WO1997047883A1 - Pompe a haute pression pour tous liquides - Google Patents

Pompe a haute pression pour tous liquides Download PDF

Info

Publication number
WO1997047883A1
WO1997047883A1 PCT/FR1997/000943 FR9700943W WO9747883A1 WO 1997047883 A1 WO1997047883 A1 WO 1997047883A1 FR 9700943 W FR9700943 W FR 9700943W WO 9747883 A1 WO9747883 A1 WO 9747883A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
chamber
membrane
hydraulic
piston
Prior art date
Application number
PCT/FR1997/000943
Other languages
English (en)
Inventor
Louis-Claude Porel
Original Assignee
Hydro Rene Leduc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9607043A external-priority patent/FR2749616B1/fr
Priority claimed from FR9613502A external-priority patent/FR2755472B1/fr
Application filed by Hydro Rene Leduc filed Critical Hydro Rene Leduc
Priority to US09/194,437 priority Critical patent/US6264437B1/en
Priority to JP50127298A priority patent/JP3990732B2/ja
Priority to EP97926060A priority patent/EP0901575B1/fr
Publication of WO1997047883A1 publication Critical patent/WO1997047883A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/24Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke
    • F02M59/243Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movement of cylinders relative to their pistons
    • F02M59/246Mechanisms therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/04Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by special arrangement of cylinders with respect to piston-driving shaft, e.g. arranged parallel to that shaft or swash-plate type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/08Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by two or more pumping elements with conjoint outlet or several pumping elements feeding one engine cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/105Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/12Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps having other positive-displacement pumping elements, e.g. rotary
    • F02M59/14Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps having other positive-displacement pumping elements, e.g. rotary of elastic-wall type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/24Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke
    • F02M59/243Varying fuel delivery in quantity or timing with constant-length-stroke pistons having variable effective portion of stroke caused by movement of cylinders relative to their pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/14Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/067Pumps having fluid drive the fluid being actuated directly by a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • F04B53/142Intermediate liquid-piston between a driving piston and a driven piston

