WO1998032708A1 - Verwendung von aerogelen zur körper- und/oder trittschalldämmung - Google Patents

Verwendung von aerogelen zur körper- und/oder trittschalldämmung Download PDF

Info

Publication number
WO1998032708A1
WO1998032708A1 PCT/EP1998/000328 EP9800328W WO9832708A1 WO 1998032708 A1 WO1998032708 A1 WO 1998032708A1 EP 9800328 W EP9800328 W EP 9800328W WO 9832708 A1 WO9832708 A1 WO 9832708A1
Authority
WO
WIPO (PCT)
Prior art keywords
airgel
aerogels
airgel particles
volume
binder
Prior art date
Application number
PCT/EP1998/000328
Other languages
English (en)
French (fr)
Inventor
Fritz Schwertfeger
Marc Schmidt
Original Assignee
Cabot Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Corporation filed Critical Cabot Corporation
Priority to US09/355,074 priority Critical patent/US6598358B1/en
Priority to JP53157598A priority patent/JP4776744B2/ja
Priority to DE59807740T priority patent/DE59807740D1/de
Priority to EP98904115A priority patent/EP0966411B1/de
Publication of WO1998032708A1 publication Critical patent/WO1998032708A1/de

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/18Separately-laid insulating layers; Other additional insulating measures; Floating floors
    • E04F15/20Separately-laid insulating layers; Other additional insulating measures; Floating floors for sound insulation

