WO1998014751A1 - Sensor zur berührungslosen dickenmessung an folien - Google Patents

Sensor zur berührungslosen dickenmessung an folien Download PDF

Info

Publication number
WO1998014751A1
WO1998014751A1 PCT/DE1996/001867 DE9601867W WO9814751A1 WO 1998014751 A1 WO1998014751 A1 WO 1998014751A1 DE 9601867 W DE9601867 W DE 9601867W WO 9814751 A1 WO9814751 A1 WO 9814751A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
sensor head
sensor according
film
head
Prior art date
Application number
PCT/DE1996/001867
Other languages
English (en)
French (fr)
Inventor
Martin Dumberger
Axel Seikowsky
Martin Sellen
Karl Wisspeintner
Original Assignee
Micro-Epsilon Messtechnik Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE19511939A priority Critical patent/DE19511939C2/de
Application filed by Micro-Epsilon Messtechnik Gmbh & Co. Kg filed Critical Micro-Epsilon Messtechnik Gmbh & Co. Kg
Priority to US09/269,444 priority patent/US6318153B1/en
Priority to DE59608814T priority patent/DE59608814D1/de
Priority to EP96945472A priority patent/EP0929790B1/de
Priority to JP51608698A priority patent/JP3253976B2/ja
Priority to PCT/DE1996/001867 priority patent/WO1998014751A1/de
Publication of WO1998014751A1 publication Critical patent/WO1998014751A1/de
Priority to HK00100424A priority patent/HK1023616A1/xx

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
    • G01B7/107Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance for measuring objects while moving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/08Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means
    • G01B7/087Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using capacitive means for measuring of objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2405Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by varying dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92428Calibration, after-treatment, or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92571Position, e.g. linear or angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/62Support for workpiece air film or bearing with positive or negative pressure

