WO1998024540A1 - Membranes microporeuses et procede de fabrication correspondant - Google Patents

Membranes microporeuses et procede de fabrication correspondant Download PDF

Info

Publication number
WO1998024540A1
WO1998024540A1 PCT/JP1997/004406 JP9704406W WO9824540A1 WO 1998024540 A1 WO1998024540 A1 WO 1998024540A1 JP 9704406 W JP9704406 W JP 9704406W WO 9824540 A1 WO9824540 A1 WO 9824540A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocarbon group
carbon atoms
hydrogen atom
integer
polymer
Prior art date
Application number
PCT/JP1997/004406
Other languages
English (en)
French (fr)
Inventor
Yukio Shinagawa
Sumio Ohtani
Original Assignee
Fuji Photo Film Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co., Ltd. filed Critical Fuji Photo Film Co., Ltd.
Priority to JP52544898A priority Critical patent/JP4313849B2/ja
Priority to DE69736555T priority patent/DE69736555T2/de
Priority to EP97913497A priority patent/EP0922486B1/en
Publication of WO1998024540A1 publication Critical patent/WO1998024540A1/ja
Priority to US09/126,713 priority patent/US6126825A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/00091Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching by evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a microporous membrane and a method for producing the same, and more particularly, the present invention relates to a microporous membrane having excellent chemical resistance and usable for microfiltration, and a method for producing the same. Background technology
  • Microporous membranes have been known for a long time (eg, Synthetic Polymeric Membrane's McGraw-Hill, Inc., by R. Kesting, “Synthetic 'Polymeric Membrane's). McGraw Hill)), widely used for filtration filters.
  • microporous membranes are used for filtration and sterilization of washing water for the electronics industry, medical water, water for the pharmaceutical manufacturing process, food water, etc., and their use and usage have been expanding in recent years. Therefore, a highly reliable microporous membrane has attracted attention and is widely used.
  • a filter for filtration which has high resistance to chemicals such as acids, alkalis, and oxidizing agents and has a small amount of eluted substances has been required.
  • a filtration filter mainly made of polytetrafluoroethylene (PTFE) is used for filtering such a chemical solution.
  • PTFE polytetrafluoroethylene
  • the PTFE filter is extremely hydrophobic, and even if it is wetted with isopropanol at the beginning of filtration, it will not be able to filter due to the infiltration of air bubbles due to the infiltration of a few bubbles.
  • Disposal of used filters also has problems such as the generation of toxic gases by incineration.
  • polyethylene has poor heat resistance
  • polysulfonic acid has poor chemical resistance.
  • a first object of the present invention is to provide a microporous membrane having excellent chemical resistance and a method for producing the same.
  • a second object of the present invention is to provide a microporous membrane which can be easily disposed of and a method for producing the same.
  • a third object of the present invention is to provide a microporous membrane having excellent heat resistance and a method for producing the same. Disclosure of the invention
  • Such an objective is to provide a bubble point value measured in ethanol in the range of 10 kPa to 100 kPa, preferably in the range of 10 kPa to 500 kPa, most preferably This was achieved by a microporous membrane made of a polymer in the range of 100 kPa to 300 kPa and a ring-opening polymerization of the compound represented by the chemical formula (I).
  • the bubble point value measured by ethanol is in the range of 10 kPa to 100 kPa, and is represented by the following chemical formula (I).
  • Microporous membrane comprising a polymer obtained by ring-opening polymerization of a compound
  • R 1 to R 2 is a hydrogen atom or a hydrocarbon group having a carbon number of 1 to 0,
  • X 1 and Y 1 2 is a hydrogen atom, a hydrocarbon group of 1 to 1 0 carbon atoms, a halogen atom, a halogen atom in replacement hydrocarbon group having a carbon number of 1 to 1 0, single (CH 2) n COOR 11 - (CH 2) n CN, one (CH 2) n C ONR R ' one (CH 2) "COOZ, one (CH 2) "0 Z, one (CH 2) n W or X 1 and Y 1 is composed of (one CO) 2 0,, it indicates (-CO) 2 NR 14, of X 1 and Y 1
  • At least one is a group other than a group selected from a hydrogen atom and a hydrocarbon, wherein R 11 , R 12 , R 13 , and R "are a hydrocarbon group having 1 to 20 carbon atoms, and ⁇ is a hydrocarbon group.
  • W is S i RD (R 15 is a hydrocarbon group having 1 to 10 carbon atoms, D is a halogen atom—0 COR 15 or —OR 15 , p is an integer of 0 to 3 ), And n represents an integer of 0 to 10.)
  • R 15 is a hydrocarbon group having 1 to 10 carbon atoms
  • D is a halogen atom—0 COR 15 or —OR 15
  • p is an integer of 0 to 3
  • n represents an integer of 0 to 10.
  • R 1 , R 2 , X 1 and Y 1 are the same as those in the chemical formula (I)
  • R 3 to R 5 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • R 6 to R 8 are A hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms
  • X 2 and Y 2 represent a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a halogen atom, and a carbon atom having 1 to 10 carbon atoms substituted with a halogen atom.
  • n is an integer from 0 to 1 0.
  • a is an integer between 1 and 2000
  • b and c are integers between 1 and 2000
  • R 'to R 2 is a hydrogen atom or a hydrocarbon group with carbon number. 1 to 1 0, X 1 and Y 1 2 is a hydrogen atom, a hydrocarbon group of 1 to 1 0 carbon atoms, a halogen atom, a halogen atom A hydrocarbon group having 1 to 10 carbon atoms replaced by 1 (CH 2 ) n C OOR '1 (CH 2 ) facedCN, 1 (CH 2 ) n CONR M R 12 , 1 (CH 2 ) n C OO Z,-(CH 2 ) OZ,-(CH 2 ) n W, or (one CO) 20, consisting of X 1 and Y 1 , indicating (one CO) 2 NR 14 , X 1 and At least one of Y 1 is a group other than a group selected from a hydrogen atom and a hydrocarbon, wherein R 11 , R 12, R 13 and R 14 each have 1 to 2 carbon atoms.
  • 0 is a hydrocarbon group
  • is a hydrocarbon group or a hydrocarbon group substituted with a halogen
  • W is Si R 15 p D 3 -P (R 15 is a hydrocarbon group having 1 to 10 carbon atoms, D is a halogen
  • the atom is 0 C0R 13 or 1 OR 15
  • p represents an integer of 0 to 3
  • n represents an integer of 0 to 10.
  • R 3 to R 5 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • R 6 to R 8 are Hydrogen atom or carbon number 1-6
  • X 2 and Y 2 are a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms substituted by a halogen atom, 1 (CH 2 ) n C OOR u , one (CH 2 ) possiblyCN,-(CH 2 ) n C ONR''R ' 2 , one (CH 2 ) complicat CO OZ, ⁇ (CH 2 ) n OZ, one (CH 2 ) n W or X 1 and Y 1 is composed of (one CO) 2 0,, (- CO) 2 NR 14 indicates, one at least of X 1 and Y 1 are other than
  • R 11 , R 12 , R 13 , and R M are a hydrocarbon group having 1 to 20 carbon atoms
  • Z is a hydrocarbon group or a hydrocarbon group substituted with a halogen
  • W is S i R 15 P D 3-.
  • P (R 15 is a hydrocarbon group having 1 to 10 carbon atoms
  • D is a halogen atom—OCOR 15 or 10 R ′ 5
  • p is an integer of 0 to 3
  • n is an integer of 0 to 10 .
  • a is an integer between 1 and 200
  • b and c are integers between 1 and 200
  • a method for producing a microporous membrane characterized in that a solution comprising the unsolved non-solvent (d) and water is stretched on a support to form a membrane, and the solvent is gradually volatilized to cause phase separation in the solution. .
  • R 1 ⁇ R 2 is a hydrogen atom or a hydrocarbon group having a carbon number of 1 to 0,
  • X 1 and Y 1 2 is a hydrogen atom, a hydrocarbon group of 1 to 1 0 carbon atoms, a halogen atom, a halogen atom
  • R 1 ′, R ′ 2 , R 13 , and R 14 are a hydrocarbon group having 1 to 20 carbon atoms
  • is a hydrocarbon group or a hydrocarbon group substituted with a halogen
  • W is S i R 15 p D 3 -P
  • R 15 is a hydrocarbon group having 1 to 10 carbon atoms
  • D is a halogen atom—10 C OR 15 or 1 OR ′ 5
  • p is an integer of 0 to 3
  • n is 0 to Indicates an integer of 10.
  • R 1 , R 2 , X 1 and Y 1 are the same as those in the chemical formula (I)
  • R 3 to R 5 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • R 6 to R 8 are A hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms
  • X 2 and Y 2 represent a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, a halogen atom, and a carbon atom having 1 to 10 carbon atoms substituted with a halogen atom.
  • Hydrogen group one (CH 2 ) n C OOR M one (CH 2 ) n CN, one (CH 2 ) complicatC ONR" R 12 , one (CH 2 ) n CO OZ, one (CH 2 ) n OZ, one (CH 2) n W or X 1 and Y 1 is composed of (-CO) 2 0, (-CO ) shows a 2 NR 14, one at least of X 1 and Y 1 is a hydrogen atom and a hydrocarbon, is a group other than groups selected from.
  • R 11, R '2, R 1 3, R 14 represents a hydrocarbon group having 1 to 2 0 carbon atoms, Zeta hydrocarbon substituted with a hydrocarbon group or halogen group, W is S i R 1 5 p D 3 -P (R 15 is a hydrocarbon group of 0 1 1 carbon atoms, D is a halogen atom - 0 C oR '5 or a OR 15 and p represent an integer of 0 to 3), and n represents an integer of 0 to 10.
  • a is an integer between 1 and 200
