WO1998025852A1 - Procede de preparation de carbonate de calcium - Google Patents

Procede de preparation de carbonate de calcium Download PDF

Info

Publication number
WO1998025852A1
WO1998025852A1 PCT/JP1997/004515 JP9704515W WO9825852A1 WO 1998025852 A1 WO1998025852 A1 WO 1998025852A1 JP 9704515 W JP9704515 W JP 9704515W WO 9825852 A1 WO9825852 A1 WO 9825852A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium carbonate
lime
paper
quicklime
papermaking
Prior art date
Application number
PCT/JP1997/004515
Other languages
English (en)
French (fr)
Inventor
Kazuto Takahashi
Kiyoshi Kanai
Yasunori Nanri
Yasuhiro Okamoto
Original Assignee
Nippon Paper Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co., Ltd. filed Critical Nippon Paper Industries Co., Ltd.
Priority to CA002274784A priority Critical patent/CA2274784C/en
Priority to AU51395/98A priority patent/AU5139598A/en
Priority to EP97946163A priority patent/EP0949201B1/en
Priority to US09/319,075 priority patent/US6190633B1/en
Publication of WO1998025852A1 publication Critical patent/WO1998025852A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/675Oxides, hydroxides or carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/181Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by control of the carbonation conditions
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C11/00Regeneration of pulp liquors or effluent waste waters
    • D21C11/0064Aspects concerning the production and the treatment of green and white liquors, e.g. causticizing green liquor
    • D21C11/0078Treatment of green or white liquors with other means or other compounds than gases, e.g. in order to separate solid compounds such as sodium chloride and carbonate from these liquors; Further treatment of these compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • D21H19/385Oxides, hydroxides or carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/40Production or processing of lime, e.g. limestone regeneration of lime in pulp and sugar mills

