WO1998033607A1 - Procede de decomposition de dioxines - Google Patents

Procede de decomposition de dioxines Download PDF

Info

Publication number
WO1998033607A1
WO1998033607A1 PCT/JP1998/000356 JP9800356W WO9833607A1 WO 1998033607 A1 WO1998033607 A1 WO 1998033607A1 JP 9800356 W JP9800356 W JP 9800356W WO 9833607 A1 WO9833607 A1 WO 9833607A1
Authority
WO
WIPO (PCT)
Prior art keywords
dioxins
compound
amine compound
decomposing
temperature
Prior art date
Application number
PCT/JP1998/000356
Other languages
English (en)
French (fr)
Inventor
Hiroshi Miyata
Naoaki Fujiyoshi
Hirofumi Izumikawa
Mitsuhiro Mashiko
Noboru Fujiwara
Original Assignee
Kurita Water Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd. filed Critical Kurita Water Industries Ltd.
Priority to US09/155,157 priority Critical patent/US6063979A/en
Priority to EP98901491A priority patent/EP0914877B1/en
Priority to DE69808718T priority patent/DE69808718T2/de
Publication of WO1998033607A1 publication Critical patent/WO1998033607A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/36Detoxification by using acid or alkaline reagents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/08Toxic combustion residues, e.g. toxic substances contained in fly ash from waste incineration
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/28Organic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen

Definitions

  • the present invention relates to a method for decomposing toxins, especially contained in fly ash and incinerated ash discharged from various incinerators such as refuse incinerators (hereinafter, these are collectively referred to as “incinerated ash”). Efficiently decomposes organic chlorine compounds such as polychlorinated P-dibenzodioxins (PCDD) and polychlorinated dibenzofurans (PCDF) (collectively referred to as "dioxins”) About the method.
  • PCDD polychlorinated P-dibenzodioxins
  • PCDF polychlorinated dibenzofurans
  • incinerators such as refuse incinerators
  • organic compounds such as phenol, benzene and acetylene
  • chlorinated aromatic compounds such as chlorophenol and chlorobenzene
  • dioxin precursors such as chlorinated alkyl compounds
  • the present invention solves the above-mentioned conventional problems, and it is possible to decompose and remove dioxins in a short time even in a low temperature range, where it was thought that conventional methods do not decompose dioxins.
  • An object of the present invention is to provide a possible method for decomposing dioxins.
  • dioxins can be obtained by contacting a substance containing dioxins or dioxin with an amine compound and a Z or ammonium compound at a temperature lower than 300 ° C. Decomposed.
  • the chlorine in the dioxins reacts with the amine compound and / or the ammonium compound, whereby the temperature is lower than 300 ° C., which is generally considered not to decompose the dioxins.
  • the dechlorination reaction of dioxins progresses rapidly, and dioxins are decomposed.
  • examples of dioxins include dioxins contained in exhaust gas discharged from various incinerators such as garbage incinerators and factory incinerators.
  • Dioxins-containing substances include incinerated ash adsorbed with dioxins, powdered activated carbon added for adsorbing dioxins, and contamination with dioxins. Soil and the like.
  • Examples of the amine compound include alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, methanolamine and aminomethylpropanol, and cyclic alkylamines such as acetylamine, propylamine and ethylenediamine, and lower alkyl-substituted amines such as aniline. force 5 Amin and the like, among these, Application Benefits ethanol ⁇ Min, diethanol ⁇ Min, monoethanolamine ⁇ Min, ⁇ two phosphorus, Puropiruamin, Echirenjiamin, aminomethyl propanol are preferred.
  • ammonium compound examples include ammonia, urea, and ammonium salts (for example, ammonium bicarbonate, ammonium carbonate, ammonium hydroxide, ammonium acetate, ammonium sulfate, ammonium phosphate, ammonium hydrogen phosphate, etc.), and ammonia, urea, and bicarbonate.
  • ammonia, ammonium sulfate, and ammonium hydrogen phosphate are preferred, and among them, ammonia power is most preferred.
  • the amount of amine compounds and Z or ammonium compounds is reduced to 0% for incinerated ash or collected fly ash. It is preferred that the contact be made at a rate of 1 to 10% by weight, particularly 1 to 5% by weight. It is preferable that the amount of the amine compound and / or the amount of the ammonium compound be increased as the temperature at the time of contact decreases.
  • the addition form of the amine compound and the Z or ammonium compound may be any of gaseous, liquid, and aqueous solutions.
  • Diamine and / or dioxin-containing substances are efficiently decomposed by contact with gaseous amine and / or ammonium compounds, so that amine compounds and Z or ammonium compounds are more than 30 ° C. It is preferred to have a sufficiently high vapor pressure at low temperatures.
  • the amine compound and the Z or ammonium compound force at a temperature lower than 300 ° C. force to select Amin compound having a vapor pressure such that gaseous form leaf fraction and Roh or Anmoniumu compound s preferred.
  • the dioxin-containing substance is soil, incineration ash, or collected fly ash
  • the following methods A, B, and C can be adopted, for example.
  • A Mix the dioxin-containing substance with the amine compound and the Z or ammonium compound and bring them into contact at room temperature. Alternatively, the mixture is heated to a temperature lower than 300 ° C. to gasify the amine compound and / or the ammonia compound, and the amine compound and / or the ammonium conjugate are brought into contact with dioxins. In these cases, it is preferable that the amine compound and the Z or ammonium compound are dissolved in water or another solvent.
  • Amine compound and Z or ammonium compound are heated to a temperature lower than 30 CTC to gasify, and an air stream containing this gas is brought into contact with a substance containing dioxins.
  • Dioxins When a dioxin-containing substance is present in a gaseous state or in the form of particles and suspended in an air stream such as combustion exhaust gas, for example, the following methods D, E, and F can be adopted.
  • a vapor of an amine compound and / or an ammonium compound or a gas containing the vapor is supplied into the gas stream.
  • Liquid amine compound and Z or ammonium compound are supplied into this air stream in the form of mist or droplets.
  • a liquid in which an amine compound and / or an ammonium compound are dissolved in this air stream is supplied in the form of mist or droplets.
  • the gaseous, liquid, or solution forms in the exhaust gas flue or dust collector in front of the dust collector. It is preferred to supply the amine compound and / or the ammonium compound used.