Definitions

  • the invention relates to the use of aerogels for body and / or sound insulation.
  • structure-borne sound is understood to mean sound propagating in solid substances. Footfall sound is understood to be the sound that is generated, for example, when walking on a ceiling or moving chairs as structure-borne sound and is partly emitted as airborne sound (company lettering of Rhinolith Dammstoffe GmbH; technical information: In 150 Building Physics 6/96, as well as Reichardt, W, basics of technical acoustics; Akademische Verlagsgesellschaft, für; 1968).
  • blowing agents such as CFCs, CO2 or pentane.
  • CFCs CFCs
  • CO2 carbon dioxide
  • pentane a blowing agent
  • Aerogels especially those with porosities above 60% and densities below 0.6 g / cm 3 have an extremely low thermal conductivity therefore use as a heat insulation material such. B. is described in EP-A-0 171 722.
  • the speed of sound in aerogels has a very low value for solids, which can be used for the production of airborne sound insulation materials.
  • Aerogels in the broader sense ie in the sense of "gel with air as a dispersing agent" are produced by drying a suitable gel.
  • airgel in this sense includes aerogels in the narrower sense, xerogels and cryogels.
  • a dried gel is referred to as an airgel in the narrower sense if the liquid of the gel is largely removed at temperatures above the critical temperature and starting from pressures above the critical pressure. If the liquid of the gel, however, sub-critical, for example, under formation of a liquid-vapor boundary phase, then one often also referred to the resulting gel 'as a xerogel.
  • aerogels in the broad sense, i.e. in the sense of "gel with air as a dispersant”.
  • the aerogels obtained by supercritical drying are generally hydrophilic or only briefly hydrophobic, whereas subcritically dried aerogels are permanently hydrophobic due to their manufacturing process (generally silylation before drying).
  • aerogels can also be basically divided into inorganic and subdivide organic aerogels whereby inorganic aerogels have been known since 1931 (SS Kistler Nature 1931, 127 741) and whereas organic aerogels from various starting materials, e.g. from melamine formaldehyde, have only been known for a few years (RW Pekala J Mater Sei 1989 24 3221)
  • Airgel-containing composite materials are known which, because of their low heat conduction, are used as thermal damate alien. Such composite materials are described, for example, in EP-A-0 340 707 of EP-A-0 o67 370 of WO 96/12683 of WO 96/15997 of WO 96 / 15998 of DE-A-44 30 642 and DE-A-44 30 669
  • Another area of application for such dam materials is the insulation between individual foundations, such as machine foundations, or foundations of separately founded buildings or parts of buildings
  • the object of the present invention was therefore on the one hand to develop new materials which are suitable for the structure-borne and / or soundproofing, which can be produced simply and in any form and whose size can still be changed at the place of use and on the other hand according to new applications to look for aerogels
  • aerogels are those based on metal oxides which are suitable for sol-gel technology (CJ B ⁇ nker GW Scherer Sol-Gel-Science, 1990, Chapters 2 and 3), such as Si or Al compounds or such the basis of organic substances which are suitable for sol-gel technology, such as melamine formaldehyde condensates (US Pat. No. 5,086,085) or resorformaldehyde condensates (US Pat. No. 4,873,218). Mixtures of the materials mentioned above can also be used. Aerogels containing Si compounds and in particular Si0 2 aerogels are preferably used
  • the airgel particles have permanently hydrophobic surface groups.
  • Tnmethylsilyl Tnmethylsilyl deficit
  • Airgel particles with hydrophilic surface groups can adsorb water depending on the air humidity, which means that the dielectric constant and the dielectric loss factor can vary with the air humidity. This is often not desirable for electronic applications.
  • the use of airgel particles with hydrophobic surface groups prevents this variation since no water is adsorbed.
  • the selection of the residues also depends on the typical application temperature
  • the thermal conductivity of the aerogels decreases with increasing porosity and decreasing density. Aerogels with porosities above 60% and densities below 0.6 g / cm 3 are therefore preferred. Aerogels with densities below 0.2 g / cm 3 are particularly preferred.
  • the airgel particles are used in the form of a composite material, in principle all airgel-containing composite materials known from the prior art are suitable.
  • a composite material which contains 5 to 97% by volume of airgel particles and at least one binder is particularly preferred.
  • the binder forms a matrix that connects or encloses the airgel particles and runs as a continuous phase through the entire composite material
  • a content of airgel particles that is significantly above 97% by volume would lead to a binder content of less than 3% by volume. In this case, its proportion would be too low to ensure adequate connection of the airgel particles to one another, as well as mechanical pressure and bending strength.
  • the proportion of airgel particles is preferably in the range from 10 to 97% by volume and particularly preferably in the range from 40 to 95% by volume.
  • a particularly high proportion of airgel particles can be achieved in the composite material by using a suitable distribution of the grain sizes
  • An example of this is the use of airgel particles which have a logarithmic normal distribution of the grain size.
  • the airgel particles are small in relation to the total thickness of the molded part. Large airgel particles are also sensitive to mechanical damage.
  • the size of the airgel particles is therefore preferably in the range from 50 mm to 10 mm, particularly preferably between 200 mm and 5 mm.
  • binder amorphous, semi-stable and / or crystalline.
  • the binder is either in liquid form, i.e. used as a liquid, melt, solution, dispersion or suspension, or used as a solid powder.
  • the binder can also be in a foamed form.
  • binders which can be used as a liquid, melt, solution, dispersion, suspension or as a solid powder are acrylates, aluminum phosphates, cyanoacrylates, cycloolefin copolymers, epoxy resins, ethylene-vinyl acetate copolymers, formaldehyde condensates, urea resins, melamine-formaldehyde resins, methacrylates, phenolic resins, polyamides , Polybenzimidazoles, polyethylene terephthalates, polyethylene waxes, polyimides, polystyrenes, polyurethanes, polyvinyl acetates, polyvinyl alcohols, polyvinyl butyrals, resorcinols, silicones and silicone resins.
  • the binder is generally used in an amount of 3 to 95% by volume of the composite material, preferably in an amount of 3 to 90% by volume and particularly preferably in an amount of 5 to 60% by volume.
  • the choice of binder is made according to the desired mechanical and thermal properties of the composite material
  • binders preference is also given to selecting those products which essentially do not penetrate into the interior of the porous airgel particles.
  • penetration of the binder into the interior of the airgel particles can also be carried out via various parameters such as eg pressure temperature and processing time can be influenced
  • the composite material can also contain up to 85% by volume of fillers.
  • fillers in order to improve the mechanical properties, in particular fibers, nonwovens, woven fabrics, felts and residues or wastes thereof can be used
  • the composite material can contain further fillers, for example for Faroung, in order to achieve special decorative effects or to adjust the adhesion of adhesives to the surface
  • the proportion of the fillers, based on the composite material is preferably below 70% and particularly preferably in the range from 0 to 50% by volume.
  • the composite material is hydrophilic due to the binder used and / or due to hydrophilic airgel particles
  • a subsequent treatment can optionally be carried out which imparts hydrophobic properties to the composite material.