Definitions

  • the present invention relates to a method for producing a filler for papermaking and a calcium carbonate which gives useful properties as a coating pigment for papermaking in a causticizing step of a pulp production step by a sulfate method or a soda method.
  • the present invention relates to a method for producing calcium carbonate which gives useful performance as a filler for papermaking by specifying quicklime and slaking / causticizing conditions.
  • Fillers are usually added to paper used for printing or writing for the purpose of improving whiteness, opacity, smoothness, writability, touch, and printability.
  • This papermaking method involves the use of talc, clay, titanium oxide, etc. as a filler, and papermaking at around pH 4.5, the so-called acidic papermaking, and the neutral to weakly alkaline region of pH 7 to 8.5.
  • neutral papermaking In neutral papermaking, it is possible to use domestically produced calcium carbonate as a filler instead of imported talc and clay which are expensive.
  • attention has been paid to neutral paper obtained by neutral papermaking due to problems such as paper preservability, and there are many other advantages in terms of paper quality, cost, environmental measures, etc. Therefore, the transition to neutral papermaking has been progressing, and the spread of such papermaking will continue to expand.
  • Calcium carbonate used as a filler in this neutral papermaking includes heavy calcium carbonate obtained by mechanically pulverizing natural limestone in a dry or wet method, and precipitated calcium carbonate obtained by a chemical method. (Synthetic calcium carbonate).
  • fillers with a large specific surface area eg, finely divided silica, white carbon, etc.
  • fillers with a high refractive index eg, titanium dioxide
  • the use of these fillers improved the opacity but did not increase the opacity (reduce the density), so that no stiffness was obtained.
  • One way to increase the bulk is to increase the freeness of the pulp used.In this case, although the bulk is low and the density is low, the paper layer structure becomes porous at the same time, Air permeability and smoothness are reduced.
  • the sedimentable calcium carbonate (synthetic calcium carbonate) has been used to remedy these problems. Examples of this method include (1) the reaction of carbon dioxide gas obtained from a lime baking apparatus and the like with lime milk, (2) the reaction of ammonium carbonate with calcium chloride in the ammonia soda method, and (3) the causticization of sodium carbonate. The reaction between milk of lime and sodium carbonate is known. Of these methods,
  • One possible approach is to use calcium carbonate, which is a by-product of the causticizing process for collecting and regenerating cooking chemicals in the kraft pulp manufacturing process, as a raw material for papermaking.
  • wood is digested at a high temperature and a high pressure using a chemical mixture of sodium hydroxide and sodium sulfide to separate the fibrous material in the wood.
  • the fibrous material is separated and refined into a pulp as a solid phase, and components eluted from the chemical solution and wood other than the fibrous material are collected as pulp waste liquid (black liquor) and concentrated and burned.
  • the components eluted from wood are recovered as a heat source, and the inorganic substances in the chemical solution are recovered using sodium carbonate and sodium sulfide as main components, and calcium carbonate formed by the following reaction called water or weak solution
  • the white liquor component generated when the sludge is washed is dissolved by a partially dissolved dilute chemical solution to become a green liquor.
  • Quick lime is mixed with this green liquor, and the reaction shown in equations [1] and [2] is performed.
  • An object of the present invention is to provide an inexpensive calcium carbonate in which the shape of self-made light calcium carbonate is controlled and controlled using a causticizing process in order to provide excellent quality paper and coated paper such as excellent quality paper. .
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, contain a specific amount or less of carbonic acid calcium by using a causticizing step of a pulp manufacturing process by a sulfate method or a soda method.
  • the green liquor from the causticizing step of the pulp manufacturing process by the sulfate method or the soda method is added to milk of lime obtained by slaking reaction between quick lime and a solution having a pH of 5.5 to 13.5. It has been found that the problem can be solved by continuously adding and controlling the rate of addition and the reaction temperature, and the present invention has been accomplished based on this finding.
  • the method of the present invention it is possible to control the shape of calcium carbonate without greatly changing the conventional causticizing process, and the minor axis of the particles is 0.1 to 2.5 / m and the major axis is 0.
  • Spindle-shaped and needle-shaped calcium carbonate of 3 to 20 m is prepared, and as a filler for papermaking, it has excellent bulk, whiteness, opacity, wire abrasion, and excellent end-to-end retention.
  • the glossiness, opacity, ink receptivity, and surface strength of white paper can be improved as expected, and the cost is significantly lower than that of calcium carbonate obtained by the conventional reaction of lime milk and carbon dioxide. Can be manufactured.
  • the kiln operation can be reduced, or the kiln can be stopped depending on the amount of calcium carbonate removed from the process depending on the amount of causticized light calcium used.
  • the cost of the entire causticizing process is reduced.
  • the quicklime used in the slaking reaction which is the first step of the present invention, is calcium carbonate.
  • Limestone containing gem as a main component and calcined calcium carbonate generated when sodium carbonate is converted to sodium hydroxide in a causticizing step of pulp production by a sulfate method or a soda method may be used.
  • the firing equipment used at this time is a Beckenbach furnace, a Mertz furnace, a rotary kiln, a Kunii furnace, a KHD (Car Hardy) furnace, a Kama furnace, a calmatic furnace, a fluidized firing furnace, a mixed baking furnace, etc.
  • the device is not particularly limited as long as it is a device that converts lime into quicklime (calcium oxide).
  • the coloring components pose a problem, but quick lime obtained from raw limestone with a low coloring component content is suitable for the paper used as the product.
  • the coloring is based on the ratio of calcium carbonate extracted outside the system to calcium carbonate recycled in the system. Since the content of components changes, it is necessary to use raw limestone with a low content of coloring components to be supplied to the calcium circulation cycle in the causticizing process, or a product obtained by adjusting the amount of calcined lime obtained by calcining the same. Good.
  • the calcium carbonate content in quicklime 0.1 to 10% by weight based on the weight of quicklime is used. If the content exceeds 10% by weight, the formed calcium carbonate becomes irregular or massive, resulting in poor wire abrasion properties and a light weight coated paper of the target paper quality cannot be obtained. On the other hand, in order to obtain 0.1% by weight or less, the energy required for firing is extremely increased or a special device is required for the firing apparatus, which is uneconomical.
  • the particle size of quicklime but it is preferably from 0.01 to 30 mm.If it is less than 0.01 mm, the cost for pulverization is high, and at the same time, dust generation and transfer equipment are required. In the case of 30 mm or more, there is a problem in terms of uniform mixing in stirring during slaking, which is not preferable.
  • a liquid used for slaking quicklime a liquid having a pH of 5.5 to 13.5 is used.
  • This liquid can be water that is replenished in the causticization process, or a weak liquid that is a supernatant liquid that has washed out sediments (dreguegs, calcium carbonate sludge) in green liquor and white liquor.
  • a weak liquid that is a supernatant liquid that has washed out sediments (dreguegs, calcium carbonate sludge) in green liquor and white liquor.
  • p H 1 3. 5 N a OH and N a 2 C
  • the concentration of lime during slaking should be 20 to 60% by weight, preferably 25 to 55% by weight, based on quick lime before slaking. If it exceeds 60% by weight, the liquid viscosity is too high and it is practically difficult to stir. I can't.
  • Mixing of quicklime and liquid at the time of sloughing can be performed by using a general stirring blade type, pump type, extruder, kneader, or kneader, depending on the viscosity of the liquid or slurry during mixing. It can be selected and used as appropriate (see Maruzen Co., Ltd., March 18, 1988, Chemical Engineering Handbook).
  • the temperature and time during slaking are closely related. Shortening is required when the temperature of the aqueous solution used for slaking is high, and long time when the temperature is low.
  • the time is set appropriately according to the temperature of the quicklime used during slaking, but one guideline is to allow time until the temperature rise due to heat generation during slaking stops. In practice, slaking at the highest possible temperature is effective.
  • green liquor generated from the causticizing step of the general sulfate method or soda method can be used.
  • Total alkali 80 L (of which, Na 2 C_ ⁇ 3 65 g / L) in the case lower, when the concentration of the final white liquor is used for cooking rising lower, it becomes necessary to perform density adjustment.
  • 160GZL case (of which, Na 2 C0 3 is 130GZL) higher than the carbonate produces Karushiu The wire abrasion of the system is poor, and the target paper quality cannot be obtained.
  • the addition rate of the green liquor to the lime milk is preferably from 0.02 to 0.5 cc (green liquor) / min / g (quick lime). Is performed at 0.02 to 0.45 cc (green liquor) / min / g (quicklime). At an addition rate of less than 0.2 cc (green liquor) / min / g (quick lime), productivity is poor and not realistic, and the addition rate is lower than 0.5 cc (green liquor) / min / g (quick lime). At a high rate of addition, the shape of the calcium carbonate formed becomes irregular or massive, resulting in poor wire abrasion and the desired paper quality.
  • lime milk adjusted from quicklime in the first step it is also possible to use lime milk adjusted to the same concentration of calcium hydroxide as in this method.
  • the causticizing reaction temperature it is necessary to carry out the reaction at a temperature of 20 to 105 ° C, preferably 25 to 103 ° C. If the temperature is higher than 105 ° C, the boiling point under atmospheric pressure will be exceeded, which requires a pressurized causticizer, which is uneconomical. On the other hand, when the temperature is lower than 20 ° C., the shape of the generated calcium carbonate becomes irregular or massive, resulting in inferior wire abrasion and a target paper quality cannot be obtained. In addition, the equipment for cooling and the accompanying costs are uneconomical.
  • the lime milk and green liquor prepared in the first stage process are uniform from among general stirring blades, pumps, extruders, kneaders, and kneaders. It is advisable to select and use those that can be mixed as appropriate (see Maruzen Co., Ltd., March 18, 1988, Chemical Engineering Handbook).
  • spindle-shaped or needle-shaped calcium carbonate having a minor axis of 0.1 to 2.5 m and a major axis of 0.3 to 20 m can be adjusted.
  • the calcium carbonate of various shapes obtained according to the present invention has a higher wire abrasion and yield than calcium carbonate obtained in the conventional causticizing process, and by adding the same internally, high-quality paper and coated paper can be strained. Strong, giving excellent characteristics such as whiteness, opacity, smoothness, writability, touch, and printability.
  • FIG. 1 is a scanning electron micrograph showing the crystal particle structure of the acicular carbonated calcium carbonate obtained in Example 1.
  • FIG. 2 is a diagram showing the result of X-ray diffraction of the product obtained in Example 1.
  • FIG. 3 is a scanning electron micrograph showing the crystal grain structure of the acicular carbonated calcium carbonate obtained in Example 2.
  • FIG. 4 is a scanning electron micrograph showing the crystal particle structure of the acicular carbonated calcium carbonate obtained in Example 3.
  • FIG. 5 is a scanning electron micrograph showing the crystal particle structure of the spindle-shaped calcium carbonate obtained in Example 4.
  • FIG. 6 is a scanning electron micrograph showing the crystal particle structure of the amorphous or massive calcium carbonate obtained in Comparative Example 4.
  • FIG. 7 is a diagram showing the result of X-ray diffraction of the product obtained in Comparative Example 4. (Action of the Invention)
  • the mechanism of the present invention has not been fully elucidated.However, the amount of carbonic acid in quicklime, the pH value of the solution or the amount of alkali corresponding thereto greatly affects the properties of lime milk, and then the green liquor It seems to affect the reaction state of dissolved calcium hydroxide and carbonate ion when adding.
  • the sequential addition of green liquor causes the concentration of dissolved calcium hydroxide and the proportion of carbonate ions to react at a low level of ion carbonate in the initial stage, so that calcium carbonate crystals grow and become spindle-shaped and needle-shaped. It seems to be.
  • this calcium carbonate has abrasion properties of plastic wire during high-speed papermaking, and has the effect of improving the yield at the end of papermaking.
  • bulking, opacity, whiteness The third is the effect of improving the gloss and surface strength after printing by grinding and using it as a pigment.
  • the primary reason is that the primary particles are spindle-shaped or needle-shaped, which increases the entanglement with the fiber and improves the yield, and as a result, reduces the filler passing through the wire part and reduces the particle size.
  • the shape is a spindle shape or a needle shape
  • the aspect ratio is large, and the sharp edge is small, so that the frictional resistance at the time of contact with the wire is low, which is advantageous for improving the abrasion resistance.
  • the second reason is that from the electron microscopic observation of the surface and cross section of the paper, spindle-shaped or acicular calcium carbonate fills the space between the pulp fibers as if they were fine fibers, and because they are rigid, they are fine It forms many voids and develops good bulk, opacity, and whiteness.
  • the third reason is that before grinding, the particles are in the form of spindles or needles with a particle size of 0.3 to 20 m, so they have low gloss and improved ink absorbency. In addition, since the particles have a uniform particle size after pulverization, it is considered that printability such as print gloss is improved.
  • MI A- 110 by measuring the C0 2 amount was ⁇ measure the calcium carbonate content than that amount.
  • Example 1 Using 50 g (average particle size: 10 mm) of kiln recalcined calcined calcium carbonate content of 7% and water replenished in the causticizing process at pH 6.8, mixing at a ratio of quick lime concentration of 50% by weight, Milk lime was made by mixing, and the same green liquor as in Example 1 was added under the conditions of an addition rate of 0.1 cc / min / g (quick lime), an addition time of 120 minutes, a temperature of 95 ° C, and a stirring speed of 600 rpm. The reaction was carried out. The product has an average particle size of 8.0 ⁇ m. It was confirmed that the constituent primary particles were aragonite-based acicular calcium carbonate having an average major axis of 8. and an average minor axis of 0.4 m. Table 1 shows the experimental conditions and results.
  • Example 1 Using the same quick lime, weak liquor and green liquor as in Example 1, mixed with the weak liquor at a ratio of quick lime concentration of 30% by weight, slaked to form lime milk, and the green liquor addition rate 0.22 cc Caustic reaction was performed under the conditions of / min / g (quicklime), addition time 60 minutes, temperature 30 ° C, and stirring speed 450 rpm.
  • the product was found to be spindle-shaped calcium carbonate having an average particle diameter of 6.7 fim and the constituent primary particles having an average major axis of 1.2 m and an average minor axis of 0.3 ⁇ m. Table 1 shows the experimental conditions and results.
  • Example 2 Using the same quick lime as in Example 2, and the same weak liquor and green liquor as in Example 1, mixing with the weak liquor at a ratio of quick lime concentration of 40% by weight, slaked to form lime milk, and added with green liquor.
  • the causticization reaction was performed under the conditions of an acceleration of 0.1 cc / min / g (quick lime), an addition time of 120 minutes, a temperature of 40 ° C, and a stirring speed of 750 rpm.
  • the product was found to be spindle-shaped calcium carbonate having an average particle diameter of 6.0 m and the constituent primary particles having an average major axis of 1.2 m and an average minor axis of 0.3 / zm. Table 1 shows the experimental conditions and results.
  • Example 2 The procedure was performed in the same manner as in Example 1 except that the pH of the solution used for slaking was adjusted to 13.7. The reaction product at this time was found to be amorphous or massive calcium carbonate with an average particle size of 8.2 m. Table 2 shows the experimental conditions and results.
  • Example 2 The operation was performed in the same manner as in Example 2 except that the concentration of quicklime during slaking was set to 14% by weight.
  • the reaction product was found to be amorphous or massive calcium carbonate with an average particle size of 8.5 m. Table 2 shows the experimental conditions and results.
  • Example 3 The same procedure was performed as in Example 3 except that the rate of green liquor addition during the causticization reaction was 0.88 cc / rain / g (quick lime) and the addition time was 15 minutes.
  • the reaction product was found to be amorphous or massive calcium carbonate with an average particle size of 9.5 m. Table 2 shows the experimental conditions and results.
  • Example 2 The procedure was performed in the same manner as in Example 3, except that the content of calcium carbonate in quicklime was set to 15%.
  • the reaction product at this time was found to be amorphous or massive calcium carbonate having an average particle diameter of 10.8; m.
  • Table 2 shows the experimental conditions and results.
  • Example 5 was carried out in the same manner as in Example 5, except that the reaction temperature during the causticization reaction was changed to 15 ° C.
  • the reaction product was found to be amorphous or massive calcium carbonate with an average particle size of 9.1 m. Table 2 shows the experimental conditions and results.
  • Weight in parentheses is the amount added to pulp.
  • Each paper produced in Application Example 1 was subjected to surface size pressing so that the weight after drying the oxidized starch was 2 gZm 2 by a size press, and dried. After that, it was soft-calendered (Minami-Senju Seisakusho, 60 ° C, 50 kgZcm—constant).
  • a coating liquid composition 60% by weight of heavy calcium carbonate having an average particle diameter of 0.6 / m (trade name: Hydro-Ribo 90, Shiroishi Calcium Co., Ltd.), kaolin with an average particle diameter of 0.5 m ( (Product name: Ultra White 90, Engelhard Co.) 40% by weight, 4% by weight of phosphated starch as adhesive, 10% by weight of styrene / butadiene latex and 0.3% by weight of dispersant The coating solution having a concentration of 64% was applied on both sides at 10 g / m 2 per one side by a test blade coater and dried. Profit The quality evaluation methods for the obtained products are shown below, and the obtained results are shown in Tables 3 and 4.
  • the calcium carbonate according to the present invention was spindle-shaped and needle-shaped calcium carbonate.
  • the composition of white liquor produced using weak liquor sampled from inside the causticizing process for slaking quicklime was unchanged at all compared to conventional conditions.
  • the calcium carbonate according to the present invention was high in bulk, whiteness, opacity, smoothness, and air permeability, and was excellent in filler retention and plastic wire abrasion.
  • the coated paper of Application Example 2 has excellent results in terms of bulk, smoothness, opacity, and rigidity.
  • this method can produce calcium carbonate whose shape is controlled using a conventional causticizing process without any major change, so that the production cost was greatly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Paper (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