  • the dust collector inlet gas temperature of the electric dust collector is 200 to 230 ° C
  • the filter dust collector inlet gas temperature of the filter type dust collector is 144 to 200 °. C, the amine compound and / or ammonium compound supplied to this dust collector or upstream of it It is desirable to have a sufficiently high vapor pressure between 140 and 230 ° C.
  • dioxins do not decompose at temperatures below 300 ° C.
  • the temperature at which the dioxins or the dioxins-containing substance are brought into contact with the amine compound and the Z or ammonium compound is lower than 300 ° C., but the chlorine in the dioxins and the amine compound and By the force reaction with the ammonia compound, the dechlorination reaction of the soybean toxins proceeds, and the soybean toxins are decomposed.
  • the minimum temperature at the time of this contact is determined by the vapor pressure or the easiness of vaporization of the amine compound and the ammonia or ammonia compound.
  • monoethanolamine is room temperature or higher
  • diethanolamine is 150 ° C or higher
  • trioxanolamine, aniline, n-pyramine, ethylenediamine, and aminomethylpropanol are dioxins or dioxins at a temperature of 200 ° C or higher.
  • it is in contact with a class-containing material. If the amine compound and / or the ammonium compound and the dioxins or dioxins-containing substances come into contact with each other at a temperature of 200 ° C. or more, dioxins are generally decomposed at a sufficiently high decomposition rate. Ammonia has a sufficiently high decomposition efficiency above room temperature.
  • Decomposition rate hardly improves even if both are contacted at 300 ° C. or higher.
  • the contact time between the amine compound and / or the ammonium compound and the object increases, the decomposition rate of dioxins increases, but an excessively long contact time increases the treatment cost.
  • a sufficiently high decomposition rate can be obtained in a contact time of usually about 3 to 60 minutes, especially about 4 to 40 minutes, and especially about 5 to 30 minutes. It is preferable that the lower the temperature at the time of contact, the longer the contact time. For example, when the temperature at the time of contact is room temperature, the contact time is preferably about 20 to 40 minutes.
  • the diamines and / or ammonium compounds and the dioxins or dioxins-containing substances are sufficiently dioxin-contacted even in a reducing atmosphere or in the presence of oxygen, that is, in the air or exhaust gas. Decompose. Therefore, when implementing the method of the present invention, equipment and work for adjusting the atmosphere are usually unnecessary.
  • a heavy metal fixing agent such as a chelating agent or phosphoric acid is used in combination to decompose dioxins and fix heavy metals in the ash. May be performed simultaneously.
  • the ash to be treated may include powdered activated carbon blown into the flue of the incinerator as an adsorbent for dioxins in the exhaust gas from the incinerator.
  • the ash or soil treated by the method of the present invention may be used as it is or after further performing the above-described heavy metal immobilization treatment, for example, solidification treatment, packing in a drum and storing or landfilling.
  • Example 14 Water was added to fly ash in place of trietano-lamine, kneaded and heated in the same manner as in Example 1 except that the mixture was heated at the temperature shown in Table 1. The concentration of dioxins in the processed product was obtained. Was measured and the results are shown in Table 1. The decomposition rate of dioxins in Example 14 was determined from the results of Example 14 and the results of the ratios ⁇ ⁇ 3 to 6 obtained by performing treatment at the same temperature without adding triethanolamine, respectively. It was calculated by the formula, and the results are shown in Table 1.
  • Example 290 Yes 6.0 99.8 4 As is clear from Table 1, dioxins are decomposed at a high decomposition rate by adding triethanolamine to fly ash and heating to 200 to 290 ° C. In particular, when the two come into contact at 250 ° C to 290 ° C, 99% or more of dioxins are decomposed.
  • Example 6 jetanolamine was used in place of monoethanolamine, and in Example II, triethanolamine was used. Other than that, the experiment was performed in the same manner as in Example 5.
  • Table 2 shows the measured values of the dioxin concentrations of the treated products.
  • Dioxins concentration (ng / g) (survival rate in katsuki (%))
  • Example 5 aniline was used in Example 8 in place of monoethanolamine, n-propylamine was used in Example 9, ethylenediamine was used in Example 10, and aminomethylpropanol was used in Example 11. The experiment was performed in the same manner except that the heating temperature was set to 250 ° C. Residual concentration of dioxins and Table 3 shows the decomposition rates.
  • dioxins can be decomposed and removed in a short time in a low temperature range where decomposition power s does not normally occur, which is necessary for processing. Energy costs can be reduced and processing efficiency can be improved, greatly reducing processing costs.
  • the method of the present invention can be carried out in the atmosphere or in an exhaust gas without setting the treatment atmosphere to a reducing atmosphere, so that the treatment equipment is simple and easy to carry out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Business, Economics & Management (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)

