WO1998004833A1 - Pompe centrifuge a amorçage automatique - Google Patents

Pompe centrifuge a amorçage automatique Download PDF

Info

Publication number
WO1998004833A1
WO1998004833A1 PCT/JP1997/000857 JP9700857W WO9804833A1 WO 1998004833 A1 WO1998004833 A1 WO 1998004833A1 JP 9700857 W JP9700857 W JP 9700857W WO 9804833 A1 WO9804833 A1 WO 9804833A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
valve
self
liquid
sub
Prior art date
Application number
PCT/JP1997/000857
Other languages
English (en)
French (fr)
Inventor
Hiroshi Yokota
Shingo Yokota
Original Assignee
Kabushiki Kaisha Yokota Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yokota Seisakusho filed Critical Kabushiki Kaisha Yokota Seisakusho
Priority to AU19425/97A priority Critical patent/AU1942597A/en
Priority to DE19781894T priority patent/DE19781894T1/de
Priority to US09/230,251 priority patent/US6152689A/en
Priority to DE19781894A priority patent/DE19781894B4/de
Priority to JP50867598A priority patent/JP3924730B2/ja
Priority to GB9901454A priority patent/GB2331125B/en
Publication of WO1998004833A1 publication Critical patent/WO1998004833A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/04Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous
    • F04D7/045Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous with means for comminuting, mixing stirring or otherwise treating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D9/00Priming; Preventing vapour lock
    • F04D9/04Priming; Preventing vapour lock using priming pumps; using booster pumps to prevent vapour-lock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D9/00Priming; Preventing vapour lock
    • F04D9/04Priming; Preventing vapour lock using priming pumps; using booster pumps to prevent vapour-lock
    • F04D9/041Priming; Preventing vapour lock using priming pumps; using booster pumps to prevent vapour-lock the priming pump having evacuating action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/13Kind or type mixed, e.g. two-phase fluid
    • F05B2210/132Pumps with means for separating and evacuating the gaseous phase

