WO1998003628A1 - Vorrichtung zum separieren von mikroobjekten - Google Patents

Vorrichtung zum separieren von mikroobjekten Download PDF

Info

Publication number
WO1998003628A1
WO1998003628A1 PCT/EP1997/003536 EP9703536W WO9803628A1 WO 1998003628 A1 WO1998003628 A1 WO 1998003628A1 EP 9703536 W EP9703536 W EP 9703536W WO 9803628 A1 WO9803628 A1 WO 9803628A1
Authority
WO
WIPO (PCT)
Prior art keywords
objects
microcapillary
substrate
target substrate
biological objects
Prior art date
Application number
PCT/EP1997/003536
Other languages
English (en)
French (fr)
Inventor
Klaus Luttermann
Edgar Diessel
Markus Weidauer
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to US09/214,839 priority Critical patent/US6517779B1/en
Priority to EP97931772A priority patent/EP0912720A1/de
Priority to JP10506483A priority patent/JP2000515015A/ja
Publication of WO1998003628A1 publication Critical patent/WO1998003628A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/021Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion

Definitions

  • the invention relates to a device for separating individual biological micro-objects, especially biological objects
  • the objects are in this case on a solid planar transformers arranged side by side with this method can spatially from a very large number of micro-objects (e.g. B lO 3 to 10 6) individual objects must be separated and rejected
  • a prerequisite for this separation process is the prior detection and selection of the objects in question on the basis of significant analytical properties (e.g. by
  • microobject transverse dimension ⁇ 50 ⁇ m means "biological objects” in the context of the present application primarily means (living) biological cells.
  • objects with optical ones can be used
  • Cultivation can only be achieved with additional effort.
  • these cells must be separated using a different method, such as, for example, using needles. Needles moved with micromanipulators, to which the cells adhere, are also used as the sole method. Here, the cells are touched directly and could therefore be mechanically loaded. Here too, the manipulation is limited to weakly adhering objects
  • Separating or sorting apparatuses suitable for separating a large number (> 10 5 ) of biological objects dispersed in a liquid are commercially available.
  • Fluorescence-activated cell sorting Fluorescence activated cell sorter
  • MCS Magnetic activated cell sorter
  • ablative photodecomposition processes in which pulsed UV lasers, in particular excimer lasers, are used to deliberately remove material from polymers. In the broadest sense, these processes can be regarded as etching processes.
  • a similar method, but using a continuously operated UV laser, is described in U.S. Patent 5,211,805.
  • This process is said to be suitable for the industrial processing of technical polymers and for the biomedical treatment of biological tissue.
  • This is related to a sorting principle that uses laser beams to destroy the undesired biological objects on a carrier with high radiation doses, while the selected (desired) objects remain (US Pat. No. 4,624,915). This process is relatively complex in order to select individual objects from large populations.
  • the object on which the invention is based is the spatial separation of individual micro-objects, in particular of known biological cells, which are applied next to one another with a high occupancy density on a planar carrier and adhere to this carrier.
  • the survivability of the biological objects should remain guaranteed; that is, the biological objects are not damaged by the separation process or affect trächti " ⁇ gt V be.
  • this object is achieved according to the invention in that the pipette system is arranged in a micromanipulator and an essentially vertically arranged microcapillary with a clear width of
  • a pump or piston syringe serves as the pressure generating device
  • the microcapillary preferably consists of a cylindrical glass tube and is advantageously bent at right angles. A deviation from the right angle by approximately ⁇ 20 ° can also be accepted
  • capillaries made of different materials such as borosilicate glass, aluminum silicate glass, or hematocrit glass are used
  • a particularly preferred embodiment of the invention is characterized in that the micromanipulator and the pump are controlled in such a way that, when the vacuum is adjusted in one operation, several biological objects are sucked in one after the other by the microcapillary and then rinsed out again in the next operation with an overpressure adjustment.
  • the current substrate and the target substrate expediently consist of a carrier coated with agar or agarose
  • microtiter plate can also be used as the target substrate
  • the drawing shows the basic structure of the transfer device at a microscope work station.
  • the device according to the invention can be used for the separation of micro-objects such as polymer beads in the context of combinatorial chemistry or bacteria in the context of molecular biology
  • Microcapillaries made of a special glass are used for the transfer of the bacteria, which are produced by a drawing process in the molten state.
  • borosilicate glass tubes from Hilgenberg, Malsfeld, GER
  • GER borosilicate glass tubes
  • GER pipette puller
  • capillaries with a cylindrical pipette shape in the end area of the capillary were opened with an opening diameter of approx. 6 ⁇ m at the melted end
  • the capillary can also be made from aluminum silicate glass or hematocrit glass
  • the microcapillary 1 is held in a collet 2, which is mounted on the micro-manipulator 3, which enables three-dimensional positioning in the ⁇ m range.
  • manipulators are commercially available.
  • the microcapillary 1 is connected via a hose 4 to a commercially available piston syringe 5, with the aid of which the internal capillary pressure is adjusted. The pressure is determined using a pressure gauge 6.
  • Both the micromanipulator 3 and the syringe 5 are operated remotely with stepper motors, which are not shown here.
  • the entire process of aspirating and separating a bacterium (picking process) is subject to visual control, which is made possible by observation with a 40-fold magnification in phase contrast.
  • the microcapillary 1 is heated above the softening point and bent over in such a way that it is almost a 90 ° angle forms and can thus be positioned to save space below the condenser 8 on this
  • the object to be picked or the bacterium 10 to be separated from the substrate 9 is now positioned below the capillary 1 by means of a coordinate-controlled movement of the microscope displacement table.
  • the internal capillary pressure is set to -300 mbar compared to the ambient pressure. With simultaneous microscope observation, the capillary 1 is placed directly over the one to be picked
  • the microcapillary 1 is raised via the height adjustment on the micromanipulator 3 and as a result the empty substrate area remains in the microscope image.
  • the microcapillary 1 or the displacement table is moved to a corresponding location on the target substrate.
  • the internal pressure is increased to + 100 mbar.
  • the capillary 1 is placed on the target substrate (here the edge zone on the substrate 9), the rinsing process takes place. After the capillary 1 has been lifted off the target substrate again, the rinsed-out bacterium becomes visible again in the phase contrast image of the microscope.
  • 10 bacteria in each case were transferred from a starting substrate to a target substrate which contained nutrient. After a growth period of a few days, colonies developed from the individual bacteria in 50 - 60% of the cases. A value of 60% was determined in a test of the vitality rate of the initial population, so that the transfer process can be regarded as very gentle.
  • the bacteria can be placed in a liquid e.g. PBS buffer are applied. This liquid can be found in the wells of commercially available 96 or 384 microtiter plates.
  • the micromanipulator 3 and the syringe 5 are controlled so that individual bacteria are picked one after the other with a constant negative pressure setting.
  • the bacteria are sucked up by successively lowering the capillary 1 onto the substrate locations that carry the bacteria to be picked.
  • the bacteria are then rinsed out with a constant overpressure setting by successively lowering the capillary to different locations on the substrate
  • PCR polymerase chain reaction

