WO1998018983A1 - Filiere - Google Patents

Filiere Download PDF

Info

Publication number
WO1998018983A1
WO1998018983A1 PCT/GB1997/002960 GB9702960W WO9818983A1 WO 1998018983 A1 WO1998018983 A1 WO 1998018983A1 GB 9702960 W GB9702960 W GB 9702960W WO 9818983 A1 WO9818983 A1 WO 9818983A1
Authority
WO
WIPO (PCT)
Prior art keywords
spinnerette
holes
filaments
draught
jet holes
Prior art date
Application number
PCT/GB1997/002960
Other languages
English (en)
Inventor
Malcolm John Hayhurst
Alan Roger Owens
Andrew Banks
Original Assignee
Acordis Fibres (Holdings) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acordis Fibres (Holdings) Limited filed Critical Acordis Fibres (Holdings) Limited
Priority to AU47872/97A priority Critical patent/AU4787297A/en
Priority to DE19782020T priority patent/DE19782020T1/de
Publication of WO1998018983A1 publication Critical patent/WO1998018983A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes

Definitions

  • This invention relates to spmnerettes and spinning cells and has particular reference to spmnerectes and spinning cells suitable for the spinning of lyoceli filaments from a solution of cellulose m a solvent:, particularly a tertiary amme N-oxide.
  • an "organic solvent” means essentially a mixture of organic chemicals and water
  • solvent spinning means dissolving and spinning without the formation of a derivative
  • a lyoceli fibre is produced by the ⁇ irect dissolution of the cellulose m a water-containing organic solvent - typically N-methyl morpholme N-oxide - without the formation of an intermediate compound.
  • the cellulose is coagulated as a fibre.
  • This production process is different to chat of other cellulosic fibres, such as viscose, m which the cellulose is first converted into an intermediate compound which is then dissolved m an inorganic "solvent". The solution m the viscose process is extruded and the intermediate compound s converted back into cellulose.
  • the solution is extruded or spun through a suitable die assembly including an unspecified j et to produce filamentary material which is passed into water to regenerate the cellulose by leaching out the amme oxide solvent from the extruded filaments.
  • a tow essentially comprises a bundle of essentially parallel filaments which are not handled individually.
  • Staple fibre essentially comprises a mass of short strands of fibre. Staple fibre can be produced by the cutting of dry tow or it can be produced by forming a tow, cutting it whilst still wet, and drying the cut mass of staple fibre.
  • spinnerettes for the production of tow or staple fibre in comparison to spinnerettes used for the production of continuous filament material, it is economically essential to use spinnerettes with a large number- of spinning holes.
  • spinnerettes used for the production of tow or staple fibre the number of holes can be into thousands or even tens of thousands. Productivity can thus be increased traditionally by the use of more holes as well as high speeds.
  • the extruded fibres After leaving the spinnerettes or jets, the extruded fibres pass into a spinning cell, first passing through an air gap and then passing into a coagulation or spin bath.
  • This air gap is defined at the lower side by the surface of the spin bath and at the upper side by the spinnerette from which the extruded fibres or filaments emerge.
  • W094/28218 It is known from our international patent specification W094/28218 to provide a cross-draught across the air gap. This cross- draught is provided by a blow nozzle having an exit on one side of the air gap, and a suck nozzle having an entrance on the opposite side of the air gap to that of the blow nozzle.
  • the solution of cellulose in the organic solvent may be, and is preferably, passed through a jet assembly as described in our international patent specification
  • jet holes are a very expensive and time consuming process. Each jet hole has to be pierced individually. Very often the jet holes are of a complex shape and are produced by a series of drilling, punching or machining operations.
  • the present invention seeks to provide a means of increasing the production for a given number of jet holes, or, by using fewer jet holes, to achieve a similar plant capacity.
  • the invention particularly maximises the cooling effect of the cross -draught , and the removal of water vapour for stabilising the filaments.
  • Yet another aspect of the present invention aims to increase the production rate for a given plant speed by increasing the number of jet holes per unit area of jet.
  • a spinnerette for the production of lyoceli filaments and which is intended for use in a spinning cell provided with means for producing a cross draught, the spinnerette having jet holes arranged in columns and rows, the columns extending generally in the direction of the cross-draught and the rows extending generally transversely of the cross- draught , characterised in that the effect of the cross draught is maximised in at least one portion of the spinnerette by spacing the holes the columns a different distance apart to the holes in the rows