  • All substances known to the person skilled in the art for this purpose are suitable for this purpose, which give the composite material a hydrophobic surface, such as, for. B. paints, films, silylating agents, silicone resins and inorganic and / or organic binders.
  • Coupled agents can also be used for bonding. They bring about better contact of the binders with the surface of the airgel particles and can moreover form a firm bond both with the airgel particles and with the binder or, if appropriate, the fillers.
  • the moldings produced according to the invention from airgel granules preferably have a density of less than 0.6 g / cm 3 and preferably an improvement in the body or impact sound insulation of more than 12 dB.
  • the improvement in body and impact sound insulation is particularly preferably above 14 dB.
  • the fire class of the composite material is determined by the fire class of the airgel and the binder.
  • the composite materials can also be laminated with suitable materials, such as. B. silicone resin adhesives.
  • suitable materials such as. B. silicone resin adhesives.
  • fire protection agents known to the person skilled in the art is possible.
  • all known to the expert are also Coatings possible, the z. B. are dirt-repellent and / or hydrophobic.
  • the airgel-containing composite material can be produced by mixing the airgel and binder into the desired shape and curing
  • the airgel particles are connected to one another by means of at least one binder.
  • the connection of the individual particles to one another can take place in a quasi-punctiform manner.
  • a surface coating can be achieved, for example, by spraying the airgel particles with the binder (for example as a solution, melt, suspension) or dispersion) can be achieved.
  • the coated particles are then pressed, for example, into a shaped body and cured
  • the gusset volume between the individual particles is also completely or partially filled by the binder.
  • a composition can be prepared, for example, by mixing the airgel particles with a powdered binder into the desired shape and curing
  • the mixing can be carried out in any conceivable way. On the one hand, it is possible to introduce the at least two components into the mixing device at the same time, on the other hand, one of the components can also be introduced and the other (s) can then be added
  • the mixing device necessary for the mixing is also in no way restricted. Any one known to the person skilled in the art for this purpose can be used Mixing device can be used.
  • the mixing process is carried out until there is an approximately uniform distribution of the airgel particles in the composition.
  • the mixing process can be regulated both over the period of time and, for example, over the speed of the mixing device.
  • the shaping and curing of the mixture which, depending on the type of binder, can be achieved by heating and / or evaporating the solvent and / or dispersion medium used, or, when using melts, by cooling below the melting temperature of the binder or by chemical reaction of the Binder or the binder takes place.
  • the mixture is pressed. It is possible for the person skilled in the art to select the suitable press and the suitable press tool for the respective application.
  • the use of vacuum presses is advantageous because of the high air content of the airgel-containing molding compounds.
  • the airgel-containing molding materials are pressed into sheets.
  • the airgel-containing mixture to be pressed can be separated off against the pressing tool using release paper or release film.
  • the mechanical strength of the airgel-containing panels can be improved by laminating fabrics, foils, hard foils or hardboard onto the surface of the panel.
  • the fabrics, foils, hard foils or hard fiber boards can be applied to the airgel-containing boards both subsequently and during the production of the composite material.
  • the latter is preferred and can preferably be done in one work step by inserting the fabrics, foils, hard foils or hard fiber boards into the mold and placing them on the Airgel-containing molding compound to be compressed and then pressing under pressure and temperature to form an airgel-containing composite panel
  • the pressing takes place in general in any form at pressures of 1 to 1000 bar.
  • the mixture can be brought to temperatures of 0 ° C. to 300 ° C. during the pressing process.
  • the mixture is also possible at temperatures , which are significantly lower than those used for curing, and then cure without applying pressure
  • heat can additionally be brought into the plates with the aid of suitable radiation sources.
  • suitable radiation sources As in the case of polyvinyl butyrals, the binder used is combined with microwaves, so this radiation source is preferred
  • the aerogels were produced analogously to the process disclosed in DE-A-43 42 548
  • the thermal conductivities of the airgel granules were measured using a heating wire method (see, for example, O. Nielsen, G Ruschenpohler, J. classical, J Fncke, High Temperatures-High Pressures, Vol. 21, 267-274 (1989)).
  • the thermal conductivities of the molded articles were measured in accordance with DIN 52612.
  • DIN 52210 As a measure for the improvement of the body and sound insulation, the sound improvement measure was determined according to DIN 52210. example 1
  • Shaped body made of 50 vol .-% airgel and 50 vol .-% polyvinyl butyral
  • hydrophobic airgel granulate 50% by volume of hydrophobic airgel granules (solid density 130 kg / m 3 ) and 50% by volume of a polyvinyl butyral powder (solid density 1 100 kg / m 3 ) are mixed intimately.
  • the percentage volume relates to the target volume of the shaped body.
  • the hydrophobic airgel granulate has a grain size greater than 650 mm, a BET surface area of 640 m 2 / g and a thermal conductivity of 1 1 mW / mK.
  • Mowital® Polymer F
  • Hoechst AG Hoechst AG
  • the bottom of the mold is lined with release paper.
  • the airgel-containing molding compound is then evenly distributed and the whole thing is covered with a release paper. It is thickened at 220 ° C for 30 minutes
  • the molded body obtained has a density of 280 kg / m 3 and a thermal conductivity of 40 mW / mK.
  • the impact sound improvement measure is
  • Shaped body made of 80 vol .-% airgel, 18 vol .-% polyvinyl butyral and 2 vol .-% polyethylene terephthalate fibers
  • hydrophobic airgel granulate has a grain size greater than 650 mm, a BET surface area of 640 m 2 / g and a thermal conductivity of 1 1 mW / mK.
  • Mowital® Polymer F
  • Hoechst AG Hoechst AG
  • Trevira® high-strength fibers are used as the fiber material
  • the bottom of the mold is lined with release paper.
  • the airgel-containing molding compound is then evenly distributed and the whole thing is covered with a release paper. It is pressed at 220 ° C. for 30 minutes to a thickness of 18 mm.
  • the molded body obtained has a density of 250 kg / m 3 and a thermal conductivity of 25 mW / mK.
  • the impact sound improvement measure is 22 dB.
  • Shaped body made of 90 vol% airgel and 10 vol% dispersion adhesive
  • hydrophobic airgel granules solid density 130 kg / m 3
  • the percentage volume relates to the target volume of the dry molded body.
  • the hydrophobic airgel granulate has a grain size greater than 650 mm, a BET surface area of 640 m 2 / g and a thermal conductivity of 1 1 mW / mK.
  • the Mowilith® dispersion VDM1340 (Hoechst AG) is used as the dispersion adhesive.
  • the bottom of the mold is lined with release paper.
  • the airgel-containing molding compound is then evenly distributed and the whole thing is covered with a release paper. It is left at 190 ° C for 15 minutes to a thickness of 18 mm pressed.
  • the molded body obtained has a density of 200 kg / m 3 and a thermal conductivity of 29 mW / mK.
  • the impact sound improvement measure is 24 dB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Building Environments (AREA)
  • Silicon Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von Aerogel-Partikeln, insbesondere in Form von Verbundmaterialien zur Körper- und/oder Trittschalldämmung.