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Die Vorrichtung dient zum Transfer von Mikroobjekten, insbesondere von biologischen Objekten, von einem aktuellen Substrat (9) zu einem Zielsubstrat. Dabei wird ein verfahrbares Pipettensystem verwendet, das mit einer Druckerzeugungsvorrichtung zum Ansaugen und Ausspülen der biologischen Objekte verbunden ist. Das Pipettensystem ist in einem Mikromanipulator (3) angeordnet und besteht hauptsächlich aus einer im wesentlichen vertikal angeordneten Mikrokapillare (1) mit einer lichten Weite von 1 νm bis 50 νm.

Description

Vorrichtung zum Separieren von Mikroobjekten
Die Erfindung betrifft eine Vorrichtung zum Separieren von einzelnen biologischen Mikroobjekten, insbesondere von biologischen Objekten Die Objekte sind hierbei auf einem festen planaren Trager nebeneinander angeordnet Mit diesem Verfahren können aus einer sehr großen Zahl von Mikroobjekten (z B lO3 bis 106) einzelne Objekte raumlich abgetrennt und ausgesondert werden Voraussetzung für dieses Separierverfahren ist die vorherige Erkennung und Selektion der betreffenden Objekte aufgrund signifikanter analytischer Eigenschaften (z B durch
Fiuoreszenzspektroskopie oder durch radioaktive Markierung) Unter "Mikroobjek Querabmessung <50 μm zu verstehen Unter "biologischen Objekten" werden im Rahmen der vorhegenden Anmeldung vor allem (lebende) biologische Zellen verstanden.
Die Separation von biologischen Zellen mit Pipetten ist grundsatzlich bekannt
Hierbei handelt es sich um Verfahren, die von Pasteurpipetten Gebrauch machen In J. A. Benson, J. Exp. Biol. 170, 203 (1992) wird die Separation von Zellen im Grόßenbereich zwischen 50 und 100 μm beschrieben, die von einer Pipette mit einem Durchmesser von 0,5 mm räumlich aus einer Population getrennt werden
Zur Separation einzelner biologischer Objekte lassen sich Objekte mit optischen
Methoden, wie der optischen Pinzette (Optical Tweezer) in einer wäßrigen Losung bewegen (K Schütze, A Ciement-Sengewald, Nature, 667 (Vol 368) 1994) Aufgrund der geringen Kraftübertragung ist diese Methode auf Objekte beschrankt, die sich frei in der Losung bewegen können Da sich die sortierten wie die unsortierten Objekte in der gleichen Losung befinden, ist eine getrennte
Kultivierung nur mit zusätzlichem Aufwand erzielbar Für eine getrennte Kultivierung müssen diese Zellen mit einer anderen Methode wie z B mit Nadeln abgetrennt werden. Mit Mikromanipulatoren bewegte Nadeln, an denen die Zellen adherieren, werden auch als alleinige Methode eingesetzt Hierbei werden die Zellen direkt berührt und konnten somit mechanisch belastet werden Auch hier ist die Manipulation auf schwach adherierende Objekte begrenzt
Zur Separierung einer großen Zahl (> 105), in einer Flüssigkeit dispergierter, biologischer Objekte geeignete Trenn- bzw Sortierapparate sind kommerziell erhaltlich Wahrend bei der fluoreszenzaktiverten Zellsortierung (FACS = Fluorescence activated Cell Sorter) elektrostatische Prinzipien zur räumlichen Separation zum Einsatz kommen, arbeitet der magnetisch aktivierte Zellsortierer (MACS = Magnetic activated Cell Sorter) mit magnetischen Kräften. Hierbei liegen die Zellen jedoch nicht auf einem planaren Träger nebeneinander. Überdies haben beide Methoden den Nachteil, daß sich einzelne Objekte nur eingeschränkt
(FACS) oder überhaupt nicht getrennt voneinander absondern lassen (MACS).
Ferner sind unter dem Namen "Ablative Photodecomposition" Verfahren bekannt, bei denen mit gepulsten UV-Lasern, insbesondere mit Excimer-Lasern ein gezielter Materialabtrag bei Polymeren erfolgt. Diese Verfahren können im weitesten Sinne als Ätzverfahren angesehen werden. Ein ähnliches Verfahren, bei dem jedoch ein kontinuierlich betriebener UV-Laser verwendet wird, wird in dem US-Patent 5 21 1 805 beschrieben. Dieses Verfahren soll sich zur industriellen Bearbeitung von technischen Polymeren und zur biomedizinischen Behandlung von biologischem Gewebe eignen. Hiermit ist ein Sortierprinzip verwandt, das mit Laser- strahlen die auf einem Träger befindlichen unerwünschten biologischen Objekte mit hohen Strahlungsdosen zerstört, während die selektierten (erwünschten) Objekte zurück bleiben (US 4 624 915). Dieser Prozeß ist verhältnismäßig aufwendig, um einzelne Objekte aus großen Populationen zu selektieren.