明 細 書
炭酸カルシウムの製造方法
(発明の属する技術分野)
本発明は硫酸塩法またはソ一ダ法によるパルプ製造工程の苛性化工程において 製紙用填料及び、 製紙用塗工顔料として有用な性能を与える炭酸カルシウムを製 造する方法に関するものであり、 さらに詳しくは使用する生石灰及び、 消和 ·苛 性化条件等を特定することにより製紙用填料として有用な性能を与える炭酸カル シゥムを製造する方法に関するものである。
(従来の技術)
印刷あるいは筆記用に使用される紙には、 通常、 白色度、 不透明度、 平滑性、 筆記性、 手触り、 印刷適性等の改良を目的として填料が内添される。 この抄紙方 法として、 填料にタルク、 クレー、 酸化チタン等を使用し、 p H 4. 5付近で紙 を抄く、 いわゆる酸性抄紙と、 p H 7〜 8. 5の中性〜弱アルカリ性域で紙を抄 く、 いわゆる中性抄紙がある。 中性抄紙では、 輸入品で高価なタルク、 クレーに 変わって、 国産の炭酸カルシウムを填料として使用することが可能となる。 近年、 紙の保存性等の問題から中性抄紙によつて得られる中性紙が着目されるようにな り、 またこのほかにも紙質、 コスト、 環境対策等の面でもメリッ 卜が多いことか ら、 中性抄紙への移行が進んできており、 今後ともその普及が拡大する情勢にあ る。
また、 最近の紙の需要面からみると、 商業印刷では、 チラシ、 カタログ、 パン フレツ ト、 ダイレク トメール等の分野、 また、 出版印刷では、 情報化社会の進展 と共にコンピュータ、 マルチメディア、 ファミコン関連書籍、 雑誌や写真集、 ム ック、 コミック紙の分野の伸びが大きいのが特徴であり、 このことから、 紙ユー ザ一のコストダウン思考は一層強まってきており、 使用する紙についてもより低 グレード化、 軽量化が求められている。
上述のように安価で軽量な中性紙への要求が高まってくるなかで、 填料として の炭酸カルシゥムの位置づけは非常に重要である。 この中性抄紙で填料として用 いられる炭酸カルシウムには、 天然石灰石を乾式あるいは湿式で機械粉砕して得 られる重質炭酸カルシウムと、 化学的方法によって得られる沈降性炭酸カルシゥ ム (合成炭酸カルシウム) がある。
ところが、 天然石灰石をボールミル等の粉砕機を使用して得られた重質炭酸力 ルンゥムは、 形状をコントロールし難いため、 内添填料として使用した場合、 抄 紙の際に激しくプラスチックワイヤを磨耗させてしまう。 さらに、 この填料を使 用して、 通常の上質紙、 塗工紙を製造した場合、 嵩、 白色度、 不透明度、 平滑性、 筆記性、 手触り、 印刷適性等において不十分である。
最近のように軽量化が進んでくると、 さらに上記問題は深刻化してくる。 これ まで、 軽量印刷用紙の不透明度を向上させる通常の手段としては、 比表面積の大 きな填料(例えば、 微粉砕シリカ、 ホワイ トカーボン等)や、 屈折率の高い填料 (例えば、 二酸化チタン)が使用されていた。 しかし、 これらの填料の使用により、 不透明度は向上するが、 嵩高にする(低密度化する)ことはできないため、 こしが 出なかった。 この嵩を高くする手段の一つとして、 使用するパルプの濾水度を高 くすることがあげられるが、 この場合は、 嵩高で低密度にはなるものの、 同時に 紙層構造がポーラスになり、 透気度、 平滑度が低下してしまう。 このポーラスで 透気度の低い原紙に、 顔料を含む塗工液を塗工すると、 塗工液が原紙中に染み込 み過ぎるため、 原紙被覆性が低下し、 乾燥後の表面平滑性、 白紙光沢度が低下し、 光沢ムラが多く面状に劣り、 各種印刷適性が低下するという問題が生じる。 こ れらの問題点を改善するために使用されてきたのが、 沈降性炭酸カルシウム (合 成炭酸カルシウム) である。 この方法としては、 (1 ) 石灰の焼成装置その他か ら得られる炭酸ガスと石灰乳との反応、 (2 ) アンモニアソーダ法における炭酸 アンモニゥムと塩化カルシウムとの反応、 (3 ) 炭酸ナトリウムの苛性化におけ る石灰乳と炭酸ナトリウムとの反応等が知られている。 これらの方法のうち、
( 2 ) 、 ( 3 ) においては、 いずれも副産物であることと、 その主産物を得る新 たな方法への転換のために、 その形状をコントロールする方法についてはあまり 検討されていない。 一方 (1 ) は、 反応系が比較的簡単 (水、 消石灰、 炭酸ガス) なこともあり、 様々な形状のものを製造する方法等についても広く研究されてお り、 製紙工場のオンサイ トにて実際に製造される例もいくつか見られる。 しかし ながら、 この方法は、 炭酸カルシウムが唯一の産物であることから、 非常に製造 コストが高く、 ユーザ一の要望する低コスト化にはそぐわず、 安価な紙には使用 できないか、 あるいはその使用量も大きく制限される。
そこで考えられるのが、 クラフトパルプ製造工程の蒸解薬品の回収 ·再生を行 う苛性化工程で副生する炭酸カルシウムを製紙用原料として使用する方法である。 硫酸塩法又はソーダ法によるノ、°ルプ製造工程においては、 木材中の繊維素を単 離するために水酸化ナトリウムと硫化ナトリゥムとを混合した薬液を用いて高温、 高圧下で蒸解する。 そして繊維素は固相として分離精製されてパルプとなり、 薬 液及び木材からの繊維素以外の溶出成分はパルプ廃液 (黒液) として回収され濃 縮燃焼される。 その際、 木材からの溶出成分は熱源として回収され、 薬液中の無 機物は炭酸ナトリゥム及び硫化ソーダを主成分として回収され、 水又は弱液と呼 ばれる下記に示す反応により形成された炭酸カルシウムスラッジを洗浄した際に 発生する白液成分が一部溶解した希薄な薬液によつて溶解されて緑液となる。 こ の緑液に生石灰を混合し、 [1] 、 [2] 式で示す反応により
C a 0 + H20 → C a (OH) 2 [1] C a (OH) 2 + Na2C03 -→ C a C03 + 2NaOH [2] 生成した炭酸カルシウムを使用するものである。 この炭酸カルシウムは、 主産物 である白液を製造する際の副産物であるため、 非常に低コストで製造できること、 またこのほかに、 従来閉鎖系である苛性化工程のカルシウム (炭酸カルシウム、 生石灰、 消石灰) 循環サイクルから、 系外に炭酸カルシウムを抜き取ることで系 内の清浄化及び循環石灰の高純度化ができることから、 上記 [1] 、 [2] の反 応性向上や白液の清澄性の向上、 さらには廃棄物の低減が期待できる。
し力、し、 従来ここで得られる炭酸カルシウムは形状コントロールが難しいため、 サイコロ状や六角面体などの種々雑多な形状を有し、 粒子径も大きく、 何れも不 定形あるいは塊状で、 従来の重質炭酸カルシウムに近いものであるため、 この填 料を使用して通常の上質紙、 塗工紙を製造した場合、 嵩、 白色度、 不透明度、 平 滑性、 筆記性、 手触り、 印刷性等においては不十分であった。 また、 近年、 抄紙 機が大型化し、 抄紙速度もより高速化する中にあって、 ブラスチックワイヤの磨 耗性とゥュッ トェンドでの歩留まり性にも大きな問題を抱えていた。
このように抄紙時には、 ウエッ トエンドでの歩留まり、 プラスチックワイヤ磨 耗性が良好であり、 またこれを用いた場合には、 印刷品質を維持しながら、 より 塗工量を低減し軽量化を図ることや、 あるいは同じ塗工量でもより嵩高で、 不透 明性が高く、 こしのある、 上質紙や塗工紙を得ることができる填料あるいは顔料 となる炭酸カルシウムを効率よくしかも安価に製造するのは困難であった。
(発明が解決しょうとする課題)
以上のような状況に鑑み、 抄紙時には、 ゥエツ トエンドでの歩留まりが良く、 ワイヤ磨耗性に優れ、 またこれを紙の製造に用いた場合には、 こしが強く、 不透 明度が高く、 印刷品質等の優れた上質紙や塗工紙を提供するために、 苛性化工程 を利用して、 自製する軽質炭酸カルシウムの形状を制御コントロールした、 安価 な炭酸カルシウムを得ることを本発明の課題とした。
(課題を解決するための手段)