Definitions

  • the present invention relates to a self-priming centrifugal pump device capable of sucking and transporting a liquid having a high viscosity and containing a large amount of air bubbles such as mud or solid foreign matter.
  • the aim is to obtain a high-performance and economical self-priming centrifugal pump device that requires no administrative effort.
  • the power source for opening the safety valve relies on the negative pressure generated by the vacuum pump, the negative pressure decreases in the instant when the valve opens, the valve closes and operates in the axel direction, and the valve closes.
  • the negative / i increases and the valve opens in the opening direction, and the operation of the safety valve may become unstable due to a kind of flap phenomenon in which vibration and noise are generated by the repetition.
  • the sub-pump that separates gas and liquid shuts off the pumping and exhaust systems with a discharge capacity enough to withstand the negative pressure of the vacuum pump.
  • the shut-off shuts off the pump and the exhaust system, so there is no problem ⁇
  • the discharge capacity of the sub-pump may be insufficient and the vacuum pump may lose the negative pressure.
  • the safety valve is in a half-open state during opening and closing operation, the pump side and the exhaust system communicate with each other, and the pumped liquid on the main pump side is drawn into the vacuum pump side to fill the negative pressure. However, it may cause contamination and failure of the vacuum pump.
  • the problem caused by the instantaneous communication between the pumping liquid and the exhaust system is that the pumping liquid and vacuum pump working liquid are used only for general liquid transportation, such as when water is used. If the pumping liquid is a liquid that requires careful handling of chemicals and foodstuffs, for example, contamination of the vacuum pump with these pumps can be ignored by the pump pump. Reverse contamination of the liquid is also a major problem.
  • the conventional solution is to adjust so that the exhaust capacity of the vacuum pump is reduced when the sub-pump is rotating below the normal speed, or to use valves and cocks in addition to the safety valve.
  • the force manually opened and closed separately has not been an essential solution, as both have become complicated devices and have become far more troublesome than automatic operation.
  • the present invention solves the above-mentioned conventional problems drastically with a simple structure, and maintains a high performance as a self-priming centrifugal pump device, and operates a stable and reliable new valve mechanism.
  • pump start, driving, hands force on management such as by preventing the penetration of liquid during the entire stroke cotton connexion main ordinary man side and the vacuum apparatus of the stop, can fully automatic operation?
  • the objective is to obtain a self-priming centrifugal pump device that is easy to implement, can be easily miniaturized and enlarged, has durability, and is extremely economical in equipment and management costs. Disclosure of the invention
  • a self-priming centrifugal pump device includes: a main pump for feeding a liquid; a sub-pump for gas-liquid centrifugal separation; and a vacuum device for exhausting.
  • the vicinity of the central portion of the impeller is communicated with the suction port of the sub-pump by a passage having a passage area narrowed in comparison with the discharge capacity of the sub-pump, and the discharge port of the sub-pump is formed by a return path.
  • the sub-pump is connected to the vacuum device by an exhaust passage near the center of the impeller, and is connected to the suction port of the main pump.
  • the It is configured to be interposed in series in the exhaust passage.
  • the slow-acting valve may be a motor-operated valve in which the timing of the valve opening operation is electrically controlled.
  • the quick-acting valve may be a motor-operated valve whose closing operation timing is electrically controlled.
  • the vacuum device may include a liquid-ring vacuum pump
  • the slow-acting valve may be a valve that opens when the hydraulic pressure of the working fluid of the liquid-ring vacuum pump increases.
  • slow-acting valve and the quick-acting valve may be combined into a single valve device that is slow in opening and fast in closing.
  • Valve means for reducing the vacuum acting force of the vacuum device may be provided in the exhaust passage.
  • a float valve that opens when the liquid level on the exhaust passage side of the sub-pump lowers may be interposed in series in the exhaust passage.
  • liquid reservoir having an inlet and an outlet opened at an upper portion may be interposed in series in the exhaust passage.
  • any or all of the main pump, the sub-pump, and the vacuum device may be configured to have different rotation shaft systems.
  • main pump, the sub-pump, and the vacuum device may all have the same rotating shaft system.
  • the impeller of the main pump and the impeller of the sub-pump may be integrally formed adjacent to each other.
  • the vacuum device includes a liquid ring vacuum pump, and a cooling passage which is in contact with a liquid sending flow path of the main pump and cools a working fluid of the liquid ring vacuum pump is formed. May be connected to an exhaust port of the liquid ring vacuum bomb, and an outlet of the cooling passage may be connected to an intake port of the liquid ring vacuum pump.
  • a rotary blade portion for cutting and a fixed blade portion corresponding to the rotary blade portion may be provided near the suction port of the main pump.
  • a suction opening of a communication passage between the vicinity of the center portion of the impeller of the main pump and the suction port of the sub-pump is provided facing a location where a cavity is formed on the suction port side of the impeller of the main pump. Is also good.
  • the self-priming centrifugal pump device of the present invention (hereinafter referred to as “the main pump”) exhibits the following operational effects.
  • the cavity in the center of the main pump is pulled out by the sub-pump and subjected to gas-liquid centrifugation, the liquid is returned to the main pump, and the gas is released through the slow-acting valve.
  • the pump is evacuated by the vacuum device through the exhaust passage that is open together with the quick-acting valve, and the main pump continuously feeds liquid.
  • the sub-pump performs gas-liquid centrifugation. and maintaining sufficient rotational speed (discharge capacity), whereas since keeping also sufficient vacuum vacuum device, does not penetrate the liquid power s in either the direction of between the main pump and the vacuum device.
  • the rapid-acting valve closes immediately regardless of the closing speed of the slow-acting valve, so that the negative pressure (vacuum degree) force f Even if it remains, the exhaust passage itself is forcibly closed
  • the liquid does not penetrate in any direction between the main pump and the vacuum device.
  • FIG. 1 is a longitudinal sectional view (partial side view) showing a first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view (partial side view) showing a second embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view showing an embodiment of a slow-acting valve according to the present invention.
  • FIG. 4 is a longitudinal sectional view showing one embodiment of the slow-acting / rapid-acting valve portion of the present invention.
  • FIG. 5 is a longitudinal sectional view showing one embodiment of a portion of the slow-acting / rapid-acting valve of the present invention.
  • FIG. 6 is a longitudinal sectional view (partial side view) showing a third embodiment of the present invention.
  • FIG. 7 is a longitudinal sectional view (partial side view) showing a fourth embodiment of the present invention.
  • FIG. 8 is a longitudinal sectional view (partial side view) showing a fifth embodiment of the present invention.
  • FIG. 9 is a longitudinal sectional view (partial side view) showing a sixth embodiment of the present invention.
  • FIG. 10 is a longitudinal sectional view (partial side view) showing a seventh embodiment of the present invention.
  • FIG. 11 is a cross-sectional view (partial front view) taken along the line X--X 'in
  • FIG. 12 is a sectional view taken along line YY ′ in FIG.
  • FIG. 13 is a longitudinal sectional view showing an eighth embodiment of the present invention.
  • FIG. 14 is a longitudinal sectional view showing a ninth embodiment of the present invention.
  • FIG. 15 is a longitudinal sectional view (partial side view) showing five examples of the prior art.
  • FIG. 16 is a longitudinal sectional view showing a part of the safety valve in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 showing the first embodiment of the present invention will be described in detail.
  • 1 is a main pump casing
  • 2 is a main impeller
  • 3 is a partition between the main pump and the sub-pump
  • 4 is a sub-pump casing
  • 5 is a sub-impeller.
  • the main impeller 2 and the sub impeller 5 are both semi-open types.
  • the front side and the rear side near the center are connected by holes or slits.
  • c is a gap formed between the central opening of the partition plate 3 between the two pumps and the shaft passing therethrough, and corresponds to a sub-pump suction port communicating with the central part of the main pump, and its passage area Is formed in a shape that is sufficiently throttled compared to the discharge capacity of the sub-pump. This gap is wide on the sub-pump side to prevent clogging of foreign matter, etc., or a hard material and rubber are combined to increase durability, or a tooth is formed to grind fibrous substances, etc. You may take measures such as:
  • the outlet e of the sub-pump is openly connected to the suction side of the main pump via a return line e '.
  • f denotes an exhaust passage opened near the center of the sub-pump opposite to the suction port c, and guides the hollow gas collected near the center of the sub-pump to the vacuum device 12.
  • the vacuum devices 12 may be liquid ring vacuum pumps, other types of vacuum pumps, or other types of negative pressure generators:
  • the three pumps, the main pump, the sub-pump, and the vacuum device can of course have control sequences that start and stop at different timings.
  • the present invention which aims at literally fully automatic driving so that driving can be continued without any trouble even in a case, it is desirable to operate these three mechanisms simultaneously. Is assumed.
  • the discharge capacity of the sub-blade-wheel 5 of the sub-pump Pressure is equal to or greater than the suction force (ie, vacuum) of the vacuum device 12, and the sub-pump itself sucks the pumped liquid from the return line e ′ to the sub-pump side by the suction of the vacuum device 12.
  • This is a kind of non-return valve action to try, so the pump pumps the sub pump Force absorbed by the bow into the sub-pump working chamber d through c ⁇
  • the sub-pump suction port c is narrower than the discharge capacity of the sub-pump, so it is sucked All the liquid is returned from the outlet e to the return path e '.
  • gas If gas is generated in the pumped liquid and a cavity is created in the center of the main pump, it is immediately sucked into the sub-pump side, and then sucked into the air passages fh.
  • the sub-impeller 5 of the sub-pump generates a pressure enough to withstand the suction force (degree of vacuum) of the vacuum device 12 and acts as a J1 gas-liquid centrifugal separation impeller. Therefore, the gas and liquid components are immediately separated, the liquid components are returned to the main pump side, and the gas cavity formed in the center of the sub impeller 5 is exhausted, and the suction of the pumped liquid is continuously and safely continued. Also, during this operation, no liquid is pumped into the exhaust passage h, so that the vacuum device 12 is safe.
  • this pump not only exhibits a characteristic pumping performance even for simple liquids such as water, but also sucks up boiling water or boiled solution, and further absorbs muddy substances. Even those that were difficult with conventional centrifugal pumps, such as lifting, can be easily handled.
  • Slow operation valve 1 those force of the electric valve format for opening operation with a delay time Q after starting the pump? Is illustrated, by an electric control (not illustrated in the control system), a mechanism for delaying actuation Has become.
  • This slow-acting valve 13 opens the exhaust passage after a delay time regardless of the state of the quick-acting valve ⁇ 4 when the prime mover input of the pump is turned on. Prevents pumping liquid from the main pump from being drawn into the vacuum equipment at an instant.
  • the quick-acting valve 14 is illustrated as a solenoid valve type as an example of a motor-operated valve that instantaneously closes when the pump stops. Since the operating principle and structure of the solenoid valve itself are known, detailed description is omitted.
  • This quick-acting valve 14 forcibly shuts off the exhaust passage regardless of the state of the slow-acting valve 13 when the prime mover input to the pump is shut off. Prevents pump-side pumped liquid from being drawn into the vacuum unit and liquid from the vacuum unit from being drawn into the main pump. It is naturally possible to form the slow-acting valve 13 and the rapid-acting valve 14 in an integrated structure.For example, one opening control is performed such that the opening operation is delayed and the closing operation is performed instantaneously. It may be formed in a valve, but for simplicity of the concept, another one is illustrated in the figure.