Definitions

  • the present invention relates to a pump capable of pumping and pumping under high pressure virtually any liquid such as: water, petrol, diesel, oils, corrosive chemical liquids and sludge; but more particularly for the high pressure supply of fuel injectors for internal combustion engines.
  • the membrane is on one side driven by mechanical means (cam, lever or the like) and is on the other subject to the discharge pressure: it follows that, as soon as the pressure becomes high the membrane deteriorates at the points of application of the mechanical forces.
  • a first pump which is a hydraulic pump which pumps and sucks up hydraulic liquid which drives the movable elements of the machine alternately.
  • a second pump sucking and pressurizing the liquid to be pumped.
  • These mobile elements which provide the physical separation between the hydraulic fluid and the fluid to be pumped, while being driven by an alternating movement by the hydraulic fluid, are either deformable membranes or free pistons.
  • the free pistons have a defect with regard to tightness, a defect which is unavoidable in cases where one must have an absolute seal. If a seal is placed between the free piston and the cylinder in which it moves, it is not possible to obtain a perfect seal. If the seal is removed: either there is a very thin film of oil between the friction surfaces and therefore micro-leaks; or there is no oil film and the friction surfaces will heat up. In the particular case of high-pressure petrol injection, no leakage, however small, is admissible and, obviously, any heating may cause an explosion.
  • the present invention therefore relates to a pumping device in which the mobile elements, driven by an alternating pumping movement by the hydraulic pump and ensuring a completely sealed separation between the "motor" hydraulic liquid and the liquid to be pumped are deformable membranes.
  • pumps of this type with deformable membranes have at least one, if not several, of the following drawbacks: a - if the separation and pumping membrane is mechanically linked to the piston of the hydraulic pump, there is no pressure on each side of the flexible membrane and the latter does not hold over time, it deteriorates;
  • the diaphragm is completely free, that is to say it is not linked to any drive mechanism and is driven only by the hydraulic liquid pumped by the pump, there is pressure between the two ribs of the diaphragm .
  • the volume of hydraulic pumped fluid increases with each cycle and eventually becomes larger than that which the membrane can pump: there then occurs a hydraulic blockage creating an overpressure such as either of the two pumps breaks.
  • the injection of high pressure petrol if it is the element which delivers the high pressure petrol which breaks, the fire is inevitable;
  • German patent 2,447,741 WANNER describes a diaphragm pump which is mechanically linked to a piston which slides inside a hydraulic pump piston.
  • the disadvantages are the same as for US Pat. No. 4,392,787 cited above.
  • the present invention provides a device in which each membrane is free and in which, at the end of each cycle of a piston, the dead chamber, located downstream of the top dead center of this piston (compression position maximum), in which the liquid in contact with the membrane is placed, is placed in communication with the hydraulic fluid reserve; so that the liquid which is there is pushed back towards this reserve first by the expansion of the liquid, then by effect of pushing back by the membrane which is constrained by a spring.
  • the present invention relates to a pump making it possible to pump any kind of liquid while imparting to it a very high discharge pressure, of the type constituted by the association of two pumps: on the one hand, a pump hydraulic; on the other hand, a second pump whose mobile means, carrying out the suction and the delivery of the liquid to be pumped, are flexible membranes driven by an alternating movement in one direction more in the other by the displacement of the hydraulic liquid pumped then re-aspirated by the first pump characterized in that the pistons of the first pump are hollow and traversed by the hydraulic liquid which, during the suction phase passes through a lunula or groove dug in the face of the bias or cam plate; the deformable membranes being each constrained by a spring so that at the end of the compression stroke of each piston, communication is established between the chamber where the hydraulic liquid is forced against the membrane and the suction chamber, this liquid being, on the one hand, sucked in by the movement of the piston and discharged by the membrane under the action of its
  • the second pump has as many volumes or bores as the first pump has bores, each bore of the second pump communicating directly with the corresponding bore of the first pump so that each piston of the first pump delivers and aspirates cyclically hydraulic fluid in the corresponding bore of the second pump.
  • each bore of the second pump is divided into two parts by a deformable membrane counter-clamped by a spring, the part communicating with the corresponding bore of the first pump and receiving the hydraulic fluid discharged and re-sucked by it, the other part, fitted with suction and discharge valves, suction and delivery of the product to be pumped.
  • the hydraulic fluid reservoir is external to the first pump and communicates with the latter by a pipe opening into the chamber.
  • the pump according to the invention is intended for supplying fuel injectors for internal combustion engines under high pressure, the hydraulic fluid of the first pump (I) possibly being the oil of said engine.
  • the present invention relates to means making it possible to vary the displacement of the first pump and therefore the fuel flow rate to the injection devices.
  • These means are: either the arrangement of a tilting platform with variable inclination, or the arrangement of means in the pistons of the hydraulic pump, having the function of short-circuiting all or part of the volume of hydraulic fluid introduced into the bore during the suction phase.
  • each hollow piston of the hydraulic pump is provided with openings which can be concealed in whole or in part by a movable jacket, all the movable shirts being moved together by a control member controlled by the operating conditions of the engine.
  • This device may also include one or other of the following provisions:
  • a - the pistons slide in two supports pierced with orifices, these two supports being separated from each other by an annular space, constituting a chamber, in which the liners move between two extreme positions, one for which the orifices not being masked by the liners all the liquid discharged by each piston back into the annular chamber through the orifices of the pistons the flow rate of the pump (I) being zero: the other for which all the orifices being masked by the liners each piston delivers all of the hydraulic fluid drawn in, the pump flow rate then being maximum.
  • the liners can occupy all the intermediate positions between the two extreme positions; so that the pump flow (I) can be regulated for all values between a zero flow and a maximum flow.
  • the liners are coupled to a common control member which is controlled by any suitable control device to regulate the flow of gasoline at high pressure according to the supply needs of the engine without high pressure gasoline being returned to the tank.
  • a damping device can be arranged downstream of the outlet of the second pump (II) and upstream of the injectors to cancel the pulsation effect caused by the first pump (I).
  • the damping device can be a large volume capacity in relation to the fuel flow rate, maintained under the injection pressure by any appropriate means and behave substantially like a hydromechanical accumulator.
  • FIG. 6 a longitudinal sectional view of the pump of Figure 1 in which the individual membranes have been replaced by a single membrane.
  • FIG 9 a longitudinal sectional view of an alternative embodiment of the pump according to the invention in which the suction valves have been removed.
  • the device according to the invention comprises a first pump, designated by the general reference I and a second pump, designated by the general reference II.
  • the first pump I is a pump with axial pistons driven in an alternating movement back and forth by a bias plate 1.
  • the bias plate 1 is integral with a motor shaft 2 (driven by any means not shown) carried by bearings 3.
  • a plurality of hollow pistons 4 bear against the oblique face of the plate 1 each by means of a sliding stud 5, which is pierced in its center with a bore 6.
  • Each piston 4 is held by a spring 7 against its stud.
  • On the front face 1 is engraved a lunula 8.
  • This chamber 9 opens, by a plurality of holes 22, passing through the body 21 of the pump I, in a reservoir 11.
  • This reservoir 11 is constituted by a cylindrical envelope 23 which surrounds the body 21.
  • the face of the bias plate 1 oscillates in the chamber 9 so that the pistons 4 are moved back and forth: in the direction which corresponds to the suction, the pistons 4 are moved by their spring 7; in the other direction which corresponds to the delivery under pressure, they are pushed back against the spring 7 by the bias plate 1.
  • the hydraulic fluid which is in the chamber 9 penetrates to the inside of the pistons 4 passing through the lunula 8 and the bore 6 of the studs 5.
  • each bore 12 in which a hollow piston 4 slides has at its end a non-return valve; so that all of said pistons 4 causes a flow under pressure (and even at high pressure since it can exceed 1000 bars with this type of pump).
  • none of the bores 12 in which the pistons 4 slide have a non-return valve.
  • a pump II is associated with the pump I immediately downstream of the latter.
  • Each bore 12 of the pump I, in which a piston 4 slides, corresponds, in the pump II, a chamber or bore 13 divided into two parts 13a and 13b by a flexible membrane 24 supported by a spring 15.
  • the part 13a communicates directly with the end of the bore 12, while the part 13b is provided at its end opposite to the membrane 24 with a suction valve 16 and a discharge valve 17. All the valves 17 flow into a common pipe 18.
  • each spring 15 bears on the rear face of the membrane 24 by means of a cup 20.
  • the shape of the cup 20 is determined so that the support of the cup 20 on the rear face of the membrane 24 does not cause any deterioration thereof.
  • the displacement of the membrane 24 in the direction of the arrow f2 has the effect of sucking the product to be pumped into the part 13b of the bore 13, through the non-return intake valve 16 and of discharging the hydraulic fluid found in part 13a.
  • Each membrane 24 is subjected, on its two front and rear faces and this uniformly distributed over the entire surface of the membrane, to the same pressure: on one side the pressure of the hydraulic motor fluid, on the other the pressure of the pumped liquid.
  • the membrane therefore does not undergo any mechanical stress and therefore cannot tear.
  • the pump according to the present invention is therefore a diaphragm pump in which each diaphragm is, in the delivery phase, in equipression on each side, which makes it possible to have a delivery pressure equal to the hydraulic pressure that the first pump I.