  • b and c are integers between 1 and 200
  • polycyclic heterocyclic compounds contained in the compound represented by the chemical formula (I) may be used. It is produced by metathesis ring-opening polymerization of a saturated ester compound followed by hydrogenation.
  • a copolymer in the ring-opening polymerization, a copolymer can be obtained if other polymerization components are present together.
  • the copolymerization component include a polymerization component represented by the chemical formula (II).
  • Such a polymer or copolymer include a norbornene-based resin, and some of the resins contained therein are commercially available.
  • a method for forming a microporous membrane using a norbornene-based resin is roughly classified into a step of dissolving the resin in a solvent and a step of stretching.
  • the norbornene resin is, for example, sold by Nippon Synthetic Rubber Co., Ltd. under the trade name Arton G or Arton F. It is also sold by Zeon Corporation as ZONEX 250 or ZONEX 280.
  • a solvent (a) that dissolves a norbornene-based resin is used, and includes a chain and cyclic hydrocarbon such as decane, decalin, and cyclohexane, xylene, naphthalene, and toluene.
  • Aromatic hydrocarbons such as phthalates, phthalates such as dioctyl phthalate, dimethoxyxyl phthalate or dimethyl phthalate, phosphates such as triphenyl phosphate, or tricresyl phosphate; Polyhydric alcohol esters such as glycerol triacetate, ethyl phthalyl ethyl cholate or methyl phthalyl ethyl glycolate; higher aliphatic alcohols such as stearyl alcohol and ceryl alcohol; mineral oils such as kerosene and kerosene; methyl ethyl ketone , Such ketones Isopuchiruketon, methylene chloride Lai de, such as halogenated hydrocarbons black port Holm or 1, 1 Jikuroruetan, and the like such as esters of methyl acetate or acetic Echiru.
  • methylene chloride or toluene-p-xylene is used as the solvent
  • a poor solvent with low solubility in norbornene resin such as stearyl alcohol, cetyl alcohol or methylpyrrolidone
  • the temperature is near the boiling point of the solvent.
  • Dissolve norbornene resin A nonsolvent that does not dissolve norbornene resin at all, such as ethanol, methanol or water, can be added to the resulting solution in a small amount of 10% or less.
  • the norbornene-based resin solution thus formed is cast on a support such as a glass, a plastic film or a metal plate to a thickness of 50 to 500 ⁇ m using an applicator. .
  • the solvent can be volatilized preferentially by applying a breeze to the cast solution film at around room temperature, and the solution undergoes phase separation as the solvent volatilizes. To form a microporous membrane.
  • a solvent with a low boiling point such as methylene chloride
  • a microporous film can be formed by immersing the cast solution film in a non-solvent solution such as isopropanol or ethanol.
  • Solvents such as phthalic acid esters such as dioctyl phthalate, higher fatty acid alcohols such as stearyl alcohol, mineral oils such as kerosene and kerosene, or methyl virolidone or 2-pyrrolidone are used at temperatures below 100 ° C.
  • the amount of temperature decrease due to quenching is usually 20 ° C or more and 200 ° C or less. Preferably it is 50 ° C. or more and 150 ° C. or less.
  • the linen resin solution separates into two phases, a high resin concentration phase and a low resin concentration phase, and gels.
  • the gel film is washed in, for example, isopropanol heated to 70 ° C., and the solvent is completely removed to obtain a microporous film made of a norbornene resin.
  • the washing solvent (b) used for removing the film-forming solvent must dissolve the solvent (a) which is a film-forming solvent, but must not dissolve the norbornene-based resin, and preferably has a low boiling point.
  • lower alcohols such as methanol, ethanol or isopropanol are preferably used.
  • the solution is allowed to flow down from a die such as a narrow slit into a thin film, and then rapidly cooled to form a thin film.
  • the membrane from which the solvent has been removed by washing is dried by heating.
  • the resulting membrane could be used to filter most acids, alkalis and oxidants except concentrated sulfuric acid and concentrated nitric acid.
  • a method for forming a microporous membrane using a norbornene-based resin includes, in addition to the above-described production method, a method of dissolving the resin in a solvent and a method of dissolving the resin and a solvent not dissolving the resin. In the mixture of the above. In this method, the microporous state of the microporous membrane can be easily selected.
  • Good solvents (c) (hereinafter also referred to as “good solvents (c)") of the resin used in this solvent dissolution method include chain and cyclic hydrocarbons such as heptane, hexane and cyclohexane, benzene and toluene.
  • Aromatic ketones such as methylethyltoken, acetone; ketones such as methyl chloride, chloroform or halogenated hydrocarbons such as 1.1-dichloroethane; esters such as methyl formate, methyl acetate or ethyl acetate. is there.
  • These good solvents (c) can be used alone or as a mixed solvent of two or more solvents.
  • An appropriate good solvent (c) must be selected depending on the type of the substituent of the norbornene-based resin and the degree of polymerization.
  • the good solvent (c) preferably has a boiling point lower than the boiling point of water. Particularly, a solvent having a boiling point of 70 ° C. or less is particularly preferable.
  • non-solvent (d) (hereinafter also referred to as “non-solvent (d)”) of the resin used in the solvent dissolution method is an alcohol such as methanol, ethanol, isopropanol, or butanol. Are preferred. However, it is necessary to select a solvent that has a higher boiling point than the good solvent (C) that is always used.
  • the proportion of the norbornene-based resin in the total solution is 5% to 20%, particularly preferably 8% to 15%.
  • the proportion of non-solvent (d) is often between 15% and 30%. Water accounts for between 1% and at most 5%. It goes without saying that the proportion of the non-solvent and water varies depending on the type of the norbornene resin and the type of the good solvent (c) used.
  • the norbornene-based resin solution dissolved in such a solvent is spread on a support such as a glass plate, a plastic film or a metal plate to a thickness of 50 to 500 micron using an applicator, and then room temperature. Alternatively, dry gently by applying a cool breeze. Then, the good solvent (c) having a low boiling point volatilizes preferentially, so that the solution undergoes phase separation, and the film is gelled by the end of the volatilization of the good solvent (c) to form a microporous film. The remaining non-solvent (d) and water are removed by heating and drying.
  • the resulting microporous membrane could be used to filter most acids, alcohols and oxidants except concentrated sulfuric acid and concentrated nitric acid.
  • the microporous film formed at this time is isotropic.
  • the microporous membrane obtained by the present invention preferably has a bubble point value measured in ethanol in the range of 10 kPa to 1000 kPa for use in filtration.
  • This bubble point value was measured by the test method of JIS K3832.
  • the bubble point value according to this test method is almost the same as the bubble point value according to the ASTM F316 method.
  • the preferred range of the bubble point value is from lO kPa to 500 kPa, the more preferred range is from lOO kPa to 300 kPa, and the most preferred range is 20 kPa.
  • the range is from Pa to 150 kPa.
  • Norbornene resin (ARTON G manufactured by Nippon Synthetic Rubber Co., Ltd.) 1 2 parts were dissolved and mixed in a mineral oil having a viscosity of 70 cm (40 ° C) at 220 ° C and extruded from an extrusion die at 180 ° C. The membrane was cooled in 24 ° C water. The resulting membrane was washed in isopropanol at 70 ° C for 2 hours, removed and dried.
  • the bubble point of this membrane measured using ethanol was 120 kPa, and the water permeation flow rate was 8 m 1 / cm 2 min (differential pressure: 0. IMP a).
  • Norbornene-based resin (Aton G manufactured by Nippon Synthetic Rubber Co., Ltd.) 1 A solution consisting of 2 parts, methylene chloride 65 parts, methanol 21 parts, and water 2 parts was prepared, and this was applied to a glass plate using an applicator. The film was stretched on top. The microporous film was formed by applying a breeze at 25 ° C for about 1 hour, and then dried by bombarding with a breeze at 60 ° C. The bubble point of this membrane measured using ethanol was 120 kPa, and the water permeation flow rate was 7 m 1 / cm 2 min (differential pressure: 0.1 MPa). Industrial applicability
  • the microporous film has excellent chemical resistance to withstand strong acids such as concentrated sulfuric acid and concentrated nitric acid.
  • the membrane is microporous and suitable for liquid filtration, and suitable for microfiltration of liquids.
  • the membrane does not cause any problems in disposal.
  • a microporous membrane having microporosity suitable for microfiltration can be easily obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