  • FIG. 1 shows that a float valve as a safety device is further provided in the exhaust passage.
  • the float valve 16 is of a general type in which a float is provided on the side facing the center of the sub-pump and a valve body and a valve seat are arranged on the opposite side.
  • the float valve 16 which closes due to the buoyancy of the liquid, forcibly closes the exhaust passage when the liquid level on the sub-pump rises, at all times of starting, running, and stopping the pump. Prevents pumped liquid from the main pump from being drawn into the vacuum system. Therefore, recirculation passage e 'is clogged from the auxiliary pump to the main pump, there have is or becomes insufficient function in the sub impeller 5 force? Damages etc., lifting liquid fills the exhaust side of the secondary pump In the event of an accident, it is possible to prevent the liquid from entering the vacuum system.
  • the liquid reservoir 15 is of a type having a population and an outlet in the h portion of the container and having a liquid remaining at the bottom. That is, the population k from the sub-pump and the outlet m to the vacuum device are opened at the top of the container, and the liquid that has entered from either the sub-pump or the vacuum device stays at the bottom of the container, allowing only gas to pass through. It is formed so that it becomes. For this reason, even in the event of an emergency, such as when the above-mentioned series of operating mechanisms are damaged and the operation becomes insufficient, the liquid in the exhaust passage is trapped to prevent liquid from entering between the sub-pump and the vacuum device. Without forgiveness, the safety management of the equipment can be perfected.
  • a drain hole n for discharging the stagnant liquid is provided at the bottom of the container, but the drain operation from the drain hole n may be performed manually or automatically when the stagnant liquid reaches a predetermined amount. Or a suction and discharge mechanism.
  • the container of this liquid reservoir 15 is transparent so that the amount of retained liquid can be checked. It is desirable to use materials that are possible.
  • FIG. 2 showing a second embodiment of the present invention will be described.
  • the vacuum device 12 is a liquid ring vacuum pump. Is replaced with a hydraulic valve instead of an electric valve.
  • the structure of the outlet of the liquid storage tank 15 is formed such that the upper end of a pipe extending from the attachment portion to the suction port i of the vacuum pump 12 opens at the upper part of the container of the liquid storage tank 15.
  • the liquid reservoir 15 is directly connected to the vacuum pump 12.
  • the operating principle and structure of the liquid ring vacuum pump 12 are publicly known, which is generally called a Nash pump, and therefore detailed description is omitted.
  • As the working fluid for the vacuum pump 12 it is sufficient to use a liquid of the same kind as the local specifications, such as oil or water. If the pumping of the main pump is clean, the pump itself is used. You can also use
  • FIG. 3 shows an example of the structure of the slow-acting valve 13 in FIG. That is, a valve seat 11 is formed at the bottom opening of the valve box, a sealing member 7 (for example, a diaphragm) is provided at the upper portion, and a valve driving chamber g is formed between the sealing member 7 and the valve box lid.
  • the said sealing member 7 is connecting rod 8 forces? secured, the other end the valve body 1 0 is mounted in correspondence with the valve seat 1 1, biasing member 9 for urging always in a direction to close the valve 1 0 Is interposed.
  • h is an exhaust passage from the valve box, which is led to the suction port of the liquid ring vacuum pump 12.
  • the force shown in the figure is the force.
  • Diaphragm to other sealing members, ie bellows, screws Of course, it may be replaced with a ton or the like.
  • valve drive chamber g When the internal pressure of the valve drive chamber g increases due to an increase in the pressure of the hydraulic fluid guided from the vacuum pump 12, the operation of the slow-acting valve 13 overcomes the urging force of the urging member 9 after a certain period of time.
  • the seal member 7 is displaced to open the valve body 10 and open the exhaust passage.
  • the air communication opening / closing portion 8a that operates in conjunction with the valve body 10 so that the exhaust side of the slow-acting valve 13 communicates with the atmosphere when the valve body 10 is closed.
  • the power of the pump is illustrated by way of example.
  • the vacuum pump 12 is sucked into the atmosphere to reduce the vacuum acting force. It is possible to further reduce the possibility that the main pump-side pumped liquid will be drawn into the vacuum pump 12 at the moment of activation of the present pump.
  • the air communication opening / closing portion 8a is a force formed by another valve provided near a portion where the communication hole formed in the connecting rod 8 and the seal member 7 of the connecting rod 8 are fixed. It goes without saying that various types of valve devices can be designed without being limited to the interlocking twin valve type valve device structure.
  • FIG. 3 the force of inserting a gas-sealed bag into the valve driving chamber g is illustrated.
  • the purpose is to reduce the gas in the bag so that when the vacuum pump 12 is activated and the hydraulic pressure in the valve drive chamber g increases, the hydraulic pressure does not immediately drive the valve body 10.
  • the operation of the valve body 10 is further delayed through the compression process described above. However, in practical use, it may be sufficient to simply use the gas accumulated in the valve drive chamber g.
  • a method of narrowing the hydraulic pressure introduction passage to the valve drive chamber g can be naturally considered.
  • FIG. 1 An example of the configuration is shown in FIG. This is because a throttle valve 21 is interposed in the passage for guiding the hydraulic fluid from the liquid ring vacuum pump 12 to the valve drive chamber g.
  • a check valve 22 that allows the hydraulic fluid to pass only in the direction from the valve drive chamber g to the vacuum pump 12 is interposed in parallel, thereby providing a difference in the flow rate depending on the passing direction.
  • the opening operation of (3) is performed with a delay time, and the closing operation is performed instantaneously.
  • the opening and closing times of the valve 13 can be adjusted by adjusting the opening degree of the throttle valve 21 and selecting the diameter of the check valve 22.
  • the other structure is the same as that of FIG. 3, and the detailed description is omitted.
  • FIG. 5 shows an example in which the structure of FIG. 4 is simplified.
  • the role of the throttle valve 21 and the role of the check valve 22 are replaced by the reciprocating motion of a valve element 23 provided in the middle of a passage for guiding the hydraulic fluid to the valve drive chamber g. That is, in the illustrated example, when the valve body 23 is lowered, the passage is narrowed (the surface irregularity of the valve body 23, a slight flow path is left due to a hole, etc.). is there.
  • the other structure is the same as that of FIG. 4, and thus the detailed description is omitted.
  • FIG. 6 shows a third embodiment of the present invention, in which the sub-pump shown in FIG. 2 is relocated on the same rotary shaft as the vacuum device.
  • the other configurations and operations are the same as those in FIG. 2, and thus the detailed description is omitted.
  • FIG. 7 shows a fourth embodiment of the present invention, in which the main pump, the sub-pump and the vacuum device of FIG. 2 are all arranged on the same rotating shaft. It is a compact device as a whole.
  • the main pump impeller 2 is illustrated as an open type. Other configurations and operations are
  • FIG. 8 shows a fifth embodiment of the present invention, in which the impeller 2 of the main pump and the impeller 5 of the sub-pump of FIG. This is an embodiment in which the apparatus is formed into a more compact apparatus as a whole. Other configurations and operations are the same as those in FIG. 7, and thus detailed description is omitted.
  • FIG. 9 shows a sixth embodiment of the present invention.
  • This is the construction of a liquid ring type vacuum pump 12 at a position in contact with the liquid feed passage of the main pump shown in FIG.
  • a cooling passage 24 for cooling the hydraulic fluid is formed, an inlet of the cooling passage 24 is connected to an exhaust port j of the vacuum bomb 12, and an outlet of the cooling passage 24 is connected to a suction port of the vacuum pump 12. Mouth i was contacted. This prevents the working fluid of the vacuum pump 12 from deteriorating due to a rise in temperature during long-term operation, and improves the performance and durability of the pump as a whole.
  • Reference numeral 25 in the figure is a separator that separates and extracts the working fluid mixed with the gas discharged from the exhaust port j of the vacuum pump 12 and sends it out to the cooling passage 24. It is more desirable that the discharge direction into the separator 25 be set to a direction tangential to the wall surface of the separator 25 so as to generate a centrifugal separation effect.
  • the other configuration and operation are the same as those in FIG. 7, and thus the detailed description is omitted.
  • FIG. 10 shows a seventh embodiment of the present invention, which is arranged on the suction side of the main pump of FIG.
  • a blade 26 is provided, and a fixed blade 27 is provided on the casing 1 corresponding to the blade 26 to constitute a crusher.
  • FIG. 11 is a sectional view taken along line X--X 'in FIG. 10, and FIG.
  • FIG. 12 is a sectional view taken along line Y--Y' in FIG.
  • the figure also shows an example of the shape of the main impeller 2 and the sub impeller 5, and the shape of the communication hole 'slit' between the front and back surfaces.
  • the other configuration and operation are the same as those in FIG. 7, and thus the detailed description is omitted.
  • FIG. 13 shows an eighth embodiment of the present invention. This is the connection between the vicinity of the center of the impeller of the main pump and the suction port of the sub-pump shown in FIG.
  • the suction opening c of the communication channel c ′ is provided on the suction port side of the impeller 2 of the main pump so as to face a cavity generating portion shaped like a dashed line in the figure.
  • the discharge port of the sub-pump communicates with the suction port a of the main pump via the return path e '.
  • the arrangement of the communication passages is different from that of the first embodiment, and the other structures and operations are the same as those in FIG.
  • FIG. 14 shows a ninth embodiment of the present invention, which is further expanded from that of FIG. 13 and is provided on the suction side of the impeller 2 of the main pump.
  • a blade 28 is provided that rotates in conjunction with the main pump, and a mechanism is provided to suck the gas at the location where cavities are formed near the center of rotation, as shown by the dashed line in the figure, and send it to the sub-pump. It is.
  • the discharge port of the sub-pump communicates with the suction port a of the main pump via a return line e '. Arrangement Ru Yes different force thus communicating path?, Since the other configurations and functions are similar to those of the first 3 diagrams, detailed is omitted.
  • any known shape such as a non-clog type, a smart type, a semi-open type, and a closed type can be applied.
  • Various known pumps can be applied to the type of the sub-pump and the shape of the sub-impeller 5, and multiple sub-pumps may be used to make gas-liquid separation more effective.
  • the recirculation path e 'between the discharge port and the suction side of the main pump may be formed integrally with the main pump casing 1, or may be provided with a separate pipe.
  • Various known devices can be applied to the vacuum device 12 as described above. One unit may be used, or a branch may be added to add an optional vacuum device.
  • main pump the sub-pump, and the vacuum device may all be on the same rotating shaft, or one of them may have a different rotating shaft system.
  • each of the main pump, the sub-pump, and the vacuum device may be all on different rotating shafts.
  • any one of them may be used alone, or some of them may be used in combination.
  • This invention sucks up liquids that are highly viscous and contain a large amount of air bubbles such as mud or solid foreign matter!
  • the f 'suction centrifugal pump that can be transported is improved with a simple configuration, and a new valve mechanism that operates stably and reliably while maintaining the high performance of the self-priming centrifugal pump is maintained. Introduced to prevent the intrusion of liquid between the main pump side and the vacuum equipment side during the entire process of starting, operating, and stopping the pump, etc., greatly improving the durability and convenience of the pump. It is a thing.
  • the equipment is maintenance-free, greatly reducing the burden of equipment rotation and maintenance management, and can be easily reduced in size and increased in size. As a result, the equipment and management costs are extremely economical, and the effect is extremely large:>