Description

Beschreibung
Verwendung von Aerogelen zur Korper- und/oder Tπttschαlldämmung.
Die Erfindung betrifft die Verwendung von Aerogelen zur Körper- und/oder Tπttschalldammung.
Im Rahmen dieser Schrift wird unter Korperschall sich in festen Stoffen ausbreitender Schall verstanden Unter Trittschall wird der Schall verstanden der z B beim Begehen einer Decke oder Verrücken von Stühlen als Korperschall entsteht und teilweise als Luftschall abgestrahlt wird (Firmenschrift der Rhinolith Dammstoffe GmbH; Technische Informationen: In 150 Bauphysik 6/96, sowie Reichardt, W , Grundlagen der technischen Akustik; Akademische Verlagsgesellschaft, Leipzig; 1968).
Konventionelle Korperschall- und Trittschalldämmstoffe auf Basis von Polystyrol, Polyolefinen und Polyurethanen werden unter Verwendung von Treibmitteln, wie z B FCKW's, CO2 oder Pentan hergestellt. Die durch das Treibmittel verursachte Zellenstruktur des Schaumstoffs ist für das hohe Korper- und Tπttschalldämmvermogen verantwortlich. Derartige Treibmittel belasten jedoch die Umwelt, da sie langsam in die Atmosphäre entweichen.
Andere Korper- und Trittschalldammstoffe auf Basis von Mineral- oder Glasfaserwolle können bei ihrer Herstellung, Montage und Demontage sowie wahrend der Dauer Ihres Einsatzes Fasern und/oder Faserbruchstϋcke emittieren Dies führt zu einer Belastung der Umwelt und der Menschen, die mit diesen Stoffen umgehen bzw. ihnen ausgesetzt sind.
Aerogele, insbesondere solche mit Porositäten über 60 % und Dichten unter 0,6 g/cm3 weisen eine äußerst geringe thermische Leitfähigkeit auf Sie finden deshalb Anwendung als Wärmeisolationsmaterial, wie z. B. in der EP-A-0 171 722 beschrieben. Daneben hat die Schallgeschwindigkeit in Aerogelen einen für Feststoffe sehr geringen Wert, was sich zur Herstellung von Luftschalldämmaterialien nutzen läßt.
Aerogele im weiteren Sinn, d.h. im Sinne von "Gel mit Luft als Dispersionsmittel", werden durch Trocknung eines geeigneten Gels hergestellt. Unter den Begriff "Aerogel" in diesem Sinne fallen Aerogele im engeren Sinn, Xerogele und Kryogele. Dabei wird ein getrocknetes Gel als Aerogel im engeren Sinn bezeichnet, wenn die Flüssigkeit des Gels bei Temperaturen oberhalb der kritischen Temperatur und ausgehend von Drücken oberhalb des kritischen Druckes weitestgehend entfernt wird. Wird die Flüssigkeit des Gels dagegen unterkritisch, beispielsweise unter Bildung einer Flüssig-Dampf- Grenzphase entfernt, dann bezeichnet man das entstandene Gel vielfach auch' als Xerogel.
Bei der Verwendung des Begriffs Aerogele in der vorliegenden Anmeldung handelt es sich um Aerogele im weiteren Sinn, d.h. im Sinn von "Gel mit Luft als Dispersionsmittel".
Verschiedene Verfahren zur Herstellung von Aerogelen durch über- bzw. unterkritische Trocknung werden z.B. in der EP-A-0 396 076, der WO 92/03378, der WO 94/25149, der WO 92/20623 und der EP-A-0 658 513 offenbart.
Die durch überkritische Trocknung erhaltenen Aerogele sind im allgemeinen hydrophil oder nur kurzzeitig hydrophob, wohingegen unterkritisch getrocknete Aerogele bedingt durch ihr Herstellungsverfahren (im allgemeinen Silylierung vor der Trocknung) dauerhaft hydrophob sind.
Darüber hinaus lassen sich Aerogele grundsätzlich auch in anorganische und organische Aerogele unterteilen wobei anorganische Aerogele schon seit 1931 bekannt sind (S S Kistler Nature 1931 , 127 741 ) und wohingegen organische Aerogele aus den unterschiedlichsten Ausgangsmateπalien, z B aus Melaminformaldehyd erst seit einigen Jahren bekannt sind (R W Pekala J Mater Sei 1989 24 3221 )
Bekannt sind aerogelhaltige Verbundmatenalien, die aufgrund ihrer geringen Warmeleitung als Warmedammate alien eingesetzt werden Derartige Verbundmatenalien werden beispielsweise in der EP-A-0 340 707 der EP-A- 0 o67 370 der WO 96/12683 der WO 96/15997 der WO 96/ 15998 der DE-A- 44 30 642 und der DE-A-44 30 669 offenbart
In DE-A 44 30 642 der DE-A 44 30 669 der WO 96/19607 und der deutschen Patentanmeldung 195 33 564 3 wird darüber hinaus das Luftschalldammverhalten aerogelhaltiger Verbundmatenalien offenbart
Von großem Vorteil wäre ein Material das neben guten Warmeisolationseigenschaften gleichzeitig über gute Korper- und/oder Tπttschalldammeigenschaften verfugt
Im besonderen gilt dies für Isolationsaufgaben in der Gebaudetechnik Als Beispiel sei die Tπttschalldammung im Fußbodenbereich erwähnt Hier wurde der Einsatz eines derartigen Dammateπals zu geringeren Isolationshohen und damit zu einem Gewinn an Raumhohe fuhren Bei gleichbleibender Raumhohe ließe sich so der Baumateπalbedarf sowie die Bauhohe eines mehrgeschossigen Gebäudes reduzieren Besitzt das derartige Dammate al zudem eine geringere Dichte als bisherige Dammkonstruktionen, so hat dies positive Auswirkungen auf die gesamte Statik, da das Gebäude insgesamt leichter ausgeführt werden kann Ist ein System das ein derartiges Dammatenal enthalt unabhängig von der äußeren Witterung montier- bzw verαrbeitbαr und benotigt keine oder nur geringe Trocknungs- bzw Abbindezeiten, fuhrt dies zu einer großen Zeit- und damit Kostenersparnis bei der Errichtung des gesamten Gebäudes
Ein weiteres Einsatzgebiet derartiger Dammateπalien ist die Isolierung zwischen Einzelfundamenten, wie z B Maschinenfundamenten, oder Fundamenten getrennt gegründeter Gebäude bzw Gebäudeteile
Aufgabe der vorliegenden Erfindung war es daher einerseits neue Materialien zu entwickeln, die für die Korper- und/oder Tnttschalldammung geeιgneτ sind, die einfach sowie in beliebiger Form hergestellt werden können sowie am Ort der Verwendung noch in ihrer Größe veränderbar sind und andererseits nach neuen Anwendungen für Aerogele zu suchen
Diese Aufgabe wird gelost durch die Verwendung von Aerogel-Partikeln zur Korper- und/oder Tnttschalldammung
Im allgemeinen verwendete Aerogele sind solche auf Basis von Metalloxiden die für die Sol-Gel-Technik geeignet sind (C J Bπnker G W Scherer Sol-Gel- Science, 1990, Kap 2 und 3), wie beispielsweise Si- oder AI-Verbindungen oder solche auf der Basis organischer Stoffe, die für die Sol-Gel-Technik geeignet sind, wie Melaminformaldehydkondensate (US-A-5,086,085) oder Resorcmformaldehydkondensate (US-A-4,873,218) Es können auch Mischungen der oben genannten Materialien verwendet werden. Bevorzugτ verwendet werden Aerogele, enthaltend Si-Verbindungen und insbesondere Sι02-Aerogele
In einer besonders bevorzugten Ausfuhrungsform weisen die Aerogel-Partikel dauerhaft hydrophobe Oberflachengruppen auf Geeignete Gruppen zur dauerhaften Hydrophobisierung sind beispielsweise Silylgruppen der allgemeinen Formel -Sι(R)n, wobei n = 1 , 2 oder 3 ist, vorzugsweise trisubstituierte Silylgruppen, wobei die Reste R im allgemeinen unabhängig voneinander gleich oder verschieden je ein Wasserstoffatom oder ein nicht reaktiver, organischer, linearer, verzweigter, cyclischer, aromatischer oder heteroaromatischer Rest, vorzugsweise C i-Ciβ-Alkyl oder Cό-Cu-Aryl, besonders bevorzugt C i-Cό-Alkyl, Cyclohexyl oder Phenyl, insbesondere Methyl oder Ethyl, sind Besonders vorteilhaft zur dauerhaften Hydrophobierung des Aerogels ist die Verwendung von Tnmethylsilylgruppen Die Einbringung dieser Gruppen kann, wie z. B in der WO 94/251 49 oder der deutschen Patentanmeldung 196 48 798.6 beschrieben, erfolgen oder durch Gasphasenreaktion zwischen dem Aerogel und beispielsweise einem aktivierten Trialkylsilandenvat, wie z.B einem Chlortnalkylsilan oder einem Hexaalkyldisilazan (vergleiche R. Her, The Chemistry of Silica, Wiley & Sons, 1979) , geschehen. Verglichen mit OH- Gruppen vermindern die so hergestellten hydrophoben Oberflächengruppen weiterhin den dielektrischen Verlustfaktor und die Dielektrizitätskonstante