  • rows is intended to include zig-zag rows extending generally transversely or perpendicular to the columns and also covers concentrically arranged circular rows as may be used an annular spinnerette
  • the columns are substantially radiall aligned and the cross-draught is directed either radially inwardly or radially outwardly relative to the common axis of the circular rows
  • the maximum number of holes per column should not exceed forty five (45) holes per column
  • the number of e holes per column should not exceed thirty nine (39) jet holes and, more preferably, should not exceed thirty (30) jet holes
  • any one column should not exceed 2.0 mm and preferaoly should l e between 0.87 and 1.25 mm.
  • the spacing between adjacent columns is less than the spacing between adjacent rows.
  • the et holes being arranged in a pattern in which they form isosceles triangles, with the base of each triangle being formed between two adjacent jet holes in a column.
  • the minimum distance between adjacent columns is about 0.4 mm, and preferably about 0.49 mm and the base angles of isosceles triangles formed between the jet holes is less than 55° and preferably lies between 20-45°.
  • the present invention preferably relates to spinnerettes having preferably at least 3000 holes and up to 60,000 holes, preferably between 8,000-25,000 holes, and more preferably 8,000-13,000 holes, and more typically no more than 10,000 jet holes.
  • the columns of et holes extending from the blow side to the suck side of the spinnerette contain no more than forty five holes.
  • a spinning cell for the coagulation of lyoceli filaments from a dope of cellulose containing an organic solvent for cellulose including a spinnerette for the production of lyoceli filaments, a spin bath for leaching solvent from the filaments which is spaced by an air gap from the spinnerette, and means for providing a cross-draught across the air gap and over the filaments, the spinnerette being of a type according to the present invention
  • jet holes are provided a plurality of aperture plates held a spinnerette body so that the columns and rows of et holes are aligned, the number of jet holes each column is the total number of aligned et holes for the aligned aperture plates combining to form said columns
  • the invention further provides a method of spinning lyoceli filaments from a solution of cellulose an amme oxide solvent, comprising forcing the cellulose solution through a spinnerette having jet holes therein to form filaments of lyoceli through said jet holes, passing said filaments through an air gap into a spin bath to coagulate the filaments, and blowing a cross-draught of air across said air gap, the jet holes being arranged in columns and rows with the columns extending in the direction of the cross-draught and with the rows extending transversely of the cross -draught , and m order to maximise the cooling effect and water vapour removal of the cross draught at least one portion of the spinnerette, the spacing between tne holes in the columns is different from, preferanly greater than, the spacing between the holes in the rows.
  • said one portion there is a maximum of forty five jet holes m any column so that there is a maximum of forty five filaments m alignment the direction of the cross -draught .
  • Figure 1 is a cross-sectional view along a minor axis of a jet assembly
  • Figure 2 is a perspective view of a spinnerette
  • Figure 3 is a plan of the spinnerette shown in Figure 2;
  • Figure 4 is a cross-section taken on the line IV-IV of Figure 3 ;
  • Figure 5 is a plan of an individual aperture plate which is utilised in the spinnerette of Figure 3 ;
  • Figure 6 illustrates an example of one jet hole arrangement
  • Figure 7 shows the relationship between columns and rows of jet holes and in particular in relation to the cross-draught direction;
  • Figures 8 to 10 show various alternative jet holes arrangements ;
  • Figure 11 is a perspective view of the upper portion of a spinning cell
  • Figure 12 is a graph of spinnerette productivity versus the number of rows in the et arrangement.
  • Figure 13 is a graph of percentage productivity calculated against a standard versus the number of rows in the et arrangement.
  • this shows a jet assembly, of the type described n WO94/28209, located within an insulating cover 1 and frame 2.
  • the frame 2 s thermally insulated from its steel support structure, and has a bore 3 extending around the frame through which a suitable heating medium such as hot water, steam, or oil, can be passed to heat the lower end of the frame.
  • a suitable heating medium such as hot water, steam, or oil
  • the top housing forms an upper distribution chamber 7 into which s directed an inlet feedpipe 8.
  • the inlet feedpipe is provided with an O-ring seal 9 and a flange 10.
  • a locking ring 11 s bolted to the upper face 12 of the top housing 6 to trap the flange 10 to hold the inlet feedpipe on the top housing.