Die der Erfindung zugrundeliegende Aufgabe besteht in der räumlichen Separation einzelner Mikroobjekte, insbesondere von bekannten biologischen Zellen, die nebeneinander mit einer hohen Belegungsdichte auf einem planaren Träger ausgebracht sind und auf diesem Träger adherieren. Dabei soll die Überlebensfähigkeit der biologischen Objekte in der Regel gewährt bleiben; d.h. die biologischen Objekte sollen durch den Abtrennprozeß nicht geschädigt bzw. beein- trächti "ΌgtV werden.
Diese Aufgabe wird, ausgehend von einer Vorrichtung mit einem verfahrbaren Pipettensystem, das mit einer Druckerzeugungsvorrichtung zum Ansaugen und Ausspülen der biologischen Objekte verbunden ist, erfindungsgemäß dadurch gelöst, daß das Pipettensystem in einem Mikromanipulator angeordnet ist und eine im wesentlichen vertikal angeordnete Mikrokapillare mit einer lichten Weite von
1 μm bis 50 μm, vorzugsweise 5 μm bis 20 μm aufweist. "Im wesentlichen vertikal" bedeutet dabei, daß eine Abweichung von ± 20 ° zugelassen werden kann Als Druckerzeugungsvorrichtung dient hier im einfachsten Fall eine Pumpe oder Kolbenspritze
Vorzugsweise besteht die Mikrokapillare aus einem zylindrischen Glasrohr und ist vorteilhaft rechtwinklig abgebogen. Dabei kann ebenfalls eine Abweichung vom rechten Winkel um ca ± 20° akzeptiert werden
Um problemlos verschiedene Offnungsdurchmesser bei gleichem Ausgangsdurchmesser der Kapillaren im Herstellungsprozess zu realisieren, werden Kapillaren aus unterschiedlichen Materialien, wie Borosilikatglas, Aluminiumsilikatglas, oder Hamatokritglas eingesetzt
Eine besonders bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß der Mikromanipulator und die Pumpe so gesteuert sind, daß bei einer Unterdruckeinstellung in einem Arbeitsgang mehrere biologische Objekte nacheinander von der Mikrokapillare angesaugt und anschließend im nächsten Arbeitsgang mit einer Überdruckeinstellung nacheinander wieder ausgepült werden.
Im Hinblick auf den Transfer von Bakterien besteht das aktuelle Substrat und das Zielsubstrat zweckmäßig aus einem mit Agar oder Agarose beschichteten Trager
Alternativ kann aber als Zielsubstrat auch eine Mikrotiterplatte eingesetzt werden
Im folgenden wird die Erfindung an Hand eines in der Zeichnung dargestellten
Ausfuhrungsbeispiels naher erläutert Die Zeichnung zeigt den prinzipiellen Aufbau der Transfervorrichtung an einem Mikroskoparbeitsplatz Die erfindungsge- maße Vorrichtung kann für die Separation von Mikroobjekten wie etwa von Polymerbeads im Rahmen der kombinatorischen Chemie oder von Bakterien im Rahmen der Molekularbiologie eingesetzt werden Exemplarisch wird hier der
Einsatz der Vorrichtun Όg zur Sortierung von Bakterien beschrieben
Fur den Transfer der Bakterien werden Mikrokapillaren aus einem Spezialglas verwendet, die durch einen Ziehprozeß im geschmolzenen Zustand hergestellt werden Für die zu beschreibenden Experimente wurden Borosilikatglasrohrchen (Fa Hilgenberg, Malsfeld, GER) mit einem Ausgangsdurchmesser von 1 6 mm einge- setzt In einem dreistufigen Ziehprozeß mit einem handelsüblichen Pipetten- ziehgerat (DMZ Universalpuller, Fa Zeitz-Instrumente, München, GER) wurden Kapillaren mit einer im Endbereich der Kapillare zylindrischen Pipettenform (d h nicht wie sonst üblich zu einer sich verjungenden Spitze ausgezogeni) mit einem Offnungsdurchmesser von ca 6 μm an dem aufgeschmolzenen Ende hergestellt
Auf der anderen Seite bleibt der Ausgangsdurchmesser unverändert erhalten Für die Reproduzierbarkeit des Transferprozesses insbesondere des Ausspulprozesses hat sich diese Pipettenform bewahrt Alternativ kann die Kapillare auch aus einem Aluminiumsilikatglas oder Hamatokritglas hergestellt werden
In der Zeichnung ist die Apparatur für den Transferprozeß schematisch dargestellt