  • the pump according to the present invention can be used, inter alia, to pressurize liquids having no greasing power.
  • it can be used to supply injectors for internal combustion engines (car engines) supplied with super-fuel and / or liquid LPG as a substitute fuel for example.
  • the super-fuel is sucked in by the valves 16, discharged under high pressure (more than 50 bars) by the valves 17 without the fuel ever being brought into contact with metal members that have to slide against each other.
  • the engine oil itself can advantageously be used as hydraulic fluid by having the chamber 9 communicate directly with the engine oil distribution circuit, the temperature of this oil being regulated by the appropriate engine members.
  • the pump according to the invention can also be used to circulate drilling mud under pressure.
  • the suction force of the second pump II which is linked to the power of the springs 15, allows the membranes 24 to return to their initial position, due to the communication with the chamber 9.
  • Figures 3 to 5 relate to an improvement to the device of Figures 1 and 2 by means of which it will be possible to vary at will the flow rate of the liquid to be pumped.
  • this liquid is petrol intended to supply an engine
  • the displacement of the pump In order for a motor to be able to run at full speed, the displacement of the pump must be determined according to the extreme conditions of use of the motor, namely: operation at maximum speed and full load. This therefore defines a maximum flow rate of the pump which is supplied continuously; so that, outside of these extreme conditions of use, the pump provides an excess flow, which is returned to the tank.
  • gasoline thus returned to the tank is found to have been heated by compression, so that hot gasoline is constantly returned to the tank.
  • the gasoline becomes increasingly hot so that it may appear in the tank of unwanted gasoline vapors whose treatment is made difficult by standards more and more severe especially with regard to direct injection petrol engines.
  • the first solution consists in producing the first pump I, in the form of a variable flow pump using a bias plate 1 with variable inclination as is done in certain pumps produced by the applicant.
  • the device according to this second solution is characterized in that it comprises a double pump such as that described in patent application 96.07043, but in which each piston of the hydraulic pump is provided with means making it possible to cancel all or part the flow pumped by said piston.
  • Figures 3 and 4 describe a double pump similar to that of Figures 1 and 2 in which the same elements have the same references.
  • each hollow piston 4 is traversed right through by a pipe 30.
  • the pistons 4 are carried by two supports 31 and 32 pierced with orifices in which said pistons slide.
  • the holes drilled in the support 31 are designated by the reference 33, while the holes drilled in the support 32 constitute the cylinders 12 mentioned above.
  • the thickness of the support 32 is greater than the maximum stroke of the pistons 4.
  • the space between the supports 31 and 32 constitutes an annular chamber 35.
  • each piston 4 is partially covered by a sliding jacket 34.
  • These sliding shirts are all connected to a connecting rod control 38 so as to be able to slide all together between two extreme positions, the first being illustrated in FIG. 3, the second being illustrated in FIG. 4.
  • the springs 7 of FIGS. 1 and 2 which have the function of keeping the heads of the pistons in abutment against their sliding stud 5 are replaced by a pusher 7b which acts on a collar 6 which is supported on the rear of each head of piston 4.
  • the pusher 7b is constrained by a spring 7a.
  • the pusher 7b, cortenant the flange 6 of each piston head is crossed by a pipe 37 which communicates between them the two chambers 9 and 35.
  • the output flow rate of the pump II is regulated as a function of the gas flow rate which is necessary for injection and that the excess gasoline returns to the tank are reduced to the maximum.
  • the fuel flow rate thus obtained is a pulsed flow rate.
  • the liners 34 are in a position such that only 10% of the maximum flow rate of the pump I is delivered in the part 13a of the volume 13, this means that this pump I does not provide any flow rate for 90% of the stroke of each piston or that there is flow only over 10% of the stroke of each piston. This has the effect that the flow is a pulsed flow.
  • This device can advantageously be constituted in a similar manner to a hydraulic accumulator, that is to say constituted by a capacity having a large volume relative to the flow rate supplied to the injectors and maintained under constant pressure.
  • FIG. 6 represents a pump similar to the pump of FIG. 1, in which the same elements have the same references.
  • the reservoir 11 of FIG. 1 which envelops the hydraulic pump is replaced by an external reservoir 11a; for the rest, all the components are identical with the only exception of the diaphragm of pump II of FIG. 1.
  • each volume 13 is divided into two parts 13a, 13b by a membrane 24 pushed back by a spring 15 bearing on the membrane 24 by means of a cup 20.
  • the pump of FIG. 6, like that of FIG. 1, comprises a one-piece pump casing 40, in two cylindrical parts 40a and 40b, the part 40b having an internal diameter greater than that of the part 40a.
  • part 40a are arranged the bearings 3, the drive shaft 2, the bias plate 1, the supply chamber 9 and the rear part 41a of a part 41 in which the bores are drilled 12.
  • the front part 41b of this part is located in the upper diameter portion 40b of the casing 40; so that this front part 41b rests against the shoulder which separates the two parts 40a and 40b of the casing 40.
  • the bores 12 of the pistons 4 open out at the front face of this part 41b.
  • a circular plate 42 is disposed against said part 41b and is immobilized in position relative to the latter by a pin 42a.
  • This plate 42 has as many holes 43 as there are bores 12 and chamber 13.
  • the chambers 13 are formed in a part 45 which is screwed to the open end of the part 40b of the casing 40.
  • a membrane 44 which has the shape of a disc having the same diameter as the plate 42.
  • the membrane 44 is pinched between the plate 42 and the end of the part 45.
  • Each bore 43 communicates with a bore 12 of the pump I and is located opposite a volume 13.
  • FIG. 9 represents an alternative embodiment of the pump of FIGS. 6 to 8.
  • the essential difference relates to the mechanical constitution of the hydraulic pump I.
  • This hydraulic pump I comprises, like the pumps of FIGS. 1, 3 and 6, a bias plate 1 against which rest hollow pistons 4 by means of sliding studs 5, pierced with a bore 6 intended to overlap a lunula 8.
  • the bias plate 1 is disposed at the end of a motor shaft 2 carried by bearings 3; while in the pump of Figure 9, the bias plate 1 is integrated in a ball bearing.
  • This ball bearing comprises an outer cage 61 fixed inside the casing 60 of the pump and an inner cage 62 to which the bias plate 1 is fixed, a set of balls 63 being disposed between the two cages 61 and 62.
  • the bias plate 1 comprises a housing 64 into which the end of a motor shaft, not shown, can fit.
  • the pump II is identical to that described in relation to FIG. 6, the same elements bearing the same references.
  • suction check valves 16 are omitted and that it is the diaphragm 44 itself which is used to fulfill the role of the check valves.
  • each chamber 13 is associated with a conduit 50 connected to a chamber 51 where the liquid to be pumped arrives via a conduit 52
  • the duct 50 is pierced through the mass of the part 45 and opens, at its end opposite the chamber 51 against the membrane 44.
  • the plate 42 which is interposed between the part 41, in which the bores 12 of the pistons are formed 4 and the part 45, in which the chambers 13 are formed, comprises two housings 53 and 54 connected by a pipe 55.
  • the housing 53 is hollowed out in the face of the part 42 which is in contact with the membrane 44; while the housing 54 is hollowed out in the face which is in contact with the part 41.
  • the housing 54 has a configuration such that it communicates with the bore 12; and the housing 53 reaches up to the level of the chamber 13.
  • the liquid to be pumped (which is for example petrol) arrives via the pipe 52 at a low pressure, of the order of 1 to 2 bars, given by an electric pump of known type, so that , as soon as the hydraulic pressure disappears in the housing 53, the membrane 44 is pushed back to clear the passage 56.
  • each pipe orifice 50 the membrane 44 be provided with a reinforcement cup 57, of a diameter greater than that of the orifice, the object of which is to prevent the membrane is pushed by the pressure in the orifice of the pipe 50 and thus deteriorated. It is also advantageous to shape the membrane by molding so that at rest, in the absence of any pressure, it fills the housing 53 and clears the passage 56.
  • the membrane 44 is deformed between a position where it is at the bottom of the housing 53 and a position where it closes the suction duct 50 acts as a non-return suction valve.
  • conduits 50, housing 53, conduit 55, housing 54 as there are bore 12 and chamber 13.
  • FIGS. 9 and 9a The arrangement thus described in relation to FIGS. 9 and 9a is independent of the configuration of the hydraulic pump I and can be transposed in the pump of FIGS. 6 to 7 as shown in FIG. 9.
  • the hydraulic pump I is a swash plate or bias plate pump and the pistons are axial pistons.
  • FIG. 11 Such a radial piston pump is shown in FIG. 11.
  • This pump comprises a cam 101, which is an eccentric carried by a motor shaft 102, carried by bearings 103.
  • Each piston is a hollow piston 104 counterbalanced by a spring 107, so that its head 104a is in abutment against the cam 101 by means of a sliding stud 105 crossed by an orifice 106.
  • the cam 101 struggles in a chamber 109 communicating with a reservoir of hydraulic liquid (not shown). The communication between the chamber 109 and the interior of each hollow piston 104 is established when the stud 105 overlaps the groove 108 dug in the cam 101.
  • the pump II is identical to that of FIG. 1, the same elements bearing the same references.
  • the cam 101 corresponds to the bias plate 1; pistons 104 to pistons 4; the pads 105 to the pads 5; the groove 108 at the lunula 8 and the chamber 109 at the chamber 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Une pompe qui permet de pomper n'importe quelle sorte de liquide tout en lui imprimant une pression de refoulement très élevée. Les éléments (24, 44) qui provoquent l'aspiration puis le refoulement du liquide à pomper sont entraînés par des moyens exclusivement hydrauliques à l'exclusion de moyens mécaniques; de sorte qu'il n'y a aucun contact matériel entre lesdits éléments moteurs et le produit pompé et qu'ainsi ledit produit ne peut pas détériorer lesdits éléments mécaniques moteurs, la chambre recevant le liquide hydraulique étant à la fin de chaque cycle de compression remise en communication directe avec la réserve de liquide hydraulique.