本発明者らは、 上記課題を解決するために鋭意研究を重ねた結果、 硫酸塩法又 はソーダ法によるパルプ製造工程の苛性化工程を利用して、 特定量以下の炭酸力 ルシゥムを含有する生石灰と p H 5. 5 ~ 1 3. 5の液を消和反応させることに よつて得られる石灰乳に、 硫酸塩法又はソ一ダ法によるパルプ製造工程の苛性化 工程から出る緑液を連続的に添加し、 その添加速度及び反応温度を制御すること によって解決できることを見出し、 この知見に基づいて本発明をなすに至った。 本発明の方法により、 従来の苛性化工程の大幅な変更すること無しに炭酸カルシ ゥムの形状コントロールが可能となり、 粒子の短径が 0. 1〜2. 5 / mで、 長 径が 0 . 3〜2 0 mの紡錘状、 針状の炭酸カルシウムが調整され、 製紙用填料 として嵩、 白色度、 不透明度、 ワイヤ磨耗性、 ゥエツ トエンドでの歩留まり性に 優れ、 さらに塗工用顔料とした場合、 白紙光沢度、 不透明度、 インキ受理性、 表 面強度を期待通り改善でき、 しかも従来の石灰乳と炭酸ガスとの反応による方法 で得られる炭酸カルシウムに比べて大幅に低コス卜で製造することができる。 さ らに付随効果として、 炭酸カルシウムを苛性化工程から抜き取ることで、 キルン 操業の低減が、 あるいは、 苛性化軽カルの使用量によっては工程からの炭酸カル シゥム抜き取り量によってはキルン停止も可能となり、 苛性化工程全体でのコス トダウンとなる。
(発明の実施の形態)
本発明の第 1段工程である消和反応時において使用する生石灰は、 炭酸カルシ ゥムを主成分とする石灰石、 及び硫酸塩法またはソーダ法によるパルプ製造の苛 性化工程において炭酸ナトリウムを水酸化ナトリウムに転化する際に生成する炭 酸カルシウムを焼成したものであればよい。 なお、 その際の焼成装置に関しては、 ベッケンバッハ炉、 メルツ炉、 ロータリーキルン、 国井式炉、 K H D (カーハー ディー) 炉、 コマ式炉、 カルマチック炉、 流動焼成炉、 混合焼き立炉等、 炭酸力 ルシゥムを生石灰 (酸化カルシウム) に転化する装置であれば特に制限されない。 得られる炭酸カルシウム中の不純物の含量については、 特に着色成分 (F e、 Mn等) が問題となるが、 製品となる紙の用途にあわせて、 着色成分含量の少な い原料石灰石から得られる生石灰を適宜選択するか、 あるいは苛性化工程におい てロータリーキルンや流動焼成炉等での再焼成生石灰の場合には、 系外に抜き取 られる炭酸カルシウムと系内を再循環する炭酸カルシウムの比率等によって着色 成分含量等変化するので、 状況にあわせて、 苛性化工程のカルシウム循環サイク ルに補給する着色成分含量の少な 、原料石灰石あるいはこれを焼成した生石灰の 量を調整して得られるものを使用すればよい。
生石灰中の炭酸カルシウム含量については、 生石灰の重量を基準として、 0. 1 〜 1 0重量%のものを使用する。 1 0重量%を超えれば、 生成する炭酸カルシ ゥムが不定形あるいは塊状となり、 ワイヤ磨耗性に劣ると共に、 目標とする紙質 の軽量塗工紙が得られない。 また一方、 0 . 1重量%以下のものを得るためには、 焼成に要するエネルギーが極度に増加したり、 あるいは焼成装置に特別な工夫を 必要とするなどがあり、 不経済となる。 また、 生石灰の粒度に関しては特に制限 はないが、 0. 0 1 〜 3 0 mmが好ましく、 0. 0 1 mm以下の場合は粉砕のた めのコストがかかると同時に、 粉塵の発生や移送装置でのトラブルがあり、 また、 3 0 mm以上の場合には、 消和時の攪拌において均一混合という面で問題となり 好ましくない。
生石灰の消和に用いる液としては、 p H 5. 5〜 1 3. 5を有するものを使用 する。 この液は、 苛性化工程で補充される水、 あるいは緑液や白液中の沈殿物 (ドレツグス、 炭酸カルシウムスラッジ) を洗浄した上澄液である弱液が使用で きる。 特に弱液を使用する場合、 p H 1 3 . 5を超えると、 N a O Hや N a 2 C
03濃度が高くなるため生成する炭酸カルシゥムのワイャ磨耗性が劣ると共に、 目標とする紙質が得られない。 一方、 苛性化工程で補充される水を使用する場合 は、 一般的な工業用水の水質レベルの pH 5. 5以上であれば特に問題ない。 ま た、 生石灰の消和に水はあるいは弱液を使用した場合、 ここでの使用に相当する、 苛性化工程で補充される水量あるいはスメルト溶解用弱液の量を減少させること で、 苛性化工程内の水バランスを調整できる。 このことより、 苛性化工程の操業 上重要な問題となる白液濃度の低下を伴うこともなく消和 ·苛性化反応を行うこ とができる。
消和時の石灰濃度は、 消和前の生石灰を基準とした濃度で 20〜60重量%、 好ましくは 25〜55重量%で行う必要がある。 60重量%を超えると液粘度が 高すぎて現実的に攪拌が困難となり、 一方 20重量%未満では、 生成する炭酸力 ルシゥムが塊状粒子となり、 ワイヤ磨耗性に劣ると共に、 目標とする紙質が得ら れない。
消和時における生石灰と液との混合には、 一般的な攪拌羽根式、 ポンプ式、 押 し出し機類、 捏和機類、 混練機類の中から、 混合時の液あるいはスラリーの粘度 にあわせて適宜選定して使用すれば良い (昭和 63年 3月 18日丸善株式会社発 行、 化学工学便覧参照) 。
消和時の温度と時間は、 密接に関係があり、 消和に用いる水溶液の温度が高い 場合は短時間で良く、 一方温度が低い場合には長時間を要する。 消和時に使用す る生石灰の温度状況にあわせて適宜時間が設定されるが、 一つの目安として、 消 和時の発熱による温度上昇が止まるところまで時間をかければよい。 実際には、 できるだけ高温での消和が有効である。
本発明の第 2段工程である苛性化反応における緑液は、 一般的な硫酸塩法又は ソ一ダ法の苛性化工程から発生するものを使用でき、 トータルアル力リで 80〜 160 g/L {その内、 Na2CO^ 60〜130gZL (Na20換算、 以下 同じ) } 、 好ましくはトータルアル力リ 100〜150gZL (その内、 N a 2 C03が 85〜: L 30 gZL) で行う必要がある。 トータルアルカリが 80 L (その内、 Na2C〇3が65g/ L) より低い場合では、 最終白液の濃度が下 がり蒸解に使用する際に、 濃度調節を行う必要が出てくる。 一方、 160gZL (その内、 Na2C03が 130gZL) より高い場合は、 生成する炭酸カルシゥ ムのワイヤ磨耗性が劣ると共に、 目標とする紙質が得られない。
第 1段工程で調整された該石灰乳と緑液の混合方法は、 石灰乳に対する緑液の 添加速度を 0 . 0 2〜0. 5 c c (緑液) / m i n / g (生石灰)、 好ましくは 0. 0 2〜0. 4 5 c c (緑液) / m i n / g (生石灰)で行う。 0 . 0 2 c c (緑液) /m i n / g (生石灰)より小さい添加速度では、 生産性が劣り現実的でなく、 また —方 0. 5 c c (緑液) /m i n / g (生石灰)より大きい添加速度では、 生成する 炭酸カルシウムの形状が不定形あるいは塊状となり、 ワイヤ磨耗性に劣ると共に、 目標とする紙質が得られない。
なお、 ここでの第 1段工程で生石灰から調整される石灰乳の代わりに、 水酸化 カルシウムを本方法と同じ濃度に調整した石灰乳を使用することも可能である。 苛性化反応温度については、 反応温度が 2 0〜 1 0 5 °C好ましくは 2 5〜 1 0 3 °Cで行う必要がある。 1 0 5 °Cより高くする場合には、 大気圧下での沸騰点を 超えるため、 加圧型の苛性化装置等を必要とするため不経済である。 また、 一方 2 0 °Cより低い場合には、 生成する炭酸カルシウムの形状が不定形あるいは塊状 となり、 ワイヤ磨耗性に劣ると共に、 目標とする紙質が得られない。 さらに、 冷 却のための装置の工夫およびそれに伴う経費がかさみ不経済である。
苛性化反応時の攪拌には、 一般的な攪拌羽根式、 ポンプ式、 押し出し機類、 捏 和機類、 混練機類の中から、 第 1段工程で調整された石灰乳と緑液が均一に混合 できるものを適宜選定して使用すれば良い (昭和 6 3年 3月 1 8日丸善株式会社 発行、 化学工学便覧参照) 。
以上のような条件下において、 粒子の短径が 0. 1〜2. 5 mで、 長径が 0. 3〜2 0 mの紡錘状、 針状の炭酸カルシウムが調整可能となる。
本発明によって得られる各種形状の炭酸カルシゥムは、 従来苛性化工程で得ら れた炭酸カルシウムに比べて、 ワイヤ磨耗性歩留まり性に優れ、 これを内添する ことで上質紙、 塗工紙のこしが強く、 白色度、 不透明度、 平滑性、 筆記性、 手触 り、 印刷適性等に優れた特徴を与える。 このことは、 新聞用紙、 中質紙、 印刷用 紙、 書籍用紙、 証券用紙、 辞典用紙、 両更クラフ ト紙、 晒クラフト紙、 薄葉紙、 ライスペーパー、 インディアンペーパー、 板紙、 ノーカーボンペーパー、 アート 紙、 軽量コート紙、 キャストコ一卜紙、 壁紙、 感熱紙等に使用すれば、 こしが強 く、 白色度、 不透明度、 平滑性、 筆記性、 手触り、 印刷適性等に優れた特徴を与 えることが容易に類推される。 さらに、 各種顔料に用いることで、 光沢性、 平滑 性、 印刷適性等に優れた特徴を与える。 また、 製紙用のほか、 ゴム、 プラスチッ ク、 ペイント、 シーリング剤、 粘着剤、 肥料等にも使用可能である。