Die Mikrokapillare 1 wird in einer Spannzange 2 gehaltert, die an dem Mikro- manipulator 3 montiert ist, der eine dreidimensionale Positionierung im μm-Be- reich ermöglicht. Solche Manipulatoren sind kommerziell erhältlich Die Mikrokapillare 1 ist über einen Schlauch 4 mit einer handelsüblichen Kolbenspritze 5 verbunden, mit deren Hilfe der Kapillareninnendruck eingestellt wird. Der Druck wird mit einem Druckmesser 6 bestimmt. Sowohl der Mikromanipulator 3 als auch die Spritze 5 werden mit Schrittmotoren, die hier nicht dargestellt sind, fernbedient. Der gesamte Vorgang des Ansaugens und der Separation einer Bakterie (Pickvorgang) unterliegt der visuellen Kontrolle, die durch die Beobachtung mit einer 40-fachen Vergrößerung im Phasenkontrast ermöglicht wird. Von dem Mikroskop sind hier nur das Objektiv 7 und der Beleuchtungskondensor 8 dargestellt Im Hinblick auf den erforderlichen Arbeitsabstands des Kondensors 8 von ca 22 mm zum Objekt wird die Mikrokapillare 1 über den Erweichungspunkt erhitzt und in der Weise umgebogen, das sie nahezu einen 90° Winkel bildet und damit platzsparend unterhalb des Kondensors 8 positioniert werden kann Auf diese
Weise kann die Beobachtung des Transferprozesses ungestört stattfinden. Für die hohe raumliche Auflösung des Transferprozesses in der Größe des Pipettendurchmessers (hier 6 μm) ist es wichtig, daß die Pipette senkrecht auf das zu pickende Objekt trifft Dabei kann eine Abweichung von maximal ± 20 ° toleriert werden Damit bildet sich kein Wasserfϊlm zwischen Kapillarenwand und Agarsubstrat, der umliegende Objekte beim Transferprozeß in Mitleidenschaft ziehen konnte Zur Vorbereitung des Pickens wird über einen Unterdruck aus einem Vorratsgefaß eine Pufferlosung in die Kapillare 1 eingesogen Hierbei reicht es aus, daß nur der verjungte Teil der Kapillare mit der Pufferlosung gefüllt ist Nun wird das zu pickende Objekt bzw. die von dem Substrat 9 zu separierende Bakterie 10 durch eine koordinatengesteuerte Bewegung des Mikroskopverschiebetisches unterhalb der Kapillare 1 positioniert. Hierbei wird der Kapillaren- innendruck auf -300 mbar gegenüber Umgebungsdruck eingestellt. Unter gleich- zeitger Mikroskopbeobachtung wird die Kapillare 1 direkt über der zu pickenden
Bakterie 10 auf das Agarosesubstrat 9 aufgesetzt. Anschließend wird die Mikrokapillare 1 über die Höhenverstellung am Mikromanipulator 3 angehoben und als Resultat bleibt im Mikroskopbild die leere Substratfläche zurück. Zum Ausspülen der Bakterie 10 wird entweder die Mikrokapillare 1 oder der Verschiebetisch zu einer entsprechenden Stelle auf dem Zielsubstrat gefahren.
Hierbei wird der Innendruck auf + 100 mbar erhöht. Während die Kapillare 1 auf das Zielsubstrat (hier die Randzone auf dem Substrat 9) aufgesetzt wird, findet der Ausspülprozeß statt. Nachdem die Kapillare 1 wiederum von dem Zielsubstrat abgehoben wurde, wird die ausgespülte Bakterie im Phasenkontrastbild des Mikroskops erneut sichtbar. Auf diese Weise wurden in vier Beispielen jeweils 10 Bakterien von einem Ausgangssubstrat auf ein Zielsubstrat, das Nährstoff enthielt, übertragen. Nach einer Anwachszeit von einigen Tagen bildeten sich in 50 - 60 % der Fälle aus den einzelnen Bakterien Kolonien. In einem Test der Vitalitätsrate der Ausgangspopulation wurde ein Wert von 60 % bestimmt, so daß hiermit der Transferprozeß als sehr schonend angesehen werden kann. Alternativ können die Bakterien können in eine Flüssigkeit z.B. PBS-Puffer ausgebracht werden. Diese Flüssigkeit kann sich in den Vertiefungen (Wells) von handelsüblichen 96- oder 384-Mikrotiterplatten befinden.
Neben dem unmittelbar nacheinander stattfindenden Pick- und Ausspülprozeß wurden auch mehrere Bakterien hintereinander in einem Arbeitsgang gepickt und entsprechend nacheinander am Zielsubstrat wieder ausgespült. Zu diesem Zweck werden der Mikromanipulator 3 und die Spritze 5 so gesteuert, daß bei einer gleichbleibenden Unterdruckeinstellung einzelne Bakterien nacheinander aufgepickt werden. Hierbei werden die Bakterien aufgesogen, indem die Kapillare 1 nacheinander auf die Substratstellen abgesenkt wird, die die zu pickenden Bakterie tragen. Anschließend werden bei einer gleichbleibenden Uberdruckeinstellung die Bakterien ausgespült, indem die Kapillare nacheinander auf verschieden Stellen des Substrates abgesenkt wird
Diese Prozedur ist vergleichsweise zeitsparend, da die Wege zwischen den zu sortierenden Objekten optimiert werden können und auch die Druckeinstellung in der Kapillare jeweils nur einmal vorgenommen werden muß Der Vorteil in der Verwendung von Bakterien besteht in der einfachen Amplifizierung durch reguläres Anwachsen. Darüber hinaus können mit Hilfe der Polymerase Chain Reac- tion (PCR) können aus einzeln sortierten Bakterien die Gensequenzen amplifiziert werden, die für die spezifische Eigenschaft der Bakterien verantwortlich sind