Description

POMPE A HAUTE PRESSION POUR TOUS LIQUIDES
La présente invention est relative à une pompe susceptible de pomper et de refouler sous haute pression pratiquement n'importe quels liquides tels que: eau, essence, gazole, huiles, liquides chimiques corrosifs et boues ; mais plus particulièrement pour l'alimentation à haute pression d'in^ecteurs d'essence pour moteurs à combustion interne.
Les pompes à basse pression pour ce genre de liquides sont connues, ce sont d'une manière générale des pompes centrifuges, à enqrenageε, parfois a pistons ou autres, mais avec ces pompes connues, il est impossible, sinon très difficile et coûteux, d'obtenir une haute pression de refoulement (supérieure à 50 bars), parce que, des que l'on aborde des hautes pressions, il se produit des grippages des parties mobiles et des fuites importantes, du fait de la viscosité souvent très faible des fluides pompés.
Pour éviter de tels grippages ou de telles fuites, il est connu d'employer des pompes à membrane, mais il est alors impossible d'obtenir une pression de refoulement élevée. En effet, la membrane est d'un côté entraînée par des moyens mécaniques (came, levier ou analogue) et est de l'autre soumise à la pression de refoulement : il en résulte que, dès que la pression devient élevée la membrane se détériore aux points d'applications des efforts mécaniques.
Il est également connu, pour pomper des liquides particuliers tels par exemple que des liquides corrosifs, d'associer deux pompes : une première pompe qui est une pompe hydraulique laquelle refoule et réaspire du liquide hydraulique qui anime d'un mouvement alternatif les éléments mobiles d'une deuxième pompe, cette dernière aspirant et mettant en pression le liquide à pomper. Ces éléments mobiles qui assurent la séparation physique entre le liquide hydraulique et le liquide à pomper, tout en étant animés d'un mouvement alternatif par le liquide hydraulique, sont soit des membranes déformables soit des pistons libres.
Les pistons libres présentent un défaut en ce qui concerne l'étanchéité, défaut qui est incontournable dans les cas où l'on doit avoir une étanchéité absolue. Si l'on met en place un joint entre le piston libre et le cylindre dans lequel il se déplace, il n'est pas possible d'obtenir une étanchéité parfaite. Si l'on supprime le joint : ou bien il y a un très fin film d'huile entre les surfaces de frottement et donc des micro-fuites ; ou bien il n'y a pas de film d'huile et les surfaces en frottement vont s'échauffer. Dans le cas particulier de l'injection d'essence à haute pression aucune fuite, aussi faible soit-elle, n'est admissible et, bien évidemment, tout échauffement risque de provoquer une explosion.
Les dispositifs connus à pistons libres, tels par exemple que le brevet US 4.443.160 sont donc à proscrire.
La présente invention concerne donc un dispositif de pompage dans lequel les éléments mobiles, animés d'un mouvement alternatif de pompage par la pompe hydraulique et assurant une séparation totalement étanche entre le liquide hydraulique "moteur" et le liquide à pomper sont des membranes déformables.
D'une façon générale les pompes de ce genre à membranes déformables présentent au moins l'un, si ce n'est simultanément plusieurs, des inconvénients suivants : a - si la membrane de séparation et de pompage est mécaniquement liée au piston de la pompe hydraulique, il n'y a pas equipression de chaque côté de la membrane souple et cette dernière ne tient pas dans le temps, elle se détériore ;
b - si la membrane est complètement libre, c'est-à-dire n'est liée à aucun mécanisme d'entraînement et est mue uniquement par le liquide hydraulique refoulé par la pompe, il y a equipression entre les deux côtes de la membrane. Cependant, du fait des inévitables fuites, même très minimes, le volume de liquide hydraulique refoulé augmente à chaque cycle et finit par devenir plus important que celui que peut refouler la membrane : il se produit alors un blocage hydraulique créant une surpression telle que l'une ou l'autre des deux pompes se brise. Dans le cas particulier de 1 ' injection d'essence à haute pression, si c'est l'élément qui refoule l'essence à haute pression qui se brise, l'incendie est inévitable ;
c - Dans un cas comme dans l'autre, c'est-a-dire que la membrane soit liée au piston ou bien libre, si le volume de liquide hydraulique qui est continuellement refoule et réaspiré est toujours le même, il va s'échauffer du fait des cycles de compressions indéfiniment répétés, jusqu'à atteindre une température telle que la, ou les, membranes seront détruites.
Dans le brevet US 4.392.787 NOTTA on a décrit un ensemble comprenant une pompe hydraulique à plateau biais, chaque piston de la pompe étant associé à son extrémité à une membrane souple qui est reliée à une tige coulissant à l'intérieur du piston. Ce dispositif présente les défauts décrits ci-dessus en "a" et "c". Le volume de liquide mis continuellement sous pression est toujours le même et va donc chauffer. D'autre part les petites fuites inévitables sont compensées par admission d'huile en complément par un clapet anti¬ retour, mais si accidentellement une fuite importante survient, le piston vient en contact mécanique avec la membrane qui sera alors détruite.
Dans le brevet US 2 960 936 DEAN, on a décrit une pompe dans laquelle une membrane complètement libre est cycliquement écrasée et relâchée par un volume hydraulique mis en oeuvre par un piston actionné par une came. Ce dispositif présente les défauts "b" et "c". Si il se produit, pour une raison quelconque un arrêt ou même un freinage de l'alimentation, la membrane ne va pas se redéployer complètement et une quantité correspondante de liquide hydraulique va être introduite à chaque cycle et cela jusqu'à rupture (inconvénient "b" ) . D'autre part, comme c'est toujours le même volume de liquide hydraulique qui est comprimé , 1 ' échauffement est inévitable (inconvénient "c").
Dans le brevet allemand 2 447 741 WANNER, on a décrit une pompe à membrane qui est mécaniquement liée à un piston lequel coulisse à l'intérieur d'un piston de pompe hydraulique. Les inconvénients sont les mêmes que pour le brevet US 4 392 787 cité plus haut.
Pour éliminer ces inconvénients, la présente invention propose un dispositif dans lequel chaque membrane est libre et dans lequel, à la fin de chaque cycle d'un piston, la chambre morte, située en aval du point mort haut de ce piston (position de compression maximum), dans laquelle se trouve le liquide en contact avec la membrane est mise en communication avec la réserve de liquide hydraulique ; de sorte que le liquide qui s'y trouve est refoulé vers cette réserve d'abord par la détente du liquide, puis par effet de refoulement par la membrane qui est contretenue par un ressort.
On obtient ainsi, d'une part, un échange thermique continuellement répété entre le liquide comprimé et celui qui ne l'est pas et, d'autre part, une remise en position initiale de la membrane à chaque cycle ou, en d'autres termes, une élimination de toute augmentation du volume de liquide hydraulique, agissant sur la membrane, augmentation qui est inévitablement provoquée de façon permanente par les fuites ; car il n'est pas possible de réaliser une pompe hydraulique à haute pression avec des pistons, qui ne chauffe pas et qui ait un bon rendement, sans fuites.
Selon un premier objet, la présente invention concerne une pompe permettant de pomper n'importe quelle sorte de liquide tout en lui imprimant une pression de refoulement très élevée, du type constituée par l'association de deux pompes : d'une part, une pompe hydraulique ; d'autre part, une deuxième pompe dont les moyens mobiles, réalisant l'aspiration et le refoulement du liquide à pomper, sont des membranes souples animées d'un mouvement alternatif dans un sens plus dans l'autre par le déplacement du liquide hydraulique pompé puis réaspiré par la première pompe caractérisé par le fait que les pistons de la première pompe sont creux et traversés par le liquide hydraulique qui, lors de la phase d'aspiration traverse une lunule ou rainure creusée dans la face du plateau biais ou came ; les membranes déformables étant contretenues chacune par un ressort de telle sorte qu'à la fin de la course de compression de chaque piston, la communication est établie entre la chambre où le liquide hydraulique se trouve refoulé contre la membrane et la chambre d'aspiration, ce liquide étant, d'une part, aspiré par le mouvement du piston et refoulé par la membrane sous l'action de son ressort, ce qui assure : d'une part un échange entre le liquide hydraulique chauffé par la compression et le liquide non chauffe et, d'autre part, un retour en position initiale de la membrane. La pompe selon l'invention peut également comporter l'une ou l'autre des dispositions suivantes :
a - la deuxième pompe comporte autant de volumes ou alésages que la première pompe comporte d'alésages, chaque alésage de la deuxième pompe communiquant directement avec l'alésage correspondant de la première pompe de sorte que chaque piston de la première pompe refoule et aspire cycliquement le liquide hydraulique dans l'alésage correspondant de la deuxième pompe.
b - chaque alésage de la deuxième pompe est divisé en deux parties par une membrane déformable contretenue par un ressort, la partie communiquant avec l'alésage correspondant de la première pompe et recevant le liquide hydraulique refoulé et réaspiré par celle-ci, l'autre partie, munie de clapets d'aspiration et de refoulement, aspirant et refoulant le produit à pomper.
c - la chambre dans laquelle se débattent les têtes des pistons est reliée à un réservoir de liquide hydraulique.
d - le réservoir de liquide hydraulique est extérieur à la première pompe et communique avec cette dernière par une canalisation débouchant dans la chambre.
e - la pompe selon l'invention est destinée à l'alimentation sous haute pression d'injecteurs de carburant pour moteurs à combustion interne, le liquide hydraulique de la première pompe (I) pouvant être l'huile dudit moteur.
Selon un deuxième objet, la présente invention concerne des moyens permettant de faire varier la cylindrée de la première pompe et donc le débit d'essence vers les dispositifs d'injection.
Ces moyens sont : soit la disposition d'un plateau biais à inclinaison variable, soit la disposition de moyens dans les pistons de la pompe hydraulique, ayant pour fonction de court-circuiter tout ou partie du volume de liquide hydraulique introduit dans l'alésage lors de la phase d'aspiration.
Selon l'invention, chaque piston creux de la pompe hydraulique est muni d'ouvertures pouvant être occultées en tout ou en partie par une chemise mobile, toutes les chemises mobiles étant déplacées ensemble par un organe de commande asservi aux conditions de fonctionnement du moteur.
Ce dispositif peut, en outre, comporter l'une ou l'autre des dispositions suivantes :
a - les pistons coulissent dans deux supports percés d'orifices, ces deux supports étant séparés l'un de l'autre par un espace annulaire, constituant une chambre, dans laquelle se déplacent les chemises entre deux positions extrêmes, l'une pour laquelle les orifices n'étant pas masques par les chemises la totalité du liquide refoulé par chaque piston reflue dans la chambre annulaire par les orifices des pistons le débit de la pompe (I) étant nul : l'autre pour laquelle tous les orifices étant masqués par les chemises chaque piston refoule la totalité du liquide hydraulique aspiré, le débit de la pompe étant alors maximum.
b - les chemises peuvent occuper toutes les positions intermédiaires comprises entre les deux positions extrêmes ; de sorte que le débit de la pompe (I) peut être régulé pour toutes les valeurs comprises entre un débit nul et un débit maximum.
c - les chemises sont attelées à un organe de commande commun lequel est asservi à tout dispositif de commande approprié pour réguler le débit d'essence à haute pression en fonction des besoins en alimentation du moteur sans que de l'essence à haute pression ne soit retournée au réservoir.
d - un dispositif amortisseur peut être disposé en aval de la sortie de la deuxième pompe (II) et en amont des injecteurs pour annuler l'effet de pulsation provoqué par la première pompe (I).
e - le dispositif amortisseur peut être une capacité de volume important par rapport au débit d'essence, maintenu sous la pression d'injection par tout moyen approprié et se comporter sensiblement comme un accumulateur hydromecanique .
A titre d'exemples non limitatifs et pour faciliter la compréhension de l'invention, on a représenté aux dessins annexés :
- Figure 1, une vue en coupe longitudinale d'un premier mode de réalisation de l'invention.
- Figure 2, une vue en coupe transversale selon A-A de la figure 1.
- Figure 3, une vue en coupe longitudinale de la pompe double à débit variable, les pièces étant dans la position pour laquelle le débit est maximum.