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

明 細 書 自吸式遠心ポンプ装置 技術分野
この発明は、 粘性が高く気泡を大量に含む泥状物や固形異物等が混入して いる液でも吸上げ輸送可能な自吸式遠心ポンプ装置に関するものであり、 特 に、 完全自動運転ができて管理上の手が掛からない、 高性能且つ経済的な自 吸式遠心ポンプ装置を得ようとするものである。 背景技術
粘性が高く気泡を大量に含む泥状物を遠心ポンプで吸上げすることは一般 に困難とされており、 更にこのような液に固形異物等が混入しているものを 吸上げ^?送する簡易かつ安全な手段が一般に望まれている。 従来、 真空装^ を併用したとしても遠心ポンプが簡単に上記の目的に使用できにくいのは、 羽根車中心付近に遠心分離され生成された空洞が簡単に上記のような性質の 液に置き替わりにくいからであった。
この問題を明快に解決したの力、 特公昭 4 0— 3 6 5 5号 「遠心ポンプ」 の発明であった。 その内容は、 その公告公報にも明らかな通り、 送液用の主 ポンプに対し、 その主羽根車中央部近傍に連通した吸込口を有する空洞引抜 き用副ポンプを並列に設け、 その副ポンプの吸込口をその吐出能力に比して 絞られた形に形成させ、 副ボンプの吐出口を主ポンプの吸込側に開放させ、 副ポンプの副羽根車中央部近傍から真空ポンプへの排気通路を設けることに よって、 主ポンプの主羽根車中央部近傍の空洞を強力に排除し、 揚液が常に 連続の状態を保つようにしたものである。 そして、 更にその発明を改良した 特公昭 4 2— 3 1 4 5号 「自吸式遠心ポンプ」 においては、 第 1 5図及び第 1 6図に例示したように、 ポンプ停止中に揚液が排気通路に侵入して真空 ( 排気) ポンプ 1 2が故障するのを防止する手段として、 該排気通路に、 発生 負圧によつて変位する作動体により開閉する安全弁 6を介在させたものであ る。 (以下これらの発明を 「原発明」 と呼称する)
従来技術である原発明の装置は、 それまで困難とされていた泥状物等の吸 七げを容易に行えるものとして、 広く使われてきたものである力 ?、 しかし依 然として次のような未解決の課題がある。 即ち、
第 1に、 該安全弁を開弁させる力源を真空ポンプの発生負圧に頼っている ため、 弁が開いた瞬問に負圧が減少して弁閉鉞方向に作動し、 弁が閉鎖した 瞬間に負/ iが高まって弁開方向に作動し、 その橾り返しにより振動や音が発 生する一種のフラップ現象によって、 該安全弁の作動が不安定になる可能性 がある。
第 2に、 ポンプ運転中には、 気液分離を行なう副ポンプが真空ポンプの負 圧に負けないだけの吐出能力によって揚液と排気系とを遮断し、 又、 ポンプ 静止時には、 安全弁が弁閉鎖によって揚液と排気系とを遮断しているので問 題は生じない訳である力 ^ しかし、 ポンプの起動の瞬間や停 lhに向かう瞬間
、 即ち副ポンプが 规回転数以 Fで回転している過渡的瞬間には、 副ポンプ の吐出能力が不足して真空ポンプ側の負圧に負けてしまう場合があり、 しか もその過渡的瞬問には安全弁が開閉作動中の半開きの状態であるため ΐポン ブ側と排気系とが連絡してしまレ 、 負圧を埋めるために主ボンプ側の揚液が 真空ポンプ側に引き込まれて、 真空ポンプの汚染や故障を引き起こす可能性 がある。 更に、 ポンプが停止に向かう瞬間においては、 主ポンプの吐出側の 背圧が高い等の場合に揚液が瞬間的な逆流によつて真空ポンプ側に侵入した り、 あるいは、 主ポンプの吸込側の揚程が高い等の場合に揚液の逆流落下等 に伴う負圧によって真空ポンプ (真空ポンプが液封式の場合) の作動液が主 ポンプ側に引き込まれて、 作動液の欠量ゃ揚液の逆汚染を引き起こす可能性 もある。
上記の揚液と排気系との瞬間的な連絡によつて発生する問題は、 揚液も真 空ポンプ作動液も共に水である場合等の、 一般的な液体の輸送に用いる程度 のものであれば無視しても実用上差し支えないが、 例えば揚液が化学品や食 品等の取扱いに注意を要する液体の場合には、 これら楊液による真空ポンプ の汚染も、 真空ボンプ作動液による揚液の逆汚染も大きな問題となる。 このような場合、 従来の解決策としては、 副ポンプが正規回転数以下で回 転している時には敢えて真空ボンプの排気能力を落とすように調節したり、 あるいは、 安全弁以外に弁やコック類を追加して手動で別途開閉したり して いる力 いずれも複雑な装置となったり、 自動運転には程遠い煩わしいもの となったり して、 本質的な解決とはなっていなかった。
この発明は、 上述のような従来の課題を、 簡潔な構成によって抜本的に解 決し、 その自吸式遠心ポンプ装置としての高度な性能は維持したまま、 安定 的且つ確実に作動する新しい弁機構等を導入して、 ポンプ起動、 運転、 停止 の全行程にわたつて主ボンプ側と真空装置側の間での液の侵入を防ぐこと等 によって、 完全自動運転ができて管理上の手力 ?掛からず、 小型化も大型化も 容易に実施でき、 耐久力もあり、 設備及び管理コストも極めて経済的な自吸 式遠心ポンプ装置を得ることを目的とする。 発明の開示
上記の目的を達成するために、 この発明の自吸式遠心ポンプ装置は、 送液 用の主ポンプと、 気液遠心分離用の副ポンプと、 排気用の真空装置とを備え 、 該主ポンプの羽根車中央部近傍は、 該副ポンプの吐出能力に比して絞られ た通過面積を有する通路によって該副ポンプの吸込口に連通され、 該副ポン プの吐出口は、 還流路によって該主ポンプの吸込口に連通され、 該副ポンプ の羽根車中央部近傍は、 排気通路によって該真空装置に接続され、 該自吸式 遠心ポンプ装置の原動機入力の投入の時点から遅延して開弁作動する緩作動 弁と、 該自吸式遠心ポンプ装置の原動機入力の遮断の時点に直ちに閉鎖作動 する急作動弁と力 ?、 該排気通路中に直列に介装された構成となっている。 この発明においては、 前記緩作動弁が、 開弁作動のタイミングを電気制御 された電動弁であってもよい。
又、 前記急作動弁が、 閉鎖作動のタイ ミ ングを電気制御された電動弁であ つてもよい。
又、 前記真空装置が液封式真空ポンプを備え、 且つ前記緩作動弁が、 該液 封式真空ポンプの作動液の液圧の上昇によって開弁作動する弁であってもよ い。
又、 前記緩作動弁と前記急作動弁とが合体ざれて、 開弁作動が遅く閉鎖作 動が速い一個の弁装置に構成されてもよい。
又、 前記緩作動弁と前記急作動弁のいずれかの閉鎖によつて前記排気通路 が前記副ポンプの羽根車中央部近傍と遮断されたときに、 該排気通路を大気 に連通させることによって、 前記真空装置の真空作用力を減殺する弁手段が 、 該排気通路中に併設されてもよい。
又、 前記副ポンプの排気通路側の液面レベルの低下によって開弁作動する フロート弁が、 前記排気通路中に直列に介装されてもよレ 。
又、 上部に入口と出口とが開口した液溜槽が、 前記排気通路中に直列に介 装されてもよい c
又、 前記主ポンプ、 副ポンプ、 真空装置のいずれか又は全てが、 異なる回 転軸系を有する構成であってもよい。
又、 前記主ポンプ、 副ポンプ、 真空装置の全てが、 同一の回転軸系を有す る構成であってもよい。
又、 前記主ポンプの羽根車と前記副ポンプの羽根車と力 ;'、 隣接して一体的 に形成されてもょレ 。 又、 前記真空装置が液封式真空ポンプを備え、 且つ、 前記主ポンプの送液 流路に接して該液封式真空ポンブの作動液を冷却する冷却通路が形成され、 該冷却通路の入口は該液封式真空ボンブの排気口に連絡され、 該冷却通路の 出口は該液封式真空ポンプの吸気口に連絡される構成であつてもよい。
又、 前記主ポンプの吸込口近傍に、 切断用の回転刃部及びこれに対応する 固定刃部を備えてもよい。
又、 前記主ポンプの羽根車中央部近傍と前記副ポンプの吸込口との間の連 通路の吸込開口部が、 該主ポンプの羽根車の吸込口側の空洞発生箇所に臨ん で設けられてもよい。
これらのことによって、 この発明の自吸式遠心ポンプ装置 (以下 「本ボン プ」 と呼称する) は次のような作用効果を発揮する。
まず、 本ポンプの起動操作、 即ち原動機入力の投入の際には、 急作動弁の 開弁速度に拘わらず、 緩作動弁が遅延時間をおいて開弁するので、 副ポンプ 力 f気液遠心分離を行うに充分な回転数 (吐出能力) に達した後にはじめて排 気通路が開通することとなり、 主ポンプから真空装置に液体が引き込まれる ことはない。
次に、 本ポンプの運転中は、 主ポンプの中央部の空洞が、 副ポンプによつ て引き抜かれ且つ気液遠心分離され、 液分は主ポンプに還流され、 気体分は 緩作動弁、 急作動弁共に開通している排気通路を経由して真空装置によって 排気されて、 主ポンプが連続的に送液を行う訳である力'、 この時、 副ポンプ は気液遠心分離を行うに充分な回転数 (吐出能力) を保っており、 一方真空 装置も充分な真空度を保っているので、 主ポンプと真空装置間のいずれの方 向にも液体力 s侵入することはない。
次に、 本ポンプの停止操作、 即ち原動機入力の遮断の際には、 緩作動弁の 閉鎖速度に拘わらず、 急作動弁が直ちに閉鎖するので、 排気通路内に負圧 ( 真空度) 力 f残っていたとしても排気通路そのものが強制的に閉鎖されること となり、 主ポンプと真空装置間のいずれの方向にも液体が侵入することはな い。
そして、 本ポンプの静止中は、 緩作動弁、 急作動弁共に閉鎖しているので 、 主ポンプと真空装置間のいずれの方向にも液体が侵入することはない。 これらの諸作用により、 前述の目的を容易且つ経済的に達成したものであ る。
更に、 排気通路中にフロート弁や液溜槽を直列に介装して、 万一前述の一 連の作動機構が損傷して作動不充分となつた場合にも、 主ポンプと真空装置 間の液体の侵入を阻止して、 装置の安全管理の完璧を期すことができる他、 必要に応じて、 真空装置の温度上昇を抑える冷却機構を付設したり、 揚液中 の異物の破砕機構を付設したり して、 多様な用途に容易に適用させることが できる。 図面の簡単な説明
第 1図は、 この発明の第 1実施例を示す縦断面図 (一部側面図) である。 第 2図は、 この発明の第 2実施例を示す縦断面図 (一部側面図) である。 第 3図は、 この発明の緩作動弁の部分についての一実施例を示す縦断面図 あ 。
第 4図は、 この発明の緩作動 ·急作動弁の部分についての一実施例を示す 縦断面図である。