Claims

Patentansprüche
1 Vorrichtung zum Transfer von Mikroobjekten, insbesondere von biologischen Objekten, von einem aktuellen Substrat (9) zu einem Zielsubstrat, mit einem verfahrbaren Pipettensystem, das mit einer Druckerzeugungs- Vorrichtung zum Ansaugen und Ausspulen der biologischen Objekte verbunden ist, dadurch gekennzeichnet, daß das Pipettensystem in einem Mikromanipulator (3) angeordnet ist und eine im wesentlichen vertikal angeordnete Mikrokapillare (1) mit einer lichten Weite von 1 μ bis 50 μm, vorzugsweise 5 μm bis 20 μm aufweist
2 Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Mikrokapillare (1) aus einem zylindrischen Glasrohr besteht
3 Vorrichtung nach Anspruch 1 bis 2, dadurch gekennzeichnet, daß die Mikrokapillare (1) annähernd rechtwinklig abgebogen ist.
4 Vorrichtung nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die Mikrokapillare ( 1) aus Borosilikatglas, Aluminiumsilikatgias, oder
Hamatokritglas besteht.
Vorrichtung nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß der Mikromanipulator (3) und die Druckerzeugungsvorrichtung so gesteuert sind, daß bei einer Unterdruckeinstellung in einem Arbeitsgang mehrere biologische Objekte nacheinander von der Mikrokapillare (1) angesaugt und anschließend im nächsten Arbeitsgang mit einer Uberdruckeinstellung nacheinander wieder ausgepult werden
Vorrichtung nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß das aktuelle Substrat (9) und das Zielsubstrat aus einem mit Agar oder Agarose beschichteten Trager besteht
Vorrichtung nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß das Zielsubstrat aus einer Mikrotiterplatte besteht
PCT/EP1997/003536 1996-07-19 1997-07-04 Vorrichtung zum separieren von mikroobjekten WO1998003628A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/214,839 US6517779B1 (en) 1996-07-19 1997-07-04 Device for separating micro objects
EP97931772A EP0912720A1 (de) 1996-07-19 1997-07-04 Vorrichtung zum separieren von mikroobjekten
JP10506483A JP2000515015A (ja) 1996-07-19 1997-07-04 微小物体の分離装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19629143A DE19629143A1 (de) 1996-07-19 1996-07-19 Vorrichtung zum Separieren von Mikroobjekten
DE19629143.7 1996-07-19