- Figure 4, une vue de la pompe double de la figure 3, les pièces étant dans la position pour laquelle le débit est nul .
- Figure 5, une vue selon A-A de la face du plateau biais des figures 3 et 4.
- Figure 6, une vue en coupe longitudinale de la pompe de la figure 1 dans laquelle les membranes individuelles ont été remplacées par une membrane unique.
- Figure 7, une vue en coupe selon A-A de la figure 6. - Figure 8, une vue en coupe selon B-B de la figure 6.
Figure 9, une vue en coupe longitudinale d'une variante de réalisation de la pompe selon l'invention dans laquelle les clapets d'aspiration ont été supprimés.
- Figure 9a, une vue de détail de la figure 9, à échelle agrandie.
- Figure 10, une vue en coupe longitudinale de la pompe de la figure 6 munie du système d'aspiration par la membrane de la figure 9.
- Figure 11, une vue d'une variante de réalisation dans laquelle la pompe hydraulique est une pompe radiale.
En se reportant aux figures 1 et 2 on voit que le dispositif selon l'invention comporte une première pompe, désignée par la référence générale I et une deuxième pompe, désignée par la référence générale II.
La première pompe I est une pompe a pistons axiaux animes d'un mouvement alternatif de va-et-vient par un plateau biais 1.
Le plateau biais 1 est solidaire d'un arbre moteur 2 (entraîné par tout moyen non représenté) porté par des roulements 3. Une pluralité de pistons creux 4 prennent appui contre la face oblique du plateau 1 chacun au moyen d'un plot de glissement 5, qui est percé en son centre d'un alésage 6. Chaque piston 4 est maintenu par un ressort 7 contre son plot. Sur la face avant 1 est gravée une lunule 8. Lorsque l'arbre 2 est entraîné en rotation, le plateau biais 1, les plots 5 et les têtes sphériques 4a des pistons 4 se débattent dans une chambre 9. Cette chambre 9 débouche, par une pluralité de perçages 22, traversant le corps 21 de la pompe I, dans un réservoir 11. Ce réservoir 11 est constitué par une enveloppe cylindrique 23 qui entoure le corps 21. Lorsque l'arbre moteur 2 tourne, la face du plateau biais 1 oscille dans la chambre 9 de sorte que les pistons 4 sont animés d'un mouvement alternatif de va- et-vient : dans le sens qui correspond à l'aspiration, les pistons 4 sont mus par leur ressort 7 ; dans l'autre sens qui correspond au refoulement sous pression, ils sont repoussés à 1 'encontre du ressort 7 par le plateau biais 1. Lors de la phase d'aspiration, le liquide hydraulique qui se trouve dans la chambre 9 pénètre à l'intérieur des pistons 4 en passant par la lunule 8 et l'alésage 6 des plots 5.
Ce type de pompe est connu et décrit dans de nombreux brevets antérieurs appartenant à la demanderesse.
Lorsque la pompe hydraulique I est employée de façon connue, chaque alésage 12 dans lequel coulisse un piston creux 4 comporte à son extrémité un clapet anti¬ retour ; de sorte que l'ensemble desdits pistons 4 provoque un débit sous pression (et même sous haute pression puisque l'on peut dépasser 1000 bars avec ce type de pompe) .
Cependant dans le cadre de la présente invention aucun des alésages 12 dans lesquels coulissent les pistons 4 ne comporte de clapet anti-retour.
Une pompe II est associée à la pompe I immédiatement en aval de celle-ci.
A chaque alésage 12 de la pompe I, dans lequel coulisse un piston 4, correspond, dans la pompe II, une chambre ou alésage 13 divisé en deux parties 13a et 13b par une membrane souple 24 contretenue par un ressort 15. La partie 13a communique directement avec l'extrémité de l'alésage 12, tandis que la partie 13b est munie à son extrémité opposée à la membrane 24 d'un clapet d'aspiration 16 et d'un clapet de refoulement 17. Tous les clapets 17 débitent dans une canalisation commune 18.
De préférence, comme cela est représenté, chaque ressort 15 prend appui sur la face arrière de la membrane 24 par l'intermédiaire d'une coupelle 20. La forme de la coupelle 20 est déterminée de façon à ce que l'appui de la coupelle 20 sur la face arrière de la membrane 24 ne provoque aucune détérioration de celle- ci .
Le fonctionnement est décrit ci-après :
Lorsque l'arbre moteur 2 est entraîné, les pistons 4 refoulent le liquide hydraulique dans les chambres 13. Le liquide hydraulique refoulé dans la partie 13a de la chambre 13, prend appui sur la face avant de la membrane 24 et provoque un déplacement de celle-ci, dans le sens de la flèche fl (fig.l). En se déplaçant cette membrane 24 refoule le liquide contenu dans la partie 13b de la chambre 13. Ce refoulement se fait à travers le clapet anti-retour 17.
Puis lorsque le plateau biais 1 continue à tourner, le plot 5 de chaque piston 4 passe sur la lunule 8 ce qui met la chambre 13a, l'intérieur du piston creux 4 et la chambre d'aspiration 9 en communication. Au tout début de la course du plot 5 sur la lunule 8 le liquide sous haute pression qui est dans la chambre 13a se détend en direction de la chambre 9 ; ensuite sous l'action du ressort 7 du piston 4 et du ressort 15 de la membrane 24 le liquide se trouvant dans la chambre 13a est refoulé dans l'alésage 12 et de là vers la chambre 9.
Ainsi le liquide hydraulique, qui se trouve dans la chambre morte à l'extrémité de chaque alésage 12 lorsque le piston 4 est à l'extrémité de sa course de compression et dans la chambre 13a, est renouvelé à la fin de chaque cycle de compression, ce qui évite tout échauffement de ce liquide, ce qui serait inévitable autrement. De plus, cette remise en communication directe entre la chambre 13a et la chambre 9, et cela à chaque cycle, réalise une remise en position initiale des éléments mobiles de sorte que le volume de liquide hydraulique refoulé dans la chambre 13a demeure rigoureusement égal à lui-même, les inévitables fuites de la pompe hydraulique étant renvoyées dans la chambre 9. Cette mise en communication des chambres 9 et 13a supprime donc les inconvénients décrits précédemment en
Le déplacement de la membrane 24 dans le sens de la flèche f2 a pour effet d'aspirer le produit a pomper dans la partie 13b de l'alésage 13, à travers le clapet d'admission anti-retour 16 et de refouler le liquide hydraulique se trouvant dans la partie 13a.
Ainsi le produit à pomper est alternativement aspiré puis refoulé par le mouvement alternatif des membranes 24, ce mouvement étant provoqué par les variations du volume occupé par le liquide hydraulique dans les parties 13a des alésages 13, ces variations de volume étant provoquées par les alternances de refoulement et d'aspiration du liquide hydraulique par les pistons 4 de la première pompe I.
Chaque membrane 24 est soumise, sur ses deux faces avant et arrière et cela de façon uniformément répartie sur toute la surface de la membrane, à la même pression : d'un côté la pression du liquide hydraulique moteur, de l'autre la pression du liquide refoulé. La membrane ne subit donc aucun effort mécanique et ne peut donc pas se déchirer.
La pompe selon la présente invention est donc une pompe à membranes dans laquelle chaque membrane est, en phase de refoulement, en equipression de chaque côté ce qui permet d'avoir une pression de refoulement égale a la pression hydraulique que peut fournir la première pompe I.
La pompe selon la présente invention peut être employée, entre autres, pour mettre en pression des liquides n'ayant aucun pouvoir graissant. En particulier elle peut être employée pour alimenter des injecteurs de moteur à combustion interne (moteurs de voitures automobiles) alimentés en super-carburant et/ou en GPL liquide en tant que carburant de substitution par exemple. Le super-carburant est aspiré par les clapets 16, refoulé sous haute pression (plus de 50 bars) par les clapets 17 sans que le carburant ne soit jamais mis en contact avec des organes métalliques devant glisser les uns contre les autres.
II est à noter qu'à des pressions élevées on ne peut plus considérer les liquides comme incompressibles. Lorsque un piston 4 est en bout de course de refoulement, la pression du liquide hydraulique est à son maximum. Comme cela a été dit plus haut, lorsque le plot 5 se trouve sur le début de la lunule 8 le liquide, en se détendant va refouler a travers le piston 4, le passage 6 du plot 5 et la lunule 8 dans la chambre 9 ; puis il sera refoulé par l'action du ressort 15. Le liquide comprimé est chaud alors que le liquide dans la chambre 9 et le réservoir ne l'est pas : il va donc y avoir à chaque cycle un petit échange de liquide chauffé par la compression et de liquide non chauffé ce qui va permettre d'assurer un équilibre thermique de la première pompe I. De préférence, bien que cela ne soit pas représenté l'enveloppe cylindrique 23 du réservoir peut être munie d'ailettes de refroidissement.
Dans le cas où la pompe double selon l'invention est employée, comme indiqué plus haut, pour l'alimentation à haute pression d' injecteurs d'essence pour moteurs, on peut avantageusement employer comme liquide hydraulique l'huile du moteur lui-même en faisant communiquer directement la chambre 9 avec le circuit de distribution d'huile du moteur, la température de cette huile étant régulée par les organes appropriés du moteur.
La pompe selon l'invention peut également être employée pour faire circuler sous pressions les boues de forage.
Elle peut en fait être employée pour mettre en pression n'importe quels liquides, y compris les liquides corrosifs ou agressifs.
Dans le cas où l'étage hydraulique, pompe I, est confronté à un liquide de forte viscosité, comme c'est le cas d'un usage à froid, par exemple, il est préférable, comme cela est connu, de disposer des moyens mécaniques maintenant les têtes 4a de pistons 4 sur leurs plots 5 pendant la phase d'aspiration.
Comme expliqué précédemment, l'effort d'aspiration de la deuxième pompe II, qui est lié à la puissance des ressorts 15, permet un retour en position initiale des membranes 24, du fait de la communication avec la chambre 9.
Si il n'y avait pas cette remise en position initiale, permise par cette communication avec la reserve de liquide hydraulique, il risquerait de se produire une légère dérive à chaque tour de la pompe.
Cette dérive provoquerait rapidement un différentiel de volumes entre l'alésage 12 et la partie 13a de l'alésage 13 correspondant, ce qui à son tour, provoquerait rapidement une mise en butée des membranes 24 et, immédiatement, une rupture de la pompe (soit au niveau de la pompe I soit au niveau de la pompe II). Il apparaît donc bien que cette remise à zéro, ou remise en position initiale des éléments mobiles 24 de la deuxième pompe II, par l'intermédiaire de la lunule 8 est capitale.
Les figures 3 à 5 concernent un perfectionnement au dispositif des figures 1 et 2 au moyen duquel il va être possible de faire varier à volonté le débit du liquide à pomper.
Lorsque ce liquide est de l'essence destinée à alimenter un moteur, il peut être intéressant de faire varier le volume d'essence pompé par la pompe II pour l'adapter aux conditions de fonctionnement du moteur.
Il faut pour qu'un moteur puisse tourner à plein régime, déterminer la cylindrée de la pompe en fonction des conditions extrêmes d'utilisation du moteur, à savoir : fonctionnement à régime maximum et pleine charge. Cela définit donc un débit maximum de la pompe lequel est fourni en permanence ; de sorte que, en dehors de ces conditions extrêmes d'utilisation, la pompe fournit un débit excédentaire, qui est retourné au réservoir.
Mais l'essence ainsi ramenée au réservoir se trouve avoir été échauffée par la compression, de sorte que de l'essence chaude est ramenée en permanence au réservoir. Au fur et à mesure que le réservoir se vide l'essence devient de plus en plus chaude de sorte qu'il risque d'apparaître dans le réservoir des vapeurs d'essence indésirables dont le traitement est rendu difficile par des normes de plus en plus sévères en particulier en ce qui concerne les moteurs à essence à injection directe.
Il s'avère donc nécessaire de moduler le débit de la pompe en fonction des exigences du moteur. La première solution consiste à réaliser la première pompe I, sous la forme d'une pompe à débit variable en utilisant un plateau biais 1 à inclinaison variable comme cela est réalisé dans certaines pompes produites par la demanderesse.
Mais une telle pompe risque d'être trop onéreuse pour la production automobile en grande série ; de sorte qu'une deuxième solution est décrite ci-après.
Le dispositif selon cette deuxième solution est caractérisé par le fait qu'il comporte une pompe double telle que celle décrite dans la demande de brevet 96.07043, mais dans laquelle chaque piston de la pompe hydraulique est muni de moyens permettant d'annuler en tout ou partie le débit pompé par ledit piston.
Les figures 3 et 4 décrivent une pompe double analogue à celle des figures 1 et 2 dans laquelle les mêmes éléments portent les mêmes références.
En se reportant à ces figures, on voit que chaque piston creux 4 est traversé de part en part par une canalisation 30.