Definitions

  • the invention relates to a sensor for non-contact thickness measurement on foils, in particular on blown foils, with a sensor head and a holder for the sensor head, the sensor head comprising at least one non-contact sensor element for thickness measurement working in coordination with the physical properties of the foil.
  • the thickness of film strips is monitored during production with two displacement sensors arranged opposite one another by guiding the film strip between the displacement sensors.
  • This sensor arrangement is problematic in practice, since displacement sensors generally show non-linear behavior within their measuring range. By fluttering of the film strip to be monitored, by different strip thicknesses or by movement of the strip towards the displacement sensors or away from the displacement sensors, measurement errors occur which can be attributed to the non-linear behavior of the displacement sensors in the measuring range.
  • the known sensor arrangement is completely unsuitable for thickness measurements on blown films, since a blown film cannot be guided between the two displacement sensors. For this reason, probe arrangements for measuring the thickness of blown films have hitherto generally been used. However, since the thickness measurement should take place at a stage in the manufacturing process in which the film material is still soft and deformable, a tactile thickness measurement always leaves traces of the sensor head if it does not even lead to damage to the film strip and, in extreme cases, to tearing off the film strip.
  • the invention is therefore based on the object of specifying a sensor for measuring the thickness of foils with which, on the one hand, a contactless thickness measurement, in particular also on blown foils, is possible and, on the other hand, measurement errors due to the movement of the foil in the manufacturing process are largely avoided.
  • the sensor according to the invention achieves the above object by the features of claim 1.
  • the sensor mentioned at the outset is designed such that the position of the sensor head can be regulated in such a way that the sensor head is at a predeterminable, at least largely constant distance from the film during the entire measuring process is held in order to maintain a defined relative position between the sensor head and the film which randomly moves towards or away from the sensor head.
  • the position of the sensor head should therefore not only be adjusted once to the expected position of the film but should be controllable in such a way that the sensor head is kept at a predeterminable, at least largely constant distance from the film during the entire measuring process.
  • the sensor element delivers distance-independent measurement results in a small distance range between the sensor head and the film. In this way, minor inaccuracies in the position control of the sensor head can be neglected. Also a certain time lag between the film movement and the movement of the The sensor head does not yet have a negative effect on the measuring accuracy of the sensor if the distance between the sensor head and the film lies within the distance range of the distance-independent measurement results.
  • Capacitive sensor elements have proven particularly useful for measuring the thickness of blown films. Blown films are usually made of a plastic material which, as a dielectric, influences the capacitance of a capacitor arrangement. In contrast, inductive sensor elements are suitable in the case of an electrically conductive film material. Such materials interact with the field of a measuring coil and thereby influence the inductance of the measuring coil. Non-contact thickness measurements can also be carried out with optically operating sensor elements, which then requires a corresponding measuring arrangement and a suitable film material.
  • the sensor head is slidably mounted in the holder. This is particularly advantageous because the position of the sensor head essentially only has to be regulated perpendicular to the transport direction of the film. With a corresponding orientation of the holder, only a one-dimensional mobility of the sensor head is required, which is easiest to implement in a linear displacement.
  • Position control with the aid of a gas supply in the sensor head and at least one outlet opening arranged on the measurement side is particularly advantageous.
  • Gas is conducted via the gas supply and the outlet opening at a predetermined pressure onto the measurement object, namely the film. Two effects overlap, so that an air cushion forms between the sensor head and the film.
  • the film is pressed away from the sensor head due to the gas pressure, while on the other hand the film is attracted at least in the edge region of the sensor head due to the gas flowing laterally between the sensor head and the film and the resulting negative pressure.
  • the gas pressure is now matched to the arrangement and geometric configuration of the outlet opening and to the back pressure of the film, an air cushion forms between the sensor head and the film, the thickness of which determines the distance between the sensor head and the film. It is particularly advantageous with this procedure that, with a suitable selection of the operating parameters, an approximately constant distance between the sensor head and the film is established after a short transient process, which adjusts itself practically during the entire measuring process.
  • compressed gas as a means for position control of the sensor head also has several positive edge effects.
  • the gas passed through the sensor head onto the film serves for temperature stabilization and internal cooling of the measuring arrangement. As a result, temperature-related measurement errors can be largely avoided.
  • the gas can optionally also be used for the further treatment of the film material.
  • the self-regulating effect of the sensor arrangement described above can be further enhanced by the special design of the sensor head.
  • the measuring side of the sensor head is plate-shaped and a plurality of outlet openings are preferably arranged concentrically around the position of the sensor element, preferably in the middle of the plate. In this case, a relatively large air cushion can form in the area of the sensor element.
  • the suction effect between the plate and the film can be regulated in that grooves or grooves are formed in the plate of the sensor head on the measuring side, into which the outlet openings open.
  • a sensor head shows a different position control behavior depending on the orientation of the grooves and grooves.
  • the distance between the sensor head and the film can be regulated in an advantageous manner via the gas pressure in connection with the dimensioning and arrangement of the outlet openings and the dimensioning, arrangement and orientation of the grooves or grooves for a given back pressure of the film.
  • a tube arranged at the end of the sensor head is a suitable gas supply. It is also advantageous if the sensor head is mounted in the holder so that it can be moved over the tube.
  • the bearing of the sensor head or the tube should be as low-friction as possible.
  • a preferred possibility is to arrange the sensor head in the holder via air bearings, so that the sensor head can be moved essentially without friction.
  • the holder could comprise a guide tube for the tube carrying the sensor head, in the wall of which passage openings for the introduction of air are formed. The tube would then be able to slide back and forth on an air cushion within the guide tube.
  • the holder for the sensor head could include an adjustment device for rough adjustment of the position of the sensor head and for "stiffening" the holder of the sensor head.
  • the stiffening is intended to dampen the system by suppressing high-frequency movement of the sensor head.
  • a delivery device could advantageously include a controlled drive, the distance between the sensor head and the film serving as the controlled variable.
  • the sensor according to the invention for non-contact thickness measurement could include an additional distance sensor. This could work, for example, capacitively, inductively or according to the ultrasound measuring principle. Other measurement methods depending on the film material, such as e.g. the optical measuring principle. Since the distance sensor is intended to roughly adjust the sensor head, it is advantageous if the distance sensor itself is also arranged on the sensor head.
  • the feed device could be driven pneumatically, for example, which in particular in connection with position control of the sensor head with the aid of a Gas supply in the sensor head is advantageous.
  • a pressure chamber could be formed in the guide tube through which the tube carrying the sensor head is guided.
  • the tube could be provided with a pressure plate arranged in the area of the pressure chamber and oriented perpendicular to the direction of movement of the sensor head, so that the pressure plate divides the pressure chamber into two subchambers.
  • each of the partial chambers is now provided with a connection to a gas line which is led into the sensor head, changes in the pressure conditions in front of the sensor head and thus changes in the distance between the sensor head and the film have a direct effect on the pressure conditions in the two partial chambers of the pressure chamber out.
  • a high-frequency movement of the sensor head can be counteracted and a kind of damping and stabilization of the position of the sensor head can be achieved.
  • the feed device could also be driven electrically or magnetically.
  • a piezo motor could serve as the drive, for example, or a spindle in the case of a mechanical variant.
  • the damping of the holder of the sensor head or the suppression of very high-frequency movements of the sensor head is particularly important if line connections are provided for feeding energy into the sensor head and / or for signal transmission between the sensor head and an evaluation / control unit.
  • these line connections can be realized by very thin coaxial cables, which impair the movement of the sensor head as little as possible, but nevertheless represent a mechanical coupling between the displaceably mounted sensor head and a stationary sensor part.
  • Such line connections are particularly susceptible to high-frequency movements. When the system is damped, i.e. by suppressing high-frequency movements, this weak point of the sensor according to the invention can largely be remedied.
  • the energy is fed into the sensor head without contact, ie without a corresponding one Line connection between the movably mounted sensor head and a stationary sensor part.
  • the energy feed could be done inductively according to the transformer principle. If, in addition, the signal transmission between the sensor head and an evaluation / control unit also takes place without contact, there is no longer any mechanical coupling between the sensor head and the stationary sensor part, so that the movement of the sensor head can take place unimpeded. A line break due to high-frequency movements of the sensor head can no longer occur here.