第 5図は、 この発明の緩作動 ·急作動弁の部分についての一実施例を示す 縦断面図である。
第 6図は、 この発明の第 3実施例を示す縦断面図 (一部側面図) である。 第 7図は、 この発明の第 4実施例を示す縦断面図 (一部側面図) である。 第 8図は、 この発明の第 5実施例を示す縦断面図 (一部側面図) である。 第 9図は、 この発明の第 6実施例を示す縦断面図 (一部側面図) である。 第 1 0図は、 この発明の第 7実施例を示す縦断面図 (一部側面図)である。 第 1 1図は、 第 1 0図における X— X ' 断面図 (一部正面図) である。 第 1 2図は、 第 1 0図における Y— Y ' 断面図である。
第 1 3図は、 この発明の第 8実施例を示す縦断面図である。
第 1 4図は、 この発明の第 9実施例を示す縦断面図である。
第 1 5図は、 従来技 ¾5例を示す縦断面図 (一部側面図) である。
第 1 6図は、 第 1 5図における安全弁の部分を示す縦断面図である。 発明を実施するための最良の形態
以下各図にわたって共通の部分には同じ符号を付すものとし、 まず、 この 発明の第 1実施例を示した第 1図について詳細を説明する。
第 1図において、 1は主ポンプケーシング、 2は主羽根車、 3は主ポンプ と副ポンプとの隔板、 4は副ポンプケ一シング、 5は副羽根車である。 本図 においては、 簡単化のために主羽根車 2も副羽根車 5もセミオープン型が例 示してある。 両羽根車 2 ; 5は共に、 孔ゃスリツ ト等により中央部近傍の前 面側と背面側とが連通されている。 cは両ポンプ間の隔板 3の中央開口とこ れを貫通する軸部との間に形成された間隙部で、 主ポンプの中央部と連通し た副ポンプ吸込口に相当し、 その通路面積が副ポンプの吐出能力に比較して 充分に絞られた形に形成されている。 この間隙部は、 異物等の閉塞を防ぐた め副ポンプ側を広くとったり、 耐久性を増すために固い材質とゴム等を組み 合わせたり、 あるいは繊維状の物質等を粉砕するために歯形にするとかの手 段を講じてもよい。
そして、 副ポンプの吐出口 eは、 主ポンプの吸込側に対して還流路 e ' を 介して開放連絡されている。 f は副ポンプの吸込口 cの反対側の中央部近傍 に開かれた排気通路であり、 副ポンプの中央部近傍に集まる空洞状の気体を 真空装置 1 2に導く。 真空装置 1 2は、 液封式真空ポンプでもよいし、 その他の形式の真空ボン プでもよく、 更にはその他の形式の負圧発生装置でもよい:
なお、 これら主ポンプ、 副ポンプ、 真空装置の 3つの機構は、 勿論別々の タイミングで起動、 停止するような制御シークェンスを組んでも差し支えは ないが、 送液途中に気体の塊が混入した様な場合にも支障なく運転を続けら れるような、 文字通りの完全自動運転をめざす本発明の趣旨からは、 これら 3つの機構を同時的に作動させることが望ましく、 又、 以下説明も同時的な 作動を前提としたものとする。
第 1図における主ポンプ及び副ポンプ部分の作動の態様を説明する。 本ポンプを起動し (勿論主ボンプ吐出口には逆止弁を備えるなどして、 主 ポンプ吐出口からは吸気出来ないようにしてあるものとする〉 正規回転数に 達すると、 主ポンプ吸込側の気体は、 a— b— c ~* d— f 及び a— e ' — e →d— f の両経路を通って真空装置 1 2に排気され、 やがて吸上げられた揚 液は主ポンプ吸込口 a、 主ポンプ作動室 bを満たし、 一方では還流路 e ' を 満たし、 次いで副ポンプ作動室 dに侵入して行こうとする力 副ポンプの副 羽根-車 5の吐出能力 (即ち発生可能圧力) が真空装置 1 2の吸引力 (即ち真 空度) 以上となる構造にしてあるから、 副ポンプ自体は真空装置 1 2の吸引 作用で還流路 e ' から副ポンプ側に揚液を吸込しょうとすることに対しては 、 一種の逆止弁的作用を果たす。 そこで揚液は副ポンプ吸込口 cを通り副ポ ンプ作動室 d内に吸弓 Iされる力 \ 前述の通り副ポンプ吸込口 cは該副ポンプ の吐出能力に比して絞られた形となっているから、 吸込される液分は全てそ の吐出口 eから還流路 e ' へと還流される。
もし揚液中に気体を生じていて主ポンプ中央部に空洞ができても、 それは 直ちに副ポンプ側に吸込まれ、 そして俳気通路 f 〜 hに吸込まれて行く。 こ のとき、 副ポンプの副羽根車 5が真空装置 1 2の吸引力 (真空度) に負けな いだけの圧力を発生させ、 J1つ気液遠心分離羽根車として働く搰造にしてあ るから、 直ちに気体と液分を分離し、 液分は主ポンプ側に返し、 副羽根車 5 の中央部にできた気体の空洞は排気し、 連続且つ安全に揚液の吸引を続ける 。 又、 この運転中は排気通路 hには揚液が行かないので、 真空装置 1 2は安 全である。
以上の通りであるから、 本ポンプは、 水などの単純な液体に対しても特徴 ある揚水性能を発揮するのは勿論、 熱湯や煮込み状態にある溶体の吸上げ、 更には泥状物質の吸上げ等、 従来の遠心ポンプでは困難とされていたものす ら容易に取り扱うことができる。
次に、 第 1図における排気通路に付設された諸機構について説明する。 副ポンプより真空装置 1 2に至る排気通路中には、 基本的に、 本ポンプ起 動時に遅延時間をおいて排気通路を開通させることを主目的とした緩作動弁 1 3と、 本ポンプ停止時に直ちに排気通路を遮断することを主目的とした急 作動弁 1 4とが直列に配設されている。
緩作動弁 1 3は、 本ポンプ起動後に遅延時問をもって開作動する電動弁形 式のもの力 ?例示されており、 電気的な制御 (制御系統の図示は省略) により 、 遅延作動する仕組みとなっている。 この緩作動弁 1 3は、 本ポンプの原動 機入力の投入時に、 急作動弁〗 4の状態如何に拘わらず遅延時間をおいて排 気通路を開通させることとなるので、 本ポンプの起動の瞬間に主ポンプ側揚 液が真空装置側に引き込まれるのを防止する。
急作動弁 1 4は、 本ポンプ停止時に瞬時に閉作動する電動弁の一例として 電磁弁形式のものカ例示されている。 電磁弁そのものの作動原理及び構造に ついては公知であるから詳説は省略する。 この急作動弁 1 4は、 本ポンプの 原動機入力の遮断時に、 緩作動弁 1 3の状態如何に拘わらず強制的に排気通 路を遮断することとなるので、 本ボンプの停止の瞬間に主ポンブ側揚液が真 空装置側に引き込まれたり真空装置側の液体が主ポンプ側に引き込まれたり するのを防止する。 なお、 緩作動弁 1 3と急作動弁 1 4を一体構造に形成することも当然に可 能であり、 例えば、 開作動は遅延時間をもって行い閉作動は瞬時に行うよう 制御された 1個の弁に形成してもよいが、 概念の簡単化のため、 別置きのも のを図中に例示したものである。
そして、 第 1図には、 この排気通路中に更に安全装置としてのフロート弁
1 6や液溜槽 1 5が直列に介装された例が図示されている。
フロート弁 1 6は、 副ポンプの中央部近傍に臨む側にフロ一トを備え、 そ の反対側に弁体と弁座を配置した一般的な形式のものが例示されている。 液 体の浮力によって閉鎖するフロート弁 1 6は、 本ポンプの起動、 運転、 停止 の全ての時点にわたって、 副ポンプ側の揚液液面が上昇した場合に排気通路 を強制的に閉鎖して、 主ボンプ側揚液が真空装置側に引き込まれるのを阻止 する。 このため、 副ポンプから主ポンプへの還流路 e ' が詰まったり、 ある いは副羽根車 5力 ?損傷等で機能不十分となったり して、 副ポンプの排気側に 揚液が充満する事故が起こった場合にも、 真空装置への楊液の侵入を防ぐこ とができる。
液溜槽 1 5は、 容器の h部に人口と出口を備え液体が底部に滞留する形式 のもの力 ί例示されている。 即ち、 容器の上部に副ポンプからの人口 kと真空 装置への出口 mとが開口し、 副ポンプ又は真空装置のいずれかより侵入した 液体はこの容器底部に滞留し、 気体分のみ通過可能になるよう形成されてい る。 このため、 万一前述の一連の作動機構が損傷して作動不充分となった場 合などの緊急時にも、 排気通路中の液体を捕捉して副ポンプと真空装置間で の液体の侵入を許さず、 装置の安全管理の完璧を期すことができる。 なお、 図中には滞留液を排出するためのドレンロ nが容器の底部に設けられている が、 このドレンロ nからの排出操作は、 手動でもよいし、 滞留液が所定量に 達したら自動排出する仕組みにしてもよいし、 更には常に吸引排出するよう にしてもよい。 この液溜糟 1 5の容器は、 滞留液の量が確認できるよう透視 可能な材質とすること力、'望ましい。
これら緩作動弁 1 3、 急作動弁 1 4、 フロート弁 1 6、 液溜槽 1 5の 4つ の機構は、 それぞれに特徴ある有効な作用をするものであり、 その機構のい ずれか 1つ、 2つ又は 3つのみを適用しても、 現地の配管条件や液質によつ ては必要充分な働きをし得るものである力 ?、 本図においては、 最も厳しい仕 様、 例えば化学品や食品を取り扱う場合などにも完璧に対応できる実施例と して、 4つの機構の全てを備えたものを示したものである。
次に、 この発明の第 2実施例を示した第 2図について説明すると、 この実 施例は、 真空装置 1 2が液封式真空ポンプである場合の適用例として、 緩作 動弁 1 3を、 電動弁から液圧式の弁に置き換えたものである。 义、 液溜槽 1 5の出口部分の構造が、 該真空ポンプ 1 2の吸気口 iへの取付け部より延設 されたパイプの上端が液溜槽 1 5の容器の上部で開口するよう形成されて、 液溜槽 1 5が該真空ポンプ 1 2に直結して取付けられた例も示している。 液封式真空ポンプ 1 2の作動原理及び構造は、 一般的にナッシュポンプと 称される公知のものであるので、 詳説は省略する。 該真空ポンプ 1 2の作動 液としては、 現地の仕様に Ιΐ"、じた種類の液体、 例えばオイルや水を用いれば よく、 もし主ポンプの揚液が清浄な場合には、 その楊液そのものを用いても よレ、。
第 3図は、 第 2図中の緩作動弁 1 3の構造についての一例を示したもので ある。 即ち、 弁箱の底部開口に弁座 1 1が形成され、 上部にシール部材 7 ( 例えばダイヤフラム) 力設けられ、 そのシール部材 7と弁箱蓋部との間に弁 駆動室 gが形成され、 該シール部材 7には連結棒 8力 ?固着され、 その他端に 弁体 1 0が弁座 1 1に対応して装着され、 常に弁体 1 0を閉じさせる方向に 付勢する付勢部材 9が介装されている。 hは弁箱よりの排気通路で、 液封式 真空ポンプ 1 2の吸気口に導かれる。 なお、 シール部材 7については、 ダイ ャフラムを図示した力?、 ダイヤフラムを他のシール部材即ちべローズ、 ビス トン等に置き換えてもよいことは勿論である。