明 細 書 微孔性膜とその製法 技 術 分 野
本発明は微孔性膜及びその製法に関し、 更に詳しく は、 本発明は、 精密ろ過に 使用できる耐薬品性に優れた微孔性膜及びその製法に関する。 背 景 技 術
微孔性膜は古くから知られており (例えばアール · ケスティ ング (R. Kes t ing) 著 「シンセティ ック ' ポリ メ リ ック · メ ンブランズ」 (Synthe t i c Po lyme r i c Me mbranes マグロウヒル社 (McGraw H i l l 社) 発行) 、 ろ過用フィルターなどに広 く利用されている。
これらの微孔性膜は、 電子工業用洗浄水、 医薬用水、 医薬製造工程用水、 食品 水等の濾過、 滅菌に用いられ、 近年その用途と使用量は拡大しており、 特に粒子 捕捉の点から信頼性の高い微孔性膜が注目され多用されている。 技 術 的 課 題
近年半導体の製造においては、 酸、 アルカリ及び酸化剤といった薬液に対する 耐性が強く溶出物の少ない濾過用フィルタ一が求められれるようになっている。 現在このような薬液の濾過には主にポリテトラフルォロエチレン (P T F E ) を 素材とする濾過用フィルタ一が使用されている。 しかるに P T F Eフィルタ一は 疎水性が極めて強く、 濾過の始めにイソプロパノールで湿潤しても、 僅かの気泡 の潜入でエアー口ックをおこして濾過できなくなる。 又使用済みのフィルター廃 棄処理にあたっては、 焼却により有毒ガスを発生するなどの問題点がある。 また、 具体的に、 ポリエチレンは耐熱性が劣り、 ポリスルホン酸は耐薬品性で 劣る。
本発明の第一の目的は、 耐薬品性の優れた微孔性膜及びその製法の提供にある 。 本発明の第二の目的は、 廃棄処理の容易な微孔性膜及びその製法の提供にある 。 本発明の第三の目的は、 耐熱性に優れた微孔性膜及びその製法の提供にある。 発 明 の 開 示
かかる目的は、 エタノールで測定するバブルボイン 卜値が 1 0 k P aから 1 0 0 0 k P aの範囲、 好ましくは l O kP aから 5 0 0 k P aの範囲、 最も好まし くは l O O kP aから 3 0 0 k P aの範囲にあり、 且つ化学式 ( I ) で表される 化合物を開環重合した重合体よりなる微孔性膜によつて達成できた。
その具体的な手段を以下に述べる。
( 1 ) エタノールで測定するバブルポイン ト値 ( J I S K 3 8 3 2の試験 方法による) が 1 0 k P aから 1 0 0 0 k P aの範囲にあり、 且つ下記化学式 ( I ) で表される化合物を開環重合した重合体よりなることを特徴とする微孔性膜
化学式 I
Figure imgf000004_0001
(式中、 R1 〜R2 は水素原子又は炭素数 1 ~ 1 0の炭化水素基、 X1 及び Y1 2 は水素原子、 炭素数 1 ~1 0の炭化水素基、 ハロゲン原子、 ハロゲン原子で置 換された炭素数 1〜1 0の炭化水素基、 一 (CH2)n COOR11 - (CH2)n CN、 一 (CH2)n C ONR R' 一 (CH2)„ COOZ、 一 (CH2)„ 0 Z 、 一 (CH2)n W、 または X1 と Y1 から構成された (一 CO) 2 0、 (-CO ) 2 NR14を示し、 X1 および Y1 の少なく とも 1つは水素原子および炭化水素 から選ばれる基以外の基である。 なお、 R11, R12, R13, R"は炭素数 1~2 0の炭化水素基、 Ζは炭化水素基またはハロゲンで置換された炭化水素基、 Wは S i R D (R 15は炭素数 1 ~ 1 0の炭化水素基、 Dはハロゲン原子— 0 COR15または—OR15、 pは 0〜3の整数を示す) 、 nは 0〜1 0の整数を示 す。 ) ( 2 ) 前記重合体が下記化学式 (II) で表される開環重合体、 又は開環共重合 体よりなることを特徴とする前記 ( 1 ) 記載の微孔性膜。 化学式 11
Figure imgf000005_0001
(式中、 R1 、 R2 、 X1 及び Y1 は化学式 ( I ) と同じ、 R3 ~R5 は水素原 子又は炭素数 1 ~ 1 0の炭化水素基、 R6 ~R8 は水素原子又は炭素数 1〜6の 炭化水素基、 X2 及び Y2 は水素原子、 炭素数 1〜1 0の炭化水素基、 ハロゲン 原子、 ハロゲン原子で置換された炭素数 1 ~ 1 0の炭化水素基、 一 (CH2)n C OOR11. 一 (CH2)n CN、 一 (CH2)n CONRMR12 — (CH2)n CO 0 Z、 一 (CH2)n OZ、 一 (CH2)n W、 または X1 と Y1 から構成された ( -CO) 2 0 , (― CO) 2 NR14を示し、 X1 および Y1 の少なく とも 1つは 水素原子および炭化水素から選ばれる基以外の基である。 なお、 R11, R12, R 13, R 14は炭素数 1〜? 0の炭化水素基、 Ζは炭化水素基またはハロゲンで置換 された炭化水素基、 Wは S i R15 P D3-P (R 15は炭素数 1〜 1 0の炭化水素基 、 Dはハロゲン原子— 0 C 0 R 15または一 0R15、 pは 0 ~ 3の整数を示す) 、 nは 0〜 1 0の整数を示す。
aは 1〜 2 0 0 0の間の整数で、 b, cは 1 ~ 2 0 0 0の間の整数で、 且つ 0 ≤ a / (a +b + c) ≤ 0≤b/ (a + b + c) ≤ 0≤ c/ (a +b + c ) ≤ 1である。 )
( 3 ) 下記化学式 ( I ) で表される化合物を開環重合した重合体を前記重合体 を溶解する溶媒 (a) に加熱溶解してできた溶液を引き伸ばして膜を形成し、 急 冷した後前記重合体を溶解しない洗浄溶媒 (b) で溶媒 (a) を抽出することに より、 エタノールで測定するバブルボイント値 (A S TM F 3 1 6法による) が l O k P aから l O O O kP aの範囲にある微孔性膜を得ることを特徵とする 微孔性膜の製法 c 化学式 1
Figure imgf000006_0001
(式中、 R' 〜R2 は水素原子又は炭素数 1〜 1 0の炭化水素基、 X1 及び Y1 2 は水素原子、 炭素数 1 ~ 1 0の炭化水素基、 ハロゲン原子、 ハロゲン原子で置 換された炭素数 1 ~ 1 0の炭化水素基、 一 (CH2)n C OOR' 一 (CH2)„ CN、 一 (CH2)n CONRMR12、 一 (C H2)n C OO Z、 ― (CH2)。 O Z 、 - (CH2)n W、 または X1 と Y1 から構成された (一C O) 2 0、 (一 C O ) 2 NR14を示し、 X1 および Y1 の少なく とも 1つは水素原子および炭化水素 から選ばれる基以外の基である。 なお、 R11, R12. R13, R14は炭素数 1 ~ 2
0の炭化水素基、 Ζは炭化水素基またはハロゲンで置換された炭化水素基、 Wは S i R 15p D 3-P (R 15は炭素数 1〜 1 0の炭化水素基、 Dはハロゲン原子一 0 C0R13または一 OR15、 pは 0~3の整数を示す) 、 nは 0~ 1 0の整数を示 す。 )
(4 ) 前記重合体が、 下記化学式 (II) で表される開環重合体、 又は開環共重 合体であることを特徴とする前記 ( 3 ) 記載の微孔性膜の製法。 化学式 11
Figure imgf000006_0002
(式中、 R1 、 R2 、 X1 及び Υ1 は化学式 ( I ) と同じ、 R3 ~R5 は水素原 子又は炭素数 1〜1 0の炭化水素基、 R6 〜R8 は水素原子又は炭素数 1〜6の 炭化水素基、 X2 及び Y2 は水素原子、 炭素数 1〜 1 0の炭化水素基、 ハロゲン 原子、 ハロゲン原子で置換された炭素数 1〜 1 0の炭化水素基、 一 (CH2)n C OORu、 一 (CH2)„ CN、 - (CH2)n C ONR''R'2、 一 (CH2)„ C O OZ、 ― (C H2)n O Z、 一 (CH2)n W、 または X1 と Y1 から構成された ( 一 C O) 2 0、 (- C O) 2 NR14を示し、 X1 および Y1 の少なく とも 1つは 水素原子および炭化水素から選ばれる基以外の基である。 なお、 R11, R12, R 13, RMは炭素数 1〜2 0の炭化水素基、 Zは炭化水素基またはハロゲンで置換 された炭化水素基、 Wは S i R 15 P D 3-P (R 15は炭素数 1〜 1 0の炭化水素基 、 Dはハロゲン原子一 OCOR15または一 0R'5、 pは 0~3の整数を示す) 、 nは 0〜 1 0の整数を示す。