D'autre part, les pistons 4 sont portés par deux supports 31 et 32 percés d'orifices dans lesquels coulissent lesdits pistons. Les orifices percés dans le support 31 sont désignés par la référence 33, tandis que les orifices perces dans le support 32 constituent les cylindres 12 mentionnés plus haut. Dans ce but, l'épaisseur du support 32 est plus grande que la course maxima des pistons 4.
L'espace compris entre les supports 31 et 32 constitue une chambre annulaire 35.
Dans cet espace 35 chaque piston 4 est partiellement recouvert par une chemise coulissante 34. Ces chemises coulissantes sont toutes reliées à une bielle de commande 38 de façon à pouvoir coulisser toutes ensemble entre deux positions extrêmes, la première étant illustrée à la figure 3, la seconde étant illustrée à la figure 4.
Dans la position représentée à la figure 3, lesdites chemises 34 occultent les perçages 36 qui font communiquer la canalisation interne 30 de chaque piston 4 avec la chambre annulaire 35. Dans la position représentée à la figure 4, les chemises 34 découvrent lesdits perçages 36.
Les ressorts 7 des figures 1 et 2, qui ont pour fonction de maintenir les têtes des pistons en appui contre leur plot de glissement 5 sont remplacés par un poussoir 7b qui agit sur une colleretle 6 laquelle prend appui sur l'arrière de chaque tête de piston 4. Le poussoir 7b est contretenu par un ressort 7a.
Le poussoir 7b, contretenant la collerette 6 de chaque tête de piston est traversé par une canalisation 37 qui fait communiquer entre elles les deux chambres 9 et 35.
Ainsi lorsque, sous l'effet de la bielle de commande 38, les chemises 34 sont dans la position représentée à la figure 4, le liquide hydraulique refoulé par chaque piston 4 reflue par les canalisations 30 et 36 jusque dans la chambre annulaire 35, et, de là, par le perçage 37, dans la chambre 9. Il en résulte que le débit de la pompe hydraulique I est nul, donc que les membranes 24 ne sont animées d'aucun mouvement et n'exercent aucune action de pompage et de refoulement sous pression d'essence vers les injecteurs : le débit d'essence vers les injecteurs est donc également nul.
Lorsque, sous l'effet de la commande 38, les chemises 34 sont dans la position représentée à la figure 1, les perçages 36 sont occultés par les dites chemises et le débit de la pompe hydraulique I est maximum. Il en résulte que le débit d'essence vers les injecteurs est également maximum.
Entre ces deux positions extrêmes tous les débits intermédiaires peuvent être obtenus en fonction de la position des chemises 34, position déterminée par la position de la bielle 38 qui est asservie au fonctionnement du moteur par tout dispositif de contrôle approprié.
Il en résulte que le débit de sortie de la pompe II est régulé en fonction du débit d'essence qui est nécessaire à l'injection et que les retours d'essence excédentaires au réservoir sont minorés au maximum.
Il est à noter toutefois que le débit d'essence ainsi obtenu est un débit puisé. En effet, si par exemple, les chemises 34 sont en une position telle que seulement 10 % du débit maximum de la pompe I soit délivré dans la partie 13a du volume 13, cela signifie que cette pompe I ne fournit aucun débit pendant 90 % de la course de chaque piston ou encore qu'il n'y a de débit que sur 10 % de la course de chaque piston. Cela a pour effet que le débit est un débit puisé.
Il en résulte donr un inconvénient qu'il faut supprimer .
Dans ce but, on dispose en aval de la sortie 29 et en amont des injecteurs un dispositif éliminant ces pulsations. Ce dispositif peut avantageusement être constitué de façon analogue à un accumulateur hydraulique c'est a dire constitué par une capacité ayant un volume important par rapport au débit fourni aux injecteurs et maintenu sous pression constante.
On obtient ainsi un débit d'injection correspondant exactement aux besoins en essence du moteur, sans retour au réservoir, ce débit étant régulier, c'est-à- dire sans pulsions.
La figure 6 représente une pompe analogue à la pompe de la figure 1, dans laquelle les mêmes éléments portent les mêmes références.
Le réservoir 11 de la figure 1 qui enveloppe la pompe hydraulique est remplacé par un réservoir extérieur lia; pour le reste, tous les composants sont identiques à la seule exception de la membrane de la pompe II de la figure 1.
Dans la pompe de la figure 1, chaque volume 13 est divise en deux parties 13a, 13b par une membrane 24 repoussée par un ressort 15 prenant appui sur la membrane 24 au moyen d'une coupelle 20.
Dans la pompe de la figure 6, les membranes individuelles 24 sont remplacées par une membrane unique 44, qui, aux endroits des chambres 13 va se déformer pour pénétrer partiellement dans ledit volume 13 à l' encontre du ressort 15 correspondant.
De façon plus précise, la pompe de la figure 6, comme celle de la figure 1, comporte un carter de pompe monobloc 40, en deux parties cylindriques 40a et 40b, la partie 40b ayant un diamètre interne supérieur à celui de la partie 40a. Dans la partie 40a sont disposés les roulements 3, l'arbre moteur 2, le plateau biais 1, la chambre d'alimentation 9 et la partie arrière 41a d'une pièce 41 dans laquelle sont forés les alésages 12. La partie avant 41b de cette pièce se trouve dans la partie 40b de diamètre supérieure du carter 40 ; de sorte que cette partie avant 41b repose contre l'épaulement qui sépare les deux parties 40a et 40b du carter 40. Les alésages 12 des pistons 4 débouchent à la face avant de cette partie 41b. Une plaque circulaire 42 est disposée contre ladite partie 41b et est immobilisée en position par rapport à celle- ci par un pion 42a. Cette plaque 42 comporte autant de perçages 43 qu'il y a d'alésages 12 et de chambre 13. Les chambres 13 sont ménagées dans une pièce 45 qui est vissée à l'extrémité ouverte de la partie 40b du carter 40. Entre la pièce 45 et la plaque 42 est disposée une membrane 44 qui a la forme d'un disque ayant le même diamètre que la plaque 42. La membrane 44 est pincée entre la plaque 42 et l'extrémité de la pièce 45. Chaque perçage 43 communique avec un alésage 12 de la pompe I et se trouve en face d'un volume 13.
Lorsqu'un piston 4 va refouler du liquide hydraulique sous haute pression, ce liquide va être refoulé hors de l'alésage 12, dans le perçage 43 et va déformer la partie de la membrane 44 qui se trouve en face de la chambre 13 correspondante, déformation qui se fait à 1 'encontre du ressort 15 prenant appui contre l'autre face de la membrane 44 par la coupelle 20. Le liquide à pomper se trouvant dans la chambre 13 (derrière la coupelle 20) est refoulé par le clapet anti-retour 17. Lorsque le piston 4 recule dans son alésage 12, la partie de la membrane 44 qui s'était déformée, était entrée, partiellement, dans le volume 13, est repoussée par le ressort 15 et revient à sa forme initiale en aspirant le liquide à pomper par le clapet anti-retour 16.
Comme dans les cas précédents, il y a communication directe entre le perçage 43 et la chambre 9 par la lunule 8.
La figure 9 représente une variante de réalisation de la pompe des figures 6 à 8.
Dans cette variante, la différence essentielle a trait à la constitution mécanique de la pompe hydraulique I. Cette pompe hydraulique I comporte, comme les pompes des figures 1, 3 et 6, un plateau biais 1 contre lequel reposent des pistons creux 4 par l'intermédiaire de plots de glissement 5, percés d'un alésage 6 destiné à venir chevaucher une lunule 8. Mais dans les pompes précédemment décrites, le plateau biais 1 est disposé à l'extrémité d'un arbre moteur 2 porté par des roulements 3 ; alors que dans la pompe de la figure 9, le plateau biais 1 est intégré dans un roulement à billes.
Ce roulement à billes comporte une cage extérieure 61 fixée à l'intérieur du carter 60 de la pompe et une cage intérieure 62 à laquelle est fixé le plateau biais 1, un jeu de billes 63 étant disposé entre les deux cages 61 et 62. A sa partie arrière, le plateau biais 1 comporte un logement 64 dans lequel peut venir s'emboîter l'extrémité d'un arbre moteur non représenté.
La pompe II est identique à celle décrite en relation avec la figure 6, les mêmes éléments portant les mêmes références.
La seule différence provient de ce que les clapets anti-retour d'aspiration 16 sont supprimés et que c'est la membrane 44 elle-même qui est utilisée pour remplir le rôle des clapets anti-retour.
En se reportant à la figure 9a, qui est une vue agrandie d'une partie de la figure 9a, on voit que : à chaque chambre 13 est associé un conduit 50 relié à une chambre 51 où arrive le liquide à pomper par une conduite 52. Le conduit 50 est percé à travers la masse de la pièce 45 et débouche, à son extrémité opposée à la chambre 51 contre la membrane 44. La plaque 42 qui est interposée entre la pièce 41, dans laquelle sont ménagés les alésages 12 des pistons 4 et la pièce 45, dans laquelle sont ménagées les chambres 13 comporte deux logements 53 et 54 reliés par une conduite 55. Le logement 53 est creusé dans la face de la pièce 42 qui est en contact avec la membrane 44 ; tandis que le logement 54 est creusé dans la face qui est en contact avec la pièce 41. Le logement 54 a une configuration telle qu'il communique avec l'alésage 12 ; et le logement 53 arrive jusqu'au niveau de la chambre 13.
Ainsi, lorsque le liquide sous pression est refoulé par un piston 4, le liquide sous pression arrive par le logement 54 et la conduite 55 dans le logement 53 et la membrane est appliquée par la pression hydraulique contre l'orifice de la conduite 50 qui est ainsi obturé. Par contre, lorsque le piston 4 est en phase d'aspiration, le mouvement de la coupelle 20 qui repousse la membrane 44 dégage celle-ci de l'orifice de la conduite 50. La membrane 44 étant plaquée au fond du logement 53, cela dégage entre la membrane 44 et la paroi de la pièce 45 un espace 56 qui assure la communication entre la conduite 50 et la chambre 13 et permet ainsi l'admission dans cette chambre 13 du liquide à pomper.
Il est préférable que le liquide à pomper (qui est par exemple de l'essence) arrive par le tuyau 52 à une faible pression, de l'ordre de 1 à 2 bars, donnée par une pompe électrique de type connu, de façon que, dès que la pression hydraulique disparaît dans le logement 53, la membrane 44 soit repoussée pour dégager le passage 56.
Il est également préférable qu'à l'endroit de chaque orifice de conduite 50 la membrane 44 soit munie d'une coupelle de renforcement 57, d'un diamètre supérieur à celui de l'orifice, ayant pour objet d'éviter que la membrane ne soit poussée par la pression dans l'orifice de la conduite 50 et ainsi détériorée. Il est aussi avantageux de conformer la membrane par moulage de façon qu'au repos, en l'absence de toute pression, elle remplisse le logement 53 et dégage le passage 56.
Ainsi, la membrane 44 en se déformant entre une position où elle est au fond du logement 53 et une position où elle obture le conduit d'aspiration 50 joue le rôle d'un clapet anti-retour d'aspiration.
Il y a, bien évidemment, autant de conduits 50, logement 53, conduit 55, logement 54 qu'il y a d'alésage 12 et de chambre 13.
La disposition ainsi décrite en relation avec les figures 9 et 9a est indépendante de la configuration de la pompe hydraulique I et peut être transposée dans la pompe des figures 6 à 7 comme cela est représenté figure 9.
Dans tous les exemples représentés aux figures 1 à 9, la pompe hydraulique I est une pompe a plateau oscillant ou plateau biais et les pistons sont des pistons axiaux.
Mais il est à remarquer que l'on peut obtenir le même résultat avec une pompe à pistons radiaux à la condition, essentielle, que les pistons soient creux et que leurs têtes reposent sur la came d'entraînement (jouant le même rôle que le plateau biais 1) par des plots de glissement venant chevaucher une lunule ; de façon qu'à la fin de chaque cycle de compression la chambre dans laquelle se déplace la membrane soit mise en communication directe avec la chambre d'admission du liquide hydraulique.
Une telle pompe à pistons radiaux est représentée à la figure 11. Cette pompe comporte une came 101, qui est un excentrique porté par un arbre moteur 102, porté par des roulements 103. Chaque piston est un piston creux 104 contretenu par un ressort 107, de sorte que sa tête 104a soit en appui contre la came 101 par l'intermédiaire d'un plot de glissement 105 traversé par un orifice 106. La came 101 se débat dans une chambre 109 communiquant avec un réservoir de liquide hydraulique (non représenté). La communication entre la chambre 109 et l'intérieur de chaque piston creux 104 est établie lorsque le plot 105 chevauche la rainure 108 creusée dans la came 101.
La pompe II est identique à celle de la figure 1, les mêmes éléments portant les mêmes références.
La came 101 correspond au plateau biais 1 ; les pistons 104 aux pistons 4 ; les plots 105 aux plots 5 ; la rainure 108 à la lunule 8 et la chambre 109 à la chambre 9.
Le fonctionnement de la pompe double (I-II) représenté à la figure 10 est identique à celui des pompes précédemment représentées.