(図面の簡単な説明)
図 1は、 実施例 1で得られた針状炭酸力ルシゥムの結晶粒子構造を示す走査型 電子顕微鏡写真である。
図 2は、 実施例 1で得られた生成物についての X線回折の結果を示す図である。 図 3は、 実施例 2で得られた針状炭酸力ルシゥムの結晶粒子構造を示す走査型 電子顕微鏡写真である。
図 4は、 実施例 3で得られた針状炭酸力ルシゥムの結晶粒子構造を示す走査型 電子顕微鏡写真である。
図 5は、 実施例 4で得られた紡錘状炭酸カルシゥムの結晶粒子構造を示す走査 型電子顕微鏡写真である。
図 6は、 比較例 4で得られた不定形あるいは塊状炭酸カルシウムの結晶粒子構 造を示す走査型電子顕微鏡写真である。
図 7は、 比較例 4で得られた生成物についての X線回折の結果を示す図である。 (発明の作用)
本発明のメ力ニズムについては充分に解明されていないが、 生石灰中の炭酸力 ルンゥム量、 溶液の p H値あるいはそれに対応するアルカリ量は石灰乳の性状に 大きく影響を与え、 その後に緑液を添加する際の溶存水酸化カルシウムと炭酸ィ オンの反応状態に影響を与えるものと思われる。 緑液の逐次添加は、 それにより 初期の段階で溶存水酸化カルシウム濃度と炭酸イオンの割合が炭酸ィォンの少な い状態で反応し、 炭酸カルシウムの結晶を成長させ紡錘状、 針状を呈するように なるものと思われる。
この炭酸カルシウムの特徴は、 一つには高速抄紙時のプラスチックワイヤー摩 耗性、 ゥエツ トエンドでの歩留まり改善効果があり、 二つには抄き込むことによ つて嵩、 不透明度、 白色度、 こしの改善効果があり、 三つには粉碎して顔料とし て使用することにより印刷後光沢、 表面強度の向上効果があることである。 一つ 目の理由としては、 一次粒子が紡錘状、 あるいは針状であるために、 繊維との絡 みが増し、 歩留まり向上に有利となり、 さらに、 その結果、 ワイヤパートを通過 する填料の減少と、 粒子形状が紡錘状、 あるいは針状であるため、 ァスぺクト比 が大きく、 シャープエツジが少ないためワイヤと接触する際の摩擦抵抗が低いた めに磨耗性改善に有利となる。 二つ目の理由は、 紙の表 ·断面の電子顕微鏡観察 から、 紡錘状、 あるいは針状炭酸カルシウムが、 パルプ繊維間をあたかも微細繊 維のように埋めており、 さらに剛直であるため微細な空隙を多く形成し、 良好な 嵩、 不透明度、 白色度を発現させる。 三つ目の理由は、 粉砕前は粒子径が 0. 3 〜20 mの紡錘状、 あるいは針状であるため低光沢で、 インキの吸収性が改善 される。 また、 粉砕後は均一な粒子径となるため、 印刷光沢等の印刷適性等が改 善されるものと考えられる。
(実施例)
以下に本発明を実施例および比較例をあげてより詳細に説明するが、 当然なが ら、 本発明は実施例のみに限定されるものではない。
[試験法]
(1) アル力リの測定: TAPP I 624hm— 85、 あるいはこれに準 じて測定した。
(2) 生石灰粒子径: J I S R 9001— 1993に準じ、 乾式操作 にて測定した。
(3) 生石灰中の炭酸カルシウム含量:金属中炭素分析装置 (堀場製作所 E
MI A— 110) により C02量を測定し、 その量より炭酸カルシウム含量を測 疋した。
(4) 生成炭酸カルシウムの平均粒子径:生成物を水洗ろ過し、 水で希釈後、 レーザー回折式粒度分布計 (シーラス社モデル 715) で平均粒子を測定した。 短径、 長径については、 生成物を水洗濾過し、 乾燥後走査型電子顕微鏡 (日本電 子 (株) 製 J SM-5300) で実測した。
(5) 形態観察:生成物を水洗ろ過し、 乾燥後走査型電子顕微鏡 (日本電子 J SM— 5300) で形態観察した。
(6) 結晶系: R i g a k u製 X線回折 RAD— 2 Cにより測定した。 [実施例 1 ]
1 Lの 4ッロフラスコ容器 (以下の実施例 ·比較例についても同じ容器使用) に、 炭酸カルシウム含有率 1.6%の生石灰 50 g (粒度分布が、 150/ m以 上 4.0%、 150〜75 ml 8. 1%、 75〜45 ml 9. 4%、 45 m以下 58. 5%) と、 pH13. 1の弱液を用い、 生石灰濃度が 30重量%に なる割合で混合後、 消和させて石灰乳をつく り、 緑液 (組成: Na2C03=l 1 0 g/L、 Na2S = 34 g/L. NaOH=6 gZL。 いずれも Na20換算値 で、 以下の実施例 ·比較例について同じ) 添加速度 0. 22 c c/min/g (生 石灰) 、 添加時間 60分、 温度 80°C、 攪拌速度 450 r pm (KY0EI社 Ρ0ΪΕΒ S TAIREEE TYPE PS- 2N使用、 以下の実施例 ·比較例について同じ攪拌機使用) の条 件で苛性化反応を行わせた。 生成反応物の平均粒子径および形態観察を行った結 果、 平均粒子径 7. 0 m、 その構成一次粒子は平均長径 3. 5 m、 平均短径 0. 4〃m、 であるァラゴナイ ト系針状炭酸カルシウムが認められた。 実験条件 および結果を表 1に示す。
[実施例 2]
炭酸カルシウム含有率 3.0%の生石灰 50 g (粒度分布が、 150/ m以上 4.4%、 150〜75 ^ml 7. 4%、 75〜45 /zm20. 1%、 45 以下 58. 1%) と、 実施例 1と同じ弱液および緑液を用い、 生石灰濃度が 40 重量%になる割合で弱液と混合後、 消和させて石灰乳をつくり、 緑液添加速度 0. 11 c c/min/g (生石灰) 、 添加時間 120分、 温度 85°C、 攪拌速度 10 00 r pmの条件で苛性化反応を行わせた。 生成物は、 平均長径 3. 8 j m、 平 均短径 0. 3〃m、 であるァラゴナイ ト系針状炭酸カルシウムであることが認め られた。 実験条件および結果を表 1に示す。
[実施例 3]
炭酸カルシウム含有率 7%のキルン再焼成生石灰 50 g (平均粒子径 10mm) と、 pH6. 8の苛性化工程で補充される水を用い、 生石灰濃度が 50重量%に なる割合で混合後、 消和させて石灰乳をつく り、 実施例 1と同じ緑液を添加速度 0. 11 c c/min/g (生石灰) 、 添加時間 120分、 温度 95°C、 攪拌速度 600 r pmの条件で苛性化反応を行わせた。 生成物は、 平均粒子径 8. 0 ^m. その構成一次粒子は平均長径 8. 、 平均短径 0. 4 m、 のァラゴナイ ト 系針状炭酸カルシウムであることが認められた。 実験条件および結果を表 1に示 す。
[実施例 4]
実施例 1と同じ生石灰、 弱液及び緑液を用い、 、 生石灰濃度が 30重量%にな る割合で弱液と混合後、 消和させて石灰乳をつくり、 緑液添加速度 0. 22 c c /min/g (生石灰) 、 添加時間 60分、 温度 30°C、 攪拌速度 450 r pmの 条件で苛性化反応を行わせた。 生成物は、 平均粒子径 6. 7 fim、 その構成一次 粒子は平均長径 1. 2 m、 平均短径 0. 3 ^ m、 の紡錘状炭酸カルシウムであ ることが認められた。 実験条件および結果を表 1に示す。
[実施例 5]
実施例 2と同じ生石灰並びに、 実施例 1と同じ弱液及び緑液を用い、 生石灰濃 度が 40重量%になる割合で弱液と混合後、 消和させて石灰乳をつくり、 緑液添 加速度 0. 1 1 c c /min/g (生石灰) 、 添加時間 120分、 温度 40°C、 攪 拌速度 750 r pmの条件で苛性化反応を行わせた。 生成物は、 平均粒子径 6. 0 m、 その構成一次粒子は平均長径 1. 2 m、 平均短径 0. 3 /zm、 の紡錘 状炭酸カルシウムであることが認められた。 実験条件および結果を表 1に示す。
[実施例 6]
実施例 3と同じキルン再焼成生石灰、 弱液及び緑液を用い、 生石灰濃度が 40 重量%になる割合で弱液と混合後、 消和させて石灰乳をつくり、 緑液添加速度 0. 1 1 c c /min/g (生石灰) 、 添加時間 1 20分、 温度 50°C、 攪拌速度 75 0 r pmの条件で苛性化反応を行わせた。 生成物は、 平均粒子径 5. 4 /m、 そ の構成一次粒子は平均長径 1. 0 m、 平均短径 0. 3 /zm、 の紡錘状炭酸カル シゥムであることが認められた。 実験条件および結果を表 1に示す。