  • the signal transmission between the sensor head and the control unit could be optical, inductive or capacitive. It is particularly advantageous to use a transmitter / receiver device for signal transmission.
  • this transmitter / receiver device has a corresponding modulation device
  • the signal modulation methods known from signal transmission, pulse code modulation, frequency modulation and amplitude modulation can be applied to the signals to be transmitted, so that a certain susceptibility to errors during signal transmission is also ensured leaves.
  • the evaluation / control unit used in the context of the sensor according to the invention, it should also be noted that this can also be partially integrated into the sensor head.
  • an oscillating circuit can already be arranged in the sensor head as part of the evaluation circuit.
  • the measurement signals are primarily to be evaluated, i.e. the thickness of the film can be determined.
  • the distance between the sensor head and the film can also be determined and used to control the drive of the feed device.
  • the evaluation / control unit could also be equipped with electronics for monitoring the installed state of the sensor head, for checking the overall function of the sensor, for example for checking the gas pressure, and for assigning the measured thickness values to the measurement location, i.e. to the position on the slide.
  • two timers could also be provided, which in addition to the thickness measurement values also record time information, via which the measurement location can then be determined.
  • FIG. 1 shows a longitudinal section through a sensor according to the invention for non-contact thickness measurement on foils
  • FIG. 2 shows a sensor according to the invention with a pneumatically operating delivery device
  • FIG. 3 shows a further sensor according to the invention with a feed device and an actuator
  • Figure 4 shows a sensor according to the invention, in which the energy supply and signal transmission takes place without contact.
  • the sensor 1 is particularly suitable for non-contact thickness measurement on blown films. To produce such films, the heated starting material is extruded and blown at the same time.
  • the thickness measurement with the aid of the sensor 1 according to the invention takes place during the production process at a point in time at which the film material 2 has not yet completely cooled and hardened. Such thickness measurements are carried out for quality control during the manufacturing process, in order to identify material or process-related production errors at an early stage and to be able to take countermeasures.
  • the non-contact thickness measurement enables quality control here without the deformable film being impaired in any way.
  • the sensor 1 shown here comprises a sensor head 3 and a holder 4 for the sensor head.
  • the sensor head 3 comprises at least one non-contact sensor element (not shown here) that works in coordination with the physical properties of the film 2 for thickness measurement.
  • the position of the sensor head 3 can be regulated in such a way that the sensor head 3 is kept at a predeterminable, at least largely constant, distance from the film 2 during the entire measuring process.
  • any contact-free sensor element suitable for thickness measurement can be used in the context of the sensor according to the invention.
  • Which measurement method is ultimately used depends crucially on the physical properties of film 2. It is advantageous if the sensor element delivers distance-independent measurement results at least in a small distance range between sensor head 3 and film 2 and the distance between sensor head 3 and film 2 also lies within the distance range of the distance-independent measurement results. Then measurements that are comparatively prone to errors can be carried out.
  • the senor 1 comprises a capacitively operating sensor element for thickness measurement.
  • the sensor head 3 of the sensor 1 shown here is slidably mounted in the holder 4, which is indicated by the double arrow 5.
  • the sensor head 3 can then be moved perpendicular to the film 2 or to the transport direction of the film 2.
  • the sensor head 3 has a gas supply 6 and a plurality of outlet openings 7 on the measurement side.
  • the measuring side of the sensor head 3 is plate-shaped (8).
  • One of the outlet openings 7 is only shown as an example.
  • the outlet openings 7 are arranged concentrically at a certain distance around the center of the plate, where the sensor element is located.
  • the outlet openings 7 open into grooves or grooves formed on the measuring side in the plate 8, which cannot be seen in FIG. 1.
  • compressed air is passed through the sensor head 3 onto the film 2.
  • an air cushion is formed in the area of the sensor element, i.e. the plate center, between the sensor head 3 and Slide 2 off. This is due on the one hand to the pressure exerted on the film 2 by the compressed air and on the other hand to the negative pressure between the sensor head 3 or the plate 8 and the film 2 in the edge regions of the plate 8. This is because the relative position between the sensor head and the film 2 is stabilized.
  • a short settling phase there is a constant distance between the sensor head 3 and the film 2. This also applies during the transport of the film 2 in the event that the film 2 may flutter. This means that a non-contact and distance-independent thickness measurement is also possible on the running, still soft elastic Slide 2 possible.
  • the compressed air emerging from the sensor head 3 also has a cooling effect, so that the thickness measurements are carried out in a constant temperature range and measurement errors due to temperature fluctuations are largely avoided.
  • the sensor head 3 is arranged at the end on a tube 9 which at the same time serves as a gas supply 6 for the sensor head 3.
  • the sensor head 3 is slidably mounted in the holder 4 via the tube 9.
  • the holder 4 comprises a housing 10 with a guide tube 11 for the tube 9.
  • passage openings 12 are formed for the introduction of air, which ultimately serve as air bearings 13 for the tube 9 and thus for the sensor head 3.
  • the sensor head 3 is slidably mounted in the holder 4 essentially without friction.
  • the holder of the sensor 1 could also include an additional device for rough adjustment and stabilization of the position of the sensor head.
  • a sensor 1 is shown in FIG. 2 with a pneumatically operating delivery device.
  • the sensor head 3 is also slidably supported here by what Double arrow 5 is indicated.
  • the measuring head 3 is attached to a tube 9 which is slidably mounted in a guide tube 11.
  • a pressure chamber 14 is formed in the guide tube 11, through which the tube 9 is guided.
  • a pressure plate 15 is arranged on the tube 9, which is dimensioned such that it divides the pressure chamber 14 into two partial chambers 16 and 17.
  • Each of the two sub-chambers 16 and 17 is connected to a gas line 18, 19, which in turn are guided into the sensor head 3.
  • the dynamic pressure which builds up between the sensor head 3 and the film (not shown in FIG. 2) has a direct effect on the pressures prevailing in the subchambers 16 and 17.
  • the dynamic pressure in turn is dependent on the distance between the measuring head 3 and the film.
  • a change in the distance results in a pressure difference between the pressures prevailing in the two subchambers 16 and 17.
  • a force is exerted on the pressure plate 15 and thus on the tube 9.
  • FIG. 3 is intended to illustrate that the position of the sensor head 3 can also be stabilized with the aid of a feed device comprising an actuator.
  • an actuator 20 is arranged on the holder 4 of the sensor head 3, via which the tube 9 can be moved within the guide tube 11.
  • the actuator 20 can be an electrically or magnetically operated drive.
  • a piezomotor or a spindle can also be used as a mechanical drive.
  • the sensor 1 comprises, in addition to the sensor element 21 with which the thickness of the film is detected, a distance sensor 22 with which the distance between the sensor head 3 and the film is determined. This distance value serves as a controlled variable for the actuator 20, which is indicated in FIG.
  • the sensor is implemented in the sensor system, namely that the distance sensor 22 is arranged around the sensor element 21 that detects the thickness of the film. In this way it is ensured that the distance sensor 22 actually determines the distance between the sensor element 21 and the film which is relevant for the measurement.
  • both a coarse adjustment of the position of the sensor head and a stabilization of this position i.e. suppress high-frequency movements of the sensor head.
  • This is particularly important if the energy supply and / or the signal transmission from the sensor head to an evaluation control circuit is via line connections.
  • Such line connections must be so thin and delicate that they affect the movement of the sensor head as little as possible. As a result, however, they have only a very low mechanical stability, so that they break quickly, particularly by high-frequency movements.
  • FIG. 4 shows an embodiment of the sensor 1 according to the invention, in which the energy is fed in contactlessly, namely inductively according to the transformer principle.
  • a coil 24 is arranged both in the area of the guide tube 11 and in the corresponding area of the tube 9, via which the energy is fed into the sensor head 3.
  • the transmission of the measurement signals from the sensor head 3 to an evaluation / control device 25, which is arranged externally, for example in the housing of the sensor 1, also takes place here in a contactless manner with the aid of a transmitter / receiver device 26.
  • the signal transmission could also be done optically, for example respectively.
  • part of the evaluation circuit is arranged, which comprises a preamplifier 27.
  • the amplified signal is then sent to the evaluation control circuit 25.
  • the measurement signal can also be modulated beforehand, for example pulse-code modulation, frequency modulation or also amplitude modulation.
  • a rough adjustment of the distance between sensor head and foil is generally carried out with the aid of an additional distance sensor.
  • the fine adjustment of the distance between the sensor head and the film takes place automatically by using compressed air to create a small air gap or an air cushion between the sensor head and the film, the width of which is preferably in the range of the distance-independent measurement results of the sensor element for thickness measurement.
  • the sensor head is still frictionlessly mounted within the holder of the sensor, so that not only the position of the film itself is modified, but also the position of the sensor head.
  • the distance between the sensor head and the film is thus kept constant by regulating the relative position between the sensor head and the film.
  • teaching according to the invention is not only suitable for measuring the thickness of blown films, but is generally suitable for measuring the thickness of films made of any material.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