この緩作動弁 1 3の作動は、 該真空ポンプ 1 2から導かれた作動液の圧力 上昇によって、 弁駆動室 gの内圧が上昇すると、 一定時間経過後に付勢部材 9の付勢力に打ち勝って、 シール部材 7が変位して弁体 1 0を開き、 排気通 路を開通させるものである。
又、 この第 3図においては、 弁体 1 0が閉鎖状態の時にこの緩作動弁 1 3 の排気側が大気に連通するよう、 弁体 1 0と連動して作動する大気連通開閉 部 8 aを備えたもの力 '例示されており、 それによつて、 本ポンプの起動当初 は該真空ポンプ 1 2カ大気を吸気して真空作用力が減殺されることになるの で、 負圧を発生させるまでの遅延時間を延長して、 本ポンプの起動の瞬間に 主ポンプ側揚液が該真空ポンプ 1 2側に引き込まれる可能性を更に減らすこ とができる。 図示例では、 この大気連通開閉部 8 aは、 連結棒 8に穿設され た連通孔と連結棒 8のシール部材 7との固着部近辺に設けられたもう一つの 弁からなっている力 この連動双子弁形式の弁装置構造に限ることなく、 種 々形態のものが設計できることは言うまでもない。
更に、 この第 3図においては、 弁駆動室 gの中に気体を密封した袋を挿入 したもの力 ί例示されている。 その目的は、 該真空ポンプ 1 2力起動されて弁 駆動室 g内の液圧が高まってきたときに、 その液圧が直ちに弁体 1 0を駆動 することがないように、 袋内の気体の圧縮の過程を経させて弁体 1 0の作動 を更に遅延させるものである。 但し、 実用上は、 単に弁駆動室 gに溜まる気 体をそのまま利用して済むこともある。 更に作動を遅延させるための他の方 法としては、 弁駆動室 gへの液圧導入通路を絞る方法も当然考えられる。 この緩作動弁 1 3に、 急作動弁の機能も合体させて、 開作動は遅延時間を もって行い閉作動は瞬時に行うよう制御された 1個の弁装置に構成すること も可能であり、 その構成の一例が第 4図に示されている。 これは、 液封式真 空ポンプ 1 2から弁駆動室 gに作動液を導く通路の途中に絞り弁 2 1を介装 すると共に、 弁駆動室 gから該真空ポンプ 1 2に向かう方向にのみ作動液を 通過させる逆止弁 2 2を並列に介装することによって、 通過方向による通過 流量の差を設け、 該弁 1 3の開作動は遅延時間をもって行なわせ閉作動は瞬 時に行なわせるものである。 その絞り弁 2 1の開度調節及び逆止弁 2 2の口 径選択等によって、 該弁 1 3の開作動と閉作動の時間を調節できる。 その他 の構造は第 3図のものと同様であるので詳説は省略する。
更に、 第 4図のものの構造を簡単化した一例が第 5図に示されている。 こ れは、 前記絞り弁 2 1 と逆止弁 2 2の役割を、 弁駆動室 gに作動液を導く通 路の途中に設けた弁体 2 3の往復動によって代替させたものである。 即ち、 図示例では、 弁体 2 3が下がったときには通路を絞り (弁体 2 3の表面凹凸 ゃ孔等により若干の流路を残すものとする) 上がつたときには通路を拡大す るものである。 その他の構造は第 4図のものと同様であるので詳説は省略す る。
緩作動弁 1 3に第 4図や第 5図にて例示したような急作動弁の機能も持た せた場合には、 当然に急作動弁 1 4は省略してもよい訳である力5'、 主ポンプ 側と真空装置側の液の相互侵入を確実に阻止するための安全装置として、 こ の急作動弁 1 4を省略せずに残しておいてもよレ、。
さて、 第 6図は、 この発明の第 3実施例を示したものであり、 これは、 第 2図のものの副ポンプの部分を真空装置と同一の回転軸上に移設したもので ある。 その他の構成及び作用は第 2図のものと同様であるから、 詳説は省略 する。
次に、 第 7図は、 この発明の第 4実施例を示したものであり、 これは、 第 2図のものの主ポンプ、 副ポンプ、 真空装置の全てを同一の回転軸上に配置 して、 全体としてコンパクトな装置にまとめたものである。 なお、 主ポンプ の羽根車 2はオープン型のものを例示してある。 その他の構成及び作用は第
2図のものと同様であるから、 詳説は省略する。 次に、 第 8図は、 この発明の第 5実施例を示したものであり、 これは、 第 7図のものの主ボンプの羽根車 2と副ポンブの羽根車 5とを、 隣接させ一体 的に形成させたもので、 全体として更にコンパクトな装置にまとめた実施例 である。 その他の構成及び作用は第 7図のものと同様であるから、 詳説は省 略する。
次に、 第 9図は、 この発明の第 6実施例を示したものであり、 これは、 第 7図のものの主ポンプの送液流路に接する箇所に液封式真空ポンブ 1 2の作 動液を冷却する冷却通路 2 4を形成し、 該冷却通路 2 4の入口は該真空ボン ブ 1 2の排気口 j に連絡させ、 該冷却通路 2 4の出口は該真空ポンプ 1 2の 吸気口 i に連絡させたものである。 これによつて、 該真空ポンプ 1 2の作動 液が長時間運転に伴う温度上昇で機能低下するのを防ぎ、 ポンプ全体として の性能及び耐久性を向上させることができる。 なお、 図中の 2 5は、 該真空 ポンプ 1 2の排気口 jから排出された気体に混じる作動液を分離抽出して、 冷却通路 2 4向けに送り出す分離器であり、 図中に示唆したように分離器 2 5内への放出方向を該分離器 2 5の壁面接線方向にして遠心分離効果を発生 させる形式とすればなお望ましい。 その他の構成及び作用は第 7図のものと 同様であるから、 詳説は省略する。
次に、 第 1 0図は、 この発明の第 7実施例を示したものであり、 これは、 第 7図のものの主ボンプの吸込側に主羽根車 2に先行してこれと同軸の回転 刃部 2 6を設け、 そしてこれに対応してケ一シング 1側に固定刃部 2 7を設 け、 破砕器を構成させたものである。 これによつて、 主ポンプの送液中の閉 塞の原因となる異物を破砕して主ポンプの閉塞を防ぎ、 ポンプ全体としての 性能及び耐久性を向上させることができる。 具体的には例えば、 揚液中に繊 維、 塊、 その他の挟雑物が混じる汚物等を扱うに際しても、 汚物等を能率的 に破砕しながら移送することができる。 なお、 第 1 1図は、 第 1 0図におけ る X— X ' 断面、 第 1 2図は、 第 1 0図における Y— Y ' 断面を図示したも のであり、 主羽根車 2及び副羽根車 5の形状や、 その前背面間の連通孔 ' ス リッ 卜の形状の一例も示している。 その他の構成及び作用は第 7図のものと 同様であるから、 詳説は省略する。
次に、 第 1 3図は、 この発明の第 8実施例を示したものであり、 これは、 第 6図のものの主ボンプの羽根車中央部近傍と副ポンプの吸込口との間の連 通流路 c ' の吸込開口部 cを、 該主ポンプの羽根車 2の吸込口側の、 図中の 一点鎖線のような形状になる空洞発生箇所に臨んで設けさせたものである。 そして、 副ポンプの吐出口は還流路 e ' を経て主ポンプの吸込口 aに連通さ れている。 このように連通路の配置は異なってはいる力 その他の構成及び 作用は第 6図のものと同様であるから、 詳説は省略する。
次に、 第 1 4図は、 この発明の第 9実施例を示したものであり、 これは、 第 1 3図のものを更に兌展させて、 該主ポンプの羽根車 2の吸込口側に、 主 ポンプと連動して回転する羽根 2 8を設けて、 その回転中心部近傍の、 図中 の一点鎖線のような形状になる空洞発生箇所の気体を吸込み副ポンプに送る 機構としたものである。 そして、 副ポンプの吐出口は還流路 e ' を経て主ポ ンプの吸込口 aに連通されている。 このように連通路の配置は異なってはい る力 ?、 その他の構成及び作用は第 1 3図のものと同様であるから、 詳説は省 略する。
さて、 上記全実施例を通じて、
主羽根車 2については、 ノンクロッグ型、 才一プン型、 セミオープン型、 クローズド型など、 公知のいかなる形状のものも適用できる。
副ポンプの形式及び副羽根車 5の形状についても、 各種の公知のものが適 用可能であり、 気液分離をより効果的にするために複列としたりしてもよい 又、 副ポンプの吐出口と主ポンプの吸込側との間の還流路 e ' は、 主ボン プケ一シング 1との一体铸造で形成しても、 別途配管を装着してもよい。 真空装置 1 2は、 前述のように各種公知のものが適用可能であり、 個数も 一つでもよいし、 分岐して任意の真空装置を追加してもよい。
なお、 主ポンプ、 副ポンプ、 真空装置の全てが同じ回転軸上にあっても、 あるいはいずれかが異なる回転軸系を持ってもよく、 上記の各実施例に述べ た組合せの他にも、 図示は省略したが、 主ポンプ、 副ポンプ、 真空装置の夫 々を全て別の回転軸上としても差し支えない。
又、 各実施例は、 いずれか 1つを単独で採用しても、 いくつかを組み合わ せて採用してもよい。
その他、 この発明の各構成要素にわたって、 この発明の趣旨の範囲内で、 その構成要素の個数や、 構成要素間の位置や配列順序を変更したり、 従来技 術を援用するなど、 極々設計変更可能であり、 更にその素材材質も適宜現地 仕様に適合したものを選択可能であり、 この発明を上記の各実施例に限定す るものではない: 産業上の利用可能性
この発明は、 粘性が高く気泡を大量に含む泥状物や固形異物等が混入して いる液でも吸上!ナ'輸送可能な f¾吸式遠心ポンプ装置を、 簡潔な構成によって 改良し、 その自吸式遠心ポンプ装置としての高度な性能は維持したまま、 安 定的且つ確実に作動する新しい弁機構等を導入して、 ポンプ起動、 運転、 停 止の全行程にわたって主ポンプ側と真空装置側との間での液の侵入を防ぐこ と等によって、 該ポンプの耐久性と利便性を大幅に向上させたものである。 完全自動運転ができることに加え、 装置がメンテナンスフリ一であるため、 装置の il転や保守管理の負担が大幅に軽減され、 又、 小型化も大型化も容易 に実施でき、 更に、 簡潔な構成であるため設備及び管理コス トも極めて経済 的であり、 その荚施効果は極めて大きい: >

