障、用于形成此类屏障的组合物和相关方法
EP2538781B1 (en) * 2010-02-23 2016-08-03 Clariant S.A. Process for the co-encapsulation of biocidally active compounds in clay minerals functionalized by nitrogen compounds
US10563153B2 (en) 2010-05-20 2020-02-18 Ecolab Usa Inc. Rheology modified low foaming liquid antimicrobial compositions and methods of use thereof
US8617718B2 (en) * 2010-10-06 2013-12-31 United States Gypsum Company Mold-resistant gypsum panel paper
EP2763748B1 (en) 2011-10-07 2017-07-26 The Procter and Gamble Company Shampoo composition containing a gel network
ES2698220T3 (es) 2012-07-31 2019-02-01 Arch Chem Inc Composición y método para prevenir decoloración de composiciones que contienen piritiona
US10433548B2 (en) 2012-10-12 2019-10-08 Arch Chemicals, Inc. Biocidal compositions comprising iron chelators
EP2978776B1 (en) * 2013-03-28 2021-04-28 Parx Materials N.V. Antibacterial polymers and method for obtaining the same
JP6139969B2 (ja) * 2013-05-13 2017-05-31 アイカ工業株式会社 水系塗材組成物
JP6076220B2 (ja) * 2013-07-31 2017-02-08 アイカ工業株式会社 水系塗材組成物
JP6853039B2 (ja) 2013-11-19 2021-03-31 アーチ・ケミカルズ・インコーポレーテッド 増強された防腐剤
DE102014210211A1 (de) * 2014-05-28 2015-12-03 Mahle International Gmbh Verdampfereinrichtung für eine Klimaanlage
US10314312B2 (en) 2014-06-27 2019-06-11 Jubilant Life Sciences Limited Synergistic antimicrobial composition of zinc pyrithione
US10945935B2 (en) 2016-06-27 2021-03-16 The Procter And Gamble Company Shampoo composition containing a gel network
JP6938868B2 (ja) * 2016-08-24 2021-09-22 凸版印刷株式会社 澱粉起因の変色の抑制機能付き発泡壁紙用原反、澱粉起因の変色の抑制機能付き発泡壁紙及び澱粉起因の変色の抑制機能付き発泡壁紙の製造方法
JP2019536748A (ja) 2016-10-10 2019-12-19 ザ プロクター アンド ギャンブルカンパニーThe Procter & Gamble Company 硫酸化界面活性剤を実質的に含まず、ゲルネットワークを含有するパーソナルケア組成物
WO2018172121A1 (en) * 2017-03-23 2018-09-27 Unilever N.V. Hair care composition
KR102385401B1 (ko) * 2017-09-26 2022-04-08 다우 글로벌 테크놀로지스 엘엘씨 수성 중합체 조성물
KR101973775B1 (ko) * 2017-11-09 2019-04-30 에스엠화학 주식회사 항균 마스터 배치 조성물
MX2020013252A (es) 2018-06-05 2021-02-22 Procter & Gamble Composicion de limpieza clara.
CN109537305B (zh) * 2018-11-20 2021-03-05 浙江梅盛实业股份有限公司 一种具有抑菌功能的超细纤维绒面人工皮革及其制备方法
JP7328336B2 (ja) 2018-12-14 2023-08-16 ザ プロクター アンド ギャンブル カンパニー シート状マイクロカプセルを含むシャンプー組成物
US11896689B2 (en) 2019-06-28 2024-02-13 The Procter & Gamble Company Method of making a clear personal care comprising microcapsules
JP7453395B2 (ja) 2020-02-14 2024-03-19 ザ プロクター アンド ギャンブル カンパニー 中に懸濁された審美的設計を有する液体組成物の保管に適合されたボトル
JPWO2022014549A1 (enExample) * 2020-07-14 2022-01-20
US12053130B2 (en) 2021-02-12 2024-08-06 The Procter & Gamble Company Container containing a shampoo composition with an aesthetic design formed by bubbles
US11633072B2 (en) 2021-02-12 2023-04-25 The Procter & Gamble Company Multi-phase shampoo composition with an aesthetic design

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161526A (en) * 1978-07-20 1979-07-17 Sterling Drug Inc. Zinc salt prevention or removal of discoloration in pyrithione, pyrithione salt and dipyrithione compositions
US4565856A (en) * 1984-10-12 1986-01-21 Olin Corporation Pyrithione-containing bioactive polymers and their use in paint and wood preservative products

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2809971A (en) * 1955-11-22 1957-10-15 Olin Mathieson Heavy-metal derivatives of 1-hydroxy-2-pyridinethiones and method of preparing same
US3159640A (en) * 1963-04-23 1964-12-01 Olin Mathieson Process for preparing 2-mercaptopyridine-nu oxide
US4818436A (en) * 1987-08-31 1989-04-04 Olin Corporation Process and composition for providing reduced discoloration of pyrithiones
US4957658A (en) * 1987-08-31 1990-09-18 Olin Corporation Process and composition for providing reduced discoloration caused by the presence of pyrithione and ferric ion in water-based paints and paint bases
GB8811948D0 (en) 1988-05-20 1988-06-22 Ici Plc Composition & use
DE69202487T2 (de) * 1991-01-30 1996-02-29 Dainippon Toryo Kk Bewuchshemmender Unterwasseranstrich.
US5562995A (en) * 1995-02-03 1996-10-08 Olin Corporation Discoloration prevention in pyrithione-containing coating compositions
US5518774A (en) * 1995-06-26 1996-05-21 Olin Corporation In-can and dry coating antimicrobial