Description

明 細 書 ダイォキシン類の分解方法 技術分野
本発明はダイ才キシン類の分解方法に係り、 特に、 ごみ焼却炉等の各種焼却炉 から排出される飛灰及び焼却灰 (以下、 これらを併せて 「焼却灰」 と称す。 ) 中 に含まれるポリ塩化— P—ジベンゾダイォキシン類 (PCDD) やポリ塩化ジ ベンゾフラン類 (PCDF) (以下、 これらを併せて 「ダイォキシン類」 と称 す。 ) 等の有機塩素化合物を効率的に分解する方法に関する。 背景技術
ごみ焼却炉等の焼却炉においては、 燃焼中に、 フエノール、 ベンゼン、 ァセチ レン等の有機化合物、 クロロフヱノール、 クロ口ベンゼン等の塩素化芳香族化合 物や塩素化アルキル化合物等のダイォキシン類前駆体が発生する。 これらのダイ ォキシン類前駆体は、 飛灰が共存するとその触媒作用でダイォキシン類となって 焼却灰中に存在する。
従来、 このようなダイォキシン類含有飛灰の処理方法としては次のような方法 力5'提案されている。 .
① ダイォキシン類含有飛灰を窒素ガス等の還元性雰囲気下、 320〜400°C で 1〜 2時間 (例えば、 320 °Cでは 2時間、 340 °Cでは 1〜 1. 5時間) 保 持する (ハーゲンマイヤ一プロセス "0 RGANOHALO GEN C0MP0 UNDS Vo. 27 (1996) " 147〜 152頁) 。
② ダイォキシン類含有飛灰をダイォキシン生成抑制剤の存在下 300〜 500 °Cで熱処理する (特開平 4— 241880号公報) 。 ダイォキシンは従来から 3〇 0°C未満では熱分解しないと言われており、 この方法は、 基本的に前記定説 通り 300 °C以上の加熱によってダイォキシンを分解するものであり、 加熱処理 中にダイ才キシン前駆体からダイォキシンの生成を抑制するために、 ダイ才キ シン分解温度帯域でダイォキシン生成抑制剤を飛灰に添加している。 具体的に は、 生成抑制剤としてのピリジン蒸気存在下、 飛灰を 4 0 0 °Cで 2時間加熱して いる。
上記従来の方法では、 処理温度力高く、 処理時間も長いため、 必要とされる加 熱エネルギーが多く、 処理コスト力 s高くつくという欠点がある。 特に、 上記①の 方法では窒素ガス等の還元性雰囲気で処理する必要があり、 そのための手間とコ ス卜が嵩む。 発明の開示
本発明は上記従来の問題点を解決し、 従来法ではダイォキシン類は分解しない と考えられていた低温域でも、 短時間でダイォキシン類を分解除去することがで き、 かつ、 酸素存在下でも実施可能なダイォキシン類の分解方法を提供すること を目的とする。
本発明のダイォキシン類の分解方法によると、 ダイォキシン類又はダイ才キ シン類含有物質と、 アミン化合物及び Z又はァンモニゥム化合物とを 3 0 0 °Cよ りも低い温度で接 させることによりダイォキシン類が分解される。
本発明によれば、 ダイォキシン類中の塩素とアミン化合物及び/又はアンモニ ゥム化合物とが'反応することにより、 通常ではダイォキシン類が分解しないとさ れていた 3 0 0 °Cよりも低い温度において、 ダイォキシン類の脱塩素反応が迅速 に進行し、 ダイォキシン類が分解される。
ァミン化合物及び Z又はアンモニゥム化合物がこのような 3 0 0 °Cよりも低い 温度でダイォキシン類を分解するという作用効果は従来知られていなかつた。 発明の好ましい形態
本発明において、 ダイォキシン類としては、 ゴミ焼却炉、 工場焼却炉等の各種 焼却炉から排出される排ガス中に含まれているダイォキシン類が例示される。 ダ ィォキシン類含有物質としては、 ダイォキシン類を吸着した焼却灰やダイォキ シン類を吸着処理するために添加された粉末活性炭、 ダイォキシン類で汚染され た土壌等が例示される。
ァミン化合物としては、 モノエタノールァミン、 ジエタノールァミン、 卜リエ 夕ノールァミン、 メタノールァミン、 アミノメチルプロパノール等のアルカノー ルァミンや、 ジェチルァミン、 プロピルァミン、 エチレンジァミン等の低級アル キル置換ァミン、 ァニリン等の環式ァミンなどが挙げられる力5、 これらのうち、 ト リエタノールァミン、 ジエタノールァミン、 モノエタノールァミン、 ァニ リン、 プロピルァミン、 エチレンジァミン、 アミノメチルプロパノールが好適で ある。
アンモニゥム化合物としては、 アンモニア、 尿素、 アンモニゥム塩 (例えば重 炭酸アンモニゥム、 炭酸アンモニゥム、 水酸化アンモニゥム、 酢酸アンモニゥ ム、 硫酸アンモニゥム、 リン酸アンモニゥム、 リン酸水素アンモニゥムなど) 挙げられ、 アンモニア、 尿素、 重炭酸アンモニゥム、 硫酸アンモニゥム、 リン酸 水素ァンモニゥムが好ましく、 中でもアンモニア力最も好ましい。
ァミン化合物及び Z又はアンモニゥム化合物を焼却灰又は捕集された飛灰と接 触させてダイォキシン類を分解する場合、 ァミン化合物及び Z又はアンモニゥム 化合物を焼却灰又は捕集された飛灰に対して 0 . 1〜1 0重量%、 特に 1 ~ 5重 量%の割合で接触させるのが好ましい。 接触させるときの温度が低くなるほどァ ミン化合物及び/又はアンモニゥム化合物の量を多くするのが好ましい。
ァミン化合物及び Z又はアンモニゥム化合物の添加形態は、 ガス状、 液状、 水 溶液状のいずれであっても良い。 ダイ才キシン類及び/又はダイォキシン類含有 物質はガス状のァミン化合物及び 又はアンモニゥム化合物と接触することによ り効率良く分解されるので、 ァミン化合物及び Z又はアンモニゥム化合物は 3 0〇°Cよりも低い温度で十分に高い蒸気圧を有することが好ましい。
ァミン化合物及び/又はアンモニゥム化合物の液状物又は水溶液を排ガスへ噴 霧したり、 予め焼却灰等と混練した場合、 3 0 0 °Cよりも低い温度で該ァミン化 合物及び Z又はアンモニゥム化合物力叶分にガス状になるような蒸気圧を有する ァミン化合物及びノ又はアンモニゥム化合物を選択するの力 s好ましい。
ァミン化合物及び/又はアンモニゥム化合物を被処理物と接触させる方法とし W