Claims

請 求 の 範 囲 1 . 自吸式遠心ポンプ装置において、
送液用の主ポンプと、 気液遠心分離用の副ポンプと、 排気用の真空装置とを 備え、 該主ポンプの羽根車中央部近傍は、 該副ポンプの吐出能力に比して絞 られた通過面積を有する通路によつて該副ポンプの吸込口に連通され、 該副 ポンプの吐出口は、 還流路によって該主ボンプの吸込口に連通され、 該副ポ ンプの羽根車中央部近傍は、 排気通路によって該真空装置に接続され、 該自 吸式遠心ポンプ装置の原動機入力の投入の時点から遅延して開弁作動する緩 作動弁と、 該自吸式遠心ポンプ装置の原動機入力の遮断の時点に直ちに閉鎖 作動する急作動弁と 、 排気通路中に直列に介装されたことを特徴とする 自吸式遠心ポンプ装置。
2 . 前記鍰作動弁が、 開弁作動のタイ ミングを電気制御された電動弁であ ることを特徴とする、 請求の範囲第 1項に記載の自吸式遠心ポンプ装置。
3 . 前記急作動弁が、 閉鎖作動のタイ ミングを電気制御された電動弁であ ることを特徴とする、 請求の範囲第 1項に記載の自吸式遠心ポンブ装置。
4 . 前記真空装置が液封式真空ポンプを備え、 且つ前記緩作動弁が、 該液 封式真空ポンプの作動液の液圧の上昇によつて開弁作動する弁であることを 特徴とする、 請求の範囲第 1項に記載の自吸式遠心ポンプ装置。
5 . 前記緩作動弁と前記急作動弁とが合体されて、 開弁作動が遅く閉鎖作 動が速い一個の弁装置に構成されたことを特徴とする、 請求の範囲第 1項に 記載の自吸式遠心ポンプ装置。
6 . 前記緩作動弁と前記急作動弁のいずれかの閉鎖によって前記排気通路 力前記副ポンプの羽根車中央部近傍と遮断されたときに、 該排気通路を大気 に連通させることによって、 前記真空装置の真空作用力を減殺する弁手段が 、 該排気通路中に併設されたことを特徴とする、 請求の範囲第 1項〜第 5項 のいずれかに記載の自吸式遠心ポンプ装置。
7 . 前記副ポンブの排気通路側の液面レべルの低下によって開弁作動する フロー ト弁が、 前記排気通路中に直列に介装されたことを特徴とする、 請求 の範囲第 1項〜第 6項のいずれかに記載の自吸式遠心ポンプ装置。
8 . 上部に入口と出口とが開口した液溜槽が、 前記排気通路中に直列に介 装されたことを特徴とする、 請求の範囲第 1項〜第 7項のいずれかに記載の 自吸式遠心ポンプ装置。
9 . 前記主ポンプ、 副ポンプ、 真空装置のいずれか又は全てが、 異なる回 転軸系を有することを特徴とする、 請求の範囲第 1項〜第 8項のいずれかに 記載の自吸式遠心ポンプ装置。
1 0 . 前記主ポンプ、 副ポンプ、 真空装置の全てが、 同一の回転軸系を有 することを特徴とする、 請求の範囲第 1項〜第 8項のいずれかに記載の自吸 式遠心ポンプ装置。
1 1 . 前記主ポンプの羽根車と前記副ポンプの羽根車とが、 隣接して一体 的に形成されたことを特徴とする、 請求の範囲第 1項〜第 1 0項のいずれか に記載の自吸式遠心ポンプ装置。
1 2 . 前記真空装置が液封式真空ポンプを備え、 且つ、 前記主ポンプの送 液流路に接して該液封式真空ポンプの作動液を冷却する冷却通路が形成され 、 該冷却通路の入口は該液封式真空ポンプの排気口に連絡され、 該冷却通路 の出口は該液封式真空ポンプの吸気口に連絡されたことを特徴とする、 請求 の範囲第 1項〜第 1 1項のいずれかに記載の自吸式遠心ポンプ装置。
1 3 . 前記主ポンプの吸込口近傍に、 切断用の回転刃部及びこれに対応す る固定刃部を備えたことを特徴とする、 請求の範囲第 1項〜第 1 2項のいず れかに記載の自吸式遠心ポンプ装置。
1 4 . 前記主ポンプの羽根車中央部近傍と前記副ポンプの吸込口との間の 連通路の吸込開口部が、 該主ポンプの羽根車の吸込口側の空洞発生箇所に臨 んで設けられたことを特徴とする、 請求の範囲第 1項〜第 1 3項のいずれか に記載の自吸式遠心ポンプ装置。
PCT/JP1997/000857 1996-07-26 1997-03-17 Pompe centrifuge a amorçage automatique WO1998004833A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU19425/97A AU1942597A (en) 1996-07-26 1997-03-17 Self-priming type centrifugal pump
DE19781894T DE19781894T1 (de) 1996-07-26 1997-03-17 Selbstansaugende Kreiselpumpe
US09/230,251 US6152689A (en) 1996-07-26 1997-03-17 Self-priming type cetrifugal pump
DE19781894A DE19781894B4 (de) 1996-07-26 1997-03-17 Selbstansaugende Kreiselpumpe
JP50867598A JP3924730B2 (ja) 1996-07-26 1997-03-17 自吸式遠心ポンプ装置
GB9901454A GB2331125B (en) 1996-07-26 1997-03-17 Self-priming type centrifugal pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/197542 1996-07-26
JP19754296 1996-07-26

Publications (1)

Publication Number Publication Date
WO1998004833A1 true WO1998004833A1 (fr) 1998-02-05

Family

ID=16376219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000857 WO1998004833A1 (fr) 1996-07-26 1997-03-17 Pompe centrifuge a amorçage automatique

Country Status (8)

Country Link
US (1) US6152689A (ja)
JP (1) JP3924730B2 (ja)
KR (1) KR100458097B1 (ja)
CN (1) CN1082628C (ja)
AU (1) AU1942597A (ja)
DE (2) DE19781894B4 (ja)
GB (1) GB2331125B (ja)
WO (1) WO1998004833A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002732A1 (fr) * 1999-07-05 2001-01-11 Kabushiki Kaisha Yokota Seisakusho Dispositif de pompage
JP2007000866A (ja) * 2005-06-22 2007-01-11 Sulzer Pumpen Ag ガス分離装置、その前壁及び分離ロータ
US7597732B2 (en) 2002-12-26 2009-10-06 Kabushiki Kaisha Yokota Seisakusho Gas-liquid separator
CN102606487A (zh) * 2012-03-23 2012-07-25 淄博博山晨晟给水设备制造有限公司 全自动地上污水提升泵机组