Es wird ein Sensor (1) zur berührungslosen Dickenmessung an Folien (2), insbesondere an Blasfolien, mit einem Sensorkopf (3) und einer Halterung (4) für den Sensorkopf (3) vorgeschlagen, der trotz transportbedingter Bewegungen der Folie (2) zuverlässige Meßergebnisse liefert und sich besonders für eine kontinuierliche Qualitätskontrolle während des Herstellungsprozesses eignet. Erfindungsgemäß umfaßt der Sensorkopf (3) mindestens ein berührungslos, in Abstimmung auf die physikalischen Eigenschaften der Folie (2) arbeitendes Sensorelement zur Dickenmessung. Außerdem ist die Position des Sensorkopfes (3) derart regelbar, daß der Sensorkopf (3) während des gesamten Meßvorgangs in einem vorgebbaren, zumindest weitgehend konstanten Abstand zu der Folie (2) gehalten ist.

Description

"Sensor zur berührungslosen Dickenmessung an Folien"
Die Erfindung betrifft einen Sensor zur berührungslosen Dickenmessung an Folien, insbesondere an Blasfolien, mit einem Sensorkopf und einer Halterung für den Sensorkopf, wobei der Sensorkopf mindestens ein berührungslos, in Abstimmung auf die physikalischen Eigenschaften der Folie arbeitendes Sensorelement zur Dickenmessung umfaßt.
Sensoren zur berührungslosen Dickenmessung sind in den verschiedensten Ausführungen aus der Praxis bekannt. Beispielsweise wird die Dicke von Folienbändern während der Fertigung mit zwei einander gegenüberliegend angeordneten Wegmeßsensoren überwacht, indem das Folienband zwischen den Wegmeßsensoren geführt wird. Diese Sensoranordnung ist in der Praxis problematisch, da Wegmeßsensoren in der Regel innerhalb ihres Meßbereichs ein nichtlineares Verhalten zeigen. Durch Flattern des zu überwachenden Folienbandes, durch unterschiedliche Banddicken oder durch Bewegung des Bandes zu den Wegmeßsensoren hin oder von den Wegmeßsensoren weg treten Meßfehler auf, die auf das nichtlineare Verhalten der Wegmeßsensoren im Meßbereich zurückzuführen sind.
Für Dickenmessungen an Blasfolien ist die bekannte Sensoranordnung gänzlich ungeeignet, da sich eine Blasfolie nicht zwischen den beiden Wegmeßsensoren führen läßt. Daher wurden bislang in der Regel tastende Sensoranordnungen zur Dickenmessung an Blasfolien verwendet. Da die Dickenmessung aber in einem Stadium des Herstellungsverfahrens erfolgen soll, in dem das Folienmaterial noch weich und verformbar ist, hinterläßt eine tastende Dickenmessung immer Schleifspuren des Sensorkopfes, wenn sie nicht sogar zu Beschädigungen des Folienbandes und im Extremfalle zum Abreißen des Folienbandes führt.
Der Erfindung liegt daher die Aufgabe zugrunde, einen Sensor zur Dickenmessung an Folien anzugeben, mit dem einerseits eine berührungslose Dickenmessung, insbesondere auch an Blasfolien, möglich ist und andererseits Meßfehler bedingt durch die Bewegung der Folie im Fertigungsprozeß weitgehend vermieden werden. Der erfindungsgemäße Sensor löst die voranstehende Aufgabe durch die Merkmale des Patentanspruches 1. Danach ist der eingangs genannte Sensor derart ausgebildet, daß die Position des Sensorkopfes derart regelbar ist, daß der Sensorkopf während des gesamten Meßvorgangs in einem vorgebbaren, zumindest weitgehend konstanten Abstand zu der Folie gehalten ist, um eine definierte Relativlage zwischen dem Sensorkopf und der sich zufällig auf den Sensorkopf zu oder von diesem weg bewegenden Folie einzuhalten.
Erfindungsgemäß ist erkannt worden, daß insbesondere für Messungen an Folien während des Herstellungsprozesses berührungslos arbeitende Sensorelemente zu bevorzugen sind, da diese den Verformungsprozeß des Folienmaterials keinesfalls beeinflussen können. Es ist ferner erkannt worden, daß die Wahl des Sensorelements bzw. eines geeigneten Meßverfahrens wesentlich von den physikalischen Eigenschaften des Folienmaterials abhängt. Schließlich ist noch erkannt worden, daß bei allen berührungslos arbeitenden Sensorelementen Voraussetzung für eine möglichst zuverlässige Meßwerterfassung ein definierter Abstand zwischen dem Sensorelement und dem Meßobjekt, hier der Folie, ist. Davon ausgehend ist erkannt worden, daß ein definierter Abstand zwischen Sensorkopf bzw. Sensorelement und der Folie nicht notwendigerweise eine Fixierung der Folie gegenüber dem Sensorkopf erfordert, sondern daß lediglich eine definierte Relativlage zwischen der Folie und dem Sensorkopf eingehalten werden muß. Erfindungsgemäß wird daher vorgeschlagen, die Position des Sensorkopfes dynamisch an die Lage der Folie anzupassen. Die Position des Sensorkopfes soll also nicht lediglich einmal auf die voraussichtliche Lage der Folie eingestellt werden sondern soll derart regelbar sein, daß der Sensorkopf während des gesamten Meßvorganges in einem vorgebbaren, zumindest weitgehend konstanten Abstand zu der Folie gehalten ist. Das heißt, erfindungsgemäß wird nicht ausschließlich die Folienlage fixiert sondern auch die Lage des Sensorkopfes auf die Bewegung der Folie abgestimmt.
In einer besonders vorteilhaften Ausführungsform des erfindungsgemäßen Sensors liefert das Sensorelement in einem kleinen Abstandsbereich zwischen Sensorkopf und Folie abstandsunabhängige Meßergebnisse. Auf diese Weise können kleinere Ungenauigkeiten bei der Positionsregelung des Sensorkopfes vernachlässigt werden. Auch ein gewisser Zeitversatz zwischen der Folienbewegung und der Bewegung des Sensorkopfes wirkt sich dann noch nicht negativ auf die Meßgenauigkeit des Sensors aus, wenn der Abstand zwischen Sensorkopf und Folie innerhalb des Abstandsbereichs der abstandsunabhängigen Meßergebnisse liegt.
insbesondere zur Dickenmessung an Blasfolien haben sich kapazitiv arbeitende Sensorelemente bewährt. Blasfolien werden nämlich in der Regel aus einem Kunststoffmaterial hergestellt, welches als Dielektrikum die Kapazität einer Kondensatoranordnung beeinflußt. Im Gegensatz dazu bieten sich induktive Sensorelemente im Falle eines elektrisch leitfähigen Folienmaterials an. Derartige Materialien wechselwirken mit dem Feld einer Meßspule und beeinflussen dadurch die Induktivität der Meßspule. Berührungslose Dickenmessungen können auch mit optisch arbeitenden Sensorelementen durchgeführt werden, was dann eine entsprechende Meßanordnung und ein geeignetes Folienmaterial erfordert.
In einer vorteilhaften Ausgestaltung des erfindungsgemäßen Sensors ist der Sensorkopf in der Halterung verschiebbar gelagert. Dies ist insbesondere deshalb vorteilhaft, weil die Position des Sensorkopfes im wesentlichen nur senkrecht zur Transportrichtung der Folie geregelt werden muß. Bei entsprechender Orientierung der Halterung ist also lediglich eine eindimensionale Beweglichkeit des Sensorkopfes erforderlich, die sich am einfachsten in einer Linearverschiebung realisieren läßt.
Grundsätzlich sind ganz unterschiedliche Antriebsmittel zur Positionsregelung des Sensorkopfes denkbar.
Besonders vorteilhaft ist eine Positionsregelung mit Hilfe einer Gaszuführung im Sensorkopf und mindestens einer meßseitig angeordneten Austrittsöffnung. Über die Gaszuführung und die Austrittsöffnung wird Gas mit einem vorbestimmten Druck auf das Meßobjekt, nämlich die Folie, geleitet. Dabei überlagern sich zwei Effekte, so daß sich zwischen dem Sensorkopf und der Folie ein Luftpolster ausbildet. Einerseits wird die Folie aufgrund des Gasdrucks vom Sensorkopf weggedrückt, während die Folie andererseits zumindest im Randbereich des Sensorkopfes aufgrund des seitlich zwischem dem Sensorkopf und der Folie wegströmenden Gases und des dadurch entstehenden Unterdrucks angezogen wird. Wird nun der Gasdruck auf die Anordnung und geometrische Ausgestaltung der Austrittsöffnung abgestimmt sowie auf den Gegendruck der Folie, so bildet sich ein Luftpolster zwischen dem Sensorkopf und der Folie aus, dessen Dicke den Abstand zwischen dem Sensorkopf und der Folie bestimmt. Besonders vorteilhaft bei dieser Vorgehensweise ist, daß sich bei geeigneter Wahl der Betriebsparameter nach einem kurzen Einschwingvorgang ein annähernd konstanter Abstand zwischen Sensorkopf und Folie einstellt, der sich praktisch während des gesamten Meßvorgangs selbst einregelt.
Die Verwendung von Druckgas als Mittel zur Positionsregelung des Sensorkopfes hat außerdem noch mehrere positive Randeffekte. Zum einen dient das durch den Sensorkopf auf die Folie geleitete Gas zur Temperaturstabilisierung und Innenkühlung der Meßanordnung. Dadurch können auch temperaturbedingte Meßfehler weitgehend vermieden werden. Zum anderen kann das Gas je nach Zusammensetzung gegebenenfalls noch zur Weiterbehandlung des Folienmaterials verwendet werden.
Besonders einfach, kostengünstig und daher vorteilhaft ist es, wenn als Gas Druckluft verwendet wird. Denkbar wäre aber auch der Einsatz eines Schutzgases oder eines Gases, das sich günstig auf das Folienmaterial auswirkt.
Der selbstregulierende Effekt der voranstehend beschriebenen Sensoranordnung kann noch durch die spezielle konstruktive Ausgestaltung des Sensorkopfes positiv verstärkt werden. In diesem Zusammenhang ist es vorteilhaft, wenn die Meßseite des Sensorkopfes plattenförmig ausgebildet ist und mehrere Austrittsöffnungen vorzugsweise konzentrisch um die Position des Sensorelements, vorzugsweise in der Plattenmitte, angeordnet sind. In diesem Falle kann sich ein relativ großes Luftpolster im Bereich des Sensorelements ausbilden.