Aerogel-Partikel mit hydrophilen Oberflächengruppen können je nach Luftfeuchtigkeit Wasser adsorbieren, was dazu führt, daß die Dielektrizitätskonstante und der dielektrische Verlustfaktor mit der Luftfeuchtigkeit variieren können. Dies ist für elektronische Anwendungen oft nicht erwünscht. Die Verwendung von Aerogel-Partikeln mit hydrophoben Oberflächengruppen verhindert diese Variation, da kein Wasser adsorbiert wird. Die Auswahl der Reste richtet sich außerdem nach der typischen Anwendungstemperatur
Darüber hinaus gilt, daß die thermische Leitfähigkeit der Aerogele mit zunehmender Porosität und abnehmender Dichte abnimmt. Bevorzugt sind deshalb Aerogele mit Porositäten über 60 % und Dichten unter 0,6 g/cm3. Besonders bevorzugt sind Aerogele mit Dichten unter 0,2 g/cm3. In einer bevorzugten Ausfϋhrungsform werden die Aerogel-Pαrtikel in Form eines Verbundmαtenαls eingesetzt, wobei prinzipiell alle aus dem Stand der Technik bekannten aerogelhaltigen Verbundmatenalien geeignet sind.
Besonders bevorzugt ist ein Verbundmatenal das 5 bis 97 Vol.-% Aerogel- Partikel und mindestens ein Bindemittel enthält.
Das Bindemittel bildet eine Matrix, die die Aerogel-Partikel verbindet bzw umschließt und sich als durchgehende Phase durch das gesamte Verbundmaterial zieht
Bei einem Gehalt an Aerogel-Partikel, der signifikant unter 5 Vol.-% in der Zusammensetzung liegt, würde aufgrund des niedrigen Anteils der Aerogel- Partikel in der Zusammensetzung deren positive Eigenschaften in hohem Maße verloren gehen. Eine solche Zusammensetzung würde nicht mehr die guten Körper- und/oder Trittschalldammeigenschaften aufweisen.
Ein Gehalt an Aerogel-Partikel, der signifikant über 97 Vol.-% liegt, wurde zu einem Gehalt an Bindemittel von unter 3 Vol.-% führen. In diesem Fall wäre dessen Anteil zu niedrig, um eine ausreichende Verbindung der Aerogel- Partikel untereinander, sowie mechanische Druck- und Biegefestigkeit zu gewährleisten.
Vorzugsweise liegt der Anteil der Aerogel-Partikel im Bereich von 10 bis 97 Vol.-% und besonders bevorzugt im Bereich von 40 bis 95 Vol.-%.
Ein besonders hoher Anteil an Aerogel-Partikeln läßt sich im Verbundmatenal durch Verwendung einer geeigneten Verteilung der Korngrößen erreichen Ein Beispiel dafür ist die Verwendung von Aerogel-Partikeln, die eine logarithmische Normalverteilung der Korngröße aufweisen.
Um einen möglichst hohen Füllgrad zu erreichen, ist es ebenfalls günstig, wenn die Aerogel-Partikel klein sind im Verhältnis zur Gesamtdicke des Formteiles. Ferner sind große Aerogel-Partikel empfindlich gegenüber mechanischer Beschädigung. Vorzugsweise liegt deshalb die Größe der Aerogel-Partikel im Bereich von 50 mm bis 10 mm, besonders bevorzugt zwischen 200 mm und 5 mm.
Grundsätzlich sind alle bekannten organischen und anorganischen Bindemittel zur Herstellung der Verbundmatenalien geeignet. Dabei IST nicht entscheidend, ob das Bindemittel amorph, semikπstallin und/oder kristallin vorliegt. Das Bindemittel wird entweder in flüssiger Form, d.h. als Flüssigkeit, Schmelze, Lösung, Dispersion oder Suspension verwendet, oder aber als festes Pulver eingesetzt.
Es können sowohl physikalisch als auch chemisch härtende Einkomponenten- Systeme sowie Zwei- bzw Mehrkomponenten-Systeme bzw Mischungen derselben verwendet werden. Das Bindemittel kann auch in gescnäumter Form vorliegen.
Beispiele für Bindemittel die als Flüssigkeit, Schmelze, Lösung, Dispersion, Suspension oder als festes Pulver verwendet werden können sind Acrylate, Aluminiumphosphate, Cyanacrylate, Cycloolefin-Copolymere, Epoxidharze, Ethylenvinylacetat-Copolymere, Formaldehydkondensate, Harnstoff harze, Melaminformaldehydharze, Methacrylate, Phenolharze, Polyamide, Polybenzimidazole, Polyethylenterephthalate, Polyethylenwachse, Polyimide, Polystyrole, Polyurethane, Polyvinylacetate, Polyvinylalkohole, Polyvinylbutyrale, Resorcinharze, Silikone und Silikonharze. Das Bindemittel wird im allgemeinen in einer Menge von 3 bis 95 Vol -% des Verbundmateπals verwendet, vorzugsweise in einer Menge von 3 bis 90 Vol - % und besonders bevorzugt in einer Menge von 5 bis 60 Vol -% Die Auswahl des Bindemittels erfolgt je nach den gewünschten mechanischen und thermischen Eigenschaften des Verbundmaterials
Bei der Auswahl der Bindemittel wählt man darüber hinaus vorzugsweise solche Produkte aus, die im wesentlichen nicht in das Innere der porösen Aerogel-Partikel eindringen Das Eindringen des Bindemittels in das Innere der Aerogel-Partikel kann außer über die Auswahl des Bindemittels auch über verschieaene Parameter wie z B Druck Temperatur und Verarbeitungszeit beeinflußt werden
Darüber hinaus kann das Verbundmatenal auch noch bis zu 85 Vol -% an Füllstoffen enthalten Zur Verbesserung der mechanischen Eigenschaften können dazu insbesondere Fasern Vliese, Gewebe, Filze sowie Reste bzw Abfalle derselben eingesetzt werden Zu diesem Zweck können auch Fo enschnipsel und/oder Folienreste verwendet werden
Des weiteren kann das Verbundmatenal weitere Füllstoffe z B zur Faroung zur Erzielung besonderer dekorativer Effekte oder zur Einstellung der Haftung von Klebern auf der Oberflache enthalten
Vorzugsweise liegt der Anteil der Füllstoffe bezogen auf das Verbundmatenal unter 70 % und besonders bevorzugt im Bereich von 0 bis 50 Vol.-%
Werden Aerogel-Partikel mit hydrophoben Oberflachengruppen in Verbindung mit hydrophoben Bindemitteln verwendet erhalt man ein hydrophobes Verbundmαteriαl.
Sollte das Verbundmaterial aufgrund des verwendeten Bindemittels und/oder aufgrund von hydrophilen Aerogel-Partikeln hydrophil sein, kann gegebenenfalls eine nachträgliche Behandlung erfolgen, die dem Verbundmaterial hydrophobe Eigenschaften verleiht. Dazu eignen sich alle dem Fachmann für diesen Zweck bekannten Stoffe, die dem Verbundmaterial eine hydrophobe Oberfläche verleihen, wie z. B. Lacke, Folien, Silylierungsmittel, Silikonharze sowie anorganische und/oder organische Bindemittel.
Weiterhin können auch beim Verkleben sogenannte "coupling agents" eingesetzt werden. Sie bewirken einen besseren Kontakt der Bindemittel mit der Oberfläche der Aerogel-Partikel und können darüber hinaus eine feste Bindung sowohl mit den Aerogel-Partikeln als auch mit dem Bindemittel oder gegebenenfalls den Füllstoffen eingehen.
Die erfindungsgemäß aus Aerogel-Granulat hergestellten Formkörper weisen vorzugsweise eine Dichte von weniger als 0,6 g/cm3 und vorzugsweise eine Verbesserung der Körper- bzw. Trittschalldämmung von mehr als 12 dB auf. Besonders bevorzugt liegt die Verbesserung der Körper- bzw. Trittschalldämmung über 14 dB.
Die Brandklasse des Verbundmaterials wird durch die Brandklasse des Aerogels und des Bindemittels bestimmt. Um eine möglichst günstige Brandklasse des Verbundmateriais zu erhalten (schwer entflammbar oder unbrennbar) , können die Verbundmaterialien noch mit geeigneten Materialien kaschiert werden, wie z. B. Silikonharzklebstoffen. Weiterhin ist die Verwendung von dem Fachmann bekannten Brandschutzmitteln möglich. Darüber hinaus sind auch sämtliche dem Fachmann bekannten Beschichtungen möglich, die z. B. schmutzabweisend und/oder hydrophob sind.
Das aerogelhaltige Verbundmatenal kann dadurch hergestellt werden, daß man Aerogel und Bindemittel mischt in die gewünschte Form bringt und aushärtet