Publications (1)

Publication Number Publication Date
WO1998003628A1 true WO1998003628A1 (de) 1998-01-29

Family

ID=7800268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/003536 WO1998003628A1 (de) 1996-07-19 1997-07-04 Vorrichtung zum separieren von mikroobjekten

Country Status (5)

Country Link
US (1) US6517779B1 (de)
EP (1) EP0912720A1 (de)
JP (1) JP2000515015A (de)
DE (1) DE19629143A1 (de)
WO (1) WO1998003628A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029817A2 (de) * 2001-09-28 2003-04-10 Olympus Biosystems Gmbh Verfahren und vorrichtung zur handhabung oder/und manipulation von biologischem material, ggf. zur extraktion von zellmaterial aus einer gewebeprobe
DE102006035016A1 (de) * 2006-07-28 2008-01-31 P.A.L.M. Microlaser Technologies Gmbh Verfahren, Halter und Vorrichtung zum Bearbeiten von biologischen Objekten
WO2009068749A2 (en) * 2007-11-30 2009-06-04 Wallac Oy Apparatus and method for preparing sample analysis
EP2083257A1 (de) * 2008-01-25 2009-07-29 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH Verfahren und Vorrichtung zum Übertragen einer mikroskopischen, isolierten Probe, Mikrodissektionssystem mit einer derartigen Vorrichtung sowie Verfahren zur Herstellung eines Nanosaugers

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479288B1 (en) 1998-02-17 2002-11-12 University Of Wales College Of Medicine Method and apparatus for introducing substances into the cell plasma membrane and/or cytosol
EP0992577B1 (de) * 1998-06-05 2000-07-26 Lummel, Wolfgang Mikroinjektionsverfahren zum Einbringen eines Injektionsstoffes, insbes. fremdes, genetisches Material, in Prokaryoten-und Eukaryotenzellen, sowie Zellkompartimente von letzteren (Plastiden, Zellkerne), sowie Nanopipette hierzu
US20040257561A1 (en) * 2000-11-24 2004-12-23 Takao Nakagawa Apparatus and method for sampling
US7159740B2 (en) * 2001-10-26 2007-01-09 Sequenom, Inc. Method and apparatus for parallel dispensing of defined volumes of solid particles
US20030148539A1 (en) * 2001-11-05 2003-08-07 California Institute Of Technology Micro fabricated fountain pen apparatus and method for ultra high density biological arrays
DE10307487A1 (de) * 2003-02-21 2004-09-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtungen zur verletzungsfreien Bewegung einer Sonde durch biologisches Zellmaterial
DE10346130B4 (de) * 2003-10-01 2006-10-05 Leclerc, Norbert, Dr. Vorrichtung und Verfahren zum Isolieren eines Teils einer Schicht biologischen Materials oder eines Präparats
DE102005026540A1 (de) * 2005-06-08 2006-12-14 P.A.L.M. Microlaser Technologies Ag Verfahren und Vorrichtung zur Handhabung von Objekten
US8797644B2 (en) * 2006-08-11 2014-08-05 The Regents Of The University Of California Capillary-based cell and tissue acquisition system (CTAS)
US7467559B2 (en) * 2006-10-09 2008-12-23 Schlumberger Technology Corporation Apparatus and methods for sample handling and rheology analysis
EP2266696A1 (de) * 2009-06-23 2010-12-29 Veterinärmedizinische Universität Wien Vorrichtung zur Vereinzelung von Mikroobjekten
US10072927B2 (en) 2016-01-07 2018-09-11 Rarecyte, Inc. Detecting a substrate
US11054346B2 (en) * 2013-04-11 2021-07-06 Rarecyte, Inc. Detecting a substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666629A (en) * 1970-06-18 1972-05-30 Virginia Polytechnic Inst Apparatus for transferring anaerobic bacteria
GB2211111A (en) * 1987-10-21 1989-06-28 Saxon Micro Limited Micropipette and method of operation
US5456880A (en) * 1992-11-20 1995-10-10 Shimadzu Corporation Micropipet apparatus and micromanipulator