Der Ansaugeffekt zwischen der Platte und der Folie, kann dadurch reguliert werden, daß meßseitig in der Platte des Sensorkopfes Nuten bzw. Rillen ausgebildet sind, in die die Austrittsöffnungen münden. Ein derartiger Sensorkopf zeigt je nach der Orientierung der Nuten und Rillen ein unterschiedliches Positionsregelverhalten. Insgesamt läßt sich also der Abstand zwischen dem Sensorkopf und der Folie bei vorgegebenem Gegendruck der Folie in vorteilhafter Weise über den Gasdruck in Verbindung mit der Dimensionierung und Anordnung der Austrittsöffnungen sowie der Dimensionierung, Anordnung und Orientierung der Nuten oder Rillen regeln. Als Gaszuführung bietet sich in einer vorteilhaften Ausgestaltung des erfindungsgemäßen Sensors ein endseitig am Sensorkopf angeordnetes Rohr an. Zusätzlich von Vorteil ist es, wenn der Sensorkopf über das Rohr verschiebbar in der Halterung gelagert ist. Im Hinblick auf eine Selbstregelung der Position des Sensorkopfes sollte die Lagerung des Sensorskopfes bzw. des Rohres möglichst reibungsarm sein. Eine bevorzugte Möglichkeit besteht darin, den Sensorkopf über Luftlager in der Halterung anzuordnen, so daß der Sensorkopf im wesentlichen reibungsfrei verschiebbar ist. Die Halterung könnte dazu ein Führungsrohr für das den Sensorkopf tragende Rohr umfassen, in dessen Wandung Durchtrittsöffnungen zur Einleitung von Luft ausgebildet sind. Das Rohr würde dann quasi auf einem Luftkissen innerhalb des Führungsrohres hin und her gleiten können.
Zusätzlich zu der Feineinstellung der Sensorkopfposition könnte die Halterung für den Sensorkopf eine ZuStelleinrichtung zur Grobeinstellung der Position des Sensorkopfes und zur "Versteifung" der Halterung des Sensorkopfes umfassen. Die Versteifung soll eine Dämpfung des Systems bewirken, durch die eine hochfrequente Bewegung des Sensorkopfes unterdrückt wird. Eine solche ZuStelleinrichtung könnte in vorteilhafter Weise einen geregelten Antrieb umfassen, wobei der Abstand zwischen Sensorkopf und Folie als Regelgröße dient. Um nun auch die Grobeinstellung der Position des Sensorkopfes soweit wie möglich zu automatisieren, könnte der erfindungsgemäße Sensor zur berührungslosen Dickenmessung einen zusätzlichen Abstandssensor umfassen. Dieser könnte beispielsweise kapazitiv, induktiv oder nach dem Ultraschall-Meßprinzip arbeiten. Denkbar wären aber auch andere Meßverfahren in Abhängigkeit von dem Folienmaterial, wie z.B. das optische Meßprinzip. Da der Abstandssensor der Grobeinstellung des Sensorkopfes dienen soll, ist es vorteilhaft, wenn der Abstandssensor auch selbst am Sensorkopf angeordnet ist.
Genauso wie ganz unterschiedliche Antriebsmittel zur Positionsregelung des Sensorkopfes eingesetzt werden können, sind auch unterschiedliche Antriebsformen für die ZuStelleinrichtung denkbar.
Der Antrieb der ZuStelleinrichtung könnte bspw. pneumatisch erfolgen, was insbesondere in Verbindung mit einer Positionsregelung des Sensorkopfes mit Hilfe einer Gaszuführung im Sensorkopf vorteilhaft ist. Im Falle der in diesem Zusammenhang bereits beschriebenen Sensoranordnung könnte dazu in dem Führungsrohr eine Druckkammer ausgebildet sein, durch die das den Sensorkopf tragende Rohr geführt ist. Das Rohr könnte mit einer im Bereich der Druckkammer angeordneten und senkrecht zur Bewegungsrichtung des Sensorkopfes orientierten Druckplatte versehen sein, so daß die Druckplatte die Druckkammer in zwei Teilkammern aufteilt. Ist nun jede der Teilkammern mit einem Anschluß an eine Gasleitung versehen, welche in den Sensorkopf geführt ist, so wirken sich Veränderungen der Druckverhältnisse vor dem Sensorkopf und damit Änderungen des Abstandes zwischen dem Sensorkopf und der Folie direkt auf die Druckverhältnisse in den beiden Teilkammern der Druckkammer aus. Durch entsprechenden Anschluß der beiden Teilkammern an die Gasleitungen kann einer hochfrequenten Bewegung des Sensorkopfes entgegengewirkt werden und also eine Art Dämpfung und Stabilisierung der Lage des Sensorkopfes erzielt werden.
Der Antrieb der ZuStelleinrichtung könnte aber auch elektrisch oder magnetisch erfolgen. Als Antrieb könnte beispielsweise ein Piezomotor dienen oder auch im Falle einer mechanischen Variante eine Spindel.
Die Dämpfung der Halterung des Sensorkopfes bzw. das Unterdrücken von sehr hochfrequenten Bewegungen des Sensorkopfes ist insbesondere dann wichtig, wenn Leitungsverbindungen zur Energieeinspeisung in den Sensorkopf und/oder zur Signalübertragung zwischen dem Sensorkopf und einer Auswerte-/Regeleinheit vorgesehen sind. In der Praxis können diese Leitungsverbindungen durch sehr dünne Koaxialkabel realisiert sein, die die Bewegung des Sensorkopfes möglichst wenig beeinträchtigen, aber dennoch eine mechanische Kopplung zwischen dem verschiebbar gelagerten Sensorkopf und einem stationären Sensorteil darstellen. Solche Leitungsverbindungen sind besonders anfällig gegen hochfrequente Bewegungen. Bei einer Dämpfung des Systems, d.h. durch Unterdrückung von hochfrequenten Bewegungen, läßt sich diese Schwachstelle des erfindungsgemäßen Sensors jedoch weitgehend beheben.
In einer besonders vorteilhaften Variante des erfindungsgemäßen Sensors erfolgt die Energieeinspeisung in den Sensorkopf berührungslos, d.h. ohne eine entsprechende Leitungsverbindung zwischen dem beweglich gelagerten Sensorkopf und einem stationären Sensorteil. Die Energieeinspeisung könnte dazu induktiv nach dem Transformatorprinzip erfolgen. Wenn außerdem auch die Signalübertragung zwischen dem Sensorkopf und einer Auswerte-/Regeleinheit berührungslos erfolgt, besteht keine mechanische Kopplung zwischen dem Sensorkopf und dem stationären Sensorteil mehr, so daß die Bewegung des Sensorkopfes ungehindert erfolgen kann. Ein Leitungsbruch aufgrund hochfrequenter Bewegungen des Sensorkopfes kann hier auch nicht mehr auftreten. Die Signalübertragung zwischen dem Sensorkopf und der Aus- werteVRegeleinheit könnte optisch, induktiv oder auch kapazitiv erfolgen. Besonders vorteilhaft ist es, eine Sender/Empfänger-Einrichtung zur Signalübertragung einzusetzen. Verfügt diese Sender/Empfänger-Einrichtung über eine entsprechende Modulationseinrichtung, so lassen sich die aus der Signalübertragung bekannten Signalmodulationsverfahren, Puls-Code-Modulation, Frequenzmodulation und Amplitudenmodulation, auf die zu übertragenden Signale anwenden, so daß sich auch eine gewisse Fehlerunanfälligkeit bei der Signalübertragung gewährleisten läßt. In jedem Falle ist es vorteilhaft, die Meßsignale vor der Signalübertragung vom Sensorkopf zu der AuswerteVRegeleinheit mit Hilfe eines Vorverstärkers zu verstärken.
Hinsichtlich der im Rahmen des erfindungsgemäßen Sensors eingesetzten Auwerte- /Regeleinheit sei noch angemerkt, daß diese auch teilweise in den Sensorkopf integriert sein kann. Zum Beispiel kann im Sensorkopf bereits ein Schwingkreis als Teil der Auswerteschaltung angeordnet sein. Mit Hilfe der Auswerte-/Regeleinheit sollen in erster Linie die Meßsignale ausgewertet werden, d.h. die Dicke der Folie bestimmt werden. Zusätzlich läßt sich aber auch der Abstand zwischen dem Sensorkopf und der Folie bestimmen und zur Regelung des Antriebs der ZuStelleinrichtung einsetzen. Die Auswerte-/Regeleinheit könnte zusätzlich noch mit einer Elektronik ausgestattet sein zur Überwachung des Einbauzustandes des Sensorkopfes, zur Funktionskontrolle des Sensors insgesamt, bspw. zur Kontrolle des Gasdrucks, und zur Zuordnung der Dickenmeßwerte zum Meßort, d.h. zur Position an der Folie. Dazu könnten zusätzlich zwei Timer vorgesehen sein, die zusätzlich zu den Dickenmeßwerten auch Zeitinformationen erfassen, über die sich dann der Meßort bestimmen läßt.
Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die dem Patentanspruch 1 nachgeordneten Ansprüche, andererseits auf die nachfolgende Erläuterung eines Ausführungsbeispiels der Erfindung anhand der Zeichnung zu verweisen. In Verbindung mit der Erläuterung des bevorzugten Ausführungsbeispiels der Erfindung anhand der Zeichnung werden auch im allgemeinen bevorzugte Ausgestaltungen und Weiterbildungen der Lehre erläutert.
In der Zeichnung zeigt
Figur 1 einen Längsschnitt durch einen erfindungsgemäßen Sensor zur berührungslosen Dickenmessung an Folien,
Figur 2 einen erfindungsgemäßen Sensor mit einer pneumatisch arbeitenden ZuStelleinrichtung,
Figur 3 einen weiteren erfindungsgemäßen Sensor mit einer einen Ak- tuator umfassenden ZuStelleinrichtung und
Figur 4 einen erfindungsgemäßen Sensor, bei dem die Energieeinspeisung und Signalübertragung berührungslos erfolgt.
Der Sensor 1 ist insbesondere geeignet zur berührungslosen Dickenmessung an Blasfolien. Zur Herstellung derartiger Folien wird das erwärmte Ausgangsmaterial extrudiert und gleichzeitig geblasen. Die Dickenmessung mit Hilfe des erfindungsgemäßen Sensors 1 erfolgt während des Herstellungsverfahrens zu einem Zeitpunkt, an dem das Folienmaterial 2 noch nicht vollständig ausgekühlt und erhärtet ist. Derartige Dickenmessungen werden zur Qualitätskontrolle während des Herstellungsprozesses vorgenommen, um frühzeitig material- oder verfahrensbedingte Produktionsfehler zu erkennen und Gegenmaßnahmen ergreifen zu können. Die berührungslose Dickenmessung ermöglicht hier eine Qualitätskontrolle, ohne daß die noch verformbare Folie in irgendeiner Weise beeinträchtig wird.
Der hier dargestellte Sensor 1 umfaßt einen Sensorkopf 3 und eine Halterung 4 für den Sensorkopf. Erfindungsgemäß umfaßt der Sensorkopf 3 mindestens ein hier nicht dargestelltes berührungslos, in Abstimmung auf die physikalischen Eigenschaften der Folie 2 arbeitendes Sensorelement zur Dickenmessung. Die Position des Sensorkopfes 3 ist derart regelbar, daß der Sensorkopf 3 während des gesamten Meßvorganges in einem vorgebbaren, zumindest weitgehend konstanten Abstand zu der Folie 2 gehalten ist.
Prinzipiell kann im Rahmen des erfindungsgemäßen Sensors jedes zur Dickenmessung geeignete, berührungslos arbeitende Sensorelement eingesetzt werden. Welche Meßmethode letztlich angewendet wird, hängt entscheidend von den physikalischen Eigenschaften der Folie 2 ab. Vorteilhaft ist es, wenn das Sensorelement zumindest in einem kleinen Abstandsbereich zwischen Sensorkopf 3 und Folie 2 ab- standsunabhängige Meßergebnisse liefert und der Abstand zwischen Sensorkopf 3 und Folie 2 auch innerhalb des Abstandsbereiches der abstandsunabhängigen Meßergebnisse liegt. Dann nämlich lassen sich vergleichsweise fehlerunanfällige Messungen durchführen.