  • Suitable bolts or studs 13, 14 are provided to bolt the ring 11 to the top housing 6.
  • Bolted to the underside of the top housing 6 is a bottom housing 20.
  • a series of bolts 21, 22 are used to bolt the top and bottom housing together and an annular spacer 23 forms a positive stop to locate the top and bottom housings together at a predefined distance.
  • the bottom housing 20 has an inwardly directed flange portion 24 which has an annular upwardly directed face 25.
  • the upper housing 6 has an annular downwardly directed horizontal clamping face 26.
  • the spinnerette Clamped between the faces 25 and 26 is a spinnerette 60, a breaker plate 36 and a filter element 37.
  • the spinnerette shown m perspective view Figure 2, essentially comprises a rectangular member m plan view, having a top hat cross section and comprising an upwardly directed peripheral wall 28 incorporating an integral outwardly directed flange 29.
  • the spinnerette incorporates a plurality of aperture plates 64 which contain the holes through which the solution 33 of cellulose amme oxide is spun or extruded to form the filaments 34.
  • a gasket 35 Located on the upper surface of the flange 29 is a gasket 35. Located on top of the gasket 35 is the breaker plate 36 which essentially comprises an apertured plate used to support the filter element 37
  • the filter element 37 is formed of sintered metal, and if the sintered metal has a fine pore size, the pressure drop across the filter can, m use, deform the filter.
  • the breaker plate 36 therefore, supports the filter m use.
  • a pair of gaskets 38, 39 on either side of the filter element 37 completes the assembly located between the upwardly directed face 25 of the bottom housing and the downwardly directed face 26 of the top housing.
  • thermally insulating ring 40 which is generally rectangular in plan shape.
  • the thermally insulating ring extends around the complete periphery of the wall 28, which wall 28 extends below the lower face 41 of the bottom housing 20.
  • On one long side of the spinnerette there is provided an integral extension portion 42 of the insulating ring 40 which extends below a long wall portion 43 of the peripheral wall 28. Beneath the other long wall portion 43A of the peripheral wall 28 the insulating ring 40 does not have the integral extension portion 42, but the lower face 44 of the ring 40 is in the same plane as the lower face 46 of the portion 43A of the peripheral wall 28 of the spinnerette.
  • the spinnerette 60 shown in Figures 2 to 4 is essentially of rectangular shape, as shown in Figure 3.
  • the flange 29 may be provided with holes (not shown) .
  • the braced structure may in the case of an integral unit be machined from a single plate or thin slab.
  • the bracing walls 61 are formed parallel to the major axis of the spinnerette and the bracing wall 62 lies transversely thereto along the minor axis of the spinnerette.
  • the bracing walls form, together with the peripheral wall 28, a series of apertures or windows 63.
  • the material from which the outer wall and braces of the spinnerette are formed is preferably stainless steel and is further preferably stainless steel in accordance with AISI code 304.
  • the spinnerette 60 has an underside in a single plane and is capable of withstanding the high extrusion pressures experienced in spinning a hot cellulose solution in amine oxide.
  • the aperture plates 64 are substantially identical one with another and have a plurality of jet holes 70 formed therein (see Figure 7) . Details of the shape of the jet holes, and their formation are given in WO 94/28210.
  • Figure 6 discloses a typical prior art jet hole formation shown in WO 94/28210 in which the jet holes 70 are arranged at the corners of equilateral triangles with the bases of the triangles being parallel to one edge of the aperture plate.
  • the jet holes typically have a diameter in the range of 25- 150 microns depending upon the decitex of the fibre to be spun. More typically the jet holes diameter will be in the range of 50-120 microns.
  • the extruded fibres are passed to a spinning cell, of the type disclosed in patent specification WO 94/28218, the contents of which are incorporated herein by way of reference, which has a cross -draught of air in the air gap to cool the filaments as they emerge from the spinnerette.
  • a spinning cell of the type disclosed in patent specification WO 94/28218, the contents of which are incorporated herein by way of reference, which has a cross -draught of air in the air gap to cool the filaments as they emerge from the spinnerette.
  • the temperature at which the cellulose solution is extruded through the spinnerette is in the range 95°C to 125°C. If the temperature drops too low, the viscosity of the cellulose solution becomes so high that it is impractical to extrude it through a spinnerette.
  • the temperature of the solution - sometimes referred to as a dope - is maintained below 125°C, preferably below 115-110°C.