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199013A (en) * 1977-04-01 1980-04-22 Packard Instrument Company, Inc. Liquid sample aspirating and/or dispensing system
DE3204040A1 (de) * 1982-02-05 1983-08-11 Europäisches Laboratorium für Molekularbiologie (EMBL), 6900 Heidelberg Verfahren und vorrichtung zur injektion von sehr kleinen probenmengen in zellen
US4624915A (en) 1982-07-29 1986-11-25 Board Of Trustees Of Michigan State University Positive selection sorting of cells
US5866350A (en) * 1985-03-19 1999-02-02 Helen Hwai-An Lee Method for the immunological determination of a biological material in a sample
US4695709A (en) * 1986-05-01 1987-09-22 The Research Foundation Of State University Of New York Method and apparatus for heating and controlling the temperature of ultra small volumes
AU585033B2 (en) * 1986-07-04 1989-06-08 Tosoh Corporation Quantitative dispenser for a liquid
US4707337A (en) * 1986-08-11 1987-11-17 Multi-Technology, Inc. Medical micro pipette tips for difficult to reach places and related methods
US4750373A (en) * 1987-01-22 1988-06-14 Shapiro Justin J Adjustable volume, pressure-generating pipette sampler
DD264705A1 (de) * 1987-10-22 1989-02-08 Carus Carl Gustav Kapillar-multipoint-impfvorrichtung
US4956297A (en) * 1989-02-13 1990-09-11 Minnesota Mining And Manufacturing Company Device for obtaining predetermined amounts of bacteria
US5141131A (en) * 1989-06-30 1992-08-25 Dowelanco Method and apparatus for the acceleration of a propellable matter
US5211805A (en) 1990-12-19 1993-05-18 Rangaswamy Srinivasan Cutting of organic solids by continuous wave ultraviolet irradiation
AU662148B2 (en) * 1991-04-10 1995-08-24 Scripps Research Institute, The Heterodimeric receptor libraries using phagemids
US5312757A (en) * 1991-05-02 1994-05-17 Olympus Optical Co., Ltd. Sample distributing method
RU2048522C1 (ru) * 1992-10-14 1995-11-20 Институт белка РАН Способ размножения нуклеиновых кислот, способ их экспрессии и среда для их осуществления
DE4401076C2 (de) * 1994-01-15 1998-12-03 Eppendorf Geraetebau Netheler Vorrichtung zur Injektion von Flüssigkeiten in biologische Zellen
US5843657A (en) * 1994-03-01 1998-12-01 The United States Of America As Represented By The Department Of Health And Human Services Isolation of cellular material under microscopic visualization
DE4419638C2 (de) * 1994-06-04 1996-06-13 Eppendorf Geraetebau Netheler Pipettiereinrichtung für sehr kleine Volumina
US5705813A (en) * 1995-11-01 1998-01-06 Hewlett-Packard Company Integrated planar liquid handling system for maldi-TOF MS
US5770158A (en) * 1996-06-13 1998-06-23 Diametrics Medical, Inc. Capillary syringe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666629A (en) * 1970-06-18 1972-05-30 Virginia Polytechnic Inst Apparatus for transferring anaerobic bacteria
GB2211111A (en) * 1987-10-21 1989-06-28 Saxon Micro Limited Micropipette and method of operation
US5456880A (en) * 1992-11-20 1995-10-10 Shimadzu Corporation Micropipet apparatus and micromanipulator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029817A2 (de) * 2001-09-28 2003-04-10 Olympus Biosystems Gmbh Verfahren und vorrichtung zur handhabung oder/und manipulation von biologischem material, ggf. zur extraktion von zellmaterial aus einer gewebeprobe
DE10147950A1 (de) * 2001-09-28 2003-04-24 Olympus Biosystems Gmbh Verfahren und Vorrichtung zur Extraktion von Zellmaterial aus einer Gewebeprobe
DE10147950C2 (de) * 2001-09-28 2003-12-04 Olympus Biosystems Gmbh Verfahren und Vorrichtung zur Extraktion von Zellmaterial aus einer Gewebeprobe
WO2003029817A3 (de) * 2001-09-28 2003-12-24 Olympus Biosystems Gmbh Verfahren und vorrichtung zur handhabung oder/und manipulation von biologischem material, ggf. zur extraktion von zellmaterial aus einer gewebeprobe
DE102006035016A1 (de) * 2006-07-28 2008-01-31 P.A.L.M. Microlaser Technologies Gmbh Verfahren, Halter und Vorrichtung zum Bearbeiten von biologischen Objekten
WO2009068749A2 (en) * 2007-11-30 2009-06-04 Wallac Oy Apparatus and method for preparing sample analysis
WO2009068749A3 (en) * 2007-11-30 2009-07-16 Wallac Oy Apparatus and method for preparing sample analysis
EP2083257A1 (de) * 2008-01-25 2009-07-29 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH Verfahren und Vorrichtung zum Übertragen einer mikroskopischen, isolierten Probe, Mikrodissektionssystem mit einer derartigen Vorrichtung sowie Verfahren zur Herstellung eines Nanosaugers
WO2009092495A1 (de) * 2008-01-25 2009-07-30 Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt Gmbh Verfahren und vorrichtung zum übertragen einer mikroskopischen, isolierten probe, mikrodissektionssystem mit einer derartigen vorrichtung sowie verfahren zur herstellung eines nanosaugers
US8573073B2 (en) 2008-01-25 2013-11-05 Helmholtz Zentrum Muenchen Deutsches Forschungszentrum Fur Gesundheit Und Umwelt Gmbh Method and device for transferring a microscopic, isolated sample