Im vorliegenden Fall der Dickenmessung an Blasfolien, die in der Regel aus einem als Dielektrikum wirkenden Kunststoff hergestellt werden, umfaßt der erfindungsgemäße Sensor 1 ein kapazitiv arbeitendes Sensorelement zur Dickenmessung.
Der Sensorkopf 3 des hier dargestellten Sensors 1 ist in der Halterung 4 verschiebbar gelagert, was durch den Doppelpfeil 5 angedeutet ist. Der Sensorkopf 3 kann danach senkrecht zur Folie 2 bzw. zur Transportrichtung der Folie 2 bewegt werden. Als Antrieb dieser Bewegung und also als Mittel zur Positionsregelung weist der Sensorkopf 3 eine Gaszuführung 6 und meßseitig mehrere Austrittsöffungen 7 auf. Im dargestellten Ausführungsbeispiel ist die Meßseite des Sensorkopfes 3 plattenförmig (8) ausgebildet. Von den Austrittsöffnungen 7 ist lediglich beispielhaft eine dargestellt. Insgesamt sind die Austrittsöffnungen 7 konzentrisch in einem bestimmten Abstand um die Plattenmitte angeordnet, wo das Sensorelement lokalisiert ist. Vorteilhafterweise münden die Austrittsöffnungen 7 in meßseitig in der Platte 8 ausgebildeten Nuten oder Rillen, die Figur 1 nicht zu entnehmen sind. In dem dargestellten Ausführungsbeispiel wird Druckluft durch den Sensorkopf 3 auf die Folie 2 geleitet. Bei geeigneter Abstimmung von Druck, Anzahl, Anordnung und Geometrie der Austrittsöffnungen 7 und Nuten und Rillen sowie des Gegendrucks der Folie 2, die an dem Sensorkopf 3 vorbeigeführt wird, bildet sich ein Luftkissen im Bereich des Sensorelements, also der Plattenmitte, zwischen Sensorkopf 3 und Folie 2 aus. Dies ist einerseits auf den durch die Druckluft auf die Folie 2 ausgeübten Druck und andererseits auf den Unterdruck zwischen dem Sensorkopf 3 bzw. der Platte 8 und der Folie 2 in den Randbereichen der Platte 8 zurückzuführen. Dadurch nämlich wird die Relativlage zwischen dem Sensorkopf und der Folie 2 stabilisiert. Nach einer kurzen Einschwingphase besteht dann ein konstanter Abstand zwischen Sensorkopf 3 und Folie 2. Dies gilt auch während des Transports der Folie 2 bei etwaig auftretendem Flattern der Folie 2. Dadurch ist eine berührungslose und abstandsunabhän- gige Dickenmessung auch an der laufenden, noch weichen elastischen Folie 2 möglich.
Die aus dem Sensorkopf 3 austretende Druckluft hat zusätzlich noch einen Kühleffekt, so daß die Dickenmessungen in einem konstanten Temperaturbereich durchgeführt werden und also auch Meßfehler bedingt durch Temperaturschwankungen weitgehend vermieden werden.
In dem in Figur 1 dargestellten Ausführungsbeispiel eines erfindungsgemäßen Sensors 1 ist der Sensorkopf 3 endseitig an einem Rohr 9 angeordnet, das gleichzeitig als Gaszuführung 6 für den Sensorkopf 3 dient. Der Sensorkopf 3 ist über das Rohr 9 in der Halterung 4 verschiebbar gelagert. Genauer gesagt umfaßt die Halterung 4 ein Gehäuse 10 mit einem Führungsrohr 11 für das Rohr 9. In der Wandung des Führungsrohrs 11 sind Durchtrittsöffnungen 12 zur Einleitung von Luft ausgebildet, die letztlich als Luftlager 13 für das Rohr 9 und also für den Sensorkopf 3 dienen. Über die Luftlager 13 ist der Sensorkopf 3 im wesentlichen reibungsfrei in der Halterung 4 verschiebbar gelagert.
Die Halterung des Sensors 1 könnte zusätzlich noch eine ZuStelleinrichtung zur Grobeinstellung und Stabilisierung der Position des Sensorkopfes umfassen. In Figur 2 ist ein solcher Sensor 1 mit einer pneumatisch arbeitenden ZuStelleinrichtung dargestellt. Der Sensorkopf 3 ist hier ebenfalls verschiebbar gelagert, was durch den Doppelpfeil 5 angedeutet ist. Dazu ist der Meßkopf 3 an einem Rohr 9 befestigt, welches in einem Führungsrohr 1 1 verschiebbar gelagert ist. In dem Führungsrohr 1 1 ist eine Druckkammer 14 ausgebildet, durch die das Rohr 9 geführt ist. Im Bereich der Druckkammer 14 ist eine Druckplatte 15 an dem Rohr 9 angeordnet, die so dimensioniert ist, daß sie die Druckkammer 14 in zwei Teilkammern 16 und 17 unterteilt. Jede der beiden Teilkammern 16 und 17 ist an eine Gasleitung 18, 19 angeschlossen, welche wiederum in den Sensorkopf 3 geführt sind. Dadurch wirkt sich der Staudruck, der sich zwischen dem Sensorkopf 3 und der in Figur 2 nicht dargestellten Folie aufbaut, direkt auf die in den Teilkammern 16 und 17 herrschenden Drücke aus. Der Staudruck wiederum ist abhängig vom Abstand zwischen dem Meßkopf 3 und der Folie. Eine Veränderung des Abstandes resultiert in einer Druckdifferenz zwischen den in den beiden Teilkammern 16 und 17 herrschenden Drücken. Dadurch wird eine Kraft auf die Druckplatte 15 und somit auf das Rohr 9 ausgeübt. Bei entsprechendem Anschluß der Teilkammern 16 und 17 an die Gasleitungen 18 und 19 lassen sich so hochfrequente Bewegungen des Meßkopfes 3 unterdrücken.
Im Zusammenhang mit Figur 2 sei angemerkt, daß es sich hier lediglich um eine schematische Darstellung handelt, die verdeutlichen soll, daß eine Grobeinstellung der Position des Sensorkopfes 3 und auch eine Dämpfung der Bewegung des Sensorkopfes 3 auf pneumatischem Wege erreichbar ist.
Figur 3 soll veranschaulichen, daß sich die Position des Sensorkopfes 3 auch mit Hilfe einer einen Aktuator umfassenden ZuStelleinrichtung stabilisieren läßt. Dazu ist an der Halterung 4 des Sensorkopfes 3 ein Aktuator 20 angeordnet, über den sich das Rohr 9 innerhalb des Führungsrohrs 11 verschieben läßt. Bei dem Aktuator 20 kann es sich um einen elektrisch oder auch magnetisch betriebenen Antrieb handeln. In Frage kommt beispielsweise auch ein Piezomotor oder eine Spindel als mechanischer Antrieb. Zur Regelung der Position des Sensorkopfes 3 umfaßt der Sensor 1 zusätzlich zu dem Sensorelement 21 , mit dem die Dicke der Folie erfaßt wird, noch einen Abstandssensor 22, mit dem der Abstand zwischen dem Sensorkopf 3 und der Folie ermittelt wird. Dieser Abstandswert dient als Regelgröße für den Aktuator 20, was in Figur 3 durch einen PID-Regler, proportional integrierter und differenzierender Regler 23 angedeutet ist. In Verbindung mit Figur 3 sei noch angemerkt, daß hier das Sensor im Sensor-System realisiert ist, indem nämlich der Abstandssensor 22 um das die Dicke der Folie erfassende Sensorelement 21 angeordnet ist. Auf diese Weise wird sichergestellt, daß mit dem Abstandssensor 22 auch tatsächlich der für die Messung relevante Abstand zwischen dem Sensorelement 21 und der Folie bestimmt wird.
Mit Hilfe der in Verbindung mit den Figuren 2 und 3 erläuterten ZuStelleinrichtungen lassen sich - wie bereits mehrfach erwähnt - sowohl eine Grobeinstellung der Position des Sensorkopfes als auch eine Stabilisierung dieser Position, d.h. eine Unterdrückung von hochfrequenten Bewegungen des Sensorkopfes, durchführen. Dies ist insbesondere dann wichtig, wenn die Energieeinspeisung und/oder die Signalübertragung vom Sensorkopf zu einer AuswerteVRegelschaltung über Leitungsverbindungen erfolgt. Derartige Leitungsverbindungen müssen so dünn und filigran sein, daß sie die Bewegung des Sensorkopfes möglichst wenig beeinträchtigen. Dadurch weisen sie aber nur eine sehr geringe mechanische Stabilität auf, so daß sie insbesondere durch hochfrequente Bewegungen schnell brechen.
In Figur 4 ist nun eine Ausführungsform des erfindungsgemäßen Sensors 1 dargestellt, bei dem die Energieeinspeisung berührungslos, nämlich induktiv nach dem Transformatorprinzip erfolgt. Dazu ist sowohl im Bereich des Führungsrohrs 11 als auch im entsprechenden Bereich des Rohres 9 jeweils eine Spule 24 angeordnet, über die die Energieeinspeisung in den Sensorkopf 3 erfolgt. Die Übertragung der Meßsignale vom Sensorkopf 3 zu einer Auswerte-/Regeleinrichtung 25, die extern, beispielsweise im Gehäuse des Sensors 1 angeordnet ist, erfolgt hier ebenfalls berührungslos mit Hilfe einer Sender/Empfänger-Einrichtung 26. Die Signalübertragung könnte beispielsweise aber auch auf optischem Wege erfolgen. Im Bereich des Sensorkopfes 3 bzw. dem sich anschließenden Rohr 9 ist ein Teil der Auswerteschaltung angeordnet, der einen Vorverstärker 27 umfaßt. Das verstärkte Signal wird dann an die AuswerteVRegelschaltung 25 gesendet. Um die Fehleranfälligkeit einer solchen Signalübertragung zu verringern kann vorher auch noch eine Modulation des Meßsignals erfolgen, beispielsweise eine Puls-Code-Modulation, eine Frequenzmodulation oder auch eine Amplitudenmodulation. Zusammenfassend sei an dieser Stelle nochmals hervorgehoben, daß bei den hier dargestellten Ausführungsbeispielen von erfindungsgemäßen Sensoren zur berührungslosen Dickenmessung an Folien in der Regel zunächst eine Grobeinstellung des Abstandes zwischen Sensorkopf und Folie mit Hilfe eines zusätzlichen Abstandssensors vorgenommen wird. Die Feineinstellung des Abstandes zwischen Sensorkopf und Folie erfolgt automatisch, indem mit Hilfe von Druckluft ein kleiner Luftspalt bzw. ein Luftpolster zwischen Sensorkopf und Folie erzeugt wird, dessen Breite vorzugsweise im Bereich der abstandsunabhängigen Meßergebnisse des Sensorelements zur Dickenmessung liegt. Zur Einstellung des Luftspalts wird Druckluft über den Sensorkopf auf die Folie geleitet, so daß sich am Rande des Sensorkopfes ein Unterdruck ausbildet und die Folie dadurch angesaugt wird, jedoch ohne den Sensorkopf selbst zu berühren. Daneben ist der Sensorkopf noch reibungsfrei innerhalb der Halterung des Sensors gelagert, so daß nicht nur die Position der Folie selbst modifiziert wird sondern auch die Position des Sensorkopfes. Bei dem erfindungsgemäßen Sensor wird der Abstand zwischen Sensorkopf und Folie also durch Regelung der Relativlage zwischen Sensorkopf und Folie konstant gehalten.
Hinsichtlich weiterer in der einzigen Figur nicht gezeigter Merkmale wird auf den allgemeinen Teil der Beschreibung verwiesen.
Abschließend sei hervorgehoben, daß die erfindungsgemäße Lehre nicht nur zur Dickenmessung an Blasfolien geeignet ist, sondern sich generell zur Dickenmessung an Folien aus beliebigem Material eignet.