[比較例 1]
消和に用いる液の pHを 13. 7にした以外は、 実施例 1と同様に行った。 こ の時の反応生成物は、 平均粒子径が 8. 2 mの不定形あるいは塊状の炭酸カル シゥムであることが認められた。 実験条件および結果を表 2に示す。
[比較例 2] 消和時の生石灰濃度を 14重量%にした以外は、 実施例 2と同様に行った。 こ の時の反応生成物は、 平均粒子径が 8. 5 mの不定形あるいは塊状の炭酸カル シゥムであることが認められた。 実験条件および結果を表 2に示す。
[比較例 3]
苛性化反応時の緑液添加速度を、 0. 88 c c /rain/ g (生石灰) 、 添加時 間 15分にした以外は、 実施例 3と同様に行った。 この時の反応生成物は、 平均 粒子径が 9. 5 mの不定形あるいは塊状の炭酸カルシウムであることが認めら れた。 実験条件および結果を表 2に示す。
[比較例 4]
生石灰中の炭酸カルシウム含有率を 15%にした以外は、 実施例 3と同様に行 つた。 この時の反応生成物は、 平均粒子径が 10. 8; mの不定形あるいは塊状 の炭酸カルシウムであることが認められた。 実験条件および結果を表 2に示す。
[比較例 5]
苛性化反応時の反応温度を 15 °Cにした以外は、 実施例 5と同様に行った。 こ の時の反応生成物は、 平均粒子径が 9. 1 mの不定形あるいは塊状の炭酸カル シゥムであることが認められた。 実験条件および結果を表 2に示す。
[比較例 6]
市販の重質炭酸カルシウム S S— 1200 (白石工業製、 平均粒子 4. 4 zm) lfe用。
[応用例 1]
カナダ標準型ろ水度 (以下 C. S. F.) 300m 1の広葉樹晒化学パルプの単 独スラリーに、 対パルプ当たり内添サイズ剤 (アルキルケテンダイマー) 0. 0 2%、 硫酸バンド 0. 5%、 カチオン変成デンプン 0. 3%、 実施例 1〜6及び 比較例 1〜6で得たそれぞれの炭酸カルシウムを 15%、 並びに 200 p pmの 歩留まり向上剤 (ポリアクリルアミ ド、 ァニオン性分子量 400万〜 500万) を内添し調整したスラリ一をテストマシンで抄紙した。 この様にして得られた紙 の坪量、 密度、 白色度、 不透明度、 平滑度の測定は 20°C、 65%RHで 1昼夜 調湿した後、 J I Sに準じて行った。 また填料の歩留りおよびワイヤ摩耗試験を 実施した。 試験方法を以下に、 また得られた結果を第 1表及び第 2表に示す。 第〖表
Figure imgf000015_0001
第 2表
O
比較例
1 2 3 4 5 6
CaC03 1. 6 3. 0 7. 0 1 5 3. 0 市販 今 本0 重カル 消和 P H 13. 7 13. 1 6. 8 6. 8 13. 1 消和濃度% 30 14 50 50 40
緣液 g/し Na2C03=110 Na2S=34 NaOH=6
緑液添加速度 0. 22 0. 1 1 0. 88 0. 1 1 0. 1 1 cc/min/g (生石灰)
苛性化温度。 c 80 85 95 95 15
慢拌速度 rpm 450 1000 600 600 750
粒子形状 塊状 塊状 塊状 塊状 塊状
塊状 粒子径 平均 8. 2 8. 5 9. 5 10. 8 9. 1
4. 4 μ ra 短径
長径
54. 1 54. 0 54. 1 54. 2 54. 1 54. 1 密度 (g/cm3) 0. 62 0. 62 0. 63 0. 63 0. 62 0. 63 平滑度 (秒) 30 3 1 3 1 30 30 3 1 透気度 (秒) 3 3 3 3 3 3 歩留まり (%) 48 47 48 47 46 46 白色度 (%) 88. 0 88. 1 88. 0 88. 0 88. 2 88. 1 不透明度 (%) 79. 3 79. 3 79. 4 79. 2 79. 2 79. 4 クラ-ク剛度 (cm) 13. 0 1 3. 1 1 3. 0 12. 9 12. 9 1 3. 0 フ'ラスチックワイヤ 1 30 1 20 1 1 5 1 25 1 25 1 1 9 摩耗度 (mg) [試験法]
(1) ワイヤ一摩耗測定法
試験器: 日本フィルコン式磨耗試験装置
ワイヤ : 日本フィルコン COS— 60ポリエステルワイヤ スラリー濃度: 2重量%
荷重: 1250 g
磨耗時間: 90分
磨耗量:磨耗試験前後のワイヤ重量減量 (mg)
(2) 歩留まり測定法
·使用パルプ: C. S. F.300m 1に叩解したパルプ
紙料濃度: 0. 5重量% (パルプ/填料 =60Z40)
薬品添加順序:パルプ→硫酸バンド (1%) →カチオン化デンプン (0. 2%) →填料→コロイダルシリカ (0. 02%)
( ) 内は対パルプ添加量で重量%
'測定装置:ブリッ トジャーテスター使用
•測定条件:薬品添加時シニア 700 r pm
測定時シニア 1500 r pm
使用ワイヤ 200メッシュ
紙料のファーストパスリテンションを測定
[応用例 2]
応用例 1で作製したそれぞれの紙に、 サイズプレスで酸化デンプンを乾燥後の 重量が 2 gZm2になるように表面サイズプレスし乾燥した。 その後ソフトカレ ンダー処理 (南千住製作所製、 60°C、 50 kgZcm—定で処理) した。 塗工液組 成として、 平均粒子径が 0. 6 /mの重質炭酸カルシウム (商品名:ハイ ドロ力 ーボ 90、 白石カルシウム社) 60重量%、 平均粒子径 0. 5 mのカオリン (商品名: ウルトラホワイ 卜 90、 エンゲルハード社) 40重量%に対し、 接着 剤としてリン酸エステル化デンプン 4重量%、 スチレン ·ブタジエン系ラテック ス 10重量%および分散剤 0. 3重量%とを含有した濃度 64%の塗工液を、 テ ス卜ブレードコーターで、 片面当り 10 g/m2を両面に塗工、 乾燥させた。 得 られたものについての品質評価方法を以下に、 また得られた結果を第 3表及び第 4表に示す。
第 3表 実施例
1 2 3 4 5 6 密度 (g/cm3) 0. 79 0. 80 0. 79 0. 81 0. 81 0. 80 平滑度 (秒) 1 00 1 00 1 00 99 99 99 不透明度 (%) 88 88 88 88 88 88 白紙光沢度 (%) 23 2 3 2 3 22 2 2 22 印刷光沢度 (%) 48 47 48 47 47 47 剛性 ( c m3/100) 92 90 92 86 8 7 85 第 4表 比較例
1 2 3 4 5 6 密度 (g/cm3) 0. 91 0. 92 0. 90 0. 91 0. 91 0. 90 平滑度 (秒) 85 85 85 84 8 5 84 不透明度 (%) 85 86 86 86 85 86 白紙光沢度 (%) 20 20 20 20 20 20 印刷後光沢 (%) 45 44 45 44 45 45 剛性 (cm3/100) 66 65 62 66 64 65
[品質評価方法]
(1) 白紙光沢度: J I S P— 8142に従い測定
(2) 平滑度: J APAN Tap p i No. 5 王研式平滑度試験機で 測定
(3) 不透明度: J I S P— 8138に従い測定
(4) 腰: J I S P-8143に従いクラークこわさ試験器で測定
(5) 印刷後光沢: R I印刷機 (明製作所) を用い、 サカタインクス製ダイ ャトーン GS L紅を使用し、 インキ量 0. 35 c c—定で印刷し、 J I S P- 8142に従い角度 75度で測定
(発明の効果)
実施例 1 6に示す如く、 本発明による炭酸カルシウムは紡錘状、 および針状 炭酸カルシウムであった。 また、 生石灰の消和に苛性化工程内よりサンプリング した弱液を用いて製造される白液組成は、 従来の条件と比較して何ら変わりない ものが得られた。
また応用例 1の紙質試験の結果、 本発明による炭酸カルシウムは嵩、 白色度、 不透明度、 平滑度、 透気度が高く、 填料の歩留り性およびプラスチックワイヤ摩 耗性も優れていた。
応用例 2の塗工紙は、 嵩、 平滑度、 不透明度、 剛性の点で優れた結果が得られ ノ o
さらに、 本法は大きな変更無しに従来の苛性化工程を利用して形状をコント口 —ルした炭酸カルシウムを製造することができるため、 製造コス卜が非常に低減 できた。