Bei der Herstellung der Verbundmatenalien werden die Aerogel-Partikel mittels mindestens einem Bindemittel miteinander verbunden Die Verbindung der einzelnen Partikel miteinander kann dabei quasi punktformig erfolgen Eine solche oberflächliche Beschichtung kann beispielsweise durch Besprühen der Aerogel-Partikel mit dem Bindemittel (z.B. als Losung, Schmelze, Suspension oder Dispersion) erreicht werden Die beschichteten Partikel werden dann beispielsweise zu einem Formkorper gepreßt und ausgehärtet
In einer bevorzugten Ausfuhrungsform wird zusatzlich auch das Zwickelvolumen zwischen den einzelnen Partikeln ganz oder teilweise vom Bindemittel ausgefüllt Eine solche Zusammensetzung laßt sich beispielsweise herstellen, indem man die Aerogel-Partikel mit einem pulverformigen Bindemittel mischt in die gewünschte Form bringt und aushärtet
Das Mischen kann dabei in jeder nur denkbaren Weise durchgeführt werden So ist es einerseits möglich, die mindestens zwei Komponenten gleichzeitig in die Mischvorrichtung einzubringen andererseits kann aber auch eine der Komponenten vorgelegt und die andere(n) dann zugesetzt werden
Auch die für das Mischen notwendige Mischvorrichtung ist in keinster Weise beschrankt Es kann jede dem Fachmann für diesen Zweck bekannte Mischvorrichtung verwendet werden. Der Mischvorgαng wird solange durchgeführt, bis eine annähernd gleichmäßige Verteilung der Aerogel- Partikel in der Zusammensetzung vorliegt. Dabei kann der Mischvorgang sowohl über die Zeitdauer als auch beispielsweise über die Geschwindigkeit der Mischvorrichtung geregelt werden.
Danach erfolgt die Formgebung und das Aushärten des Gemisches, was je nach Art des Bindemittels durch Erwarmen und/oder Verdampfen des verwendeten Lόsungs- und/oder Dispersionsmitteis oder aber, bei Verwendung von Schmelzen, durch Abkühlen unter die Schmelztemperatur des Bindemittels oder durch cnemische Reaktion des Bindemittels bzw der Bindemittel erfolgt.
In einer bevorzugten Ausführungsform wird das Gemisch verpreßt. Dabei ist es dem Fachmann möglich, für den jeweiligen Anwendungszweck die geeignete Presse und das geeignete Preßwerk∑eug auszuwählen. Aufgrund des hohen Luftanteils der aerogelhaltigen Preßmassen ist der Einsatz von Vakuumpressen vorteilhaft In einer bevorzugten Ausfύhrungsform werden die aerogelhalπgen Preßmassen zu Platten verpreßt. Um ein Anbacken der Preßmasse an das Preßwerkzeug, beispielsweise Preßstempel, zu vermeiden, kann das zu verpressende, aerogelhaltige Gemisch mit Trennpapier bzw Trennfolie gegen das Preßwerkzeug abgetrennt werden. Die mechanische Festigkeit der aerogelhaltigen Platten kann durch Auflaminieren von Geweben, Folien, Hartfolien oder Hartfaserplatten auf die Plattenoberfläche verbessert werden. Die Gewebe, Folien, Hartfolien oder Hartfaserplatten können sowohl nachträglich als auch bei der Herstellung des Verbundmateriais auf die aerogelhaltigen Platten aufgebracht werden Letzteres ist bevorzugt und kann vorzugsweise in einem Arbeitsschritt durch Einlegen der Gewebe, Folien, Hartfolien oder Hartfaserplatten in die Preßform und Auflegen auf die zu verpressende, aerogelhaltige Preßmasse und anschließendes Verpressen unter Druck und Temperatur zu einer aerogelhaltigen Verbundplatte erfolgen
Das Verpressen findet in Abhängigkeit vom verwendeten Bindemittel im allgemeinen bei Pressdrucken von 1 bis 1000 bar in beliebigen Formen statt Zur Aushärtung kann das Gemisch wahrend des Preßvorgangs auf Temperaturen von 0°C bis 300°C gebracht werden Es ist aber auch möglich das Gemisch bei Temperaturen, die signifikant unter denen zur Aushärtung verwendeten liegen, zu verpressen und anschließend ohne Ausübung eines Druckes auszuhärten
Bei Verbundmatenalien, die einen besonders hohen Volumenanteil an Aerogel-Partikeln enthalten und deren Wärmeleitfähigkeit entsprechend schlecht ist, kann zusätzlich mit Hilfe geeigneter Strahlungsquellen Wärme in die Platten gebracht werden Koppelt, wie im Falle von Polyvinylbutyralen, das verwendete Bindemittel mit Mikrowellen so ist diese Strahlungsquelle bevorzugt
Die Erfindung wira im folgenden anhand von Ausfuhrungsbeispielen naher beschrieben, ohne dadurch beschrankt zu werden.
Die Aerogele wurden analog dem in der DE-A-43 42 548 offenbarten Verfahren hergestellt
Die Wärmeleitfähigkeiten der Aerogel-Granulate wurden mit einer Heizdrahtmethode (siehe z.B. O. Nielsen, G Ruschenpohler, J. Groß, J Fncke, High Temperatures-High Pressures, Vol. 21 , 267 - 274 ( 1989)) gemessen. Die Wärmeleitfähigkeiten der Formkorper wurden nach DIN 52612 gemessen. Als Maß für die Verbesserung der Körper- bzw. Tnttschalldammung wurde das Tnttschallverbesserungsmaß nach DIN 52210 bestimmt. Beispiel 1
Formkörper aus 50 Vol.-% Aerogel und 50 Vol.-% Polyvinylbutyral
Es werden 50 Vol.-% hydrophobes Aerogel-Granulat (Festkörperdichte 130 kg/m3) und 50 Vol.-% eines Polyvinylbutyralpulvers (Festkörperdichte 1 100 kg/m3) innig vermischt. Das prozentuale Volumen bezieht sich dabei auf das Zielvolumen des Formkörpers. Das hydrophobe Aerogel-Granulat hat eine Korngröße größer 650 mm, eine BET-Oberfläche von 640 m2/g und eine Wärmeleitfähigkeit von 1 1 mW/mK. Als Polyvinylbutyralpulver wird Mowital® (Polymer F) (Hoechst AG) mit einer Körnung um 50 mm verwendet.
Der Boden der Preßform wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt. Es wird bei 220°C für 30 Minuten auf eine Dicke von
18 mm gepreßt.
Der erhaltene Formkörper hat eine Dichte von 280 kg/m3 und eine Wärmeleitfähigkeit von 40 mW/mK. Das Trittschallverbesserungsmaß beträgt
19 dB.
Beispiel 2
Formkörper aus 80 Vol.-% Aerogel, 18 Vol.-% Polyvinylbutyral und 2 Vol.-% Polyethylenterephthalatfasem
Es werden 80 Vol.-% hydrophobes Aerogel-Granulat (Festkörperdichte 130 kg/m3) und 18 Vol.-% eines Polyvinylbutyralpulvers (Festkörperdichte 1 100 kg/m3) und 2 Vol.-% Polyethylenterephthalatfasem innig vermischt. Das prozentuale Volumen bezieht sich dabei auf das Zielvolumen des Formkόrpers. Das hydrophobe Aerogel-Granulat hat eine Korngröße größer 650 mm, eine BET-Oberfläche von 640 m2/g und eine Wärmeleitfähigkeit von 1 1 mW/mK. Als Polyvinylbutyralpulver wird Mowital® (Polymer F) (Hoechst AG) mit einer Körnung um 50 mm verwendet. Als Fasermaterial werden Trevira® Hochfest Fasern (Hoechst AG) verwendet
Der Boden der Preßform wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt Es wird bei 220°C für 30 Minuten auf eine Dicke von 18 mm gepreßt.
Der erhaltene Formkorper hat eine Dichte von 250 kg/m3 und eine Wärmeleitfähigkeit von 25 mW/mK Das Trittschallverbesserungsmaß betragt 22 dB.
Beispiel 3
Formkorper aus 90 Vol -% Aerogel und 10 Vol -% Dispersionsklebstoff
Es werden 90 Vol -% hydrophobes Aerogel-Granulat (Festkorperdichte 130 kg/m3) mit 10 Vol.-% der Mowιlιth®-Dιspersιon VDM1340 in einem Mischer besprüht. Das prozentuale Volumen bezieht sich dabei auf das Zielvolumen des trockenen Formkörpers. Das hydrophobe Aerogel-Granulat hat eine Korngröße größer 650 mm, eine BET-Oberfläche von 640 m2/g und eine Wärmeleitfähigkeit von 1 1 mW/mK Als Dispersionsklebstoff wird die Mowilith®- Dispersion VDM1340 (Hoechst AG) verwendet.
Der Boden der Preßform wird mit Trennpapier ausgelegt. Darauf wird die aerogelhaltige Preßmasse gleichmäßig verteilt und das ganze mit einem Trennpapier abgedeckt. Es wird bei 190°C für 15 Minuten auf eine Dicke von 18 mm gepreßt.
Der erhaltene Formkörper hat eine Dichte von 200 kg/m3 und eine Wärmeleitfähigkeit von 29 mW/mK. Das Trittschallverbesserungsmaß beträgt 24 dB.