ては、 ダイォキシン類含有物質が、 土壌や焼却灰、 捕集された飛灰などである場 合には、 例えば次の A, B , Cの方法を採用できる。
A:ダイォキシン類含有物質とァミン化合物及び Z又はアンモニゥム化合物とを 混合し、 室温下で接触させる。 または、 この混合物を 3 0 0 °Cよりも低い温度に 加熱し、 ァミン化合物及びノ又はアンモニゥム化合物をガス化し、 ァミン化合物 及び 又はアンモニゥムィ匕合物をダイォキシン類と接触させる。 これらの場合、 ァミン化合物及び Z又はアンモニゥム化合物は水その他の溶媒に溶解しておくの が好ましい。
B :ァミン化合物及び Z又はアンモニゥム化合物を 3 0 CTCよりも低い温度に加 熱してガス化し、 このガスを含む気流をダイ才キシン類含有物質と接触させる。
C :ァミン化合物及び/又はアンモニゥム化合物を固体物質に付着させ、 この固 体物質をダイォキシン類含有物質に混ぜるか、 ダイォキシン類含有物質の上に載 せ、 3 0 0 °Cよりも低い温度に加熱する。 好ましくはこの際気体を流す。
ダイォキシン類ゃダイォキシン類含有物質が燃焼排ガスなどの気流中にガス状 となって又は粒子となって浮遊して存在する場合には、 例えば次の D , E , Fの 方法を採用できる。
D : この気流中にアミン化合物及び 又はアンモニゥム化合物の気化物又は該気 化物を含むガスを供給する。
E : この気流中に液状のァミン化合物及び Z又はアンモニゥム化合物を霧状又は 液滴状に供給する。
F : この気流中にアミン化合物及び/又はアンモニゥム化合物を溶解させた液を 霧状又は液滴状に供給する。
排ガス中の飛灰を捕集する集塵器が排ガス煙道に設けられている燃焼設備にお いては、 集塵器手前の排ガス煙道または集塵器中にガス状、 液状又は溶液となつ ているァミン化合物及び 又はアンモニゥム化合物を供給するのが好ましい。 通 常の場合、 電気集塵器の集塵器入口ガス温度は 2 0 0〜 2 3 0 °Cであり、 濾過式 集塵器の集塵器入口ガス温度は 1 4 0〜2 0 0 °C程度であるので、 この集塵器又 はそれよりも上流側に供給されるァミン化合物及び 又はアンモニゥム化合物は 1 4 0〜2 3 0 °Cにおいて十分に高い蒸気圧を有すること力 s望ましい。
通常、 ダイォキシン類は 3 0 0 °Cよりも低い温度では分解しない。 本発明にお いては、 ダイォキシン類又はダイォキシン類含有物質とァミン化合物及び Z又は アンモニゥム化合物とを接触させる際の温度は 3 0 0 °Cよりも低いが、 ダイォキ シン類中の塩素とァミン化合物及び/又はァンモニゥム化合物と力反応すること により、 ダイ才キシン類の脱塩素反応が進行し、 ダイ才キシン類が分解される。 この接触時の最低温度はアミン化合物及びノ又はアンモニゥム化合物の蒸気圧又 は気化しやすさによって決定される。 即ち、 モノエタノールアミンは室温以上、 ジエタノールアミンは 1 5 0 °C以上、 卜リエタノ一ルァミン、 ァニリン、 n—プ 口ピルァミン、 エチレンジァミン、 アミノメチルプロパノールでは 2 0 0 °C以上 の温度でダイォキシン類又はダイォキシン類含有物質と接触するのが好ましい。 2 0 0 °C以上の温度でァミン化合物及び/又はアンモニゥム化合物とダイォキ シン類又はダイォキシン類含有物質とが接触するならば一般的に十分に高い分解 率にてダイォキシン類力分解される。 なお、 アンモニアは室温以上で十分に高い 分解効率を有する。 3 0 0 °C以上で両者力接触しても分解率は殆ど向上しない。 ァミン化合物及び 又はアンモニゥム化合物と被処理物との接触時間が長くな るほどダイォキシン類の分解率が向上するが、 過度に高い接触時間は処理コスト を高くする。 本発明の方法では、 通常の場合 3〜6 0分とくに 4〜4 0分とりわ け 5〜3 0分程度の接触時間で十分に高い分解率を得ることができる。 接触時の 温度が低くなるほど接触時間を長くするのが好ましく、 例えば接触時の温度が室 温の場合は接触時間を 2 0〜4 0分程度とするのが好ましい。
ァミン化合物及び/又はアンモニゥム化合物とダイォキシン類又はダイォキ シン類含有物質とは、 還元性雰囲気で接触しても、 また酸素存在下、 即ち、 大気 中もしくは排ガス中で接触してもダイォキシン類が十分に分解する。 従って、 本 発明方法を実施する場合、 雰囲気調整のための設備や作業は通常の場合不要であ る。
ただし、 ダイォキシン類又はダイォキシン類含有物質とアミン化合物及び Z又 はアンモニゥム化合物と接触させる場合、 この化合物がこの接触時の温度よりも 低い引火点を有するならば、 爆発に注意すべきである。 この接触時の雰囲気中に おける該化合物の濃度が爆発限界濃度よりも低ければ、 爆発は回避される。 この 雰囲気中の酸素濃度が爆発限界酸素濃度よりも低ければ同様に爆発は有効に回避 される。 それ故に、 雰囲気中の酸素濃度を低くする処置は爆発防止に効果的であ り、 そのような処置としては、 雰囲気に対し窒素ガス、 炭酸ガス、 水蒸気、 燃焼 排ガスなどの無酸素又は低酸素の気体を供給すること力 S例示される。 爆発に対す る注意は、 排ガス煙道又は集塵器中に化合物力供給される場合に多く払われるベ きである。 集塵器から排出される燃焼排ガスの一部を送風機などを用いて排ガス 煙道に導入することは、 該排ガス煙道中の排ガスの酸素濃度を低下させる低コス 卜の好ましい方法である。
本発明の方法に従って焼却灰又は捕集された飛灰を処理する場合、 キレー卜剤 又はリン酸等の重金属固定化剤を併用して、 ダイォキシン類の分解と共に、 灰中 の重金属の固定化処理を同時に行っても良い。
処理される灰は、 焼却炉排ガス中のダイ才キシン類の吸着除去剤として焼却炉 の煙道に吹き込まれた粉末活性炭を含むものであっても良い。
本発明方法により処理された灰や土壌は、 そのまま、 或いは更に前述の重金属 固定化処理等を施した後、 例えば、 固化処理、 ドラム缶に詰めて保管する処理又 は、 埋立される。