Claims

請 求 の 範 囲
1 . 硫酸塩法またはソーダ法によるパルプ製造工程の苛性化工程において製紙 用填料として有用な炭酸カルシウムを製造する方法であって、 (i) 前記苛性化 工程で発生し、 及び 又は、 前記工程外から導入した生石灰であって、 (ii) 生 石灰の重量を基準として 0. 1〜1 0重量%の炭酸カルシウムを含有する前記生 石灰に対して、 該生石灰の濃度が 2 0〜6 0重量%になるように p H 5. 5〜1 3. 5を有する液を添加し、 攪拌あるいは捏和しながら消和させて石灰乳及び/ 又は石灰泥を生成する第 1段工程、
ついで該石灰乳及びノ又は石灰泥に、 前記苛性化工程で発生し、 白液を製造す るに必要な所定量の緑液を生石灰に対して 0. 0 2〜0. 5 c c (緑液) / m i n / g (生石灰)の添加速度で逐次添加し、 反応温度 2 0〜1 0 5 °Cにて苛性化反 応を行うことによりなる、 前記製紙用填料として有用な炭酸カルシウムの製造方 法。
2. 前記 p H 5. 5〜1 3. 5を有する液が、 苛性化工程で発生する弱液であ ることを特徴とする、 請求項 1記載の炭酸カルシウムの製造方法。
3. 請求項 1〜2記載の方法によって製造した、 製紙用填料又は塗工紙用塗工 顔料として有用な炭酸カルシウム。
4. 粒子の短径が 0. 1〜2. 5 mで、 長径が 0. 3〜2 0 mの紡錘状又 は針状の請求項 3記載の炭酸力ルシゥム。
5. 請求項 3又は 4に記載の炭酸カルシウムを塗工顔料として用いることを特 徴とする塗工組成物。
6. 請求項 3又は 4に記載の炭酸カルシウムを製紙用填料として用いることを 特徴とする紙、 又は塗工顔料として用いることを特徴とする塗工紙。
7. 第 1段工程である消和反応時において使用する生石灰が、 炭酸カルシウム を主成分とする石灰石、 及び Z又は硫酸塩法またはソーダ法によるパルプ製造の 苛性化工程において炭酸ナトリウムを水酸化ナトリウムに転化する際に生成する 炭酸カルシウムを焼成したものである請求項 1記載の炭酸カルシゥムの製造方法
PCT/JP1997/004515 1996-12-09 1997-12-09 Procede de preparation de carbonate de calcium WO1998025852A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002274784A CA2274784C (en) 1996-12-09 1997-12-09 Process for preparing calcium carbonate
AU51395/98A AU5139598A (en) 1996-12-09 1997-12-09 Process for preparing calcium carbonate
EP97946163A EP0949201B1 (en) 1996-12-09 1997-12-09 Process for preparing calcium carbonate
US09/319,075 US6190633B1 (en) 1996-12-09 1997-12-09 Process for preparing calcium carbonate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/344614 1996-12-09
JP34461496 1996-12-09