Also Published As

Publication number Publication date
EP0912720A1 (de) 1999-05-06
US6517779B1 (en) 2003-02-11
DE19629143A1 (de) 1998-01-22
JP2000515015A (ja) 2000-11-14

Similar Documents

Publication Publication Date Title
WO1998003628A1 (de) Vorrichtung zum separieren von mikroobjekten
DE3586892T2 (de) Vorrichtung zum trennen von zellen.
WO1997029354A1 (de) Verfahren und vorrichtung zum sortieren und zur gewinnung von planar ausgebrachten biologischen objekten wie biologische zellen bzw. zellorganellen, histologischen schnitten, chromosomenteilchen etc. mit laserstrahlen
EP1353753B1 (de) Haltevorrichtung
EP2064310B1 (de) Verfahren und vorrichtung zur automatisierten entnahme von zellen und/oder zellkolonien
DE19616216A1 (de) Verfahren und Vorrichtung zur Gewinnung von laserdissektierten Partikeln wie biologische Zellen bzw. Zellorganellen, Chromosomenteilchen etc.
DE102008057317A1 (de) Vorrichtung und Verfahren zur Aufreinigung von Biomolekülen
EP0995096B1 (de) Magnetstift zur konzentrierung und separierung von partikeln
DE102020102758B4 (de) Verfahren und System zum automatisierten Keimmonitoring in einem Isolator
EP2612128A1 (de) Vorrichtung und verfahren zum automatisierten isolieren und transferieren mindestens einer mikroskopischen probe von einem probenträger zu einem auffangsystem
EP0611445B1 (de) Verfahren und vorrichtung zur vorbereitung mikroskopischer, insbesondere elektronenmikroskopischer präparate für die schnittpräparation
CH697124A5 (de) Trennen und Reinigen einer Suspension mit magnetischen Mikropartikeln.
DE102006045620B4 (de) Vorrichtung und Verfahren für Aufnahme, Transport und Ablage mikroskopischer Proben
DE10358565B4 (de) Aufnahmeelement zum Aufnehmen eines aus einer biologischen Masse mittels Laserstrahlung herausgelösten Objekts und Verfahren zur Gewinnung und Verarbeitung eines biologischen Objekts
EP1890126B1 (de) Verfahren und Vorrichtung zum Schneiden und Sammeln von Dissektaten
LU102108B1 (de) Verfahren zum automatischen Untersuchen einer flüssigen Probe
DE10346130B4 (de) Vorrichtung und Verfahren zum Isolieren eines Teils einer Schicht biologischen Materials oder eines Präparats
DE102006051460A1 (de) Vorrichtung, Verfahren und Bandmaterial zum Aufsammeln und Transportieren von Probenmaterial
DE102014004511A1 (de) Verfahren zum Beenden mikroskopischer Anwendungen mit einem Immersionsobjektiv
EP4123600A1 (de) Verfahren zum erfassen eines partikels in einem mit flüssigkeit gefüllten behältnis
DD279506A1 (de) Vorrichtung und verfahren zur sequenzanalyse von dna durch chemische degradation an fester phase
WO2005033668A1 (de) Mikrodissektion
DE102011117273A1 (de) Automatische Strukturbestimmung
EP2773994A2 (de) Automatische strukturbestimmung
DE102004004205A1 (de) Mikrodissektion

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL JP LT LV RO SI US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997931772

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09214839

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997931772

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997931772

Country of ref document: EP