Claims

Patentansprüche
1. Sensor zur berührungslosen Dickenmessung an Folien (2), insbesondere an Blasfolien, mit einem Sensorkopf (3) und einer Halterung (4) für den Sensorkopf (3), wobei der Sensorkopf (3) mindestens ein berührungslos, in Abstimmung auf die physikalischen Eigenschaften der Folie (2) arbeitendes Sensorelement zur Dickenmessung umfaßt, dadurch gekennzeichnet, daß die Position des Sensorkopfes (3) derart regelbar ist, daß der Sensorkopf (3) während des gesamten Meßvorgangs in einem vorgebbaren, zumindest weitgehend konstanten Abstand zu der Folie (2) gehalten ist, um eine definierte Relativlage zwischen dem Sensorkopf (3) und der sich zufällig auf den Sensorkopf (3) zu oder von diesem weg bewegenden Folie (2) einzuhalten.
2. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß das Sensorelement zumindest in einem kleinen Abstandsbereich zwischen Sensorkopf (3) und Folie (2) ab- standsunabhängige Meßergebnisse liefert.
3. Sensor nach Anspruch 2, dadurch gekennzeichnet, daß der Abstand zwischen Sensorkopf (3) und Folie (2) innerhalb des Abstandsbereichs der abstandsunabhängigen Meßergebnisse liegt.
4. Sensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Sensorelement kapazitiv arbeitet.
5. Sensor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Sensorelement induktiv arbeitet.
6. Sensor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Sensorkopf (3) in der Halterung (4) verschiebbar gelagert ist.
7. Sensor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Sensorkopf (3) als Mittel zur Positionsregelung eine Gaszuführung (6) und meßseitig mindestens eine Austrittsöffnung (7) aufweist.
8. Sensor nach Anspruch 7, dadurch gekennzeichnet, daß die Gaszuführung (6) durch eine Druckluftzuführung gebildet ist.
9. Sensor nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß die Meßseite des Sensorkopfes (3) plattenförmig ausgebildet ist und daß mehrere Austrittsöffnungen (7) vorzugsweise konzentrisch um die Position des Sensorelements vorzugsweise in der Plattenmitte angeordnet sind.
10. Sensor nach Anspruch 9, dadurch gekennzeichnet, daß die Austrittsöffnungen (7) in meßseitig ausgebildete Nuten oder Rillen der Platte (8) münden.
11. Sensor nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß der Abstand zwischen dem Sensorkopf (3) und der Folie (2) über den Gasdruck in Verbindung mit der Dimensionierung und Anordnung der Austrittsöffnung (7) sowie ggf. der Nuten oder Rillen regelbar ist.
12. Sensor nach einem der Ansprüche 7 bis 11 , dadurch gekennzeichnet, daß der Sensorkopf (3) endseitig an einem Rohr (9) angeordnet ist und daß die Gaszuführung (6) durch das Rohr (9) geführt ist.
13. Sensor nach Anspruch 12, dadurch gekennzeichnet, daß das Rohr (9) mit dem Sensorkopf (3) über Luftlager (13) im wesentlichen reibungsfrei in der Halterung (4) verschiebbar ist.
14. Sensor nach Anspruch 12, dadurch gekennzeichnet, daß die Halterung (4) ein Führungsrohr (11 ) für das Rohr (9) umfaßt und daß die Wandung des Führungsrohrs (1 1 ) Durchtrittsöffnungen (12) zur Einleitung von Luft aufweist.
15. Sensor nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Halterung eine ZuStelleinrichtung zur Grobeinstellung der Position des Sensorkopfes (3) umfaßt.
16. Sensor nach Anspruch 15, dadurch gekennzeichnet, daß die ZuStelleinrichtung einen geregelten Antrieb umfaßt.
17. Sensor nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, daß ein Abstandssensor (22) für die Grobeinstellung der Position des Sensorkopfes (3) vorgesehen ist.
18. Sensor nach Anspruch 17, dadurch gekennzeichnet, daß der Abstandssensor (22) kapazitiv, induktiv, optisch oder nach dem Ultraschall-Meßprinzip arbeitet.
19. Sensor nach einem der Ansprüche 17 oder 18, dadurch gekennzeichnet, daß der Abstandssensor (22) am Sensorkopf (3) angeordnet ist.
20. Sensor nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß der Antrieb der ZuStelleinrichtung pneumatisch erfolgt.
21. Sensor nach Anspruch 14 und nach Anspruch 20, dadurch gekennzeichnet, daß in dem Führungsrohr (11 ) eine Druckkammer (14) ausgebildet ist, daß das Rohr (9) durch die Druckkammer (14) geführt ist und im Bereich der Druckkammer (14) mit einer senkrecht zur Bewegungsrichtung des Sensorkopfes (3) orientierten Druckplatte (15) versehen ist, daß die Druckplatte (15) die Druckkammer (14) in zwei Teilkammern (16, 17) aufteilt, daß jede Teilkammern (16, 17) einen Anschluß an eine Gasleitung (18, 19) aufweist und daß die Gasleitung (18, 19) in den Sensorkopf (3) geführt ist.
22. Sensor nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß der Antrieb elektrisch oder magnetisch erfolgt.
23. Sensor nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß ein Piezomotor als Antrieb dient.
24. Sensor nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß der Antrieb mechanisch, vorzugsweise mit Hilfe einer Spindel, erfolgt.
25. Sensor nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß Leitungsverbindungen zur Energieeinspeisung in den Sensorkopf und/oder Signalübertragung zwischen dem Sensorkopf und einer Auswerte-/Regeleinheit vorgesehen sind.
26. Sensor nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die Energieeinspeisung in den Sensorkopf berührungslos erfolgt.
27. Sensor nach Anspruch 26, dadurch gekennzeichnet, daß die Energieeinspeisung induktiv nach dem Transformatorprinzip erfolgt.
28. Sensor nach einem der Ansprüche 1 bis 27, dadurch gekennzeichnet, daß die Signalübertragung zwischen dem Sensorkopf und einer AuswerteVRegeleinheit berührungslos erfolgt.
29. Sensor nach Anspruch 28, dadurch gekennzeichnet, daß die Signalübertragung optisch, induktiv oder kapazitiv erfolgt.
30. Sensor nach Anspruch 28, dadurch gekennzeichnet, daß eine Sender/Empfänger-Einrichtung (26) zur Signalübertragung vorgesehen ist.
31. Sensor nach Anspruch 30, dadurch gekennzeichnet, daß die Sender/Empfänger- Einrichtung (26) eine Modulationseinrichtung zur Puls-Code-Modulation, Frequenzmodulation oder Amplitudenmodulation der Signale umfaßt.
32. Sensor nach einem der Ansprüche 28 bis 31 , dadurch gekennzeichnet, daß ein Vorverstärker (27) zur Verstärkung des Meßsignals vor der Signalübertragung vorgesehen ist.
PCT/DE1996/001867 1995-03-31 1996-09-30 Sensor zur berührungslosen dickenmessung an folien WO1998014751A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE19511939A DE19511939C2 (de) 1995-03-31 1995-03-31 Sensor zur berührungslosen Dickenmessung an Folien
US09/269,444 US6318153B1 (en) 1996-09-30 1996-09-30 Non-contact film thickness gauging sensor
DE59608814T DE59608814D1 (de) 1996-09-30 1996-09-30 Sensor zur berührungslosen dickenmessung an folien
EP96945472A EP0929790B1 (de) 1996-09-30 1996-09-30 Sensor zur berührungslosen dickenmessung an folien
JP51608698A JP3253976B2 (ja) 1996-09-30 1996-09-30 無接触型フィルム厚み測定センサ
PCT/DE1996/001867 WO1998014751A1 (de) 1995-03-31 1996-09-30 Sensor zur berührungslosen dickenmessung an folien
HK00100424A HK1023616A1 (en) 1996-09-30 2000-01-21 Non-contact film thickness gauging sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19511939A DE19511939C2 (de) 1995-03-31 1995-03-31 Sensor zur berührungslosen Dickenmessung an Folien
PCT/DE1996/001867 WO1998014751A1 (de) 1995-03-31 1996-09-30 Sensor zur berührungslosen dickenmessung an folien

Publications (1)

Publication Number Publication Date
WO1998014751A1 true WO1998014751A1 (de) 1998-04-09

Family

ID=25962854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001867 WO1998014751A1 (de) 1995-03-31 1996-09-30 Sensor zur berührungslosen dickenmessung an folien

Country Status (2)

Country Link
DE (1) DE19511939C2 (de)
WO (1) WO1998014751A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031433A1 (de) * 2000-10-09 2002-04-18 Micro-Epsilon Messtechnik Gmbh & Co.Kg Kombination von zwei sensoren, z.b. von einem kapazitiven sensor und einem auf wirbelstrom- oder ultraschallbasis arbeitendem abstandssensor, in einem gehäuse
DE102013015303B4 (de) * 2013-09-14 2016-10-13 Audi Hungaria Motor Kft. Vorrichtung zum Einstellen des Zahnflankenspiels in einem Stirnzahnradtrieb
DE102016207656A1 (de) 2015-05-05 2016-11-10 Micro-Epsilon Messtechnik Gmbh & Co. Kg Messsystem mit Temperaturkompensation und Vorrichtung mit einem solchen Messsystem
DE102016207593A1 (de) 2015-05-05 2016-11-10 Micro-Epsilon Messtechnik Gmbh & Co. Kg Vorrichtung und Verfahren zur Messung der Breite und der Dicke eines flächigen Objekts