Publications (1)

Publication Number Publication Date
WO1998025852A1 true WO1998025852A1 (fr) 1998-06-18

Family

ID=18370634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004515 WO1998025852A1 (fr) 1996-12-09 1997-12-09 Procede de preparation de carbonate de calcium

Country Status (7)

Country Link
US (1) US6190633B1 (ja)
EP (1) EP0949201B1 (ja)
CN (1) CN1086363C (ja)
AU (1) AU5139598A (ja)
CA (1) CA2274784C (ja)
ID (1) ID21632A (ja)
WO (1) WO1998025852A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985367A (en) * 1997-09-12 1999-11-16 Nippon Paper Industries Co., Ltd. Process for preparing coated printing paper
US7097819B2 (en) 2000-01-18 2006-08-29 Nippon Paper Industries Co., Ltd. Method for producing calcium carbonate

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514249B2 (en) * 2002-04-18 2009-04-07 The University Of Florida Research Foundation, Inc. Biomimetic organic/inorganic composites
AU2003228587A1 (en) 2002-04-18 2003-11-03 University Of Florida Biomimetic organic/inorganic composites, processes for their production, and methods of use
US7455854B2 (en) * 2002-04-18 2008-11-25 University Of Florida Research Foundation, Inc. Method for producing a mineral fiber
AU2003207551A1 (en) 2002-05-03 2003-11-17 David O. Cummings Paper coating pigments
US7255918B2 (en) * 2002-06-10 2007-08-14 Oji Paper Co., Ltd. Coated paper sheet
SE524247C2 (sv) * 2002-11-25 2004-07-13 Kvaerner Pulping Tech Metod vid produktion av grönlut
KR100720859B1 (ko) * 2005-12-30 2007-05-23 한국지질자원연구원 아라고나이트 침강성탄산칼슘의 입자조절방법
US20100163199A1 (en) * 2008-12-31 2010-07-01 Weyerhaeuser Company Readily defibered pulp product
US20100163200A1 (en) * 2008-12-31 2010-07-01 Weyerhaeuser Company Method for making readily defibered pulp product
CN109052447A (zh) 2010-08-24 2018-12-21 密执安特种矿石公司 通过预消化的石灰苛化产物的亮度改进
CN102730736A (zh) * 2012-06-28 2012-10-17 陕西科技大学 一种草浆碱回收绿液制备谷粒状白泥碳酸钙的方法
CN103693667B (zh) * 2013-11-28 2016-01-20 广西华纳新材料科技有限公司 一种棒状轻质碳酸钙及其制备方法
CN106400582B (zh) * 2016-09-27 2018-04-10 珠海乐桐实业发展有限公司 一种造纸用复合填料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01226719A (ja) * 1988-03-07 1989-09-11 Kanzaki Paper Mfg Co Ltd 抄紙用炭酸カルシウムの製造方法
JPH0429606B2 (ja) * 1984-08-21 1992-05-19

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2211908A (en) * 1937-11-18 1940-08-20 Mead Corp Manufacture of caustic soda and calcium carbonate
US3268387A (en) * 1963-08-20 1966-08-23 Glatfelter Co P H Manufacture of calcium carbonate
US3268388A (en) * 1963-08-20 1966-08-23 Glatfelter Co P H Manufacture of calcium carbonate
GB1281685A (en) * 1968-08-15 1972-07-12 Ici Ltd Precipitated calcium carbonate
FR2544353B1 (fr) * 1983-04-18 1985-06-28 Condat Papeteries Traitement des liqueurs entrant dans le cycle de caustification du procede kraft en vue de l'utilisation ulterieure du carbonate de calcium
FI73755C (fi) * 1985-11-22 1987-11-09 Ekono Oy Foerfarande foer kausticering av en alkalikarbonathaltig vattenloesning.
US4668342A (en) * 1985-12-03 1987-05-26 Canadian Patents And Development Ltd. Recausticizing kraft green liquor
JPH0429606A (ja) 1990-05-25 1992-01-31 Japan Steel Works Ltd:The 摩擦クランプ装置
WO1993020010A1 (en) * 1992-04-03 1993-10-14 Minerals Technologies, Inc. Clustered precipitated calcium carbonate particles
EP0581981B1 (en) * 1992-08-03 1996-10-16 Yabashi Industries Co., Ltd. Process for producing needle-shaped calcium carbonate particles
US5741471A (en) * 1995-12-05 1998-04-21 Minerals Technologies Inc. Process for the preparation of discrete particles of calcium carbonate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429606B2 (ja) * 1984-08-21 1992-05-19
JPH01226719A (ja) * 1988-03-07 1989-09-11 Kanzaki Paper Mfg Co Ltd 抄紙用炭酸カルシウムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0949201A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985367A (en) * 1997-09-12 1999-11-16 Nippon Paper Industries Co., Ltd. Process for preparing coated printing paper
US7097819B2 (en) 2000-01-18 2006-08-29 Nippon Paper Industries Co., Ltd. Method for producing calcium carbonate

Also Published As

Publication number Publication date
CN1239931A (zh) 1999-12-29
EP0949201A4 (en) 2000-05-10
EP0949201A1 (en) 1999-10-13
ID21632A (id) 1999-07-08
CN1086363C (zh) 2002-06-19
US6190633B1 (en) 2001-02-20
CA2274784A1 (en) 1998-06-18
CA2274784C (en) 2005-06-21
AU5139598A (en) 1998-07-03
EP0949201B1 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP3808263B2 (ja) 炭酸カルシウムの製造方法
WO1998025852A1 (fr) Procede de preparation de carbonate de calcium
US6627170B2 (en) Process for preparing calcium carbonate
JP5673176B2 (ja) 消石灰粒子、軽質炭酸カルシウムの製造方法ならびにそれにより得られた軽質炭酸カルシウムを用いた紙および塗被紙
JP3227420B2 (ja) 炭酸カルシウムの製造方法
JP3227421B2 (ja) 炭酸カルシウムの製造方法
JP4340019B2 (ja) 炭酸カルシウムの製造方法
JP3227422B2 (ja) 炭酸カルシウムの製造方法
JP2000264630A (ja) 炭酸カルシウムの製造方法
JP2002284522A (ja) 炭酸カルシウムの製造方法
JP2000136496A (ja) 印刷用塗被紙の製造方法
JP3874958B2 (ja) 炭酸カルシウムの製造方法
JP3872610B2 (ja) 炭酸カルシウムの製造方法
JP4802465B2 (ja) 印刷用塗工紙
JP4126776B2 (ja) オフセット印刷用塗被紙の製造方法
JP3300263B2 (ja) 光沢塗被紙の製造方法
JP4332979B2 (ja) 印刷用塗工紙
JP2004231431A (ja) 炭酸カルシウムの製造方法
JP2000256990A (ja) オフセット印刷用塗工紙

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97180465.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU AZ BA BB BG BR BY CA CN CU CZ EE GE GH GM HU ID IL IS KE KG KR KZ LC LK LR LS LT LV MD MG MK MN MW MX NO NZ PL RO RU SD SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09319075

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997946163

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2274784

Country of ref document: CA

Ref document number: 2274784

Country of ref document: CA

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1997946163

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997946163

Country of ref document: EP