  • the temperature of the dope in the spinnerette is close to, at, or above, the boiling point of the water which is typically used in the spin bath.
  • the contents of the spin bath may be water alone or a mixture of water and NMMO. Because the NMMO is continuously leached from the filaments into the spin bath, the spin bath would during normal operation always contain NMMO .
  • this shows schematically the upper end of the spinning cell which has an air gap and a cross-draught arrangement.
  • the spinning cell has a spin bath 115 with an upper surface 116 defined by edges 117, 118, 119 and 120 of the spinning cell. Effectively, the edges act as dams or weirs and a slight excess of spin bath liquor is passed into the cell to flow over the weirs so as to form a surface 116 of constant location and therefore of fixed height .
  • a cross-draught in the form of air having a temperature m the range 10°C to 40°C and a relative numidity m the range of dew points -10°C to +10°C is blown across the air gap in the direction of arrow A from a blow nozzle 121 into a suction nozzle 122. Air is sucked through the nozzle 122 so as to maintain a parallel flow of air across the spin bath.
  • the thickness of the blow nozzle 121 is about one quarter to one fifth of the thickness of the suction nozzle 122.
  • the lower edge 123 of the suction nozzle 122 is substantially at the same level as the edge 119 of the spin bath. The edge 123 may be slightly below tne level of the spin bath edge 119. Air typically at 20°C is blown at 10 metres/second across the air gap.
  • blow nozzle 121 has a th ⁇ c ⁇ ness of aoout 5 mm and the air gap would then be about 18 to 20 mm.
  • the spinnerette produces filaments 125 which are passed through tne spin bath 115 for coagulation.
  • the spinnerette 60 is arranged with its major axis transverse to the direction A of the cross-draught, that is transverse to air passing from blow nozzle 121 to suction nozzle 122. This is shown m Figure 3.
  • the columns extend the direction of the cross -draught , substantially parallel thereto, and the rows are each of zig-zag form extending generally transversely to the cross -draught direction, i.e. generally perpendicular to the direction of the columns.
  • the present invention provides for particular jet arrangements with the jets being arranged in columns and rows, so as to provide for the optimum cooling effect of the cross-draught on the filaments emerging from the spinnerette.
  • Table 1 and Figure 12 relate to the number of rows of holes (i.e. number of holes per column) versus jet productivity expressed as an index based on 100 equating to a specified arrangement of jets.
  • Table 2 and Figure 13 relate to the number of rows of noles versus jet productivity expressed as an index of 100, as before, for different hole arrangements the et plates .
  • a 13k spinnerette i.e. a spinnerette having approximately 13 thousand jet holes
  • a 13k spinnerette of the type with a 80 micron hole jet arrangement as shown in Figure 6
  • the jet holes in each column are spaced by 1.2 mm and the columns are 1.039 mm apart. This is the reference jet arrangement defined as the index 100.
  • the jet arrangement could be altered to the arrangement shown in Figure 10 giving a 15k (approximately 15 thousand) j et-arrangement with 2518 holes per aperture plate arranged in 265 columns and 10/9 rows so that there are a maximum of 30 jet holes per column.
  • the columns are spaced apart by 0.66 mm and the rows are spaced apart by 1.556 mm.
  • FIG. 9 Yet another arrangement according to the present invention is shown in Figure 9 in which a 17.5 mm x 190 mm aperture plate has 341 columns in 11/10 rows to give a jet assembly of 21486 holes.
  • the columns of et holes are spaced apart by 0.544 mm, and the rows are spaced 1.25 mm apart.
  • the jet holes are arranged in zig-zag rows which extend generally perpendicular to the direction of the columns.
  • the jet holes form patterns of isosceles triangles, with the base of each isosceles triangle being located between adjacent holes in a column and the apex of the triangle being between the two base-defining holes in the adjacent column.
  • the base angles of the isosceles triangles change m dependence upon the column spacing. In such an arrangement, the base angle is preferably less than 55° and more preferably s from 20°- 45°
  • jet holes are possible according to the invention.
  • the rows of jet holes may be straight instead of being of zig-zag form with the holes m each row and column being aligned.
  • a single zig-zag row of jet holes could be considered as being two adjacent lines of jet holes with the individual jet holes each line off-set from each other In this case, the spacing between the two "lines” of a zig-zag row is half the spacing between adjacent rows of jet holes. It is even possible for the "rows" of jet holes to be arranged concentric circles with the "columns" being radially aligned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