以下に実施例及び比較例を挙げて、 本発明をより具体的に説明する。
実施例 1〜4、 比較例 2
都市ごみ焼却炉から排出されて捕集された飛灰 1 0 gに対し、 5重量%卜リエ タノ一ルァミン水溶液を、 飛灰に対する卜リエタノールァミンの割合が 5重量% となるように添加してよく練り混ぜた後、 表 1に示す温度で 1 0分間加熱した。 その後、 処理物のダイォキ'シン類濃度を測定し、 結果を表 1に示した。
比較例 1, 3〜6
卜リエタノ一ルァミンの代りに水を飛灰に添加して混練し、 表 1に示す温度で 加熱したこと以外は実施例 1と同様にして処理を行い、 得られた処理物のダイォ キシン類濃度を測定し結果を表 1に示した。 なお、 実施例 1 4におけるダイォキシン類の分解率を、 実施例 1 4の結果 と、 各々、 同一温度にてトリエタノールアミン無添加で処理を行った比鲛咧 3〜 6の結果とから、 次式により算出し、 結果を表 1に併記した。
□ ^ r同一温度での比較例の 同一温度での実施例の ダイォキシン類 Lダイ才キシン類
の分解率 (%) —― -X100
(同一温度での比較例のダイォキシン類濃度) 表 1 トリエタノ—ルァミン 処理物 中 の ダイォキシン 例
Figure imgf000009_0001
の添加の有無 ダイォキシン類 類 分 解 率 濃度 (ng/g-飛灰) I % ) 比 180
1 較 例 1885 0
1
比較 例 180 有 2303
2
比較 例 200 被 2142 0 3
実施 例 200 有 726 66.1 1
比較 例 220 無 2535 0 4
実施 例 220 有 314 87.6 2
比較 例 250 2614 0 5
実施 例 250 . 有 6.5 99.8 3
比較 例 290 2655 0 6
実施例 290 有 6.0 99.8 4 表 1より明らかなように、 飛灰にトリエタノ一ルァミンを添加して 200°C〜 290°Cに加熱することによりダイォキシン類が高分解率にて分解する。 とくに 250°C〜290°Cで両者が接 lした場合には、 99 %以上のダイォキシン類が 分解される。
一方、 比較例 2でわかるように、 トリエタノールアミンを添加しても、 それが ガス化しない 180°Cではダイ才キシン類は分解しない。
実施例 5
2 Omm^ X 250 mmのガラスカラムに、 都市ごみ焼却炉から排出されて捕 集された飛灰 3 gを詰め、 その上に液状のモノエタノールアミンを 15 Omg付 着させたガラスビーズをのせ、 ガラスビーズ側から空気を 15 m LZ分で通気し ながら室温 (20°C) 、 50 ;、 100°C、 150°C、 180°C、 200°C、 220 °C、 250 °C、 290 °Cの各温度で 20分間加熱した。
その後、 処理物のダイ才キシン類濃度を測定し、 結果を表 2に示した。
実施例 6, 7
モノェ夕ノ一ルァミンの代わりに実施例 6ではジェタノールァミンを用い、 実 施例 Ίでは卜リエタノ一ルァミンを用いた。 その他は実施例 5と同様にして実験 を行った。 処理物のダイォキシン類濃度の測定値を表 2に示す。
比較例 7
ガラスビーズに何も付着させなかったこと以外は実施例 5と同様にして実験を 行った。 処理物のダイ才キシン類濃度の測定値を表 2に示す。
なお、 実施例 5〜 7の結果及び比較例 7の結果から、 次式に,
類の残存率を算出し、 結果を表 2に併記した。
ダイ才 シン類 (当該処理時のタイォキシン類濃度)
残存率 ― r室温、 ァミン化合物なしの処理時の〕
タイ才キシン類濃度(1335mg/g 表 2
ダイォキシン類濃度 (n g / g ) (カツコ内は残存率 (%) )
Figure imgf000011_0001
表 2から明らかなように、 ァミン化合物を用いない比較例 7では、 飛灰を加熱 するとダイォキシン類残存率が増加しており、 この温度帯ではダイォキシンを生 成するのみで分解は起こらないことがわかる。 一方、 飛灰に各種のァミン化合物 を接触させた実施例 5〜 7では、 ダイォキシンが効果的に分解されており、 分解 温度の下限はァミン化合物の種類により異なることがわかる。 即ち、 モノエタ ノールァミンは 1 0 0 °Cで 9 0 %以上、 5 0 °Cでも 8 0 %以上の分解率を示す。 ジェタノールァミンでは 1 5 0 °C以上、 トリェタノールァミンでは 2 0 0 °C以上 になるとダイォキシン類が高い分解率にて分解する。
実施例 8, 9, 1 0, 1 1
実施例 5において、 モノェ夕ノ一ルァミンの代わりに実施例 8ではァニリンを 用い、 実施例 9では n—プロピルアミンを用い、 実施例 1 0ではエチレンジァ ミンを用い、 実施例 1 1ではアミノメチルプロパノールを用い、 加熱温度を 2 5 0 °Cとしたほかは同様にして実験を行った。 ダイォキシン類の残存濃度及び 分解率を表 3に示す。
実施例 1 2
実施例 5において、 モノエタノールァミンの代わりにアンモニア水溶液を用 レ、、 加熱温度を 2 5 0 °Cとしたほかは同様にして実験を行った。 ダイォキシン類 の残存濃度及び分解率を表 3に示す。 ガラスビーズに対するアンモニア
( N H 3 ) の付着量は 1 5 O m gである。 表 3
類残存濃度及び分解率 (処理温度 2 5 0 °C)
Figure imgf000012_0001
表 3より実施例 8〜 1 2の化合物を用いた場合でもダイォキシン類を高分解率 にて分解できることが明らかである。 産業上の利用可能性
以上詳述した通り、 本発明のダイォキシン類の分解方法によれば、 ダイォキ シン類を、 通常では分解力 s起こらない低温域で、 短時間に分解除去することがで きるため、 処理に必要なエネルギーコストの低減、 処理効率の向上が可能とな り、 処理コストを大幅に低減することができる。 し力も、 本発明の方法は、 処理 雰囲気を還元性雰囲気とすることなく大気中又は排ガス中にて実施することがで きるため、 処理設備が簡便で、 容易に実施できる。