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19511939C2 (de) * 1995-03-31 2000-05-18 Micro Epsilon Messtechnik Sensor zur berührungslosen Dickenmessung an Folien
DE59608814D1 (de) 1996-09-30 2002-04-04 Micro Epsilon Messtechnik Sensor zur berührungslosen dickenmessung an folien
DE19811595C1 (de) * 1998-03-17 1999-10-14 Windmoeller & Hoelscher Verfahren und Vorrichtung zum Verhindern einer Berührung zwischen einer Schlauchfolienblase und einem diese abtastenden Sensor
EP1191305B1 (de) * 2000-08-19 2002-04-10 Plast-Control Gerätebau GmbH Foliendickenmessung mit Anpresskraftmessung
DE10361161A1 (de) * 2003-12-22 2005-07-21 Voith Paper Patent Gmbh Messvorrichtung
DE502005003829D1 (de) 2005-01-13 2008-06-05 Plast Control Gmbh Vorrichtung und Verfahren zur kapazitiven Vermessung von Materialien
DE102005020222A1 (de) * 2005-04-30 2006-11-02 Vereinigung zur Förderung des Instituts für Kunststoffverarbeitung in Industrie und Handwerk an der Rhein.-Westf. Technischen Hochschule Aachen eV Verfahren und Vorrichtung zur Messung der Wanddicke von Hohlkörpern aus nicht leitendem Werkstoff
DE102005051675B3 (de) 2005-10-28 2007-04-19 Windmöller & Hölscher Kg Foliendickensensor mit porösem Bläser
EP1918672A1 (de) 2006-11-02 2008-05-07 Hch. Kündig & Cie. AG Vorrichtung zum Verringern der Reibung zwischen zwei Körpern
DE102007034415A1 (de) 2007-07-20 2009-01-22 Windmöller & Hölscher Kg Foliendickensensor mit porösem Bläser
DE102011083653A1 (de) * 2011-09-28 2013-03-28 Voith Patent Gmbh Messvorrichtung und Messverfahren zur Messung von Bahneigenschaften
CN104729397A (zh) * 2013-12-24 2015-06-24 厦门三维丝环保股份有限公司 一种ptfe微孔薄膜厚度测试方法
TWI755842B (zh) * 2020-09-04 2022-02-21 奈米趨勢科技有限公司 非接觸式塑膠吹袋機薄膜厚度量測裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3358225A (en) * 1964-03-27 1967-12-12 Richard S Peugeot Lift-off compensation for eddy current testers
US3884076A (en) * 1971-12-07 1975-05-20 Zumbach Electronic Automatic Measuring device
US4339714A (en) * 1978-07-07 1982-07-13 Rolls Royce Limited Probe having passive means transmitting an output signal by reactive coupling
EP0078096A2 (de) * 1981-10-26 1983-05-04 AccuRay Corporation Vorrichtung zum Messen blattförmigen Materials
WO1991015730A1 (de) * 1990-04-11 1991-10-17 Micro-Epsilon Messtechnik Gmbh & Co. Kg Dickenmesseinrichtung
DE19511939A1 (de) * 1995-03-31 1996-10-02 Micro Epsilon Messtechnik Sensor zur berührungslosen Dickenmessung an Folien

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3435908A1 (de) * 1984-09-29 1986-04-10 Phoenix Ag, 2100 Hamburg Vorrichtung zum beruehrungslosen messen der dicke von materialbahnen aus polymeren werkstoffen
DE9421323U1 (de) * 1994-06-10 1995-08-31 Friedrich Theysohn GmbH, 38228 Salzgitter Meßvorrichtung für die berührungslose Dickenmessung von bewegten Langprodukten, insbesondere Flachprodukten

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3358225A (en) * 1964-03-27 1967-12-12 Richard S Peugeot Lift-off compensation for eddy current testers
US3884076A (en) * 1971-12-07 1975-05-20 Zumbach Electronic Automatic Measuring device
US4339714A (en) * 1978-07-07 1982-07-13 Rolls Royce Limited Probe having passive means transmitting an output signal by reactive coupling
EP0078096A2 (de) * 1981-10-26 1983-05-04 AccuRay Corporation Vorrichtung zum Messen blattförmigen Materials
WO1991015730A1 (de) * 1990-04-11 1991-10-17 Micro-Epsilon Messtechnik Gmbh & Co. Kg Dickenmesseinrichtung
DE19511939A1 (de) * 1995-03-31 1996-10-02 Micro Epsilon Messtechnik Sensor zur berührungslosen Dickenmessung an Folien

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002031433A1 (de) * 2000-10-09 2002-04-18 Micro-Epsilon Messtechnik Gmbh & Co.Kg Kombination von zwei sensoren, z.b. von einem kapazitiven sensor und einem auf wirbelstrom- oder ultraschallbasis arbeitendem abstandssensor, in einem gehäuse
US6822442B2 (en) 2000-10-09 2004-11-23 Micro-Epsilon Messtechnik Gmbh & Co. Kg Sensor arrangement for detecting properties of a target
DE102013015303B4 (de) * 2013-09-14 2016-10-13 Audi Hungaria Motor Kft. Vorrichtung zum Einstellen des Zahnflankenspiels in einem Stirnzahnradtrieb
DE102016207656A1 (de) 2015-05-05 2016-11-10 Micro-Epsilon Messtechnik Gmbh & Co. Kg Messsystem mit Temperaturkompensation und Vorrichtung mit einem solchen Messsystem
DE102016207593A1 (de) 2015-05-05 2016-11-10 Micro-Epsilon Messtechnik Gmbh & Co. Kg Vorrichtung und Verfahren zur Messung der Breite und der Dicke eines flächigen Objekts
WO2016177369A1 (de) 2015-05-05 2016-11-10 Micro-Epsilon Messtechnik Gmbh & Co. Kg Vorrichtung und verfahren zur messung der breite und der dicke eines flächigen objekts
WO2016177370A1 (de) 2015-05-05 2016-11-10 Micro-Epsilon Messtechnik Gmbh & Co. Kg Messsystem mit temperaturkompensation und vorrichtung mit einem solchen messsystem
US10184784B2 (en) 2015-05-05 2019-01-22 Micro-Epsilon Messtechnik Gmbh & Co. Kg Device and method for measuring the width and thickness of a flat object

Also Published As

Publication number Publication date
DE19511939A1 (de) 1996-10-02
DE19511939C2 (de) 2000-05-18

Similar Documents

Publication Publication Date Title
WO1998014751A1 (de) Sensor zur berührungslosen dickenmessung an folien
EP0929790B1 (de) Sensor zur berührungslosen dickenmessung an folien
EP0920977B1 (de) Vorrichtung zum Bearbeiten einer Materialbahn
DE69108817T2 (de) Verschiebungsmessapparat.
DE2630228C3 (de)
EP2416941B1 (de) Vorrichtung und verfahren zum bearbeiten eines packstoffs mittels ultraschall
DE10116479C2 (de) Verfahren und Regeleinrichtung zur Verstellung einer im Rotorblatt eines Hubschraubers schwenkbar gelagerten Klappe
EP3110611B1 (de) Ultraschallbearbeitungsvorrichtung mit kraftsensor
EP2839951B1 (de) Verfahren zur Herstellung einer mindestens einseitig kaschierten Wellpappebahn
DE69117764T2 (de) Methode und gerät zur koordinatenmessung mit einer kapazitätssonde
DE3627463A1 (de) Vorrichtung zum regeln bzw. steuern einer kontaktwalze
EP1943478A1 (de) Foliendickensensor mit porösem bläser
EP0801290B1 (de) Positioniersystem mit Druckmessung in der Luftschicht zwischen Messkopf und Messgut
DE19730042C2 (de) Vorrichtung zur Steuerung einer Bogenführung in einer Bogendruckmaschine
WO2012080010A1 (de) Flächengewichtsbestimmung einer materialbahn mit einem mikrowellensensor, wobei die abstände zwischen der materialbahn und den oberflächen des mikrowellensensors mit luftkissen auf einen konstanten wert geregelt werden
DE10331064A1 (de) Vorrichtung zum Bearbeiten einer Materialbahn
EP0214100A1 (de) Verfahren zum berührungslosen Messen eines Abstandes, Abstandsmesselement, Verfahren zum kontinuierlichen Messen der Planheit von Folien, Element zum Messen der Planheit von Folien sowie Verfahren zum messen der Dicke eines starren Körpers
EP1655622B1 (de) Sensor
DE102015209347B4 (de) Auftragseinrichtung
DE4217736C2 (de) Einrichtung zur Überwachung eines Auftrags auf ein Substrat
AT510009A4 (de) Messvorrichtung und verfahren zur dickenmessung eines bandes
DE102014006455A1 (de) Abtastkopf
CH714683A1 (de) Vorrichtung für die Auflagenkontrolle eines Werkstücks oder Werkzeugs auf einer Spindel einer Werkzeugmaschine.
DE4406380C1 (de) Verfahren und Vorrichtung zum Ausbreiten und Führen einer laufenden Warenbahn
EP2171395A2 (de) Foliendickensensor mit porösem bläser

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996945472

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09269444

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 516086

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996945472

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996945472

Country of ref document: EP