L'invention a pour objet une filière (64) servant à fabriquer des filaments lyocellulaires, qui est destinée à être utilisée dans une cellule de filage à tirage d'air transversal (A). Ladite filière est munie de trous (70) de gicleurs, qui sont disposés en rangées et en colonnes, les colonnes s'étendant dans le sens du tirage d'air transversal (A) et les rangées s'étendant transversalement par rapport audit tirage d'air transversal. L'effet tirage d'air transversal est maximisé par le fait que les trous de filage des colonnes sont espacés les uns des autres par un écartement qui est de préférence plus important que celui des trous de filage des rangées ou en tout cas différent ce celui-ci.
PCT/GB1997/002960 1996-10-29 1997-10-28 Filiere WO1998018983A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU47872/97A AU4787297A (en) 1996-10-29 1997-10-28 Spinnerette
DE19782020T DE19782020T1 (de) 1996-10-29 1997-10-28 Spinnbrause

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9622444.9 1996-10-29
GBGB9622444.9A GB9622444D0 (en) 1996-10-29 1996-10-29 Spinnerette

Publications (1)

Publication Number Publication Date
WO1998018983A1 true WO1998018983A1 (fr) 1998-05-07

Family

ID=10802078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1997/002960 WO1998018983A1 (fr) 1996-10-29 1997-10-28 Filiere

Country Status (5)

Country Link
AU (1) AU4787297A (fr)
DE (1) DE19782020T1 (fr)
GB (1) GB9622444D0 (fr)
TW (1) TW371678B (fr)
WO (1) WO1998018983A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058103A1 (fr) * 1997-06-17 1998-12-23 Lenzing Aktiengesellschaft Procede de production de fibres de cellulose
DE102004024065A1 (de) * 2004-05-13 2005-12-08 Zimmer Ag Verfahren zum Herstellen von Endlosformkörpern und Spinnkopf
US7204265B2 (en) 2002-02-13 2007-04-17 Zimmer Aktiengesellschaft Bursting insert
US7303710B2 (en) * 2000-08-03 2007-12-04 Zimmer A.G. Method and device for extruding a continuous moulded body
DE102005040000B4 (de) * 2005-08-23 2010-04-01 Lenzing Ag Mehrfachspinndüsenanordnung und Verfahren mit Absaugung und Beblasung
CN104831383A (zh) * 2015-04-30 2015-08-12 中国纺织科学研究院 湿法喷丝板
EP3901333A1 (fr) 2020-04-22 2021-10-27 Aurotec GmbH Fabrication de filaments à débit gazeux commandé

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10252414B4 (de) * 2002-11-12 2007-04-26 Corovin Gmbh Nichtrunde Spinnplattenbohrung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD140400A3 (de) * 1978-03-10 1980-03-05 Reinhard Wagner Spinnduesenplatte mit mehr als sechs duesenbohrungen zum verspinnen synthetischer hochpolymerer
WO1994028218A1 (fr) * 1993-05-24 1994-12-08 Courtaulds Fibres (Holdings) Limited Cellule de filage
WO1994028209A1 (fr) * 1993-05-24 1994-12-08 Courtaulds Fibres (Holdings) Limited Ensemble de jets
WO1994028210A1 (fr) * 1993-05-24 1994-12-08 Courtaulds Fibres (Holdings) Limited Filiere
JPH07126910A (ja) * 1993-11-02 1995-05-16 Toray Ind Inc 溶融紡糸口金