Claims

請 求 の 範 囲
1 . ダイォキシン類又はダイォキシン類含有物質と、 ァミン化合物及び Z又は アンモニゥム化合物とを 3 0 0 °Cよりも低い温度で接触させてダイ才キシン類を 分解する工程を有するダイォキシン類の分解方法。
2 . 請求項 1において、 ァミン化合物及び/又はアンモニゥム化合物は、 上 f己ェ 程においてダイォキシン類の分解反応を進行させるのに十分な蒸気圧を有するこ とを特徴とするダイォキシン類の分解方法。
3 . 請求項 1又は 2において、 ァミン化合物は、 モノエタノールァミン、 ジエタ ノールァミン、 トリエタノールァミン、 メタノールァミン、 アミノメチルプロパ ノール等のアルカノ一ルァミン、 ジェチルァミン、 ブロピルァミン、 エチレンジ ァミン等の低級アルキル置換アミン、 及びァニリン等の璟式アミンなどの 1種又 は 2種以上であることを特徴とするダイォキシン類の分解方法。
4 . 請求項 3において、 ァミン化合物は、 トリエタノールァミン、 ジエタノー ルァミン、 モノエタノールァミン、 ァニリン、 プロピルァミン、 エチレンジァ ミン、 及びァミノメチルプロパノ一ルの 1種又は 2種以上であることを特徴とす るダイォキシン類の分解方法。
5 . 請求項 1において、 前記アミン化合物はトリエタノールァミンであり、 接触 時の温度が 2 0 0 °C以上であることを特徴とするダイォキシン類の分解方法。
6 . 請求項 1において、 前記アミン化合物はジエタノールァミンであり、 接触時 の温度が 1 5 0 Cレ: Lhであることを特徴とするダイ才キシン類の分解方法。
7 . 請求項 1において、 前記アミン化合物はモノエタノールァミンであり、 接触 時の温度が 2 0 °C以上であることを特徴とするダイォキシン類の分解方法。
8 . 請求項 7において、 接触時の温度が 5 0 °C以上であることを特徴とするダイ ォキシン類の分解方法。
9 . 請求項 1において、 前記アミン化合物はァニリン、 n—プロピルァミン、 ェ チレンジアミン及びァミノメチルプロパノールの 1種又は 2種以上であり、 接触 時の温度が 2 0 0 °C以上であることを特徴とするダイォキシン類の分解方法。
1 0 . 請求項 1又は 2において、 アンモニゥム化合物はアンモニア、 尿素及び アンモニゥム塩の 1種又は 2種以上であることを特徴とするダイ才キシン類の分 解方法。
1 1 . 請求項 1 0においてアンモニゥムィヒ合物はアンモニアであることを特徴と するダイォキシン類の分解方法。
1 2 . 請求項 1又は 2において、 接触時の温度が 2 0 0 °C以上であることを特徴 とするダイォキシン類の分解方法。
1 3 . 請求項 1ないし 1 2のいずれか 1項において、 ダイォキシン類又はダイォ キシン類含有物質は、 焼却灰、 捕集された飛灰、 土壌、 活性炭などの固体状の被 処理物中に含まれていることを特徴とするダイォキシン類の分解方法。
1 4 . 請求項 1 3において、 前記被処理物とアミン化合物及びノ又はアンモニゥ ム化合物とを混合した後、 加熱することを特徴とするダイォキシン類の分解方 法。
1 5 . 請求項 1 3において、 ァミン化合物及び/又はアンモユウム化合物を加熱 してガス化し、 このガスを含む気流を被処理物と接触させることを特徴とするダ ィォキシン類の分解方法。
1 6 . 請求項 1ないし 1 2のいずれか 1項において、 ダイォキシン類又はダイォ キシン類含有物質は排ガス煙道内の気流に含まれており、 この排ガス煙道内にァ ミン化合物及び/又はアンモニゥム化合物が供給されることを特徴とするダイォ キシン類の分解方法。
1 7 . 請求項 1ないし 1 2のいずれか 1項において、 ダイォキシン類又はダイォ キシン類含有物質は集塵器を有する排ガス煙道を流れる気流に含まれており、 ァ ミン化合物及び/又はアンモニゥム化合物力該排ガス煙道又は集塵器内に供給さ れることを特徴とするダイォキシン類の分解方法。
1 8 . 請求項 1 6又は 1 7において、 ガス状のァミン化合物及び 又はアンモニ ゥム化合物力5'供給されることを特徴とするダイォキシン類の分解方法。
1 9 . 請求項 1 6又は 1 7において、 液状のァミン化合物及び Z又はアンモニゥ ム化合物が霧状又は液滴状に供給されることを特徴とするダイ才キシン類の分解 方法。
2 0 . 請求項 1 6又は 1 7において、 ァミン化合物及び/又はアンモニゥム化合 物の水溶液などの溶液が霧状又は液滴状に供給されることを特徴とするダイ才 キシン類の分解方法。
PCT/JP1998/000356 1997-01-30 1998-01-29 Procede de decomposition de dioxines WO1998033607A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/155,157 US6063979A (en) 1997-01-30 1998-01-29 Method of decomposing dioxins
EP98901491A EP0914877B1 (en) 1997-01-30 1998-01-29 Method of decomposing dioxins
DE69808718T DE69808718T2 (de) 1997-01-30 1998-01-29 Verfahren zum abbau von dioxinen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1656797 1997-01-30
JP9/16567 1997-01-30
JP9/321357 1997-11-21
JP09321357 1997-11-21

Publications (1)

Publication Number Publication Date
WO1998033607A1 true WO1998033607A1 (fr) 1998-08-06

Family

ID=26352935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000356 WO1998033607A1 (fr) 1997-01-30 1998-01-29 Procede de decomposition de dioxines

Country Status (4)