aは 1 ~ 2 0 0 0の間の整数で、 b, cは 1〜 2 0 0 0の間の整数で、 且つ 0 ≤ a / (a + b + c) ≤ K 0 ≤ b / (a + b + c) ≤ 0≤ c/ (a ÷b + c ) ≤ 1である。 )
(5) 下記化学式 ( I ) で表される化合物を開環重合した重合体、 水よりも沸 点の低い前記重合体の良溶媒 (c) 、 良溶媒 (c) よりも沸点が高い前記重合体 の非溶媒 (d) 及び水からなる溶液を支持体上に引き伸ばして膜を形成し、 徐々 に溶媒を揮発することにより該溶液に相分離を起こすことを特徴とする微孔性膜 の製法。 化学式 I
Figure imgf000007_0001
(式中、 R1 ~R2 は水素原子又は炭素数 1 ~ 1 0の炭化水素基、 X1 及び Y1 2 は水素原子、 炭素数 1 ~ 1 0の炭化水素基、 ハロゲン原子、 ハロゲン原子で置 換された炭素数 1 ~ 1 0の炭化水素基、 一 (CH2)n C00R' 一 (CH2)n CN、 一 (CH2)„ C 0NR"R12, - (CH2)n C 00Z、 一 (CH2)n 0 Z 、 一 (CH2)„ W、 または X1 と Y1 から構成された (— C O) 2 0、 (-C O ) 2 N R 1 4を示し、 X 1 および Y 1 の少なく とも 1つは水素原子および炭化水素 から選ばれる基以外の基である。 なお、 R 1 ', R '2, R 1 3, R 14は炭素数 1 ~ 2 0の炭化水素基、 Ζは炭化水素基またはハロゲンで置換された炭化水素基、 Wは S i R1 5 p D 3-P (R 15は炭素数 1 ~ 1 0の炭化水素基、 Dはハロゲン原子一 0 C OR15または一 OR'5、 pは 0〜3の整数を示す) 、 nは 0 ~ 1 0の整数を示 す。 )
( 6 ) 前記重合体が下記化学式 (II) で表される開環重合体又は開環共重合体 であることを特徴とする前記 ( 5 ) 記載の微孔性膜の製法。 化学式 II
Figure imgf000008_0001
(式中、 R1 、 R2 、 X1 及び Y1 は化学式 ( I ) と同じ、 R3 〜R5 は水素原 子又は炭素数 1 ~ 1 0の炭化水素基、 R6 ~R8 は水素原子又は炭素数 1〜6の 炭化水素基、 X2 及び Y2 は水素原子、 炭素数 1 ~ 1 0の炭化水素基、 ハロゲン 原子、 ハロゲン原子で置換された炭素数 1 ~ 1 0の炭化水素基、 一 (CH2)n C OORM 一 (CH2)n CN、 一 (CH2)„ C ONR"R12, 一 (CH2)n CO O Z、 一 (CH2)n O Z、 一 (CH2)n W、 または X1 と Y1 から構成された ( -C O) 2 0、 (-CO) 2 NR14を示し、 X1 および Y1 の少なく とも 1つは 水素原子および炭化水素から選ばれる基以外の基である。 なお、 R11, R'2, R 13, R14は炭素数 1 ~2 0の炭化水素基、 Ζは炭化水素基またはハロゲンで置換 された炭化水素基、 Wは S i R1 5 p D 3-P (R15は炭素数 1〜 1 0の炭化水素基 、 Dはハロゲン原子— 0 C OR'5または一 OR15、 pは 0〜3の整数を示す) 、 nは 0 ~ 1 0の整数を示す。
aは 1 ~ 2 0 0 0の間の整数で、 b, cは 1 ~2 0 0 0の間の整数で、 且つ 0 ≤ a/ (a +b + c) ≤ 0≤b/ (a + b + c) ≤ l、 0≤ c / (a + b + c ) ≤ 1である。 )
本発明で用いられる化学式 ( I ) で表される化合物を開環重合した重合体とし ては、 特開平 1 — 2 4 0 5 1 7号、 特開平 7— 1 9 6 7 3 6号、 特開昭 6 0— 2 6 0 2 4号あるいは特開昭 6 2 - 1 9 8 0 1号等に開示されているように、 たと えば化学式 ( I ) で表される化合物に含まれる多環状不飽和エステル化合物をメ タセシス開環重合したのち、 水素添加することにより作られる。
その開環重合においては、 他の重合成分を一緒に存在させれば、 共重合体を得 ることができる。 共重合成分としては、 化学式 (I I ) に示す重合成分を挙げるこ とができる。
このような重合体又は共重合体の具体例としては、 ノルボルネン系樹脂を挙げ ることができ、 このものに含まれる樹脂の一部が市販されている。
例えば、 ノルボルネン系樹脂を用いて微孔性膜をつく る方法には、 該樹脂を溶 媒に溶解する段階と延伸による段階に大別される。 ノルボルネン系樹脂としては 、 例えば、 日本合成ゴム (株) よりアートン Gあるいはァートン Fという商品名 で発売されている。 また日本ゼオン (株) よりゼォネックス 2 5 0あるいはゼォ ネックス 2 8 0として発売されている。
溶媒溶解法で用いる製膜溶媒としては、 ノルボルネン系樹脂を溶解する溶媒 ( a ) を用い、 これには、 デカン、 デカリ ン、 シクロへキサンの如き鎖状及び環状 炭化水素、 キシレン、 ナフタレン、 トルエンの如き芳香族炭化水素、 ジォクチル フタレー ト、 ジメ トキシォキシェチルフタレー トあるいはジメチルフタレー 卜の 如きフタル酸エステル類、 トリフエニルフォスフェート、 あるいはトリ クレジル フォスフヱー卜の如きリ ン酸エステル類、 グリセロールトリアセテート、 ェチル フタリルェチルダリコレー卜あるいはメチルフタリルェチルグリコレー卜の如き 多価アルコールエステル類、 ステアリルアルコール、 セリルアルコールの如き高 級脂肪族アルコール、 灯油ゃケロシンの如き鉱油、 メチルェチルケトン、 メチル イソプチルケトンの如きケトン類、 メチレンクロライ ド、 クロ口ホルムあるいは 1 , 1 ージクロルェタンの如きハロゲン化炭化水素類、 酢酸メチルあるいは酢酸 ェチルの如きエステル類などがある。
これらの溶媒を単独あるいは二つ以上の溶媒による混合溶媒として用いること ができる。
溶媒に、 メチレンクロライ ド、 トルエンゃキシレンを使った場合は、 ステアリ ルアルコール、 セチルアルコール或いはメチルピロリ ドンの如きノルボルネン樹 脂に対して溶解度の低い貧溶媒の共存下、 溶媒の沸点近くの温度でノルボルネン 樹脂を溶解する。 できた溶液中にエタノール、 メタノール或いは水の如きノルボ ルネン樹脂を全く溶解しない非溶媒を 1 0 %以下の少量加えることもできる。 このようにしてできたノルボルネン系樹脂溶液をアプリケーターを用いてガラ ス扳、 プラスチックフィルムあるいは金属板の如き支持体上に 5 0から 5 0 0 ミ ク口ンの厚さに流延 (c a s t i n g ) する。 メチレンクロライ ドのように沸点 の低い溶媒を使う場合は、 流延した溶液膜に室温付近、 微風を当てることにより 、 溶媒を優先的に揮発でき、 溶媒の揮発に伴い溶液は相分離を起こして微孔性膜 ができる。
また、 流延した溶液膜をィソプロパノールやエタノ一ルの如き非溶媒液中に浸 漬することにより、 微孔性膜を形成することができる。
溶媒にジォクチルフ夕レ一 卜のようなフタル酸エステル、 ステアリルアルコー ルのような高級脂肪酸アルコール、 灯油ゃケロシンの如き鉱油、 或いはメチルビ ロリ ドンや 2 —ピロリ ドンなど、 1 0 0 C以下の温度ではノルボルネン樹脂を溶 解しないが、 1 0 0 °C以上の高温、 例えば 2 0 0 °C以上の高温で初めてノルボル ネン樹脂を溶解できるような溶媒を用いた場合について、 ノルボルネン樹脂微孔 性膜のつく り方を述べる。