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD140400A3 (de) * 1978-03-10 1980-03-05 Reinhard Wagner Spinnduesenplatte mit mehr als sechs duesenbohrungen zum verspinnen synthetischer hochpolymerer
WO1994028218A1 (fr) * 1993-05-24 1994-12-08 Courtaulds Fibres (Holdings) Limited Cellule de filage
WO1994028209A1 (fr) * 1993-05-24 1994-12-08 Courtaulds Fibres (Holdings) Limited Ensemble de jets
WO1994028210A1 (fr) * 1993-05-24 1994-12-08 Courtaulds Fibres (Holdings) Limited Filiere
JPH07126910A (ja) * 1993-11-02 1995-05-16 Toray Ind Inc 溶融紡糸口金

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 095, no. 008 29 September 1995 (1995-09-29) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058103A1 (fr) * 1997-06-17 1998-12-23 Lenzing Aktiengesellschaft Procede de production de fibres de cellulose
US6241927B1 (en) 1997-06-17 2001-06-05 Lenzing Aktiengesellschaft Method of producing cellulose fibers
CN1111617C (zh) * 1997-06-17 2003-06-18 连津格股份公司 制造纤维素纤维的方法
US7303710B2 (en) * 2000-08-03 2007-12-04 Zimmer A.G. Method and device for extruding a continuous moulded body
US7204265B2 (en) 2002-02-13 2007-04-17 Zimmer Aktiengesellschaft Bursting insert
DE102004024065A1 (de) * 2004-05-13 2005-12-08 Zimmer Ag Verfahren zum Herstellen von Endlosformkörpern und Spinnkopf
DE102005040000B4 (de) * 2005-08-23 2010-04-01 Lenzing Ag Mehrfachspinndüsenanordnung und Verfahren mit Absaugung und Beblasung
CN104831383A (zh) * 2015-04-30 2015-08-12 中国纺织科学研究院 湿法喷丝板
EP3901333A1 (fr) 2020-04-22 2021-10-27 Aurotec GmbH Fabrication de filaments à débit gazeux commandé

Also Published As

Publication number Publication date
AU4787297A (en) 1998-05-22
GB9622444D0 (en) 1997-01-08
DE19782020T1 (de) 1999-10-28
TW371678B (en) 1999-10-11

Similar Documents

Publication Publication Date Title
US5939000A (en) Process of making cellulose filaments
AU689107B2 (en) Spinnerette
EP3692188B1 (fr) Dispositif permettant l'extrusion de filaments et la fabrication de non-tissés meltspun
US6200120B1 (en) Die head assembly, apparatus, and process for meltblowing a fiberforming thermoplastic polymer
WO2005106085A1 (fr) Appareil, produit et procede pour former des bandes non tissees cellulosiques microfibres
JPH07102408A (ja) メルトブロー紡糸口金装置
US5171512A (en) Melt-blowing method having notches on the capillary tips
JPH02234909A (ja) リオトロピック液晶ポリマーからサブデニール繊維を製造する方法
WO1998018983A1 (fr) Filiere
EP0334653B1 (fr) Méthode et filière de filage par fusion-soufflage
US20050048152A1 (en) Device for spinning materials forming threads
JPH02145807A (ja) 溶融スピニングのための方法及び装置
DE102005040000B4 (de) Mehrfachspinndüsenanordnung und Verfahren mit Absaugung und Beblasung
JPH01260010A (ja) メルトブロー法による紡糸方法並びにメルトブロー用ダイ
EP0505617B1 (fr) Buse de filière pour filaments à section non-circulaire
Zhao Melt blown dies: a hot innovation spot
CN113622034B (zh) 利用受控气流的长丝的生产
CN217628745U (zh) 一种生产中空纤维的喷丝板
JP2790567B2 (ja) 紡糸口金
JPH01246406A (ja) メルトブロー法による紡糸方法並びにメルトブロー用ダイ
MXPA00006570A (en) Die head assembly, apparatus, and process for meltblowing a fiberforming thermoplastic polymer
JPH08209432A (ja) メルトブロー口金

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AT AU AZ BA BB BG BR BY CA CH CN CU CZ CZ DE DE DK DK EE EE ES FI FI GB GE GH HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
RET De translation (de og part 6b)

Ref document number: 19782020

Country of ref document: DE

Date of ref document: 19991028

WWE Wipo information: entry into national phase

Ref document number: 19782020

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607