Country Link
US (1) US6063979A (ja)
EP (1) EP0914877B1 (ja)
DE (1) DE69808718T2 (ja)
WO (1) WO1998033607A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291737B1 (en) * 1997-11-21 2001-09-18 Kurita Water Industries Ltd. Method of decomposing dioxins
EP1043046A4 (en) * 1997-12-25 2004-11-10 Chiyoda Chem Eng Construct Co WET PROCEDURE TO DESTROY DIOXINS
JP3395148B2 (ja) * 1998-03-31 2003-04-07 株式会社豊栄商会 土壌の生産方法、土壌処理装置、処理方法および処理装置
US6653119B1 (en) * 1998-09-14 2003-11-25 Bio Remediation Technologie, Inc. White rot fungi and method for decomposing dioxins using them
EP1016446B1 (en) * 1998-12-28 2004-06-30 Miyoshi Yushi Kabushiki Kaisha Method of making flue gas harmless
JP2000301170A (ja) * 1999-02-16 2000-10-31 Hitachi Zosen Corp 有機塩素化合物の分解処理方法
US7329397B2 (en) * 2005-09-02 2008-02-12 Boral Material Technologies Inc. Method of removing ammonia from fly ash and fly ash composition produced thereby
CN101822938A (zh) * 2010-04-06 2010-09-08 张坤树 利用非燃性硫酸铵以抑制燃烧炉发生戴奥辛类物的方法
US9744393B1 (en) * 2016-12-18 2017-08-29 Guangdong Decheng Environmental Sci-Tech Co., Ltd. Method of removing toxins from fly ash
CN109433009B (zh) * 2019-01-14 2021-12-17 江山市虎鼎环保科技有限公司 一种降低垃圾焚烧飞灰中二噁英毒性当量的设备及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241880A (ja) * 1991-01-10 1992-08-28 Hitachi Zosen Corp 固形物中のダイオキシンの酸化分解方法
JPH04240817A (ja) * 1991-01-25 1992-08-28 Seiko Epson Corp 光学素子
JPH05137813A (ja) * 1991-11-20 1993-06-01 Hitachi Zosen Corp 有機塩素化合物の熱分解方法
JPH05138149A (ja) * 1991-11-20 1993-06-01 Hitachi Zosen Corp 有機塩素化合物の熱分解方法
JPH05161822A (ja) * 1991-12-13 1993-06-29 Hitachi Zosen Corp ダイオキシン類の低減化方法
JPH06265133A (ja) * 1993-03-11 1994-09-20 Kobe Steel Ltd 焼却炉排ガス処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358657A (en) * 1989-12-22 1994-10-25 Texas A&M University System Reactive compositions containing superoxide ion for the degradation of halogenated organic compounds
AT393359B (de) * 1990-04-03 1991-10-10 Steirische Magnesit Ind Ag Verfahren zur verhinderung der bildung von pcdd und/oder pcde in verbrennungs- bzw. vergasungsanlagen
CA2021193A1 (en) * 1990-07-13 1992-01-14 Otto Hutzinger Supression of dioxin production in incineration of waste material
US5113772A (en) * 1990-07-16 1992-05-19 University Of Water Of Waterloo Suppression of dioxin production in the incineration of waste material
US5260047A (en) * 1990-10-05 1993-11-09 Linde Aktiengesellschaft Process for purifying waste gases containing polyhalogenated compounds
CA2190238A1 (en) * 1996-07-15 1998-01-15 Ryutaro Motoki Sintered metal filters
WO1998009716A1 (en) * 1996-09-06 1998-03-12 The Dow Chemical Company Process for reducing dioxin and furan emissions in the stack gas from an incinerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241880A (ja) * 1991-01-10 1992-08-28 Hitachi Zosen Corp 固形物中のダイオキシンの酸化分解方法
JPH04240817A (ja) * 1991-01-25 1992-08-28 Seiko Epson Corp 光学素子
JPH05137813A (ja) * 1991-11-20 1993-06-01 Hitachi Zosen Corp 有機塩素化合物の熱分解方法
JPH05138149A (ja) * 1991-11-20 1993-06-01 Hitachi Zosen Corp 有機塩素化合物の熱分解方法
JPH05161822A (ja) * 1991-12-13 1993-06-29 Hitachi Zosen Corp ダイオキシン類の低減化方法
JPH06265133A (ja) * 1993-03-11 1994-09-20 Kobe Steel Ltd 焼却炉排ガス処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0914877A4 *

Also Published As

Publication number Publication date
EP0914877A4 (en) 1999-09-08
US6063979A (en) 2000-05-16
EP0914877A1 (en) 1999-05-12
EP0914877B1 (en) 2002-10-16
DE69808718D1 (de) 2002-11-21
DE69808718T2 (de) 2003-06-12

Similar Documents

Publication Publication Date Title
WO1998033607A1 (fr) Procede de decomposition de dioxines
JP2000205525A (ja) 低公害燃焼方法及びそれに用いる装置
EP0614690B1 (en) Treatment of incinerator exhaust gas
JP3287301B2 (ja) ダイオキシン類の分解方法
JP2006158988A (ja) 廃棄物処理方法
US6291737B1 (en) Method of decomposing dioxins
JP2001259607A (ja) 重金属又は有機塩素化合物の処理方法及び装置
JP3790890B2 (ja) 塩素化芳香族化合物の生成抑制剤および生成抑制方法
JP3728223B2 (ja) ダイオキシン類処理装置
JP3573000B2 (ja) ダイオキシン類の分解方法
JP2007308684A (ja) ダイオキシン類の処理薬剤及びその処理方法
JP3287298B2 (ja) ダイオキシン類の分解方法
JP3753959B2 (ja) 燃焼排ガスの処理装置
JP3683469B2 (ja) ダイオキシン類の分解剤及び分解方法
JP2001293465A (ja) 汚染媒体の処理剤及び処理方法
JP4062558B2 (ja) ダイオキシン類の放出防止方法
JP3866914B2 (ja) 燃焼排ガスの処理装置
JP4472565B2 (ja) ダイオキシン類の分解剤及び分解方法
JP2001294846A (ja) ダイオキシン類の分解剤及び分解方法
JP2004331739A (ja) ダイオキシン分解剤
JPH119960A (ja) ダイオキシン類の放出防止材
JPH10296050A (ja) ダイオキシン類の生成防止方法及び生成防止材
JP2001137634A (ja) 排ガス処理装置及び処理方法
JP2004016897A (ja) 燃焼排ガス処理装置
JP4019558B2 (ja) 土壌中のハロゲン化有機化合物の分解方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09155157

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998901491

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998901491

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1998901491

Country of ref document: EP