酸化防止剤 (例えば 2 . 6—ジー t—プチルー p —クレゾール或いはテトラキ ス 〔メチレン一 3— ( 3 , 5—ジー t 一プチルー 4ーヒ ドロキシフエニル) ープ 口ピオネート〕 メタン) の存在下、 2 2 0 °Cに加熱溶解したノルボルネン樹脂溶 液を 2 0 0の温度で、 ガラス板、 プラスチックフィルムあるいは金属板の如き支 持体上に 5 0から 5 0 0 ミ クロンの厚さに引延し、 その後急冷する。 急冷する方 法としては水、 エチレングリコールあるいはブタノール、 あるいはこれらの混合 物の如き熱容量の大きな液体中に支持体ごと投入するのが効果的である。 急冷に よる温度低下量は通常は 2 0 °C以上 2 0 0 °C以下である。 好ましくは 5 0 °C以上 1 5 0 °C以下である。 急冷によって溶媒に溶解して均一溶液となっていたノルボ ルネン樹脂溶液は樹脂濃度の高い相と樹脂濃度の低い相の 2相に分離してゲル化 する。
このゲル膜をたとえば 7 0 °Cに加熱したイソプロパノール中で洗い、 溶媒を完 全に除去してノルボルネン系樹脂より成る微孔性膜を得る。 製膜溶媒除去に用い る洗浄溶媒 (b ) は、 製膜溶媒である溶媒 (a ) を溶解するがノルボルネン系樹 脂は溶解しないものであることが必須で、 沸点の低いものが好ましい。 具体的に はメタノール、 ェタノールあるいはィソプロパノールの如き低級アルコール類が 好ましく使われる。
製膜法としては、 前記溶液を幅の狭いスリ ッ 卜のようなダイから薄い膜状に流 下させ、 それを急冷して薄膜とすることができる。
洗浄して溶媒を除去した膜は加熱乾燥する。 このようにしてできた膜は濃硫酸 や濃硝酸を除く ほとんどの酸、 アルカリ及び酸化剤液の濾過に使用できるもので あつた。
ノルボルネン系樹脂を用いて微孔性膜をつく る方法には、 前記した製造方法の 他に、 該樹脂を単に溶媒に溶解させるのではなく、 該樹脂を溶かす溶媒と該樹脂 を溶かさない溶媒との混合物に溶解させる方法がある。 この方法は、 微孔性膜の 微孔性の状態を容易に選定できる。
この溶媒溶解法で用いる該樹脂の良溶媒 (c ) (以下 「良溶媒 (c ) 」 ともい う) は、 ヘプタン、 へキサン、 シクロへキサンの如き鎖状及び環伏炭化水素、 ベ ンゼン、 トルエンの如き芳香族炭化水素、 メチルェチルトケン、 アセトンの如き ケトン類、 メチルクロライ ド、 クロロホルムあるいは 1 . 1 —ジクロルエタンの 如きハロゲン化炭化水素類、 蟻酸メチル、 酢酸メチルあるいは酢酸ェチルの如き エステル類などがある。 これらの良溶媒 (c ) を単独あるいは二つ以上の溶媒に よる混合溶媒として用いることができる。 使用するノルボルネン系樹脂の置換基 の種類や重合度によって、 適切な良溶媒 (c ) を選択しなければならない。 良溶 媒 (c ) はその沸点が水の沸点よりも低いことが好ましい。 特に 7 0 °C以下の沸 点を持つ溶媒が特に好ましい。
溶媒溶解法で用いる該樹脂の非溶媒 (d ) (以下 「非溶媒 (d ) 」 ともいう) は、 メタノール、 エタノール、 イソプロパノール、 ブタノールの如きアルコール 類が好ましい。 しかし常に用いる良溶媒 (C ) よりも高い沸点を有する溶媒を選 ぶ必要がある。
ノルボルネン系樹脂を良溶媒 (C ) に溶解した後、 その溶液に非溶媒 (d ) と 水を撹拌しながら徐々に添加し、 白濁や沈殿が生じる手前まで非溶媒 (d ) 及び 水を添加する。 全溶液に占めるノルボルネン系樹脂の割合は、 5%から 2 0%で 、 特に 8%から 1 5%が好ましい。 非溶媒 (d) の占める割合は、 多くの場合は 1 5 %から 3 0 %の間である。 また水の占める割合は、 1 %からせいぜい 5%で ある。 非溶媒や水の割合は、 ノルボルネン系樹脂の種類や使用する良溶媒 (c) の種類によって変化することは言うまでもない。
このような溶媒に溶解したノルボルネン系樹脂溶液をアプリケ一ターを用いて ガラス板、 プラスチックフィルムあるいは金属板の如き支持体上に 5 0から 5 0 0 ミ クロンの厚さに引延し、 その後室温あるいは低温の微風を当てることによつ て穏やかに乾燥する。 すると沸点の低い良溶媒 (c) が優先的に揮発するため、 溶液は相分離を起こし、 更に良溶媒 (c) の揮発の終了によって膜はゲル化して 微孔性膜ができる。 残った非溶媒 (d ) や水は加熱乾燥して除去する。
このようにしてできた微孔性膜は、 濃硫酸や濃硝酸を除くほとんどの酸、 アル 力リ及び酸化剤液の濾過に使用できるものであった。
このとき形成される微孔性膜は、 等方性である。
本発明で得た微孔性膜は、 エタノールで測定するバブルポイント値が 1 O kP aから 1 0 0 0 k P aの範囲にあることが、 濾過に使用する上で好ましい。 この バブルポイント値は、 J I S K 3 8 3 2の試験方法によって測定したもので ある。 この試験方法によるバブルポイント値は、 AS TM F 3 1 6法によるバ ブルポイント値と殆ど同一のものである。
バブルボイント値の好ましい範囲は、 l O kP aから 5 0 0 kP aの範囲で、 より好ましい範囲は、 l O O k P aから 30 0 kP aの範囲で、 最も好ましい範 囲は、 2 0 k P aから 1 5 0 k P aの範囲である。 発明を実施するための最良の形態
以下、 実施例により本発明を具体的に説明する。 ただし、 本発明はこれらの実 施例のみに限定されるものではない。
実施例 1
ノルボルネン系樹脂 (ァ一トン G 日本合成ゴム株式会社製) 1 5部をジォク チルフタレー ト 8 5部中で 1 2 0 °Cに加熱して溶解した。 この溶液を 1 0 0°C以 上に加熱したステンレス板上で厚さ約 2 0 0 ミ クロンに引延し、 ただちに 2 0 °C の水中に投入して急冷する。 形成した白い膜を 6 0 °Cに加熱したエタノール中で 1時間洗い、 とり出して乾燥した。 エタノールを用いて測定したこの膜のバブル ポイント (J I S K 3 8 3 2の方法による) は 6 0 k P aであり、 水透過流 速は 6 5m 1 /cm2 ノ分 (差圧 0. IMP a) であった。
実施例 2
ノルボルネン系樹脂 (アートン G 日本合成ゴム株式会社製) 1 2部を粘度 7 0センチボイズ (4 0°C) の鉱油に 2 20 °Cで溶解混鍊し、 1 80°Cの押し出し ダイから押し出した膜を 2 4°Cの水中で冷却した。 できた膜を 7 0°Cのィソプロ パノール中で 2時間洗い、 取り出して乾燥した。
ェ夕ノールを用いて測定したこの膜のバブルボイントは 1 20 k P aであり、 水透過流速は 8 m 1 /cm2 分 (差圧 0. IMP a) であった。
実施例 3
ノルボルネン系樹脂 (ァ一トン G 日本合成ゴム株式会社製) 2 0部をトルェ ン 2 0部、 N—メチルー 2—ピロリ ドン 6 0部を 7 0でに加熱して溶解する。 こ の溶液をアプリケータを用いてガラス板上で流延 ( c a s t i n g) しその後ェ タノール中にガラス板ごと 1時間浸潰して取り出した。 水洗 ·乾燥してできた膜 のエタノ一ル ·バブルボイント ( J I S K 3 8 3 2の方法による) は 3 3 0 k P aであり、 水透過流速は 1. 8m 1 /cm2 分 (差圧 0. IMP a) であつ た。
実施例 4
ノルボルネン系樹脂 (ァ一トン G 日本合成ゴム株式会社製) 1 2部、 メチレ ンクロライ ド 6 5部、 メタノール 2 1部、 水 2部よりなる溶液を調製し、 これを アプリケータを用いてガラス板上に薄膜状に引き伸ばした。 2 5°Cの微風を約 1 時間当てて微孔性膜を形成し、 更に 6 0°Cの風を強く当てて乾燥した。 エタノールを用いて測定したこの膜のバブルボイン トは 1 2 0 k P aであり、 水透過流速は 7 m 1 / c m 2 分 (差圧 0 . 1 M P a ) であった。 産業上の利用可能性
本発明は、 その微孔性膜が濃硫酸や濃硝酸のような強酸などにも耐える耐薬品 性に優れたものである。 さらに、 その膜は微孔性が液の濾過に適しており、 液の 精密濾過に適している。 また、 その膜は廃棄処分をする際においても問題を生ず ることはない。
本発明の製法によれば、 精密濾過に適する微孔性を有する微孔性膜を容易に得 ることができる。