Claims

Patentansprüche:
1 . Verwendung von Aerogel-Partikeln zur Körper- und/oder Trittschalldämmung.
2. Verwendung gemäß Anspruch 1 , dadurch gekennzeichnet, daß als Aerogel-Partikel solche, die Si-Verbindungen enthalten, vorzugsweise Si02- Aerogele, verwendet werden.
3. Verwendung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Aerogel-Partikel dauerhaft hydrophobe Oberflächengruppen aufweisen.
4. Verwendung gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Aerogel-Partikel Porositäten über 60 % und Dichten unter 0,6 g/cm3 aufweisen.
5. Verwendung gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Größe der Aerogel-Partikel im Bereich von 50 μm bis 10 mm liegt.
6. Verwendung gemäß mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Aerogel-Partikel in Form eines Verbundmaterials eingesetzt werden.
7. Verwendung gemäß Anspruch 6, dadurch gekennzeichnet, daß der Antei der Aerogel-Partikel im Verbundmaterial im Bereich von 5 bis 97 Vol.-% liegt.
PCT/EP1998/000328 1997-01-24 1998-01-22 Verwendung von aerogelen zur körper- und/oder trittschalldämmung WO1998032708A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/355,074 US6598358B1 (en) 1997-01-24 1998-01-22 Use of aerogels for deadening structure-borne and/or impact sounds
JP53157598A JP4776744B2 (ja) 1997-01-24 1998-01-22 物体音および/または衝撃音減衰のためのエアロゲルの使用法
DE59807740T DE59807740D1 (de) 1997-01-24 1998-01-22 Verwendung von aerogelen zur körper- und/oder trittschalldämmung
EP98904115A EP0966411B1 (de) 1997-01-24 1998-01-22 Verwendung von aerogelen zur körper- und/oder trittschalldämmung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19702238.3 1997-01-24
DE19702238A DE19702238A1 (de) 1997-01-24 1997-01-24 Verwendung von Aerogelen zur Körper- und/oder Trittschalldämmung

Publications (1)

Publication Number Publication Date
WO1998032708A1 true WO1998032708A1 (de) 1998-07-30

Family

ID=7818094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/000328 WO1998032708A1 (de) 1997-01-24 1998-01-22 Verwendung von aerogelen zur körper- und/oder trittschalldämmung

Country Status (8)

Country Link
US (1) US6598358B1 (de)
EP (1) EP0966411B1 (de)
JP (2) JP4776744B2 (de)
KR (1) KR20000070449A (de)
CN (1) CN1200904C (de)
DE (2) DE19702238A1 (de)
ES (1) ES2193513T3 (de)
WO (1) WO1998032708A1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010076229A (ko) * 1999-11-29 2001-08-11 모리시타 요이찌 습윤 실리카겔의 건조방법
DE10057368A1 (de) * 2000-11-18 2002-05-23 Bayerische Motoren Werke Ag Isolationsschicht insbesondere für Kraftfahrzeug-Karosserieteile
US7641954B2 (en) * 2003-10-03 2010-01-05 Cabot Corporation Insulated panel and glazing system comprising the same
US7621299B2 (en) * 2003-10-03 2009-11-24 Cabot Corporation Method and apparatus for filling a vessel with particulate matter
WO2006030555A1 (ja) * 2004-09-15 2006-03-23 Kazuo Uejima 音響機器用マット
DE102004047552B4 (de) * 2004-09-30 2006-12-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Herstellung von Aerogel-Verbundwerkstoffen
US7270851B2 (en) * 2004-11-04 2007-09-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method
US7635411B2 (en) * 2004-12-15 2009-12-22 Cabot Corporation Aerogel containing blanket
US7444687B2 (en) * 2005-08-29 2008-11-04 3M Innovative Properties Company Hearing protective device that includes cellular earmuffs
US20070044206A1 (en) * 2005-08-29 2007-03-01 Sato Luciana M Hearing protective earmuff device having frictionally engageable ear cups
US8987367B2 (en) 2005-12-29 2015-03-24 Joel L. Sereboff Energy absorbing composition and impact and sound absorbing applications thereof
CA2633622C (en) * 2005-12-29 2014-07-15 Joel L. Sereboff Energy absorbing composition and impact and sound absorbing applications thereof
US8541496B2 (en) 2005-12-29 2013-09-24 Joel Sereboff Energy absorbing composition and impact and sound absorbing applications thereof
US7790787B2 (en) * 2006-05-03 2010-09-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Aerogel/polymer composite materials
US20080029336A1 (en) * 2006-06-10 2008-02-07 Patrick Sigler Acoustic panel
US20090189111A1 (en) * 2006-08-16 2009-07-30 Hitachi Chemical Co., Ltd. Composites for sound control applications
US8505857B2 (en) 2006-08-18 2013-08-13 Kellogg Brown & Root Llc Systems and methods for supporting a pipe
US7997541B2 (en) * 2006-08-18 2011-08-16 Kellogg Brown & Root Llc Systems and methods for supporting a pipe
WO2009099621A1 (en) * 2008-02-05 2009-08-13 Guy Leath Gettle Blast effect mitigating assembly using aerogels
KR100840891B1 (ko) 2008-03-19 2008-06-24 주식회사 에스공사 소음 차단이 가능한 페인트 조성물
EP2638540A4 (de) 2010-11-09 2017-11-08 California Institute of Technology Klangunterdrückungssysteme und entsprechende verfahren
EP3100989B1 (de) * 2014-01-31 2021-08-04 Sekisui Chemical Co., Ltd. Verbundglas und verfahren zur einpassung von verbundglas
KR101566743B1 (ko) * 2014-04-18 2015-11-06 현대자동차 주식회사 엔진용 배기 밸브
KR101684504B1 (ko) * 2014-09-22 2016-12-20 현대자동차 주식회사 엔진 방사 소음 저감유닛
CN105089234A (zh) * 2015-08-26 2015-11-25 桂林威迈壁纸有限公司 隔热隔音夜光壁纸
US10839784B1 (en) * 2016-11-03 2020-11-17 LJ Avalon LLC Sound reducing panel
CN107016988B (zh) * 2017-03-03 2021-02-05 中南大学 一种轻质反声材料及其制备方法
DE102017119096A1 (de) 2017-08-21 2019-02-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Holz-Beton-Verbunddecke
CN112795048B (zh) * 2021-02-03 2023-04-11 峰特(浙江)新材料有限公司 一种混合气凝胶改性的密胺泡绵及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0340707A2 (de) * 1988-05-03 1989-11-08 BASF Aktiengesellschaft Dämmstoff der Dichte 0,1 bis 0,4 g/cm3
US5306555A (en) * 1991-09-18 1994-04-26 Battelle Memorial Institute Aerogel matrix composites
WO1996012683A1 (de) * 1994-10-20 1996-05-02 Hoechst Aktiengesellschaft Aerogelhaltige zusammensetzung, verfahren zur ihrer herstellung sowie ihre verwendung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141194U (de) * 1989-04-27 1990-11-27
CH684206A5 (de) * 1990-11-12 1994-07-29 Matec Holding Entsorgbarer Hitzeschild.
JP2756366B2 (ja) * 1990-11-27 1998-05-25 松下電工株式会社 疎水性エアロゲルの製造方法
EP0509603B1 (de) * 1991-04-15 2001-09-12 Matsushita Electric Works, Ltd. Schallabsorbierendes Material
JPH05146670A (ja) * 1991-12-02 1993-06-15 Ngk Spark Plug Co Ltd カプセル化材及びその製造方法並びにカプセル化材からなる成形体
JP2659155B2 (ja) * 1992-02-03 1997-09-30 松下電工株式会社 疎水性エアロゲルの製造方法
JPH06158840A (ja) * 1992-11-24 1994-06-07 Konekuteito:Kk 床構造及び床工法並びに床板
DE4316540A1 (de) * 1993-05-18 1994-11-24 Hoechst Ag Verfahren zur unterkritischen Trocknung von Aerogelen
DE4430642A1 (de) * 1994-08-29 1996-03-07 Hoechst Ag Aerogel- und Xerogelverbundstoffe, Verfahren zu ihrer Herstellung sowie ihre Verwendung
DE4430669A1 (de) * 1994-08-29 1996-03-07 Hoechst Ag Verfahren zur Herstellung von faserverstärkten Xerogelen, sowie ihre Verwendung
JPH08109363A (ja) * 1994-10-13 1996-04-30 Fujikura Ltd 電気感応型音波吸収制御用流体組成物
DE4441567A1 (de) * 1994-11-23 1996-05-30 Hoechst Ag Aerogelhaltiges Verbundmaterial, Verfahren zu seiner Herstellung sowie seine Verwendung
AU4175296A (en) * 1994-11-23 1996-06-17 Hoechst Aktiengesellschaft Composite material containing aerogel, process for manufacturing said material and the use thereof
US5786059A (en) * 1994-12-21 1998-07-28 Hoechst Aktiengesellschaft Fiber web/aerogel composite material comprising bicomponent fibers, production thereof and use thereof
DE19507732A1 (de) * 1995-03-07 1996-09-12 Hoechst Ag Transparentes Bauelement, enthaltend mindestens eine faserverstärkte Aerogelplatte und/oder -matte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0340707A2 (de) * 1988-05-03 1989-11-08 BASF Aktiengesellschaft Dämmstoff der Dichte 0,1 bis 0,4 g/cm3
US5306555A (en) * 1991-09-18 1994-04-26 Battelle Memorial Institute Aerogel matrix composites
WO1996012683A1 (de) * 1994-10-20 1996-05-02 Hoechst Aktiengesellschaft Aerogelhaltige zusammensetzung, verfahren zur ihrer herstellung sowie ihre verwendung