Claims

REVENDICATIONS
1. Pompe permettant de pomper n'importe quelle sorte de liquide tout en lui imprimant une pression de refoulement très élevée, du type constituée par 5 l'association de deux pompes : d'une part, une pompe hydraulique (I) ; d'autre part, une deuxième pompe (II) dont les moyens mobiles, réalisant l'aspiration et le refoulement du liquide à pomper, sont des membranes souples animées d'un mouvement alternatif dans un sens
10 puis dans l'autre par le déplacement du liquide hydraulique pompé puis réaspiré par la première pompe (I) caractérisée par le fait que les pistons (4, 104) de la première pompe (I) sont creux et traversés par le liquide hydraulique qui, lors de la phase d'aspiration,
15 traverse une lunule (8, 108) creusée dans la face du plateau biais (1) ou came (101) ; la membrane déformable (24, 44) étant contretenue par un ressort (15) de telle sorte qu'à la fin de la course de compression de chaque piston (4, 104) , la communication
90 est établie entre la chambre (12-13) où le liquide hydraulique se trouve refoulé contre la membrane (24, 44) et la chambre d'aspiration (9, 109) , ce liquide étant alors, d'une part, aspiré par le mouvement du piston (4, 104) et, d'autre part, refoulé par la
?5 membrane (24, 44) sous l'action de son ressort (15) ce qui assure à la fois : un échange entre le liquide hydraulique chauffé par la compression et le liquide non chauffé ; et un retour en position initiale de la membrane (24,44).
30 2. Pompe selon la revendication 1 dans laquelle la première pompe (I) ou pompe hydraulique est une pompe à plateau biais (1) et à pistons axiaux (4) lesdits pistons axiaux étant creux et contretenus par des ressorts (7, 7a) de façon que la tête (4a) de chaque
35 piston creux (4) soit en appui contre le plateau biais (1) par l'intermédiaire d'un plot de glissement (5) traversé par un alésage central (6), ce plot venant chevaucher une lunule (8) gravée sur la face du plateau biais (1) pendant la phase d'aspiration du piston correspondant, de façon à établir, pendant cette phase, une communication directe entre la chambre (9) où se débattent le plateau biais (1) et la chambre (13a) dans laquelle le liquide hydraulique a été refoulé pendant la phase de compression.
3. Pompe selon la revendication 2 dans laquelle le plateau biais (1) est fixé dans la cage intérieure (62) d'un roulement à billes (63) la cage extérieure (61) étant directement fixée dans le carter.
4. Pompe selon la revendication 1 dans laquelle la première pompe (I) ou pompe hydraulique est une pompe à pistons radiaux (104) entraînés par une came (101) ; lesdits pistons radiaux (104) étant creux et contretenus par des ressorts (107) de façon que la tête (104a) de chaque piston creux (104) soit en appui contre la came (101) par l'intermédiaire d'un plot de glissement (105) traversé par un alésage central (106), ce plot venant chevaucher une rainure (108) gravée sur la surface de la came (101) pendant la phase d'aspiration du piston correspondant, de façon à établir pendant cette phase une communication directe entre la chambre (109) où se débattent la came (101) et la chambre (13a) dans laquelle le liquide hydraulique a été refoulé pendant la phase de compression.
5. Pompe selon la revendication 2 et 3 dans laquelle la deuxième pompe (II) comporte autant de chambres ou alésages (13) que la première pompe (I) comporte d'alésages (12), chaque chambre (13) de la deuxième pompe (II) communiquant directement avec l'alésage (12) correspondant de la première pompe (I) de sorte que chaque piston (4, 104) de la première pompe (I) refoule et aspire cycliquement le liquide hydraulique dans la chambre correspondante (13) de la deuxième pompe (II).
6. Pompe selon la revendication 5 dans laquelle chaque alésage (13) de la deuxième pompe (II) est divisé en deux parties (13a, 13b) par une membrane déformable (24) contretenue par un ressort (15), la partie (13a) communiquant avec l'alésage (12) correspondant de la première pompe (I) et recevant le liquide hydraulique refoulé et réaspiré par celle-ci ; l'autre partie (13b), munie de clapets d'aspiration (16) et de refoulement (17), aspirant et refoulant le produit à pomper.
7. Pompe selon la revendication 6 dans laquelle chaque ressort (15) prend appui sur la face arrière de la membrane souple correspondante (24) par l'intermédiaire d'une coupelle (20) conformée de façon à ne pas causer de détérioration de ladite face arrière de la membrane (24) .
8. Pompe selon l'une quelconque des revendications précédentes dans laquelle la chambre (9, 109) dans laquelle se débattent les têtes (4a, 104a) des pistons (4, 104) est reliée à un réservoir de liquide hydraulique.
9. Pompe selon la revendication 8 dans laquelle le réservoir (11) de liquide hydraulique est extérieur à la première pompe (I) et communique avec cette dernière par une canalisation (10) débouchant dans la chambre (9) .
10. Pompe selon la revendication 8 dans laquelle le réservoir (11) est constitué par une enveloppe cylindrique (23) entourant le corps (21) de la première pompe et communiquant avec la chambre (9) par une pluralité d'orifices (22).
11. Pompe selon la revendication 2 dans laquelle les membranes déformables individuelles (24) sont remplacées par une membrane unique (44) interposée entre les alésages (12) des pistons (4) et les chambres (13) .
12. Pompe selon la revendication 11 dans laquelle une plaque circulaire (42) est interposée entre la pièce (41) dans laquelle sont ménagés les alésages (12) et la pièce (45) dans laquelle sont ménagées les chambres (13) cette pièce faisant communiquer par des perçages (43) chaque alésage (12) avec la chambre (13) qui lui correspond.
13. Pompe selon l a revendication 11 dans laquelle dans chaque chambre (13) est disposé un ressort (15) qui prend appui sur la membrane (44) au moyen d'une coupe1le ( 20 ) .
14. Pompe selon la revendication 13 dans laquelle chaque chambre (13) est associée à un clapet anti¬ retour d'aspiration (16) et à un clapet anti-retour de refoulement (17).
15. Pompe selon la revendication 13 dans laquelle chaque chambre (13) n'est associée qu'à un clapet anti¬ retour de refoulement (17), le clapet anti-retour (16) d'aspiration étant supprimé et sa fonction remplie par la membrane (44) elle-même.
16. Pompe selon la revendication 15 dans laquelle le conduit d'arrivée (50) du liquide à pomper débouche contre la membrane (44) qui est maintenue en appui contre l'orifice de ce conduit pendant la phase de refoulement et en est écarté pendant la phase d'aspiration.
17. Pompe selon la revendication 16 dans laquelle la partie de la membrane (44) qui vient en appui contre l'orifice (50) d'arrivée du liquide est munie d'une coupelle de renforcement (57).
18. Pompe selon la revendication 16 dans laquelle, pendant la phase d'aspiration, la membrane (44) vient
5 au fond d'un logement (53) afin de dégager un passage (56) de communication entre la conduite d'arrivée du liquide (50) et la chambre (13).
19. Pompe selon la revendication 18 dans laquelle la membrane (44) est préformée de moulage pour occuper le
10 fond du logement (53) lors de l'aspiration pour dégager le passage (56 ) .
20. Pompe selon l'une quelconque des revendications précédentes, caractérisée par le fait qu'elle est destinée à l'alimentation sous haute pression
15 d' injecteurs de carburant pour moteurs à combustion interne, le liquide hydraulique de la première pompe (I) pouvant être l'huile dudit moteur.
21. Pompe selon la revendication 20, caractérisée par le fait qu'elle comporte des moyens pour faire varier
20 le débit de la pompe hydraulique (I) et, par voie de conséquence, le débit de la pompe (II) de façon à adapter le débit d'essence pompe à haute pression vers les injecteurs aux conditions de fonctionnement du moteur.
?c
22. Pompe selon la revendication 21 dans laquelle le plateau biais (1) de la pompe hydraulique (I) est un plateau à inclinaison variable.
23. Pompe selon la revendication 21, caractérisée par le fait que chaque piston (4) de la pompe hydraulique 30 (I) est muni d'ouvertures (36) pouvant être occultés, en tout ou en partie, par une chemise mobile (34), toutes les chemises mobiles (34) étant déplacées ensemble par un organe de commande (38) asservi aux conditions de fonctionnement du moteur.
24. Dispositif selon la revendication 23 dans lequel les pistons coulissent dans deux supports (31, 32)
5 percés d'orifices (33, 12), ces deux supports étant séparés l'un de l'autre par un espace annulaire, constituant une chambre (35), dans laquelle se déplacent les chemises (34) entre deux positions extrêmes, l'une pour laquelle les orifices (36) n'étant
10 pas masqués par les chemises (34) la totalité du liquide refoulé par chaque piston (4) reflue dans la chambre annulaire (35) par les orifices (36) des pistons, le débit de la pompe (I) étant nul ; l'autre pour laquelle tous les orifices (36) étant masqués par
15 les chemises (34) chaque piston (4) refoule dans le volume (13) la totalité du liquide hydraulique aspiré, le débit de la pompe (I) étant alors maximum.
25. Dispositif selon la revendication 24 dans lequel les chemises (34) peuvent occuper toutes les positions
?0 intermédiaires comprises entre les deux positions extrêmes : de sorte que le débit de la pompe (I) peut être régulé pour toutes les valeurs comprises entre un débit nul et un débit maximum.
26. Dispositif selon la revendication 25 dans lequel 25 toutes les chemises (34) sont attelées à un organe de commande commun (38) lequel est asservi à tout dispositif de commande approprié pour réguler le débit d'essence a haute pression en fonction des besoins en alimentation du moteur sans que de l'essence à haute 30 pression ne soit retourné au réservoir.
27. Dispositif selon la revendication 26 dans lequel un dispositif amortisseur est disposé en aval de la sortie (29) de la deuxième pompe (II) et en amont des injecteurs pour annulei l'effet de pulsation provoqué
'5 par la première pompe (I) .
28. Dispositif selon la revendication 27 dans lequel le dispositif amortisseur est une capacité de volume important par rapport au débit d'essence, maintenu sous la pression d'injection par tout moyen approprié, à la manière d'un accumulateur hydraulique.
PCT/FR1997/000943 1996-06-07 1997-05-30 Pompe a haute pression pour tous liquides WO1997047883A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/194,437 US6264437B1 (en) 1996-06-07 1997-05-30 High pressure pump for all liquids
JP50127298A JP3990732B2 (ja) 1996-06-07 1997-05-30 任意の流体用に使用できる高圧ポンプ
EP97926060A EP0901575B1 (fr) 1996-06-07 1997-05-30 Pompe a haute pression pour tous liquides

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9607043A FR2749616B1 (fr) 1996-06-07 1996-06-07 Pompe a haute pression pour tous liquides
FR96/07043 1996-11-06
FR9613502A FR2755472B1 (fr) 1996-11-06 1996-11-06 Dispositif d'alimentation a haute pression d'injecteurs d'essence pour moteurs a combustion interne
FR96/13502 1996-11-06

Publications (1)

Publication Number Publication Date
WO1997047883A1 true WO1997047883A1 (fr) 1997-12-18

Family

ID=26232746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/000943 WO1997047883A1 (fr) 1996-06-07 1997-05-30 Pompe a haute pression pour tous liquides

Country Status (7)

Country Link
US (1) US6264437B1 (fr)
EP (2) EP1048849B1 (fr)
JP (1) JP3990732B2 (fr)
DE (1) DE69732802T2 (fr)
ES (1) ES2238968T3 (fr)
PT (1) PT1048849E (fr)
WO (1) WO1997047883A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057434A1 (fr) * 1998-03-11 1999-11-11 Caterpillar Inc. Systeme hydraulique pourvu d'une pompe a deplacement fixe et refoulement variable
EP0959247A1 (fr) * 1998-05-20 1999-11-24 J. Wagner Gmbh Pompe double à membrane pour liquides visqueux
WO2000075513A1 (fr) * 1999-06-08 2000-12-14 Peugeot Citroen Automobiles S.A. Pompe a haute pression perfectionnee
WO2000075516A1 (fr) * 1999-06-08 2000-12-14 Peugeot Citroen Automobiles S.A. Pompe a haute pression a bouchon de remplissage
WO2000075514A1 (fr) * 1999-06-08 2000-12-14 Peugeot Citroen Automobiles S.A. Pompe a haute pression a etancheite perfectionnee
WO2000075515A1 (fr) * 1999-06-08 2000-12-14 Peugeot Citroen Automobiles S.A. Pompe a haute pression a moyeu perfectionne
US6561771B2 (en) 2001-06-19 2003-05-13 Caterpillar Inc Axial piston pump with center inlet fill
US6901911B2 (en) 2002-07-31 2005-06-07 Caterpillar Inc Pump and hydraulic system with low pressure priming and over pressurization avoidance features
US7125230B2 (en) 2002-07-09 2006-10-24 Caterpillar Inc Valve with operation parameter set at assembly and pump using same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719990B2 (ja) * 2002-02-15 2005-11-24 株式会社デンソー 圧縮機
WO2004031569A1 (fr) * 2002-10-02 2004-04-15 Bosch Automotive Systems Corpopation Distributeur de carburant pour moteur diesel
US6802697B2 (en) 2002-12-30 2004-10-12 Caterpillar Inc Variable-delivery, fixed-displacement pump
DE102004004705A1 (de) * 2004-01-30 2005-08-18 Robert Bosch Gmbh Hochdruckpumpe, insbesondere für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
US20060168955A1 (en) * 2005-02-03 2006-08-03 Schlumberger Technology Corporation Apparatus for hydraulically energizing down hole mechanical systems
FR2883932B1 (fr) * 2005-04-04 2007-06-22 Siemens Automotive Hydraulics Perfectionnement aux pompes transfert
US7428812B2 (en) * 2006-05-04 2008-09-30 Fci Americas Technology, Inc. Hydraulic tool with wobble plate transmission
US7487654B2 (en) * 2006-10-13 2009-02-10 Fci Americas Technology, Inc. Hydraulic tool with tactile feedback
US8122585B2 (en) * 2007-02-20 2012-02-28 Hubbell Incorporated Spanner plate
CN102979696B (zh) * 2012-12-03 2015-05-13 常州富邦电气有限公司 双进气高效气泵
US9909576B2 (en) 2015-01-23 2018-03-06 Caterpillar Inc. Pump drive system with hydraulic tappets
US20170030341A1 (en) * 2015-07-27 2017-02-02 Caterpillar Inc. Multi-plunger cryogenic pump having intake manifold
US10024311B2 (en) * 2015-08-06 2018-07-17 Caterpillar Inc. Cryogenic pump for liquefied natural gas
US9915250B2 (en) * 2015-08-24 2018-03-13 Caterpillar Inc. Hydraulic drive system for cryogenic pump
US10190556B2 (en) * 2017-01-09 2019-01-29 Caterpillar Inc. System and method for lubricating a cryogenic pump
DE102018200715A1 (de) * 2018-01-17 2019-07-18 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
DE102018211338A1 (de) * 2018-07-10 2020-01-16 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe und Verfahren zum Betreiben einer Kraftstofffördereinrichtung