Claims

請 求 の 範 囲
1. エタノールで測定するバブルポイント値 (J I S K 3 8 3 2の試験方法 による) 力 < 1 0 k P aから 1 0 0 0 k P aの範囲にあり、 且つ下記化学式 ( I ) で表される化合物を開環重合した重合体よりなることを特徴とする微孔性膜。 化学式 I
Figure imgf000015_0001
(式中、 R1 〜R2 は水素原子又は炭素数 1 ~ 1 0の炭化水素基、 X1 及び Y1 は水素原子、 炭素数 1~ 1 0の炭化水素基、 ハロゲン原子、 ハロゲン原子で置換 された炭素数 1 ~ 1 0の炭化水素基、 一 (CH2)n COORM、 ― (CH2)„ C N、 - (CH2)„ CONRHR12 - (CH2)„ COOZ、 一 (CH2)„ OZ、 一 (CH2)n W、 または X1 と Y1 から構成された (一CO) 2 0、 (—CO) 2 NR14を示し、 X' および Y1 の少なくとも 1つは水素原子および炭化水素か ら選ばれる基以外の基である。 なお、 R'1, R12, R13. R14は炭素数 1〜2 0 の炭化水素基、 Ζは炭化水素基またはハロゲンで置換された炭化水素基、 Wは S i R 15P D3-P (尺15は炭素数1〜1 0の炭化水素基、 Dはハロゲン原子一 0C OR15または一 0R15、 pは 0~3の整数を示す) 、 nは 0〜1 0の整数を示す o )
2. 前記重合体が下記化学式 (II) で表される開環重合体、 又は開環共重合体よ りなることを特徵とする請求範囲第 1項記載の微孔性膜。 化学式 π
Figure imgf000016_0001
(式中、 R 1 、 R2 、 X 1 及び Y 1 は化学式 ( I ) と同じ、 R3 ~R5 は水素原 子又は炭素数 1 ~ 1 0の炭化水素基、 R6 ~R8 は水素原子又は炭素数 1 ~ 6の 炭化水素基、 X2 及び Y2 は水素原子、 炭素数 1〜1 0の炭化水素基、 ハロゲン 原子、 ハロゲン原子で置換された炭素数 1〜 1 0の炭化水素基、 ― (C H2)n C O O R ' '、 - (C H2)n C N、 - (C H2)n C O N R " R 12. 一 ( C H 2)„ C O O Z、 一 ( C H 2)n 0 Zs 一 ( C H2)n W、 または X 1 と Y 1 から構成された ( - C O) 2 0、 (- C O) 2 N R 14を示し、 X ' および Y 1 の少なく とも 1つは 水素原子および炭化水素から選ばれる基以外の基である。 なお、 R 1 1, R 12, R 13, ' R 14は炭素数 1 ~ 2 0の炭化水素基、 Zは炭化水素基またはハロゲンで置換 された炭化水素基、 Wは S i R 15 P D 3-P (R 15は炭素数 1 ~ 1 0の炭化水素基 、 Dはハロゲン原子一 0 C O R 15または一 O R 15、 pは 0 ~ 3の整数を示す) 、 nは 0 ~ 1 0の整数を示す。
aは 1〜2 0 0 0の間の整数で、 b, cは 1〜2 0 0 0の間の整数で、 且つ 0 ≤ a/ (a +b + c) ≤ K 0 ≤ b / (a + b + c) ≤ K 0≤ c/ (a + b + c) ≤ 1である。 )
3. 下記化学式 ( I ) で表される化合物を開環重合した重合体を前記重合体を溶 解する溶媒 (a) に加熱溶解してできた溶液を引き伸ばして膜を形成し、 急冷し た後前記重合体を溶解しない洗浄溶媒 (b) で溶媒 (a) を抽出することにより 、 エタノールで測定するバブルボイント値 (A S TM F 3 1 6法による) が 1 0 k P aから 1 0 0 0 k P aの範囲にある微孔性膜を得ることを特徴とする微孔 性膜の製法。 化学式 I
Figure imgf000017_0001
(式中、 R1 ~R2 は水素原子又は炭素数 1〜 1 0の炭化水素基、 X1 及び Y1 は水素原子、 炭素数 1 ~1 0の炭化水素基、 ハロゲン原子、 ハロゲン原子で置換 された炭素数 i〜l 0の炭化水素基、 一 (CH2)n COOR", ― (CH2)„ C N、 ― (CH2)„ C ONR"R1 2 - (CH2)n COOZ、 一 (CH2)n OZ、 一 (CH2)„ W、 または X1 と Y1 から構成された (一 CO) 2 0、 (-CO) 2 NR14を示し、 X1 および Y1 の少なく とも 1つは水素原子および炭化水素か ら選ばれる基以外の基である。 なお、 R11, R12. R13, R14は炭素数 1〜2 0 の炭化水素基、 Ζは炭化水素基またはハロゲンで置換された炭化水素基、 Wは S i R15 P D (R15は炭素数 1 ~ 1 0の炭化水素基、 Dはハロゲン原子一 OC OR15または一 0R15、 pは 0〜3の整数を示す) 、 nは 0〜1 0の整数を示す
4. 前記重合体が、 下記化学式 (II) で表される開環重合体、 又は開環共重合体 であることを特徴とする請求範囲第 3項記載の微孔性膜の製法。 化学式 Π
Figure imgf000017_0002
(式中、 R1 、 R2 、 X1 及び Y1 は化学式 ( I ) と同じ、 R3 〜R5 は水素原 子又は炭素数 1〜1 0の炭化水素基、 Re 〜R8 は水素原子又は炭素数 1 ~6の 炭化水素基、 X2 及び Y2 は水素原子、 炭素数 1〜1 0の炭化水素基、 ハロゲン 原子、 ハロゲン原子で置換された炭素数 1 ~ 1 0の炭化水素基、 一 (CH2)n C OORM、 - (C H2)n CN、 一 (C H2)n CONRl lR12、 一 (CH2)n CO OZ、 一 (C H2)n 0Z、 - (CH2)n W、 または X1 と Y1 から構成された ( 一 CO) 2 0、 (― CO) 2 NR14を示し、 X1 および Y1 の少なく とも 1つは 水素原子および炭化水素から選ばれる基以外の基である。 なお、 R11, R12, R 13, RMは炭素数 1 ~2 0の炭化水素基、 Zは炭化水素基またはハロゲンで置換 された炭化水素基、 Wは S i R15 P D3-P (R15は炭素数 1〜 1 0の炭化水素基 、 Dはハロゲン原子一 0 C OR15または一 OR15、 pは 0~3の整数を示す) 、 nは 0 ~ 1 0の整数を示す。