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2774136B1 (fr) * 1998-01-28 2000-02-25 Inst Francais Du Petrole Dispositif de compression-pompage monoarbre associe a un separateur
GB9901547D0 (en) * 1999-01-26 1999-03-17 H J Godwin Limited Improvements in or relating to pumps
US6692234B2 (en) * 1999-03-22 2004-02-17 Water Management Systems Pump system with vacuum source
DK200000278U4 (da) * 2000-09-20 2002-01-11 Apv Fluid Handling Horsens As Hygiejnisk selvansugende centrifugalpumpe.
US7334600B2 (en) * 2003-08-22 2008-02-26 The Gorman-Rupp Company Priming apparatus for a centrifugal pump
DE102005038273A1 (de) * 2005-08-02 2007-02-08 Linde Ag Maschine mit einem drehbaren Rotor
CN100402863C (zh) * 2005-12-20 2008-07-16 天津港保税区鑫利达石油技术发展有限公司 离心泵
KR100774259B1 (ko) 2006-06-12 2007-11-12 이기춘 슬러지 펌핑장치
KR100725949B1 (ko) * 2006-07-28 2007-06-11 금정공업 주식회사 수륙 양용 모터펌프
US20080089777A1 (en) * 2006-08-30 2008-04-17 Lang John P Self-priming adapter apparatus and method
US20100163215A1 (en) * 2008-12-30 2010-07-01 Caterpillar Inc. Dual volute electric pump, cooling system and pump assembly method
US8998586B2 (en) * 2009-08-24 2015-04-07 David Muhs Self priming pump assembly with a direct drive vacuum pump
SE535003C2 (sv) * 2010-05-10 2012-03-13 Metso Paper Inc Anordning för avgasningskontroll
KR101237143B1 (ko) * 2010-07-05 2013-02-25 지효근 로터리 디스크 펌프
KR101072855B1 (ko) * 2011-06-09 2011-10-14 김찬원 진공 강 자흡식 펌프
CN102261338A (zh) * 2011-06-21 2011-11-30 佛山安德里茨技术有限公司 内置液环真空泵的自吸式离心泵
JP5767911B2 (ja) * 2011-08-31 2015-08-26 株式会社川本製作所 羽根車及び水中ポンプ
CN102678576B (zh) * 2012-05-25 2014-09-17 包耀红 一种电动应急消防泵
CN103016355A (zh) * 2012-09-20 2013-04-03 宁波大红鹰学院 一种特殊自吸泵
WO2014059016A1 (en) 2012-10-10 2014-04-17 Research Triangle Institute Particulate heat transfer fluid and related system and method
US9989060B2 (en) * 2013-08-08 2018-06-05 Woodward, Inc. Fuel system with liquid ring pump with centrifugal air/fuel separator
EP3037453A1 (fr) 2014-12-22 2016-06-29 Rhodia Operations Polyesters issus de diacide carboxylique aromatique et du 2,5-bis(hydroxymethyl)tetrahydrofurane
DE102015003224C5 (de) * 2015-03-13 2021-07-15 Gea Tuchenhagen Gmbh Selbstansaugende Pumpe
CN105971890A (zh) * 2016-05-05 2016-09-28 上海弘佳能源科技有限公司 双翼轮自吸式离心泵
GB2554762B (en) * 2016-10-10 2020-04-01 Aspen Pumps Ltd Centrifugal pump flow modifier
CN106678056B (zh) * 2017-02-27 2018-01-16 浙江工业大学 一种通用离心泵口环试验台
CN107313947A (zh) * 2017-08-15 2017-11-03 王道红 电动自吸式消防泵
CN107939743B (zh) * 2017-12-06 2024-06-21 广州市昕恒泵业制造有限公司 一种自冷却离心泵
EP3686434A1 (en) 2019-01-25 2020-07-29 Pentair Flow Technologies, LLC Self-priming assembly for use in a multi-stage pump
CN110269709A (zh) * 2019-07-08 2019-09-24 天逸瑞狮(苏州)口腔医疗科技股份有限公司 用于口腔治疗的负压抽吸装置、系统及方法
CN110206736B (zh) * 2019-07-19 2020-06-09 天津市滨生源科技发展有限公司 一种智能型真空引水控制器
US11619235B2 (en) * 2020-08-17 2023-04-04 Hale Products, Inc. Dual priming system for a pump
CN112943623B (zh) * 2019-12-11 2022-12-06 浙江省泵阀产品质量检验中心(永嘉县质量技术监督检测研究院) 一种内置液环真空泵的自吸式离心泵
CN110953161A (zh) * 2019-12-31 2020-04-03 深圳市合一精密泵业科技有限公司 一种具有自吸抽水功能的离心泵装置及自吸抽水方法
DE102020103022B4 (de) 2020-02-06 2022-09-29 KSB SE & Co. KGaA Pumpenanordnung
DE102020125805A1 (de) * 2020-10-02 2022-04-07 Frideco Ag Pumpensystem und Verfahren zum Betrieb eines Pumpensystems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS423145B1 (ja) * 1963-03-23 1967-02-09
JPS5797198U (ja) * 1980-12-08 1982-06-15

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1254971B (de) * 1961-05-17 1967-11-23 Rosenbauer Kg Konrad Entlueftungseinrichtung fuer mittelbar selbstansaugende Kreiselpumpen, insbesondere fuer Feuerloeschzwecke
JPS403655B1 (ja) * 1962-11-20 1965-02-26
DE1528895C3 (de) * 1962-11-20 1974-07-11 Hidekuni Yokota Zentrifugalpumpe
JPS454231B1 (ja) * 1966-08-12 1970-02-13
JPS5233372A (en) * 1975-09-10 1977-03-14 Hoshizaki Electric Co Ltd Waste compression disposer
JPH07139489A (ja) * 1993-11-01 1995-05-30 Shingo Yokota 自吸式遠心ポンプ装置
US5536147A (en) * 1994-08-26 1996-07-16 Paco Pumps, Inc. Vacuum priming system for centrifugal pumps

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS423145B1 (ja) * 1963-03-23 1967-02-09
JPS5797198U (ja) * 1980-12-08 1982-06-15

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002732A1 (fr) * 1999-07-05 2001-01-11 Kabushiki Kaisha Yokota Seisakusho Dispositif de pompage
GB2369071A (en) * 1999-07-05 2002-05-22 Yokota Mfg Pump device
US6629821B1 (en) 1999-07-05 2003-10-07 Kabushiki Kaisha Yokota Seisakusho Pump apparatus
GB2369071B (en) * 1999-07-05 2004-01-21 Yokota Mfg Pump device
JP4700872B2 (ja) * 1999-07-05 2011-06-15 株式会社横田製作所 ポンプ装置
US7597732B2 (en) 2002-12-26 2009-10-06 Kabushiki Kaisha Yokota Seisakusho Gas-liquid separator
JP2007000866A (ja) * 2005-06-22 2007-01-11 Sulzer Pumpen Ag ガス分離装置、その前壁及び分離ロータ
CN102606487A (zh) * 2012-03-23 2012-07-25 淄博博山晨晟给水设备制造有限公司 全自动地上污水提升泵机组

Also Published As

Publication number Publication date
KR100458097B1 (ko) 2004-11-26
DE19781894B4 (de) 2007-08-09
GB2331125A8 (en) 1999-05-17
CN1082628C (zh) 2002-04-10
GB9901454D0 (en) 1999-03-17
JP3924730B2 (ja) 2007-06-06
GB2331125A9 (en) 1999-10-13
AU1942597A (en) 1998-02-20
DE19781894T1 (de) 1999-09-02
GB2331125A (en) 1999-05-12
KR20000029562A (ko) 2000-05-25
CN1230243A (zh) 1999-09-29
US6152689A (en) 2000-11-28
GB2331125B (en) 2000-10-25

Similar Documents

Publication Publication Date Title
WO1998004833A1 (fr) Pompe centrifuge a amorçage automatique
JP4700872B2 (ja) ポンプ装置
US4067663A (en) Sewage pump priming system
CN109296546A (zh) 一种惰性真空辅助自吸泵
AU2007336150B2 (en) Vacuum sewage system
CN208311059U (zh) 真空辅助自吸泵
TWM589241U (zh) 再生式泵
US3857517A (en) Anti-siphon and pump priming for sewage grinder pump
CN105952612A (zh) 一种泵用自吸装置及方法
KR200445591Y1 (ko) 수분 분리구조를 갖는 진공 자흡식 원심펌프
JP4044980B2 (ja) ポンプ
JP2004290843A (ja) 粉砕圧送装置
CN104033392A (zh) 内燃机排气驱动自吸装置
US1745257A (en) Pump system
CN208966610U (zh) 一种惰性真空辅助自吸泵
JP2014190220A (ja) ウェスコ型電動ポンプ
KR200151022Y1 (ko) 오일순환식 로터리 베인 진공펌프 자흡장치
US1521570A (en) Separator
CN211525097U (zh) 一种卧式自吸泵
JPS5824637B2 (ja) 自吸式ポンプ
CN212563675U (zh) 高效减阻抗磨自吸排污泵
Karassik et al. Priming
JPH05157039A (ja) サイホン式水車
KR960016040B1 (ko) 펌프
AU707024B2 (en) Liquid pump with degasser and integrated vapor recovery option

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97197948.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09230251

Country of ref document: US

ENP Entry into the national phase

Ref document number: 9901454

Country of ref document: GB

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997000620

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 19781894

Country of ref document: DE

Date of ref document: 19990902

WWE Wipo information: entry into national phase

Ref document number: 19781894

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1019997000620

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997000620

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607