Also Published As

Publication number Publication date
KR20000070449A (ko) 2000-11-25
JP4776744B2 (ja) 2011-09-21
EP0966411B1 (de) 2003-04-02
US6598358B1 (en) 2003-07-29
EP0966411A1 (de) 1999-12-29
CN1249729A (zh) 2000-04-05
DE59807740D1 (de) 2003-05-08
JP2001509767A (ja) 2001-07-24
JP2011080064A (ja) 2011-04-21
JP5547028B2 (ja) 2014-07-09
CN1200904C (zh) 2005-05-11
DE19702238A1 (de) 1998-08-06
ES2193513T3 (es) 2003-11-01

Similar Documents

Publication Publication Date Title
EP0966411B1 (de) Verwendung von aerogelen zur körper- und/oder trittschalldämmung
EP0963358B1 (de) Mehrschichtige verbundmaterialien, die mindestens eine aerogelhaltige schicht und mindestens eine weitere schicht aufweisen, verfahren zu ihrer herstellung sowie ihre verwendung
EP0954438B1 (de) Mehrschichtige verbundmaterialien, die mindestens eine aerogelhaltige schicht und mindestens eine schicht, die polyethylenterephthalat-fasern enthält, aufweisen, verfahren zu ihrer herstellung sowie ihre verwendung
EP0850206B1 (de) Aerogel- und klebstoffhaltiges verbundmaterial, verfahren zu seiner herstellung sowie seine verwendung
EP0793626B1 (de) Aerogelhaltiges verbundmaterial, verfahren zu seiner herstellung sowie seine verwendung
EP0799343B1 (de) Faservlies- aerogel- verbundmaterial enthaltend bikomponentenfasern, verfahren zu seiner herstellung, sowie seine verwendung
EP0850207A1 (de) Faserhaltiges aerogel-verbundmaterial
WO1996012683A1 (de) Aerogelhaltige zusammensetzung, verfahren zur ihrer herstellung sowie ihre verwendung
EP2527124A1 (de) Verfahren zur Herstellung eines eine Hohlraumstruktur aufweisenden Formkörpers zur Schall- und/oder Wärmedämmung sowie Formkörper zur Schall- und/oder Wärmedämmung
DE10241978A1 (de) Nichtbrennbare, feuchtigkeitsregulierende und schallabsorbierende Formteile und Verfahren zu deren Herstellung
DE19634109C2 (de) Aerogel- und kunststoffhaltiges, transparentes Verbundmaterial, Verfahren zu seiner Herstellung sowie seine Verwendung
EP2649118A1 (de) Verbundmaterial enthaltend nanoporöse partikel
DE19533565A1 (de) Aerogel- und klebstoffhaltiges Verbundmaterial, Verfahren zu seiner Herstellung
EP4182500A1 (de) Aerogel-haltige isolationsschicht
DE19622865A1 (de) Aerogel- und klebstoffhaltiges Verbundmaterial, Verfahren zu seiner Herstellung sowie seine Verwendung
DE10360749B3 (de) Anorganische Brand- und Wärmedämmpaste und ihre Herstellung
EP0310138A1 (de) Bauelement und Verfahren zu seiner Herstellung
DE69117874T2 (de) Kondensationsverhindernde konstruktion
EP2386697A2 (de) Wärmedämmplatten, Wärmedämmsysteme enthaltend diese Wärmedämmplatten und Verfahren zur Herstellung solcher Wärmedämmplatten
EP2250137B1 (de) Verfahren zur herstellung eines platten- oder profilförmigen bauelementes sowie platten- oder profilförmiges bauelement
WO2005108697A1 (de) Brandbeständige platte
EP2864087B1 (de) Holzverbundwerkstoff mit aerogele und entsprechendes herstellungsverfahren und verwendung
AT402068B (de) Brandschutzbeschichtung
EP4375058A1 (de) Als sandwich aufgebaute flächige formkörper
DE2710402A1 (de) Waermedaemmendes verbundmaterial

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98803189.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN CZ JP KR MX NO PL SI US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998904115

Country of ref document: EP

Ref document number: 1019997006685

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1998 531575

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09355074

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998904115

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997006685

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998904115

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019997006685

Country of ref document: KR