aは 1~ 2 0 0 0の間の整数で、 b, cは 1~ 2 0 0 0の間の整数で、 且つ 0 ≤ a / (a + b + c) ≤ K 0≤b/ (a + b + c) ≤ 0≤ c/ (a + b + c ) ≤ 1である。 )
5. 下記化学式 ( I ) で表される化合物を開環重合した重合体、 水よりも沸点の 低い前記重合体の良溶媒 (c) 、 良溶媒 (c) よりも沸点が高い前記重合体の非 溶媒 (d) 及び水からなる溶液を支持体上に引き伸ばして膜を形成し、 徐々に溶 媒を揮発することにより該溶液に相分離を起こすことを特徴とする微孔性膜の製 法。 化学式 I
Figure imgf000018_0001
(式中、 R1 ~R2 は水素原子又は炭素数 1〜 1 0の炭化水素基、 X1 及び Y1 は水素原子、 炭素数 1~ 1 0の炭化水素基、 ハロゲン原子、 ハロゲン原子で置換 された炭素数 1 ~ 1 0の炭化水素基、 ― (CH2)„ C OOR". 一 (CH2)n C N、 - (CH2)„ C ONR"R12 一 (CH2)„ COOZ、 一 (CH2)n OZ、 一 (C H2)„ W、 または X1 と Y1 から構成された (—CO) 2 0、 (-CO) 2 NR14を示し、 X1 および Y1 の少なく とも 1つは水素原子および炭化水素か ら選ばれる基以外の基である。 なお、 R11, R12, R13, R14は炭素数 1~2 0 の炭化水素基、 Zは炭化水素基またはハロゲンで置換された炭化水素基、 Wは S i R15P D3-P (R15は炭素数 1~1 0の炭化水素基、 Dはハロゲン原子一 O C OR15または一 OR15、 pは 0~3の整数を示す) 、 nは 0〜1 0の整数を示す
6 )
6. 前記重合体が下記化学式 (II) で表される開環重合体又は開環共重合体であ ることを特徴とする請求範囲第 5項記載の微孔性膜の製法。 化学式 II
Figure imgf000019_0001
(式中、 R1 、 R2 、 X1 及び Y1 は化学式 ( I ) と同じ、 R3 〜R5 は水素原 子又は炭素数 1〜1 0の炭化水素基、 Re 〜R8 は水素原子又は炭素数 1 ~6の 炭化水素基、 X2 及び Y2 は水素原子、 炭素数 1 ~1 0の炭化水素基、 ハロゲン 原子、 ハロゲン原子で置換された炭素数 1〜 1 0の炭化水素基、 一 (CH2)n C OOR11. - (CH2)n CN、 - (CH2)n C ONR R12^ 一 (CH2)n CO OZ、 ― (CH2)n 0Z、 - (CH2)» W、 または X1 と Y1 から構成された ( -CO) 0、 (-CO) NR14を示し、 X1 および Y1 の少なく とも 1つは 水素原子および炭化水素から選ばれる基以外の基である。 なお、 R11, R12, R 13, R14は炭素数 1〜2 0の炭化水素基、 Ζは炭化水素基またはハロゲンで置換 された炭化水素基、 Wは S i R15 P D (R15は炭素数 1〜 1 0の炭化水素基 、 Dはハロゲン原子一 OC OR15または—OR15、 pは 0〜3の整数を示す) 、 nは 0〜 1 0の整数を示す。
aは 1 ~ 2 0 0 0の間の整数で、 b, cは 1〜2 0 0 0の間の整数で、 且つ 0 ≤ a/ (a + b + c) ≤ K 0≤b/ (a + b + c) ≤ l、 0≤ c/ (a + b + c ) ≤ 1である。 )
PCT/JP1997/004406 1996-12-02 1997-12-02 Membranes microporeuses et procede de fabrication correspondant WO1998024540A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP52544898A JP4313849B2 (ja) 1996-12-02 1997-12-02 微孔性膜とその製法
DE69736555T DE69736555T2 (de) 1996-12-02 1997-12-02 Mikroporöse membranen und verfahren zu ihrer herstellung
EP97913497A EP0922486B1 (en) 1996-12-02 1997-12-02 Microporous membranes and process for the production thereof
US09/126,713 US6126825A (en) 1996-12-02 1998-07-31 Microporous membrane and process for the production thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/321822 1996-12-02
JP32182196 1996-12-02
JP8/321821 1996-12-02
JP32182296 1996-12-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/126,713 Continuation-In-Part US6126825A (en) 1996-12-02 1998-07-31 Microporous membrane and process for the production thereof