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2301407A (en) * 1940-06-22 1942-11-10 Dayton Liquid Meter Company Fuel injection pump
US2433222A (en) * 1945-11-05 1947-12-23 New York Air Brake Co Pump
FR1122769A (fr) * 1954-04-17 1956-09-12 Pompe d'injection pour moteurs à combustion
FR1211846A (fr) * 1958-10-18 1960-03-18 Pompe hydraulique pour pulvérisateurs agricoles
US2960936A (en) * 1958-07-11 1960-11-22 William M Dean Fuel injection pump
FR2119364A5 (fr) * 1970-12-21 1972-08-04 Wagner Josef
FR2164332A5 (fr) * 1971-12-06 1973-07-27 Atlas Copco Ab
DE2447741A1 (de) * 1973-10-05 1975-04-10 Wanner Engineering Kolbenvorrichtung fuer eine membranpumpe
DE2946529A1 (de) * 1979-11-17 1981-05-27 Frieseke & Hoepfner Gmbh, 8520 Erlangen Druckgeregelte mehrzylinder-kolbenpumpe
US4392787A (en) * 1981-01-21 1983-07-12 Wetrok Inc. Diaphragm pump
US4443160A (en) * 1980-11-13 1984-04-17 Brueninghaus Hydraulik Gmbh High-pressure piston pump for liquids, preferably for water

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2162332B2 (fr) 1971-12-10 1976-10-29
JPS4963003A (fr) * 1972-06-16 1974-06-19
GB1457487A (en) * 1974-06-19 1976-12-01 Leduc G Hydraulic swash plate pumps
ATE10533T1 (de) * 1982-02-05 1984-12-15 Bran & Luebbe Gmbh Kolbenmembranpumpe.
DE3414006C2 (de) * 1984-04-13 1986-03-06 Bran & Lübbe GmbH, 2000 Norderstedt Kolbenmembranpumpe
US4667638A (en) * 1984-04-17 1987-05-26 Nippon Soken, Inc. Fuel injection apparatus for internal combustion engine
CA1233363A (fr) * 1984-06-01 1988-03-01 Robert E. Fischell Pompe a diaphragme a clapet unique, a insensibilite aux conditions ambiantes amelioree
DE3446914A1 (de) * 1984-12-21 1986-07-03 Ott Kg Lewa Membranpumpe mit hydaulisch angetriebener rollmembran
EP0280745B1 (fr) * 1987-02-28 1991-06-26 Bran & Lübbe GmbH Pompe à membrane à piston
JPH0223829Y2 (fr) * 1987-05-19 1990-06-28
US4964345A (en) * 1987-12-18 1990-10-23 Hydro Rene Leduc Rail car axle with axial hydraulic pump
DE3838141C2 (de) * 1988-11-10 1998-12-24 Knf Neuberger Gmbh Membranpumpe
DE4141670C2 (de) * 1991-12-17 1994-09-29 Ott Kg Lewa Hydraulisch angetriebene Membranpumpe mit Membranhubbegrenzung
DE4327970C2 (de) * 1993-08-19 1997-07-03 Ott Kg Lewa Hydraulisch angetriebene Membranpumpe mit mechanischer Membranhubbegrenzung
FR2721352B1 (fr) * 1994-06-17 1996-09-06 Leduc Rene Hydro Sa Pompe à haute pression pour alimenter des injecteurs d'essence pour moteurs à explosion.
US5707219A (en) * 1995-10-04 1998-01-13 Wanner Engineering Diaphragm pump

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2301407A (en) * 1940-06-22 1942-11-10 Dayton Liquid Meter Company Fuel injection pump
US2433222A (en) * 1945-11-05 1947-12-23 New York Air Brake Co Pump
FR1122769A (fr) * 1954-04-17 1956-09-12 Pompe d'injection pour moteurs à combustion
US2960936A (en) * 1958-07-11 1960-11-22 William M Dean Fuel injection pump
FR1211846A (fr) * 1958-10-18 1960-03-18 Pompe hydraulique pour pulvérisateurs agricoles
FR2119364A5 (fr) * 1970-12-21 1972-08-04 Wagner Josef
FR2164332A5 (fr) * 1971-12-06 1973-07-27 Atlas Copco Ab
DE2447741A1 (de) * 1973-10-05 1975-04-10 Wanner Engineering Kolbenvorrichtung fuer eine membranpumpe
DE2946529A1 (de) * 1979-11-17 1981-05-27 Frieseke & Hoepfner Gmbh, 8520 Erlangen Druckgeregelte mehrzylinder-kolbenpumpe
US4443160A (en) * 1980-11-13 1984-04-17 Brueninghaus Hydraulik Gmbh High-pressure piston pump for liquids, preferably for water
US4392787A (en) * 1981-01-21 1983-07-12 Wetrok Inc. Diaphragm pump

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057434A1 (fr) * 1998-03-11 1999-11-11 Caterpillar Inc. Systeme hydraulique pourvu d'une pompe a deplacement fixe et refoulement variable
US6035828A (en) * 1998-03-11 2000-03-14 Caterpillar Inc. Hydraulically-actuated system having a variable delivery fixed displacement pump
US6216670B1 (en) 1998-03-11 2001-04-17 Caterpillar Inc. Hydraulically-actuated system having a variable delivery fixed displacement pump
EP0959247A1 (fr) * 1998-05-20 1999-11-24 J. Wagner Gmbh Pompe double à membrane pour liquides visqueux
FR2794810A1 (fr) 1999-06-08 2000-12-15 Peugeot Citroen Automobiles Sa Pompe a haute pression perfectionnee
JP2003501585A (ja) * 1999-06-08 2003-01-14 プジョー・シトロエン・オトモビル・ソシエテ・アノニム 改善された高圧ポンプ
WO2000075515A1 (fr) * 1999-06-08 2000-12-14 Peugeot Citroen Automobiles S.A. Pompe a haute pression a moyeu perfectionne
FR2794813A1 (fr) 1999-06-08 2000-12-15 Peugeot Citroen Automobiles Sa Pompe a haute pression a bouchon de remplissage perfectionne
FR2794811A1 (fr) 1999-06-08 2000-12-15 Peugeot Citroen Automobiles Sa Pompe a haute pression a etancheite perfectionnee
FR2794812A1 (fr) 1999-06-08 2000-12-15 Peugeot Citroen Automobiles Sa Pompe a haute pression a moyeu perfectionne
WO2000075516A1 (fr) * 1999-06-08 2000-12-14 Peugeot Citroen Automobiles S.A. Pompe a haute pression a bouchon de remplissage
WO2000075513A1 (fr) * 1999-06-08 2000-12-14 Peugeot Citroen Automobiles S.A. Pompe a haute pression perfectionnee
JP2003501586A (ja) * 1999-06-08 2003-01-14 プジョー・シトロエン・オトモビル・ソシエテ・アノニム 改善されたシールを備えた高圧ポンプ
WO2000075514A1 (fr) * 1999-06-08 2000-12-14 Peugeot Citroen Automobiles S.A. Pompe a haute pression a etancheite perfectionnee
JP2003501587A (ja) * 1999-06-08 2003-01-14 プジョー・シトロエン・オトモビル・ソシエテ・アノニム 改良されたハブを備える高圧ポンプ
US6554582B1 (en) 1999-06-08 2003-04-29 Peugeot Automobiles Sa High pressure pump with improved hub
US6726458B1 (en) 1999-06-08 2004-04-27 Peugeot Citroen Automobiles, S.A. High pressure pump with filler plug
US6648608B1 (en) 1999-06-08 2003-11-18 Peugeot Citroen Automobiles Sa High pressure fuel pump
US6659734B1 (en) 1999-06-08 2003-12-09 Peugeot Citroen Automobiles Sa High-pressure pump with improved sealing
US6561771B2 (en) 2001-06-19 2003-05-13 Caterpillar Inc Axial piston pump with center inlet fill
US7125230B2 (en) 2002-07-09 2006-10-24 Caterpillar Inc Valve with operation parameter set at assembly and pump using same
US6901911B2 (en) 2002-07-31 2005-06-07 Caterpillar Inc Pump and hydraulic system with low pressure priming and over pressurization avoidance features

Also Published As

Publication number Publication date
ES2238968T3 (es) 2005-09-16
DE69732802D1 (de) 2005-04-21
PT1048849E (pt) 2005-05-31
EP1048849A1 (fr) 2000-11-02
US6264437B1 (en) 2001-07-24
DE69732802T2 (de) 2006-04-06
JP3990732B2 (ja) 2007-10-17
EP1048849B1 (fr) 2005-03-16
EP0901575B1 (fr) 2011-06-01
EP0901575A1 (fr) 1999-03-17
JP2000511989A (ja) 2000-09-12

Similar Documents

Publication Publication Date Title
EP1048849B1 (fr) Pompe à haute pression pour tous liquides
FR2758372A1 (fr) Compresseur pour systeme de conditionnement d'air d'habitacle de vehicule
FR2908844A1 (fr) Pompe a palettes a deplacement variable
FR2834016A1 (fr) Pompe a jet
FR2825419A1 (fr) Pompe en particulier pour huile de graissage de moteurs a combustion interne dont le volume transportee est reglable en fonction de la temperature
FR2525697A1 (fr) Pompe volumetrique a deux etages pour gaz de petrole liquefies en phase liquide, et procede d'injection de carburant pour moteur de vehicule automobile utilisant une telle pompe
EP0898649B1 (fr) Dispositif d'injection de combustible liquide pour moteur a combustion interne
FR2862354A1 (fr) Pompe a cylindree variable, en particulier pompe a palettes
WO2018229368A1 (fr) Machine de detente et procedes d'utilisation d'une telle machine
CA2269458A1 (fr) Moteur a explosions, a plat et a cylindres opposes
WO2007110492A1 (fr) Pompe transfert pour injection d'essence a haute pression
FR3070731A1 (fr) Piston hydraulique a soupape de refroidissement et lubrification
EP0731886B1 (fr) Dispositif de lubrification d'un assemblage entre deux pieces mecaniques mobiles l'une par rapport a l'autre, notamment articulation bielle-piston
FR2765635A1 (fr) Pompe d'injection directe de combustible pour moteur a allumage commande et systeme d'injection comportant une telle pompe
FR2711736A1 (fr) Dispositif d'injection de combustible liquide pour moteur Diesel.
FR2749616A1 (fr) Pompe a haute pression pour tous liquides
FR2978207A1 (fr) Pompe d'agent de refroidissement pour un circuit de refroidissement d'un moteur a combustion interne
EP0180510B1 (fr) Pompe hydraulique à pistons et à clapets d'aspiration commandés
FR2897116A1 (fr) Systeme d'injection de carburant pour moteur a combustion interne
BE870198A (fr) Elements en volute complementaires, notamment pour pompes a liquides
FR2755472A1 (fr) Dispositif d'alimentation a haute pression d'injecteurs d'essence pour moteurs a combustion interne
FR3128742A1 (fr) Pompe à haute pression pour moteur à combustion interne de véhicule automobile
WO2022074321A1 (fr) Platine-clapet a microbilles libres
FR2883932A1 (fr) Perfectionnement aux pompes transfert
EP0089296A1 (fr) Pompe hydraulique à pistons axiaux commandés par un plateau biais, munis de moyens d'auto-amorçage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997926060

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997926060

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09194437

Country of ref document: US