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161526A (en) * 1978-07-20 1979-07-17 Sterling Drug Inc. Zinc salt prevention or removal of discoloration in pyrithione, pyrithione salt and dipyrithione compositions
US4565856A (en) * 1984-10-12 1986-01-21 Olin Corporation Pyrithione-containing bioactive polymers and their use in paint and wood preservative products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0963291A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457847B2 (ja) 1997-05-30 2003-10-20 信越化学工業株式会社 防カビ性オルガノポリシロキサン組成物
EP1467702A1 (en) 2001-12-14 2004-10-20 Medtrade Products Ltd. Cosmetic scar management composition
EP1603521B1 (en) * 2003-03-18 2020-06-17 The Procter & Gamble Company Augmentation of pyrithione activity or a polyvalent metal salt of pyrithione activity by zinc-containing layered material
EP1468607A3 (en) * 2003-04-07 2004-12-15 Rohm And Haas Company Microbicidal composition
US8372829B2 (en) 2006-03-03 2013-02-12 Arch Chemicals, Inc. Biocide composition comprising pyrithione and pyrrole derivatives
US8481523B2 (en) 2006-03-03 2013-07-09 Arch Chemicals, Inc. Biocide composition comprising pyrithione and pyrrole derivatives
EP2023736A2 (en) 2006-05-26 2009-02-18 Arch Chemicals, Inc. Isothiazolinone biocides enhanced by zinc ions
EP2023736A4 (en) * 2006-05-26 2012-05-09 Arch Chem Inc ISOTHIAZONLINONE BIOCIDE EXPANDED WITH ZINCIONS
US9723842B2 (en) 2006-05-26 2017-08-08 Arch Chemicals, Inc. Isothiazolinone biocides enhanced by zinc ions
EP2742803B1 (en) * 2006-05-26 2019-05-01 Arch Chemicals, Inc. Use of zinc ions to enhance an isothiazolinone biocide
WO2008141691A1 (en) * 2007-05-17 2008-11-27 Cook Composites & Polymers Company Aqueous dispersion of zinc compound modified polymers
EP2481285A3 (en) * 2010-11-09 2012-12-26 Dow Global Technologies LLC Synergistic combination of flumetsulam or diclosulam with zinc pyrithione
KR101344742B1 (ko) 2010-11-09 2013-12-26 다우 글로벌 테크놀로지스 엘엘씨 플루메트설람 또는 디클로설람과 아연 피리티온의 상승적 배합물
EP2468095A1 (en) * 2010-12-22 2012-06-27 Dow Global Technologies LLC Synergistic combination of a glyphosate compound and zpt
RU2503179C2 (ru) * 2010-12-22 2014-01-10 Дау Глоубл Текнолоджиз Ллк Синергетическая композиция глифосата и птц
US8691726B2 (en) 2010-12-22 2014-04-08 Dow Global Technologies Llc Synergistic combination of a glyphosate compound and ZPT
EP2749167A1 (de) * 2012-12-28 2014-07-02 Sanitized AG Formulierung zur antimikrobiellen Ausrüstung von Polyvinylchlorid-Zusammensetzungen
WO2014102228A1 (de) * 2012-12-28 2014-07-03 Sanitized Ag Formulierung zur antimikrobiellen ausrüstung von polymer-zusammensetzungen
WO2024006517A1 (en) * 2022-07-01 2024-01-04 Arxada, LLC Copper containing compounds and compositions for antimicrobial paint and coating

Also Published As

Publication number Publication date
US5939203A (en) 1999-08-17
EP0963291B1 (en) 2005-04-27
CN1624055A (zh) 2005-06-08
CN100497494C (zh) 2009-06-10
ID22477A (id) 1999-10-21
JP4937431B2 (ja) 2012-05-23
DE69829951D1 (de) 2005-06-02
CN1250412A (zh) 2000-04-12
KR100525583B1 (ko) 2005-11-03
DE69829951T2 (de) 2006-02-23
JP2001513123A (ja) 2001-08-28
EP1348743A1 (en) 2003-10-01
AU6261298A (en) 1998-09-09
TW400367B (en) 2000-08-01
BR9807254A (pt) 2000-05-02
JP5872133B2 (ja) 2016-03-01
CA2282462C (en) 2007-07-31
EP0963291A4 (en) 2000-05-17
DK1348743T3 (da) 2012-02-13
JP2009108326A (ja) 2009-05-21
CA2282462A1 (en) 1998-08-27
DK0963291T3 (da) 2005-08-08
KR20000075547A (ko) 2000-12-15
EP0963291A1 (en) 1999-12-15
MY116716A (en) 2004-03-31
EP1348743B1 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
CA2282462C (en) Discoloration prevention in pyrithione-containing coating compositions
EP0807152B1 (en) Discoloration prevention in pyrithione-containing coating compositions
US5518774A (en) In-can and dry coating antimicrobial
US5246489A (en) Process for generating copper pyrithione in-situ in a paint formulation
JP2847293B2 (ja) 殺生物剤
US5238490A (en) Process for generating copper pyrithione in-situ in a paint formulation
EP0979033B1 (en) Algicidal and fungicidal preservative with alternaria-activity
JP2007084823A (ja) アルカリ性コーティング組成物の殺カビ性および殺藻性仕上げのための組成物
AU2009247593A1 (en) Novel environmental friendly anti-microbial adhesion agents for anti-fouling paints and anti-fouling paints containing them
CN119907836A (zh) 用于抗菌涂料和涂层的含铜化合物和组合物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1199900762

Country of ref document: VN

Ref document number: 98803394.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2282462

Country of ref document: CA

Ref document number: 2282462

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997007606

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1998 536649

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1998904827

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998904827

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1019997007606

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998904827

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997007606

Country of ref document: KR