Publications (1)

Publication Number Publication Date
WO1998024540A1 true WO1998024540A1 (fr) 1998-06-11

Family

ID=26570609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004406 WO1998024540A1 (fr) 1996-12-02 1997-12-02 Membranes microporeuses et procede de fabrication correspondant

Country Status (6)

Country Link
EP (1) EP0922486B1 (ja)
JP (1) JP4313849B2 (ja)
KR (1) KR19990082169A (ja)
AT (1) ATE337081T1 (ja)
DE (1) DE69736555T2 (ja)
WO (1) WO1998024540A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222929A (ja) * 2007-03-14 2008-09-25 Nippon Zeon Co Ltd 多孔質フィルム及びその製造方法
JP2017095675A (ja) * 2015-07-31 2017-06-01 ポール・コーポレーションPall Corporation 親水性多孔質ポリテトラフルオロエチレン膜(i)
WO2023127417A1 (ja) * 2021-12-28 2023-07-06 日本ゼオン株式会社 多孔質体及び多孔質体の製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1342745A1 (de) * 2002-03-05 2003-09-10 Lofo High Tech Film GmbH Verfahren zur Herstellung von Polyolefinfolien
US9593218B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IIIa)
US9441078B2 (en) 2014-05-30 2016-09-13 Pall Corporation Self-assembling polymers—I
US9592476B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (IIb)
US9593217B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (Va)
US9604181B2 (en) 2014-05-30 2017-03-28 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (IIc)
US9469733B2 (en) 2014-05-30 2016-10-18 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IVa)
US9193835B1 (en) 2014-05-30 2015-11-24 Pall Corporation Self-assembling polymers—IV
US9765171B2 (en) 2014-05-30 2017-09-19 Pall Corporation Self-assembling polymers—V
US9616395B2 (en) 2014-05-30 2017-04-11 Pall Corportaion Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (Ic)
US9598543B2 (en) 2014-05-30 2017-03-21 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (VIa)
US9592477B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (Ib)
US9328206B2 (en) 2014-05-30 2016-05-03 Pall Corporation Self-assembling polymers—III
US9593219B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spin coating (IIa)
US9649603B2 (en) 2015-03-31 2017-05-16 Pall Corporation Hydrophilically modified fluorinated membrane (III)
US9724650B2 (en) 2015-03-31 2017-08-08 Pall Corporation Hydrophilically modified fluorinated membrane (II)
US10844164B2 (en) 2016-05-24 2020-11-24 Industrial Technology Research Institute Oligomer, composition and composite material employing the same
US11059938B2 (en) 2018-10-05 2021-07-13 Industrial Technology Research Institute Film composition and a film prepared thereby

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151275A (en) * 1975-06-20 1976-12-25 Japan Synthetic Rubber Co Ltd A semipermeable membrane
JPS5376172A (en) * 1976-12-18 1978-07-06 Japan Synthetic Rubber Co Ltd Membrane for separation
JPH05148413A (ja) * 1991-08-05 1993-06-15 Japan Synthetic Rubber Co Ltd キヤストフイルム
JPH07196736A (ja) * 1994-01-06 1995-08-01 Japan Synthetic Rubber Co Ltd ノルボルネン系重合体およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122278A (en) * 1976-04-08 1977-10-14 Japan Synthetic Rubber Co Ltd Membrane for separation
JPS5348975A (en) * 1976-10-18 1978-05-02 Japan Synthetic Rubber Co Ltd Preparation of sparation membrane
JPS61249502A (ja) * 1985-04-25 1986-11-06 Sumitomo Electric Ind Ltd 親水性ポリテトラフルオロエチレン濾過膜及びその製造方法
US5468819A (en) * 1993-11-16 1995-11-21 The B.F. Goodrich Company Process for making polymers containing a norbornene repeating unit by addition polymerization using an organo (nickel or palladium) complex

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151275A (en) * 1975-06-20 1976-12-25 Japan Synthetic Rubber Co Ltd A semipermeable membrane
JPS5376172A (en) * 1976-12-18 1978-07-06 Japan Synthetic Rubber Co Ltd Membrane for separation
JPH05148413A (ja) * 1991-08-05 1993-06-15 Japan Synthetic Rubber Co Ltd キヤストフイルム
JPH07196736A (ja) * 1994-01-06 1995-08-01 Japan Synthetic Rubber Co Ltd ノルボルネン系重合体およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222929A (ja) * 2007-03-14 2008-09-25 Nippon Zeon Co Ltd 多孔質フィルム及びその製造方法
JP2017095675A (ja) * 2015-07-31 2017-06-01 ポール・コーポレーションPall Corporation 親水性多孔質ポリテトラフルオロエチレン膜(i)
WO2023127417A1 (ja) * 2021-12-28 2023-07-06 日本ゼオン株式会社 多孔質体及び多孔質体の製造方法

Also Published As

Publication number Publication date
EP0922486A4 (en) 2000-03-01
EP0922486B1 (en) 2006-08-23
EP0922486A1 (en) 1999-06-16
JP4313849B2 (ja) 2009-08-12
ATE337081T1 (de) 2006-09-15
DE69736555D1 (de) 2006-10-05
KR19990082169A (ko) 1999-11-25
DE69736555T2 (de) 2006-12-14

Similar Documents

Publication Publication Date Title
WO1998024540A1 (fr) Membranes microporeuses et procede de fabrication correspondant
US6126825A (en) Microporous membrane and process for the production thereof
AU617213B2 (en) Process for producing membranes
US4976859A (en) Integral asymmetric polyether-sulfone membrane, process for its production, and use for ultrafiltration and microfiltration
AU771197B2 (en) Heat-resistant microporous film
CN107073411B (zh) 微孔聚偏二氟乙烯平膜
JP7100017B2 (ja) 芳香族ポリマーおよびフッ素化ポリマーを含む組成物、ならびにその使用
WO1994017985A1 (en) Process of making microporous pps membranes
EP3496845A1 (en) Porous membranes
JP5050499B2 (ja) 中空糸膜の製造方法および中空糸膜
EP2557111A1 (en) Process for production of porous membrane
KR101921701B1 (ko) 친수성 다공성 폴리테트라플루오로에틸렌 막(ii)
KR20150069422A (ko) 내오염성이 우수한 셀룰로스계 수처리 분리막 및 이의 제조 방법
US6017474A (en) Highly permeable polyethersulfone hollow fiber membranes for gas separation
KR20220040346A (ko) 중합체 멤브레인의 제조 방법
JP2020519773A5 (ja)
US7381330B2 (en) Cellulose-based microporous membrane
KR101285870B1 (ko) 상전환법을 이용한 폴리설폰 분리막의 제조방법
JP2022514036A (ja) 高圧濾過のための多孔質膜
JPWO2021020571A1 (ja) 分離膜
JP2646562B2 (ja) 選択透過性複合中空糸膜の製造方法
JP2019130522A (ja) 中空糸膜、中空糸膜の製造方法、および中空糸膜を用いたビール、ワインまたは日本酒の製造方法
JP2010075851A (ja) 多孔質膜およびその製造方法
EP2992948B1 (en) Robust polymeric membrane
JP2000107578A (ja) ノルボルネン系樹脂を使った多孔性膜の製法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997913497

Country of ref document: EP

Ref document number: 09126713

Country of ref document: US

Ref document number: 1019980705894

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997913497

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980705894

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019980705894

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997913497

Country of ref document: EP